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A statistical model of algorithm performance

We model the execution of algorithm A as a random experiment

• the whole set of instances I is the sample space

• the benchmark subset of instances Ī ⊂ I is the sample

• the computational time TA (I ) is a random variable

• the relative difference δA (I ) is a random variable

We describe the performance of A with the statistical properties
of the random variables TA (I ) and δA (I )
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Estimates of δA (I )
The computation of δA (I ) requires to know the optimum f ∗ (I )

δA (I ) =
|fA (I )− f ∗ (I )|

f ∗ (I )

What if the optimum is unknown?

Replace it with an underestimate LB (I ) and/or an overestimate UB (I )

LB (I ) ≤ f ∗ (I ) ≤ UB (I ) ⇒ 1

LB (I )
≥ 1

f ∗ (I )
≥ 1

UB (I )
⇒

⇒ fA (I )

LB (I )
− 1 ≥ fA (I )

f ∗ (I )
− 1 ≥ fA (I )

UB (I )
− 1

fA (I )

f ∗ (I )
−1 =


δA (I ) (minimisation) ⇒ fA (I )− UB (I )

UB (I )
≤ δA (I ) ≤

fA (I )− LB (I )

LB (I )

−δA (I ) (maximisation) ⇒ UB (I )− fA (I )

UB (I )
≤ δA (I ) ≤

LB (I )− fA (I )

LB (I )

and therefore

|fA (I )− UB (I )|
UB (I )

≤ δA (I ) ≤
|fA (I )− LB (I )|

LB (I )

This range turns all diagrams on δA into region estimates
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Comparing heuristic algorithms

A heuristic algorithm is better than another one when it simultaneously

1 obtains better results

2 requires a smaller time

Slow algorithms with good results and fast algorithms with bad results
cannot be compared in a meaningful way

To start, we neglect the computational time; this is justified when

• considering a single algorithm with no comparison

• comparing algorithms that perform the same operations
(e. g., variants obtained modifying a numerical parameter)

• comparing algorithms that mostly perform the same operations
with few different ones that take a negligible fraction of the time
(e. g., different initialisations or perturbations)
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Analysis of the quality of the solution (SQD) diagram
The Solution Quality Distribution (SQD) diagram is the plot of the
distribution function of δA (I ) on Ī

FδA (α) = Pr [δA (I ) ≤ α] for each α ∈ R

5 / 26



Solution Quality Distribution (SQD) diagram
For any algorithm, the distribution function of δA (I )
• monotone nondecreasing: more instances are solved with worse gaps
• stepwise and right-continuous: the graph steps up at each δ (I )
• equal to zero for α < 0: no instance is solved with negative gap
• equal to 1 for α ≥ max

I∈Ī
δ (I ): all are solved within the largest gap

If A is an
• exact algorithm, it is a stepwise function, equal to 1 for all α ≥ 0
• ᾱ-approximated algorithm, it is a function equal to 1 for large α
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Building the SQD diagram
In order to build the diagram

1 run the algorithm on each instance I ∈ Ī
2 build the set ∆A

(
Ī
)
=

{
δA (I ) : I ∈ Ī

}
3 sort ∆A

(
Ī
)
by nondecreasing values: δ1 ≤ . . . ≤ δ|Ī|

4 plot points

(
δj ,

j

|Ī|

)
for j = 1, . . . , |Ī| (for equal δj , the highest j)

and the horizontal segments (close on the left, open on the right)

7 / 26



Parametric SQD diagrams

Given the theoretical and practical problems to build a meaningful sample
often the diagram is parameterised with respect to

• a descriptive parameter of the instances (size, density, . . . )

• a parameter of the probability distribution assumed for the instances
(expected value or variance of the costs, . . . )

The conclusions are more limited, but the sample is more significant
General trends can be highlighted (what happens as size increases?)
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Comparison between algorithms with the SQDs
How to determine whether an algorithm is better than another?

