

Heuristic Algorithms

Master's Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule: **Wednesday 13.30 - 16.30 in classroom Alfa**

Thursday 09.30 - 12.30 in classroom Alfa

Office hours: **on appointment**

E-mail: **roberto.cordone@unimi.it**

Web page: **<https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html>**

Ariel site: **<https://myariel.unimi.it/course/view.php?id=7439>**

Effectiveness of a heuristic algorithm

A heuristic algorithm is useful if it is

- ① **efficient**: it “costs” much less than an exact algorithm
- ② **effective**: it “frequently” returns a solution “close to” an exact one

In particular, the **effectiveness** of heuristic algorithms is given by:

- closeness of the solution obtained to an optimal one
- frequency of hitting optimal or nearly optimal solutions

These features can be combined into a

- **frequency distribution of solutions more or less close to the optimum**

The effectiveness of a heuristic algorithm can be investigated with a

- **theoretical analysis (*a priori*)**, proving that the algorithm finds always or with a given frequency **solutions** with a given **guarantee of quality**
- **experimental analysis (*a posteriori*)**, measuring the performance of the algorithm on sampled **benchmark instances** to show that a **guarantee of quality** is respected in practice

We here discuss the theoretical analysis of effectiveness

Indices of effectiveness

The **effectiveness of a heuristic optimisation algorithm** A is measured by the **difference** between the heuristic value $f_A(I)$ and the optimum $f^*(I)$

- **absolute difference:**

$$\tilde{\delta}_A(I) = |f_A(I) - f^*(I)| \geq 0$$

rarely used, and **only when the objective is a pure number**

- **relative difference:**

$$\delta_A(I) = \frac{|f_A(I) - f^*(I)|}{f^*(I)} \geq 0$$

frequent in **experimental analysis** (*usually as a percent ratio*)

- **approximation ratio:**

$$\rho_A(I) = \max \left[\frac{f_A(I)}{f^*(I)}, \frac{f^*(I)}{f_A(I)} \right] \geq 1$$

frequent in **theoretical analysis**: the first form is used for minimisation problems, the second one for maximisation problems

Theoretical analysis (in the worst case)

To obtain a compact measure, independent from I , find the worst case
(as for efficiency, that is complexity)

The difference between $f_A(I)$ and $f^*(I)$ is in general unlimited, but for some algorithms it is limited:

- absolute approximation:

$$\exists \tilde{\alpha}_A \in \mathbb{N} : \tilde{\delta}_A(I) \leq \tilde{\alpha}_A \text{ for each } I \in \mathcal{I}$$

A (rare) example is Vizing's algorithm for *Edge Coloring* ($\tilde{\alpha}_A = 1$)

- relative approximation:

$$\exists \alpha_A \in \mathbb{R}^+ : \rho_A(I) \leq \alpha_A \text{ for each } I \in \mathcal{I}$$

Factor α_A ($\tilde{\alpha}_A$) is the relative (absolute) approximation guarantee

For other algorithms, the guarantee depends on the instance size

$$\rho_A(I) \leq \alpha_A(n) \text{ for each } I \in \mathcal{I}_n, n \in \mathbb{N}$$

Effectiveness can be independent from size (contrary to efficiency)

How to achieve an approximation guarantee?

For a minimisation problem, the aim is to prove that

$$\exists \alpha_A \in \mathbb{R} : f_A(I) \leq \alpha_A f^*(I) \text{ for each } I \in \mathcal{I}$$

- ① find a way to build an **underestimate** $LB(I)$

$$LB(I) \leq f^*(I) \quad I \in \mathcal{I}$$

- ② find a way to build an **overestimate** $UB(I)$,
related to $LB(I)$ by a coefficient α_A

$$UB(I) = \alpha_A LB(I) \quad I \in \mathcal{I}$$

- ③ find an **algorithm** A whose solution is not worse than $UB(I)$

$$f_A(I) \leq UB(I) \quad I \in \mathcal{I}$$

Then $f_A(I) \leq UB(I) = \alpha_A LB(I) \leq \alpha_A f^*(I)$, for each $I \in \mathcal{I}$

$$f_A(I) \leq \alpha_A f^*(I) \text{ for each } I \in \mathcal{I}$$

A 2-approximated algorithm for the *VCP*

Given a undirected graph $G = (V, E)$ find the minimum cardinality vertex subset such that each edge of graph is incident to it

