Heuristic Algorithms

Master's Degree in Computer Science/Mathematics

Roberto Cordone
DI - Universita degli Studi di Milano

Schedule: Wednesday 13.30 - 16.30 in classroom Alfa
Thursday 09.30 - 12.30 in classroom Alfa

Office hours: on appointment

E-mail: roberto.cordone@unimi.it
Web page: https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html
Ariel site: https://myariel.unimi.it/course/view.php?id=7439
Lesson 6: Empirical performance evaluation (2) Milano, A.A. 2025/26}
1/26

https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html
https://myariel.unimi.it/course/view.php?id=7439

A statistical model of algorithm performance

We model the execution of algorithm A as a random experiment

the whole set of instances Z is the sample space

the benchmark subset of instances Z C Z is the sample
® the computational time Ta (/) is a random variable
® the relative difference d4 (/) is a random variable

We describe the performance of A with the statistical properties
of the random variables T4 (/) and 4 (/)

2/26

Estimates of 04 (/)

The computation of d4 (/) requires to know the optimum * (/)

What if the optimum is unknown?

Replace it with an underestimate LB (/) and/or an overestimate UB (/)
1 1

LB(I) < f*(I) < UB(I) = LBl(,) ZEFM S UBM)
fa (1) fa (1) fa (1)
o en tuen !
fa(l) - UB (1) fa(l) ~ LB (1)
2 I ha() < TU)

da (1) (minimisation) = VBN

fa(l) 1
F=() —0a (1) (maximisation) = %_(I?(I) <da(l) < %_(I?(I)

and therefore
[fa (1) — UB(1)] [fa (1) — LB (1)]
UB (1) <o) = LB (1)

This range turns all diagrams on d4 into region estimates
3/26

Comparing heuristic algorithms

A heuristic algorithm is better than another one when it simultaneously
@ obtains better results
@ requires a smaller time
Slow algorithms with good results and fast algorithms with bad results
cannot be compared in a meaningful way
To start, we neglect the computational time; this is justified when
® considering a single algorithm with no comparison

® comparing algorithms that perform the same operations
(e. g., variants obtained modifying a numerical parameter)

® comparing algorithms that mostly perform the same operations
with few different ones that take a negligible fraction of the time
(e. g., different initialisations or perturbations)

4/26

Analysis of the quality of the solution (SQD) diagram

The Solution Quality Distribution_(SQD) diagram is the plot of the
distribution function of d4 (/) on Z

Fs, () = Pr[éa(l) < a] for each a € R

1
09 |
0.8 |-
0.7 |
06 |
05 |
04 |-
03 |
02 |
01 |

O L | | | |
¥ 7.5 8 85 9 95 10 105

cumulative frequency

relative solution quality [%]

5/26

Solution Quality Distribution (SQD) diagram

For any algorithm, the distribution function of d4 (/)

® monotone nondecreasing: more instances are solved with worse gaps
® stepwise and right-continuous: the graph steps up at each ¢ (/)
® equal to zero for @ < 0: no instance is solved with negative gap

® equal to 1 for v > maxd (/): all are solved within the largest gap
1€

cumulative frequency
o
(=2}

T i T i T T T T T

I Y I T N

0 i . I I i
7 75 8 85 9 95 40, 105

relative solution quality [%]

If Ais an
® exact algorithm, it is a stepwise function, equal to 1 for all & > 0
® q-approximated algorithm, it is a function equal to 1 for large «

6/26

Building the SQD diagram

In order to build the diagram
© run the algorithm on each instance / € 7
@ build the set Ay () = {0a(/): 1 €1}
© sort Ay (Z) by nondecreasing values: 6; < ... < 3z,

1
09 |
08 |-
07 |
0.6 |
05 |-
04 |
03 |-
02 |
01 |

0

cumulative frequency

T 7.5 8 85 9 95 10 105

relative solution quality [%]

7/26

Parametric SQD diagrams

Given the theoretical and practical problems to build a meaningful sample
often the diagram is parameterised with respect to

® 3 descriptive parameter of the instances (size, density, .. .)

® 3 parameter of the probability distribution assumed for the instances
(expected value or variance of the costs, ...)

1 Cali) f’ T
09 b i
08 | / .
I
o7 b £ =
T ost / a
o 05 =
2
2 o4l 100 — -
03 500 ----- -
i 1000 -—- |
gf 5000 ---—-
AT 10000
D | I

g 2.5 10 105

relative salution quality [%=]

The conclusions are more limited, but the sample is more significant
General trends can be highlighted (what happens as size increases?)

8/26

Comparison between algorithms with the SQDs

How to determine whether an algorithm is better than another?
® strict dominance: it obtains better results on all instances

on, (1) < da, (1) foreach 1 € T

This usually happens only in trivial cases (e.g., Ay “includes” A;)
® probabilistic dominance: the distribution function has higher values
for every value of «

Fs,, (@) > Fs, () foralla € R

The following plot shows no dominance, but A; is less “robust” than A,:
A; has results more dispersed than A, (both better and worse)

P(solve)
o
(4]
T

T

7 75 8 85 9 95 10 105

relative solution quality [%]

9/26

Compact statistical descriptions

The distribution function Fj, can be replaced or accompanied by
more compact characterisations of the effectiveness of an algorithm

This typically involves classical statistical indices of

® position, such as the sample mean

> 0a(l)
N 1€
op= —=——
ST
® dispersion, such as the sample variance

S (5a (1) —5a)?

