

Heuristic Algorithms

Master's Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule: **Wednesday 13.30 - 16.30 in classroom Alfa**

Thursday 09.30 - 12.30 in classroom Alfa

Office hours: **on appointment**

E-mail: **roberto.cordone@unimi.it**

Web page: **<https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html>**

Ariel site: **<https://myariel.unimi.it/course/view.php?id=7439>**

What to do when the axioms are violated

If a search space violates the desired axioms, one can try and change it

For the *TSP*, an alternative \mathcal{F}_A includes all paths starting from node 1

Let N_x be the set of nodes visited from x : the acceptable extensions are all arcs going out of the last node of path x and not closing a subtour

$$\Delta_A^+(x) = \{(h, k) \in A : h = \text{Last}(x), k \notin N_x \text{ or } k = 1 \text{ and } N_x = N\}$$

Unfortunately, the axioms are still not all satisfied

- the trivial axiom always holds
- the accessibility axiom holds: removing the last arc yields a path starting from node 1
- the hereditarity axiom does not hold: not all subsets are paths
- the exchange axiom does not hold (not a greedoid, therefore)

Therefore, it is not even a greedoid

But the algorithm can still be a reasonable heuristic

The Nearest Neighbour heuristic for the TSP

The **Nearest Neighbour** (NN) heuristic adopts the alternative search space keeping the objective function as the selection criterium

- Start with an empty set of arcs: $x^{(0)} = \emptyset$
that represents a degenerate path going out of node 1
(the optimal solution certainly visits node 1)
- Find the **arc of minimum cost going out of the last node of x**

$$(i, j) = \arg \min_{(h, k) \in \Delta_A^+(x)} c_{hk}$$

(the objective function is additive)

- If $j \neq 1$, go back to point 2; otherwise, terminate
($\Delta_A^+(x)$ allows the return to node 1 only at the last step)

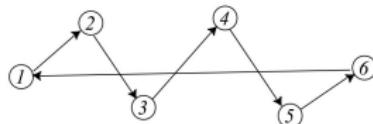
The algorithm is very intuitive and its complexity is $\Theta(n^2)$

It is not exact, but **log n-approximated** *(under the triangle inequality)*

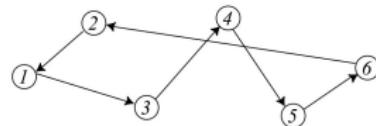
The Nearest Neighbour heuristic: example

Consider a complete graph (the arcs are not reported for clarity)