A **matching** is a set of nonadjacent edges

Maximal matching is a matching such that any other edge of the graph is adjacent to one of its edges
(it cannot be enlarged)

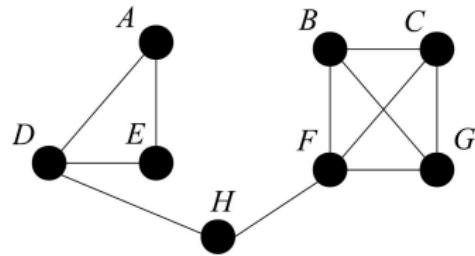
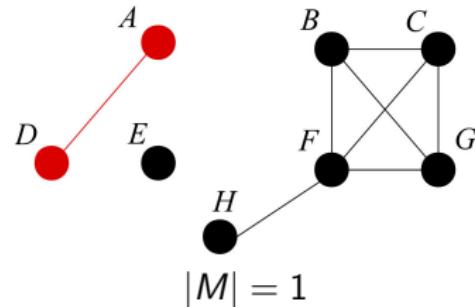
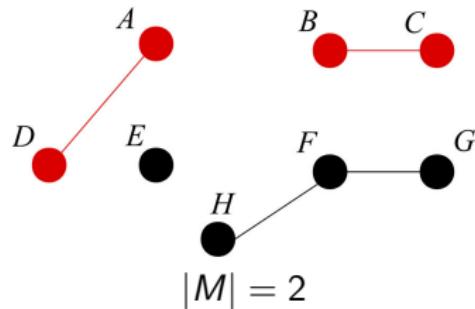
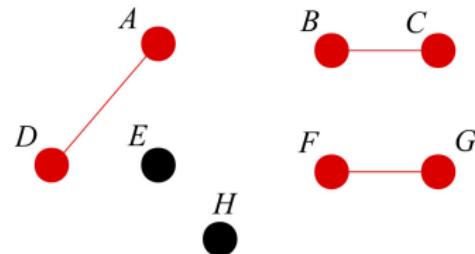
Matching algorithm:

- ① Build a **maximal matching** $M \subseteq E$ scanning the edges of E and including in M those not adjacent to M
(now every edge of $E \setminus M$ is adjacent to an edge of M)
- ② The **set of extreme vertices of the matching edges** is a *VCP* solution

$$x_A := \bigcup_{(u,v) \in M} \{u, v\}$$

and it can be improved removing the redundant vertices

Example



The optimum is $f^* = 5$

The matching algorithm is 2-approximated

- ① The cardinality of matching M is an underestimate $LB(I)$
 - the cardinality of an optimal covering for any subset of edges $E' \subseteq E$ does not exceed that of an optimal covering for E

$$|x_{E'}^*| \leq |x_E^*|$$

(it costs more to cover all edges than only the matching)

- the optimal covering of a matching M has cardinality $|M|$
(each edge of the matching requires exactly one different vertex)

- ② Including both the extremes of each edge of the matching yields
 - an overestimate *(it covers both the matching and the adjacent edges)*
 - of value $UB(I) = 2LB(I)$ *(two different vertices for each edge)*
- ③ The matching algorithm returns solutions of value $f_A(I) \leq UB(I)$
(possibly removing redundant vertices)

This implies $f_A(I) \leq 2f^*(I)$ for each $I \in \mathcal{I}$, that is $\alpha_A = 2$

... and the bound is tight!

Since α_A relates $UB(I)$ and $LB(I)$, $f_A(I)$ and $f^*(I)$ could be closer

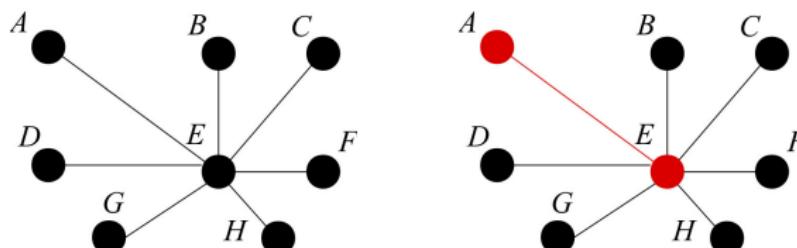
Actually, for many instances $\rho_A(I)$ is much better than α_A

Are there instances \bar{I} for which $f_A(\bar{I}) = \alpha_A f^*(\bar{I})$? How are they like?