These indices “suffer” from the influence of outliers

Other statistical indices are “stabler” and more detailed
® the sample median

® suitable sample quantiles

10/26

A graphic representation is the boxplot (or box and whiskers diagram)
® sample median (qo.5)
® lower and upper sample quartiles (go.25 and qo.75)
® the extreme sample values (often excluding the “outliers”)

Median
One half «— -+ The other half
of the sample of the sample
Lower Upper
Quartile Quartile
One quarter +—— | <— Middle half —»| —=# One quarter
of the sample of the sample: of the sample

Minimum Maximum

Smallest sample value — +. ® e oee
fi: b h

4! 6! I

| | |

I | | | |

whisker - wehisker
| [

l<— box length —& !
' Interquartile '
Range

<— Largest sample value
ey

A y
8 |10 12

11/26

Comparison between algorithms with boxplot diagrams

A more compact comparison can be performed with boxplot diagrams

10% - l;l et

- ¢
59 - .
b d —T
e nl B
L = i
? T T _;_ T T T T
& B A K B B B
Necessary conditions
Strict dominance = Probabilistic dominance = q; < ¢/ (i = 1,...,5)

Strict dominance holds only if probabilistic dominance holds

Probabilistic dominance holds only if each of the five quartiles is not
above the corresponding one of the other algorithm (e. g., Ay — A3)

12/26

Comparison between algorithms with boxplot diagrams

Sufficient conditions
gs < g1 = Strict dominance

If a boxplot is fully below the other one, strict dominance holds
(e. g, A7 — Ag)

qi <q._, (i=2,...,5) = Probabilistic dominance

If each of the five quartiles is below the preceding one of the other
algorithm, probabilistic dominance holds (e. g., A; — A or As — Ag)

Necessary condition Sufficient condition
R

100

035

13/26

Relation between quality and computational time

Many heuristic algorithms find several solutions during their execution,
instead of a single one, and consequently can be terminated prematurely

In particular, metaheuristics (using random steps or memory mechanisms)
have a computational time t fixed by the user and potentially unlimited

Let da (1, t) be the relative difference reached by A at time t on instance /

As a function of time t, da (/,t) is
® oo if A has not yet found a feasible solution at time t
® stepwise monotone nonincreasing

® constant after the regular termination (t > T (/))

14 /26

Randomised algorithms

For randomised algorithms the relative difference d4 (/,w, t) depends on
@ theinstance | € 7

® the outcome w € Q of the random experiment guiding the algorithm
(that is the random seed)

© the execution time t

Given a fixed time, these algorithms can be tested
© on a sample of instances 7 with a fixed seed w
@ on a fixed instance / with a batch of seeds Q (different runs)

obtaining the above described indices and distribution diagrams

Of course, one can consider both random aspects (instance and seed)

The results of multiple runs (Q2) are usually summarised providing both:
® the minimum relative difference 0% (/, t) and the total time |Q| t

® the average relative difference 64 (/, t) and the single-run time t

15/26

Classification

The relation between solution quality and computational time
allows to classify the algorithms into:

® complete: for each instance | € Z, find the optimum in finite time
Jt; € RT : 64 (l,t) =0foreach t > f,/ €T

(It is another name for exact algorithms)

® probabilistically approximately complete: for each instance | € Z,
find the optimum with probability converging to 1 as t — 400

lim Pr[éa(l,t,w)=0]=1foreach | €Z

t—+o00

(many randomised metaheuristics)

® essentially incomplete: for some instances | € Z, find the optimum
with probability strictly < 1 as t — +o0

e lim Prioa(l,t,w)=0]<1
t—+o00

(most greedy algorithms, local search algorithms, . ..)

16/26

A generalisation

An obvious generalisation replaces the search for the optimum with that
for a given level of approximation

a(l,t,w)=0 — da(l,t,w) <«

® qa-complete algorithms: for each instance | € Z, find an
a-approximated solution in finite time (a-approximated algorithms)

® probabilistically approximately a-complete algorithms: for each
instance | € Z, find an a-approximated solution with probability
converging to 1 as t — 400

® essentially a-incomplete algorithms: for some instances | € Z, find
an a-approximated solution with probability strictly < 1 as t — 400

In conclusion, every algorithm provides compromises between
® a quality measure, described by the threshold «

® 3 time measure, described by the threshold t

17/26

The probability of success

Let the success probability 7a , (o, t) be the probability that algorithm A
find in time < t a solution with a gap < « on an instance of size n

Tan(a,t)=Prioa(l,t,w) <all € Z,,w e Q]

P(solve)
1
0.8
0.6 =
0.4 S
QO
e
WO ok
25 , \:,.o"‘:“g‘\}‘ TR

0.5 "
rel. soln. 0 1

quality [%] 0.1
run-time [CPU sec]