• strict dominance: it obtains better results on all instances

δA2 (I ) ≤ δA1 (I ) for each I ∈ I
This usually happens only in trivial cases (e.g., A2 “includes” A1)

• probabilistic dominance: the distribution function has higher values
for every value of α

FδA2
(α) ≥ FδA1

(α) for all α ∈ R

The following plot shows no dominance, but A1 is less “robust” than A2:
A1 has results more dispersed than A2 (both better and worse)
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Compact statistical descriptions
The distribution function FδA can be replaced or accompanied by
more compact characterisations of the effectiveness of an algorithm

This typically involves classical statistical indices of

• position, such as the sample mean

δ̄A =

∑
I∈Ī

δA (I )∣∣Ī∣∣
• dispersion, such as the sample variance

σ̄2
A =

∑
I∈Ī

(
δA (I )− δ̄A

)2
∣∣Ī∣∣

These indices “suffer” from the influence of outliers

Other statistical indices are “stabler” and more detailed

• the sample median

• suitable sample quantiles
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Boxplots

A graphic representation is the boxplot (or box and whiskers diagram)

• sample median (q0.5)

• lower and upper sample quartiles (q0.25 and q0.75)

• the extreme sample values (often excluding the “outliers”)
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Comparison between algorithms with boxplot diagrams

A more compact comparison can be performed with boxplot diagrams

Necessary conditions

Strict dominance ⇒ Probabilistic dominance ⇒ qi ≤ q′i (i = 1, . . . , 5)

Strict dominance holds only if probabilistic dominance holds

Probabilistic dominance holds only if each of the five quartiles is not
above the corresponding one of the other algorithm (e. g., A2 − A3)
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Comparison between algorithms with boxplot diagrams
Sufficient conditions

q5 ≤ q′1 ⇒ Strict dominance

If a boxplot is fully below the other one, strict dominance holds
(e. g., A7 − A8)

qi ≤ q′i−1 (i = 2, . . . , 5) ⇒ Probabilistic dominance

If each of the five quartiles is below the preceding one of the other
algorithm, probabilistic dominance holds (e. g., A1 − A2 or A6 − A8)

Necessary condition Sufficient condition
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Relation between quality and computational time

Many heuristic algorithms find several solutions during their execution,
instead of a single one, and consequently can be terminated prematurely

In particular, metaheuristics (using random steps or memory mechanisms)
have a computational time t fixed by the user and potentially unlimited

Let δA (I , t) be the relative difference reached by A at time t on instance I

As a function of time t, δA (I , t) is

• +∞ if A has not yet found a feasible solution at time t

• stepwise monotone nonincreasing

• constant after the regular termination (t ≥ T (I ))
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Randomised algorithms

For randomised algorithms the relative difference δA (I , ω, t) depends on

1 the instance I ∈ I
2 the outcome ω ∈ Ω of the random experiment guiding the algorithm

(that is the random seed)

3 the execution time t

Given a fixed time, these algorithms can be tested

1 on a sample of instances Ī with a fixed seed ω

2 on a fixed instance I with a batch of seeds Ω̄ (different runs)

obtaining the above described indices and distribution diagrams

Of course, one can consider both random aspects (instance and seed)

The results of multiple runs (Ω̄) are usually summarised providing both:

• the minimum relative difference δ∗A (I , t) and the total time
∣∣Ω̄∣∣ t

• the average relative difference δ̄A (I , t) and the single-run time t
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Classification

The relation between solution quality and computational time
allows to classify the algorithms into:

• complete: for each instance I ∈ I, find the optimum in finite time

∃t̄I ∈ R+ : δA (I , t) = 0 for each t ≥ t̄I , I ∈ I

(It is another name for exact algorithms)

• probabilistically approximately complete: for each instance I ∈ I,
find the optimum with probability converging to 1 as t → +∞

lim
t→+∞

Pr [δA (I , t, ω) = 0] = 1 for each I ∈ I

(many randomised metaheuristics)

• essentially incomplete: for some instances I ∈ I, find the optimum
with probability strictly < 1 as t → +∞

∃I ∈ I : lim
t→+∞

Pr [δA (I , t, ω) = 0] < 1

(most greedy algorithms, local search algorithms, . . . )
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A generalisation

An obvious generalisation replaces the search for the optimum with that
for a given level of approximation

δA (I , t, ω) = 0 → δA (I , t, ω) ≤ α

• α-complete algorithms: for each instance I ∈ I, find an
α-approximated solution in finite time (α-approximated algorithms)

• probabilistically approximately α-complete algorithms: for each
instance I ∈ I, find an α-approximated solution with probability
converging to 1 as t → +∞

• essentially α-incomplete algorithms: for some instances I ∈ I, find
an α-approximated solution with probability strictly < 1 as t → +∞

In conclusion, every algorithm provides compromises between

• a quality measure, described by the threshold α

• a time measure, described by the threshold t
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The probability of success

Let the success probability πA,n (α, t) be the probability that algorithm A
find in time ≤ t a solution with a gap ≤ α on an instance of size n