The study of these instances is useful to

- evaluate whether they are rare or frequent
- introduce *ad hoc* modifications to improve the algorithm

In the literature the typical expression “*and the bound is tight*” introduces the description of instances exhibiting the worst case



If all worst cases are patched, the approximation guarantee improves

The *TSP* under the triangle inequality

Consider the *TSP* with the additional (rather common) assumptions that

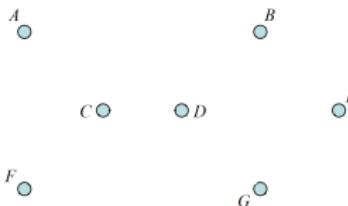
- graph $G = (N, A)$ is **complete**
- cost c is **nonnegative, symmetric** and satisfies the **triangle inequality**

$$c_{ij} = c_{ji} \geq 0 \quad \forall i, j \in N \quad \text{and} \quad c_{ij} + c_{jk} \geq c_{ik} \quad \forall i, j, k \in N$$

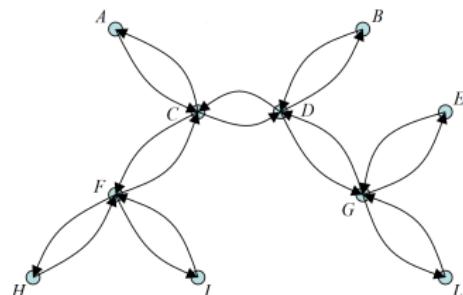
Double-tree algorithm

- ① Consider the **complete undirected graph** corresponding to G
- ② Build a **minimum cost spanning tree** $T^* = (N, X^*)$
- ③ Make a **pre-order visit** of T^* and build two lists of arcs:
 - a x' lists the arcs used both by the visit and the backtracking:
this is a **circuit** visiting each node, possibly several times
 - b x lists the arcs linking the nodes in pre-order ending with the first:
this is a **circuit** visiting each node exactly once

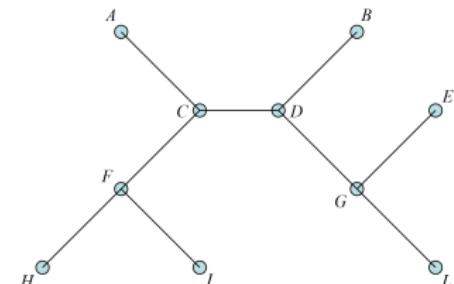
Example



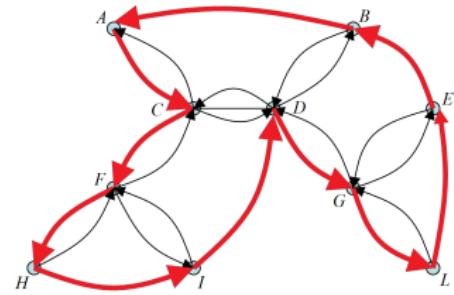
1) Complete graph G (arcs omitted)



3.a) $x' = (A, C, F, H, \textcolor{blue}{F}, I, \textcolor{blue}{F}, \textcolor{blue}{C}, D, G, L, \textcolor{blue}{G}, E, \textcolor{blue}{G}, \textcolor{blue}{D}, B, \textcolor{blue}{D}, \textcolor{blue}{C}, A)$



2. Minimum spanning tree T^*



3.b) $x = (A, C, F, H, I, D, G, L, E, B, A)$

The double-tree algorithm is 2-approximated

- ① the cost of the minimum spanning tree is an underestimate $LB(I)$
 - deleting an arc from a Hamiltonian circuit yields a Hamiltonian path that is cheaper
 - a Hamiltonian path is a spanning tree (usually not of minimum cost)
- ② the cost of circuit x' is
 - an overestimate $UB(I)$ *(it is a nonminimum Hamiltonian circuit)*
 - equal to $2LB(I)$ *(two arcs correspond to each edge)*
- ③ the cost of circuit x is $f_A(I) \leq UB(I)$
(a single direct arc replacing a sequence decreases the cost)