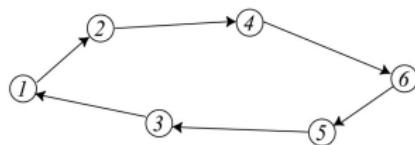
Starting from node 1



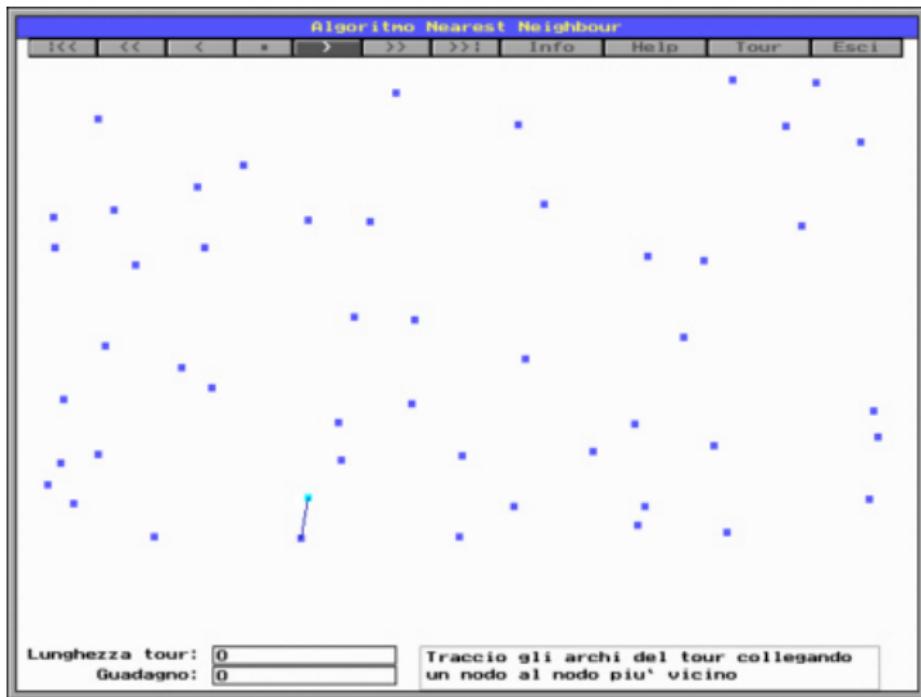
Starting from node 2



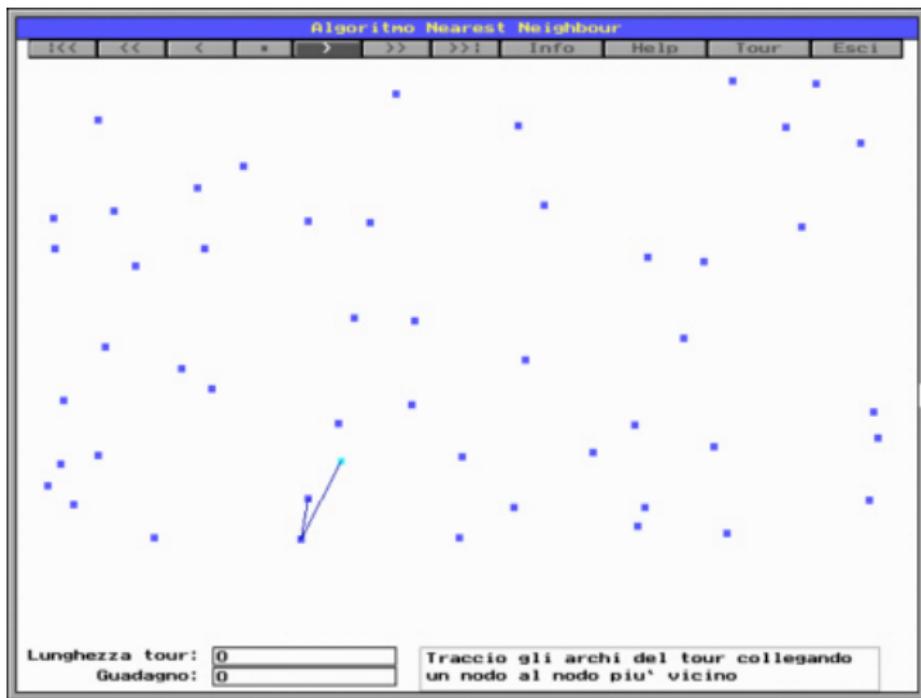
The optimal solution cannot be found starting from any node