This yields different secondary diagrams

18/26

Qualified Run Time Distribution (QR

diagrams

The QRTD diagrams describe the profile of the time required to reach a
specified level of quality

P(solve)
—
1 L]
0.8 /
0.6 ki g
0.4 . / E
0.2 2 |
0 R] :
!
e 2
R o 0.8%
258 SRR ! :

rel. soln. 0 1
quality [%]

10 100 1000

run-time [CPU sec] run-time [CPU sec]

They are useful when the computational time is not a tight resource

If the algorithm is
® complete, all diagrams reach 1 in finite time
® a-complete, all diagrams with a > @ reach 1 in finite time
® a-incomplete, all diagrams with o < & do not reach 1

19/26

Timed Solution Quality Distribution (TSQD) diagrams

The TSQD diagrams describe the profile of the level of quality reached in
a given computational time

P(solve)

0.5
rel. soln.

0
0
quality [%] 01 0 05 1 15 2 25

run-time [CPU sec] relative solution quality [%]

They are useful when the computational time is a tight resource

If the algorithm is
® complete, all diagrams with a sufficient t are step functions in a« = 0
® a-complete, all diagrams with a sufficient t reach 1 in a = &
® probab. approx. @-complete, the diagrams converge to 1 in a = &
® a-incomplete, all diagrams keep < 1ina=a

20/26

Solution Quality statistics over Time (SQT) diagrams

Finally, one can draw the level lines associated to different quantiles

P(solve) 0.7

1 i e
08 06 | 0.75 quantile ———
82 i 05 =~ 0.9 quantile

relative solution quality [%]

0.5
rel. soln. 0 1
quality [%] 01
run-time [CPU sec]

run-time [CPU sec]

They describe the compromise between quality and computational time

For a robust algorithm the level lines are very close to each other

21/26

Statistical tests

Diagrams and boxplots are qualitative: how to evaluate quantitatively
if the empirical difference between algorithms A; and A; is significant?
Wilcoxon's test focuses on effectiveness (neglecting robustness)
® fa (1) — fa, (/) is a random variable defined on the sample space
® formulate a null hypothesis Hy according to which
the theoretical median of fa, (/) — fa, (/) is zero
e extract a sample of instances Z and run the two algorithms on it,
obtaining a sample of pairs of values (fa,, fa,)
® compute the probability p of obtaining the observed result or a more
“extreme” one, assuming that Hy is true
® set a significance level p, that is the

® maximum acceptable probability to reject Hy assuming that it is true

® that is, to consider two identical medians as different

® that is, to consider two equivalent algorithms as differently effective
(referring to the median of the gap)

® reject Hyp when p < p
Typical values for the significance level are p =5% or p = 1%

22/26

Wilcoxon's test (assumptions)

It is a nonparametric test, that is, it does not make assumptions on the
probability distribution of the tested values

It is useful to evaluate the performance of heuristic algorithms,
because the distribution of the result f4 (/) is unknown
It is based on the following assumptions:

® all data are measured at least on an ordinal scale
(the specific values do not matter, only their relative size)

® the two data sets are matched and derive from the same population
(we apply Ay and A; to the same instances, extracted from T)

® cach pair of values is extracted independently from the others
(the instances are generated independently from one another)

23/26

Wilcoxon's test (application)

© compute the absolute differences |fa, (I;) — fa, (I;)| for all ; € Z
® sort them by increasing values and assign a rank R; to each one

© separately sum the ranks of the pairs with a positive difference and
those of the pairs with a negative difference

wt= Y R
/ZfAl(/i)>fA2(/f)
W-— = R,'
f:fAl(/,')<fA2(/;)

If the null hypothesis Hy were true, the two sums should be equal
O the difference W+ — W~ allows to compute the value of p:

each of the |Z| differences can be positive or negative: 27! outcomes;

p is the fraction with ’W+ — W_‘ equal or larger than the observed value
@ if p < p, the difference is significant and

® if Wt < W™, A; is better than A
° if W' > W™, A; is worse than A,

24/26

Computation of the p-value

The value of p is usually
e computed explicitly by enumeration when |Z| < 20
® approximated with a normal distribution when |Z| > 20

i o O o T

-10 -8 -6 -4 -2 2 4 6 8 10

HHHH—U_FHHHM I

Frequency
|

oo [[oom s]

-200 =100 0 100 200

Of course, precomputed tables also exist

25/26

Possible conclusions

Wilcoxon's test can suggest
® that one of the two algorithms is significantly better than the other
® that the two algorithms are statistically equivalent

(but take it as a stochastic response, and keep an eye on p)

If the sample includes instances of different kinds, two algorithms could
be overall equivalent, but nonequivalent on the single classes of instances

Dividing the sample could reveal
® classes of instances for which A; is better
® classes of instances for which A, is better
® classes of instances for which the two algorithms are equivalent

but multiplying questions means getting some wrong answers by chance
(FWER = Family-Wise Error Rate)

Beware the garden of forking paths
What about testing 64 (1) instead of fa (1)?

26 /26