πA,n (α, t) = Pr [δA (I , t, ω) ≤ α|I ∈ In, ω ∈ Ω]

This yields different secondary diagrams
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Qualified Run Time Distribution (QRTD) diagrams

The QRTD diagrams describe the profile of the time required to reach a
specified level of quality

They are useful when the computational time is not a tight resource

If the algorithm is

• complete, all diagrams reach 1 in finite time

• ᾱ-complete, all diagrams with α ≥ ᾱ reach 1 in finite time

• ᾱ-incomplete, all diagrams with α ≤ ᾱ do not reach 1
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Timed Solution Quality Distribution (TSQD) diagrams
The TSQD diagrams describe the profile of the level of quality reached in
a given computational time

They are useful when the computational time is a tight resource

If the algorithm is

• complete, all diagrams with a sufficient t are step functions in α = 0

• ᾱ-complete, all diagrams with a sufficient t reach 1 in α = ᾱ

• probab. approx. ᾱ-complete, the diagrams converge to 1 in α = ᾱ

• ᾱ-incomplete, all diagrams keep < 1 in α = ᾱ
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Solution Quality statistics over Time (SQT) diagrams

Finally, one can draw the level lines associated to different quantiles

They describe the compromise between quality and computational time

For a robust algorithm the level lines are very close to each other
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Statistical tests

Diagrams and boxplots are qualitative: how to evaluate quantitatively
if the empirical difference between algorithms A1 and A2 is significant?

Wilcoxon’s test focuses on effectiveness (neglecting robustness)

• fA1 (I )− fA2 (I ) is a random variable defined on the sample space I
• formulate a null hypothesis H0 according to which

the theoretical median of fA1 (I )− fA2 (I ) is zero

• extract a sample of instances Ī and run the two algorithms on it,
obtaining a sample of pairs of values (fA1 , fA2)

• compute the probability p of obtaining the observed result or a more
“extreme” one, assuming that H0 is true

• set a significance level p̄, that is the
• maximum acceptable probability to reject H0 assuming that it is true
• that is, to consider two identical medians as different
• that is, to consider two equivalent algorithms as differently effective

(referring to the median of the gap)

• reject H0 when p < p̄

Typical values for the significance level are p̄ = 5% or p̄ = 1%
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Wilcoxon’s test (assumptions)

It is a nonparametric test, that is, it does not make assumptions on the
probability distribution of the tested values

It is useful to evaluate the performance of heuristic algorithms,
because the distribution of the result fA (I ) is unknown

It is based on the following assumptions:

• all data are measured at least on an ordinal scale
(the specific values do not matter, only their relative size)

• the two data sets are matched and derive from the same population
(we apply A1 and A2 to the same instances, extracted from I)

• each pair of values is extracted independently from the others
(the instances are generated independently from one another)
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Wilcoxon’s test (application)

1 compute the absolute differences |fA1 (Ii )− fA2 (Ii )| for all Ii ∈ Ī
2 sort them by increasing values and assign a rank Ri to each one

3 separately sum the ranks of the pairs with a positive difference and
those of the pairs with a negative difference

W+ =
∑

i :fA1 (Ii )>fA2 (Ii )

Ri

W− =
∑

i :fA1 (Ii )<fA2 (Ii )

Ri

If the null hypothesis H0 were true, the two sums should be equal

4 the difference W+ −W− allows to compute the value of p:
each of the |Ī| differences can be positive or negative: 2|Ī| outcomes;

p is the fraction with
∣∣W+ −W−∣∣ equal or larger than the observed value

5 if p < p̄, the difference is significant and
• if W+ < W−, A1 is better than A2

• if W+ > W−, A1 is worse than A2
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Computation of the p-value

The value of p is usually

• computed explicitly by enumeration when |Ī| < 20

• approximated with a normal distribution when |Ī| ≥ 20

Of course, precomputed tables also exist
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Possible conclusions

Wilcoxon’s test can suggest

• that one of the two algorithms is significantly better than the other

• that the two algorithms are statistically equivalent

(but take it as a stochastic response, and keep an eye on p)

If the sample includes instances of different kinds, two algorithms could
be overall equivalent, but nonequivalent on the single classes of instances

Dividing the sample could reveal

• classes of instances for which A1 is better

• classes of instances for which A2 is better

• classes of instances for which the two algorithms are equivalent

but multiplying questions means getting some wrong answers by chance
(FWER = Family-Wise Error Rate)

Beware the garden of forking paths

What about testing δA (I ) instead of fA (I )?
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