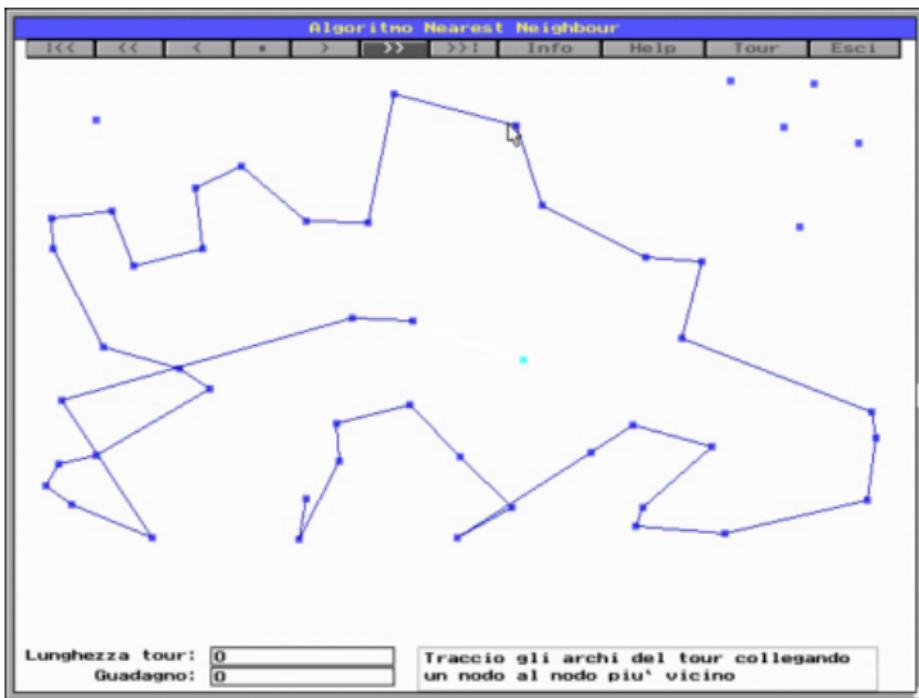
A larger example



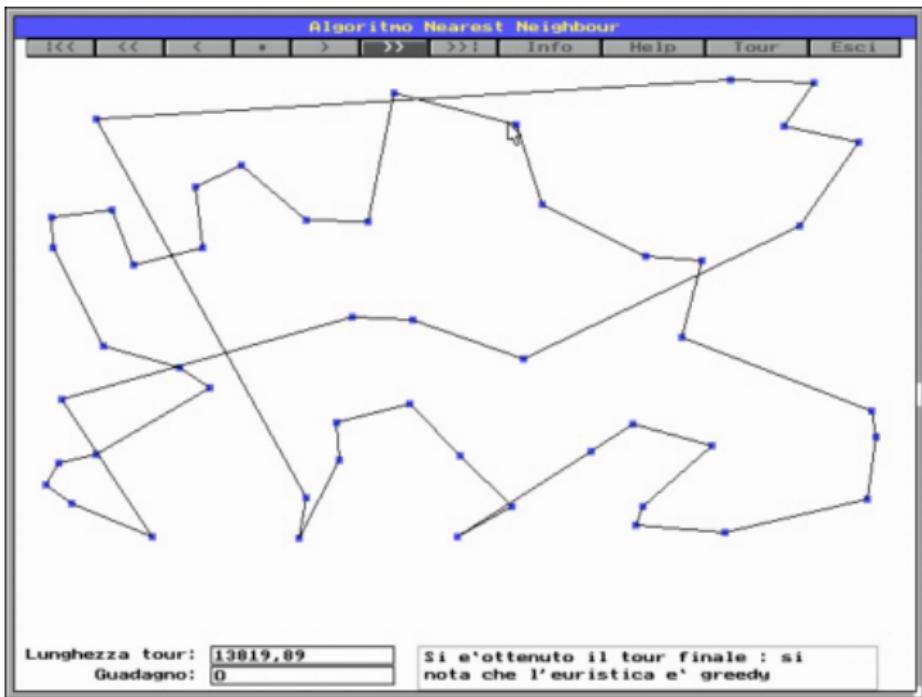
A larger example



A larger example



A larger example



If the problem does not admit a search space with suitable properties, one must **keep into account the constraints of the problem** adopting

- ① not only a good definition of \mathcal{F}_A
- ② but also a **sophisticated definition of the selection criterium** $\varphi_A(i, x)$

This allows effective results, even if not provably optimal

In the *KP*, the drawback derives from the volume of the objects: **promising objects have a large value, but also a small volume**

- define the selection criterium as the **unitary value** $\varphi_A(i, x) = \frac{\phi_i}{v_i}$

The resulting algorithm

- can perform very badly
- with a small modification is 2-approximated

Example: the KP

B	a	b	c	d	e	f
ϕ	7	2	4	5	4	1
v	5	3	2	3	1	1
ϕ/v	1.40	0.67	2.00	1.67	4	1

$$V = 8$$

The algorithm performs the following steps:

- ① $x := \emptyset$;
- ② select $i := e$ and update $x := \{e\}$;
- ③ select $i := c$ and update $x := \{c, e\}$;
- ④ select $i := d$ and update $x := \{c, d, e\}$;
- ⑤ select $i := f$ and update $x := \{c, d, e, f\}$; *(object a does not fit)*
- ⑥ since $\Delta_A^+(x) = \emptyset$, terminate

The value of the solution found is 14,
the optimal solution is $x^* = \{a, c, e\}$ and its value is 15

Example: the KP

There are critical cases

B	a	b
ϕ	10	90
v	1	10
ϕ/v	10	9

$$V = 10$$

The algorithm performs the following steps:

- ① $x := \emptyset$;
- ② select $i := a$ and update $x := \{a\}$;
- ③ since $\Delta_A^+(x) = \emptyset$, terminate

The value of the solution found is 10, the optimum is 90:
there are instances with unlimitedly worse gaps

The reason of the mistake is that

- the first discarded object
- has a large volume, but also a large value

Example: 2-approximated algorithm for the KP

- ① Start with an empty subset: $x^{(0)} = \emptyset$
- ② Find the object $i^{(t)}$ of maximum unitary value in $B \setminus x^{(t-1)}$:

$$i^{(t)} := \arg \max_{i \in B \setminus x^{(t-1)}} \frac{\phi_{i^{(t)}}}{v_{i^{(t)}}}$$

- ③ If it respects the capacity, add $i^{(t)}$ to $x^{(t-1)}$: $x^{(t)} := x^{(t-1)} \cup \{i^{(t)}\}$ and go back to point 2
- ④ Build a solution with the first rejected object: $x' = \{i^{(t)}\}$
- ⑤ Return the better solution between x and x' : $f_A = \max [f(x), f(x')]$

It is easy to prove that

- the sum of the two solution values overestimates the optimum

$$f(x) + f(x') = \sum_{\tau=1}^t \phi_{i^{(\tau)}} \geq f^*$$

- the best of the two solution values is at least half their sum

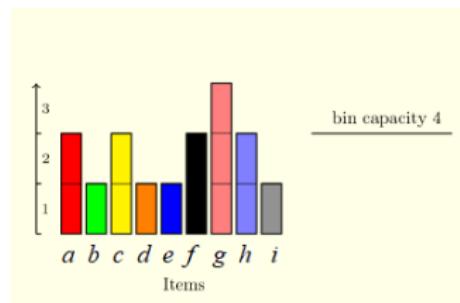
$$f_A = \max [f(x), f(x')] \geq \frac{f(x) + f(x')}{2} \geq \frac{1}{2} f^*$$

Bin Packing Problem

The *BPP* requires to divide a set O of voluminous objects into the minimum number of containers of given capacity drawn from a set C

$B = O \times C$ includes the object-container assignments (i, j)

- with exactly one container for each object
- with the total volume in each container not exceeding the capacity



Let us define the **search space \mathcal{F}_A** as the **set of all partial solutions**

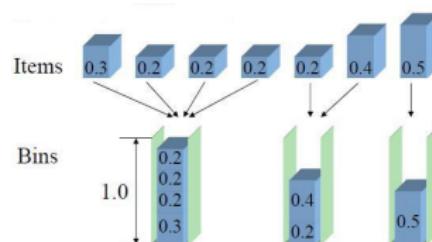
The objective function is a bad selection criterium, because it is flat

All the augmented subsets have the same value or increase it by 1

First-Fit heuristic

Consider the object-container pairs lexicographically

- Start with an empty subset: $x^{(0)} = \emptyset$
- Select pair (i, j) according to the following criterium:
 - i is the **first** (minimum index) **unassigned object**
 - j is the **first container with enough residual capacity** for i
(a used container, if possible; an unused one otherwise)
- Add the new assignment to the solution: $x^{(t)} := x^{(t-1)} \cup \{(i, j)\}$

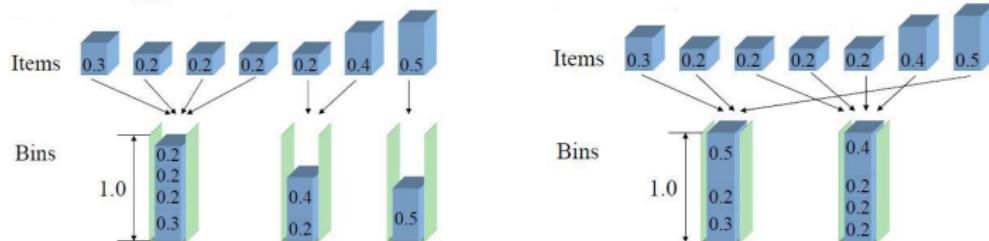


Notice that **the choice of (i, j)**

- **does not minimise $f(x \cup \{(i, j)\})$** *(another i could be better)*
- **is split into two phases** *(first i , then j)*

Properties of the First-Fit heuristic

The solution is not optimal



but it is approximated:

- at least $f^* \geq \sum_{i \in O} v_i / V$ containers are necessary
- the occupied volume is $> V/2$ for all used containers, possibly except for the last one (*if a second half-empty container existed, its objects would have been assigned to the first*)
- the total volume exceeds that of the $f_A - 1$ “saturated” containers

$$\sum_{i \in O} v_i > (f_A - 1) \frac{V}{2}$$

which implies $(f_A - 1) < \frac{2}{V} \sum_{i \in O} v_i \leq 2f^* \Rightarrow f_A \leq 2f^*$

(the analysis can be improved to 1.7)

Decreasing First-Fit heuristic

The approximation ratio $\alpha = 2$ holds for any permutation of the objects

Intuition would suggest to select first the smallest objects, in order to keep the objective $f(x \cup \{i\})$ as small as possible, but this neglects that all objects must be assigned

By contrast, **it is better to select the largest object first** because

- each object in a container has a volume strictly larger than the residual capacity of all the previous containers
(otherwise, it would have been assigned to one of them)
- keeping the smallest objects in the end guarantees that many containers have a small residual capacity

This algorithm has a better approximation ratio: $f_A \leq \frac{11}{9} f^* + 1$

A constructive algorithm A is

- **pure** if the selection criterium φ_A depends only on the new element i
- **adaptive** if φ_A depends both on i and on the current solution x

Many criteria $\varphi_A(i, x)$ admit equivalent forms depending only on i

- in the TSP , $\varphi_A((i, j), x) = f(x \cup \{(i, j)\})$ is equivalent to c_{ij}
- in the KP , $\varphi_A(i, x) = f(x \cup \{i\})$ is equivalent to ϕ_i

So far, we have seen only pure constructive algorithms

An additive selection criterium yields a pure constructive algorithm

Set Covering

Given a binary matrix and a cost vector associated to the columns, find a minimum cost subset of columns covering all the rows

The objective is additive, but the solutions are not maximal subsets

(actually, the smaller feasible subsets are better)

An adaptive selection criterium $\varphi_A(i, x)$ is necessary: a pure one ($\varphi_A(i)$) could repeatedly choose columns covering the same rows

The more promising ideas are to consider

- the **objective function**: select columns of low cost
- the **constraints**: select columns covering many rows
- the **current subset x** : select columns covering new rows

In summary

- include in $\Delta_A^+(x)$ only **columns covering additional rows** not in x
- apply the adaptive selection criterium $\varphi_A(i, x) = \frac{c_i}{a_i(x)}$
where $a_i(x)$ is the **number of rows covered by i , but not by x**

Set Covering: a positive example

c	3	5	6	2	1	7	1	8
A	1	0	1	0	0	0	0	1
	0	1	0	0	0	1	0	0
	1	0	0	1	0	0	0	0
	1	0	1	0	0	1	0	0
	0	0	0	0	1	0	1	1
	1	0	0	1	0	1	0	0

The algorithm performs the following steps:

- 1 $x := \emptyset$;
- 2 select $i := 1$ ($\varphi_A(i, x) = 3/4$) and update $x := \{1\}$ and $\Delta_A^+(x) = \{2, 5, 6, 7, 8\}$;
- 3 select $i := 5$ ($\varphi_A(i, x) = 1$) and update $x := \{1, 5\}$ and $\Delta_A^+(x) = \{2, 6\}$;
- 4 select $i := 2$ ($\varphi_A(i, x) = 5$) and update $x := \{1, 2, 5\}$;
- 5 now all the rows are covered and $\Delta_A^+(x) = \emptyset$, therefore terminate

The value of the solution found is $3 + 5 + 1 = 9$ and is the optimum.

Set Covering: a negative example

But the algorithm can also fail

c	25	6	8	24	12
-----	----	---	---	----	----

A	1	1	0	0	0
	1	1	0	0	0
	1	1	1	0	0
	1	0	1	1	0
	1	0	0	1	0
	1	0	0	0	1
	1	0	0	0	1

The algorithm performs the following steps:

- 1 $x := \emptyset$;
- 2 since $c/a_i(x) = [4.1\bar{6} \quad 2 \quad 4 \quad 12 \quad 12]$, select $i := 2$;
- 3 since $c/a_i(x) = [8.\bar{3} \quad - \quad 8 \quad 12 \quad 12]$, select $i := 3$;
- 4 since $c/a_i(x) = [12.5 \quad - \quad - \quad 24 \quad 12]$, select $i := 5$;
- 5 since $c/a_i(x) = [25 \quad - \quad - \quad 24 \quad -]$, select $i := 4$;
- 6 all the rows are covered, therefore $\Delta_A^+(x) = \emptyset$ and terminate

The solution returned is $x = \{2, 3, 4, 5\}$ and its value is 50,
whereas the optimal solution $x^* = \{1\}$ has value $f^* = 25$

Approximability of the SCP

This algorithm has a nonconstant (logarithmic) approximation ratio

- at each step t , each column i is evaluated with criterium

$$\varphi_A(i, x^{(t-1)}) = \frac{c_i}{a_i(x^{(t-1)})}$$

- each row j is covered by a certain column (i_j) at a certain step (t_j)
- start assigning weight $\theta_j = 0$ to each row j
- when each row j is covered (step t_j), set its weight to

$$\theta_j = \frac{c_{i_j}}{a_{i_j}(x^{(t_j-1)})}$$

so that the total weight of the rows increases by c_{i_j} at step t_j ;
correspondingly, x includes column i_j and its cost increases by c_{i_j}

- the total cost of x is always equal to the total weight of the rows

$$f_A(x) = \sum_{i \in x} c_i = \sum_{j \in R} \theta_j$$

Approximability of the SCP

- at step t , there are $|R^{(t)}|$ uncovered rows
- the columns of the optimal solution could cover them all with cost f^*
 \Rightarrow at least one of such columns has unitary cost $\leq f^*/|R^{(t)}|$
- the column i selected has minimum unitary cost $\varphi_A(i, x^{(t-1)})$,
 therefore $\leq f^*/|R^{(t)}|$ and the covered rows increase their weight by

$$\theta_j = \varphi_A(i, x^{(t-1)}) \leq \frac{f^*}{|R^{(t_j)}|} \Rightarrow \sum_{j \in R} \theta_j \leq \sum_{j \in R} \frac{f^*}{|R^{(t_j)}|}$$

The cost to cover each row j is not larger than the optimum divided by the number of rows uncovered at the step in which j gets covered

- the integer numbers $|R^{(t)}|$ are all different
- the sum of all values $\sum_{r=1}^{|R|} \frac{1}{r}$ overestimates $\sum_{j \in R} \frac{1}{|R^{(t_j)}|}$
- The approximation ratio is limited by a logarithmic guarantee

$$f_A = \sum_{j \in R} \theta_j \leq \sum_{j \in R} \frac{f^*}{|R^{(t_j)}|} \leq \sum_{r=|R|}^1 \frac{f^*}{r} \leq (\ln |R| + 1) f^*$$

Application to the negative example

c	25	6	8	24	12
A	1	1	0	0	0
	1	1	0	0	0
	1	1	1	0	0
	1	0	1	1	0
	1	0	0	1	0
	1	0	0	0	1

- 1 since $\varphi_A(i, x) = [4.1\bar{6} \ 2 \ 4 \ 12 \ 12]$, select $i := 2$
and set $\theta_1 = \theta_2 = \theta_3 = 2$, that is $\leq f^*/|R^{(0)}| = 25/6 = 4.1\bar{6}$;
now weight $\theta_1 \leq 25/6$, and even more so $\theta_2 \leq 25/5$ and $\theta_3 \leq 25/4$
- 2 since $\varphi_A(i, x) = [8.\bar{3} \ - \ 8 \ 12 \ 12]$, select $i := 3$
and set $\theta_4 = 8$, that is $\leq f^*/|R^{(1)}| = 8.\bar{3}$
- 3 since $\varphi_A(i, x) = [12.5 \ - \ - \ 24 \ 12]$, select $i := 5$
and set $\theta_6 = 12$, that is $\leq f^*/|R^{(2)}| = 12.5$
- 4 since $\varphi_A(i, x) = [25 \ - \ - \ 24 \ -]$, select $i := 4$
and set $\theta_5 = 24$, that is $\leq f^*/|R^{(3)}| = 25$
- 5 all the rows are covered, therefore $\Delta_A^+(x) = \emptyset$ and the algorithm terminates

Now $f_A = \sum_{j \in R} \theta_j = 50$ and the approximation holds: $f_A \leq (\ln |R| + 1) f^* \approx 2.79 f^*$