This implies that $f_A(I) \leq 2f^*(I)$ for each $I \in \mathcal{I}$, that is $\alpha_A = 2$

Notice: x' is used in the approximation proof, but needs not be computed

Inapproximability

For an **inapproximable problem**, **approximated algorithms** would be exact

Consider this family of *TSP* instances on complete graphs:

- $c_{ij} = 0$ for $(i, j) \in A_0$
- $c_{ij} = 1$ for $(i, j) \in (N \times N) \setminus A_0$ (*the triangle inequality is violated!*)

The optimum of any such instance \bar{I} is:

$$\begin{cases} f^*(\bar{I}) = 0 & \text{if } A_0 \text{ contains a Hamiltonian circuit} \\ f^*(\bar{I}) \geq 1 & \text{otherwise} \end{cases}$$

(*in the latter case, the optimal solution contains at least an arc $\notin A_0$*)

Assume that a polynomial algorithm A provide a guarantee α_A

$$f^*(I) \leq f_A(I) \leq \alpha_A f^*(I) \quad \forall I \in \mathcal{I}$$

Then $f^*(\bar{I}) = 0 \Leftrightarrow f_A(\bar{I}) = 0$

Whenever the subgraph $G(N, A_0)$ has a Hamiltonian circuit, A finds it, solving an \mathcal{NP} -complete problem in polynomial time ($\mathcal{P} = \mathcal{NP}$)

For hard problems

- exact algorithms provide the best approximation guarantee ($\alpha_A = 1$), but require exponential time T_A
- approximated algorithms provide a worse guarantee ($\alpha_A > 1$), but could require polynomial time T_A

Some problems admit a family of algorithms providing a whole range of **compromises between efficiency and effectiveness**

- better and better approximation guarantees: $\alpha_{A_1} > \dots > \alpha_{A_r}$
- worse and worse computational complexities: $T_{A_1} < \dots < T_{A_r}$

Approximation scheme is a parametric algorithm A_α allowing to choose α
(Example: the *KP*)

Beyond the worst case

As usual, the worst-case approach is rough:
some algorithms often have a good performance, though sometimes bad

The alternative approaches are similar to the ones used for complexity

- **parametrisation**: prove an approximation guarantee that depends on other parameters of the instances besides the size n
- **average-case**: assume a probability distribution on the instances and evaluate the expected value of the approximation factor
(*the algorithm could have a bad performance only on rare instances*)

but there is at least another approach

- **randomisation**: the operations of the algorithm depend not only on the instance, but also on pseudorandom numbers, so that the solution becomes a **random variable** which can be investigated
(*the time complexity could also be random, but usually is not*)

Randomised approximation algorithms

For a randomised algorithm A , $f_A(I, \omega)$ and $\rho_A(I, \omega)$ are random variables depending on the pseudorandom number seed ω

A **randomised approximation algorithm** has an **approximation ratio** whose expected value is limited by a constant

$$E[\rho_A(I, \omega)] \leq \alpha_A \text{ for each } I \in \mathcal{I}$$

Max-SAT problem: given a CNF, find a truth assignment to the logical variables that satisfy a maximum weight subset of formulae

Purely random algorithm:

Assign to each variable x_j ($j = 1, \dots, n$)

- value *False* with probability $1/2$
- value *True* with probability $1/2$

What is the expected value of the solution?

Randomised approximation for the MAX-SAT

The objective $f(x) = f_A(I, \omega)$ is the total weight of the satisfied clauses and its expected value is

$$E[f_A(I, \omega)] = E \left[\sum_{i \in \mathcal{C}} \delta_i(x(\omega)) w_i \right] = \sum_{i \in \mathcal{C}} (w_i \cdot \Pr[\delta_i(x(\omega)) = 1])$$

where $\delta_i(x(\omega)) = 1$ if solution $x(\omega)$ satisfies clause i , 0 otherwise

Let k_i be the number of literals of formula $i \in \mathcal{C}$ and $k_{\min} = \min_{i \in \mathcal{C}} k_i$

$$\Pr[\delta_i(x(\omega)) = 1] = 1 - \left(\frac{1}{2}\right)^{k_i} \geq 1 - \left(\frac{1}{2}\right)^{k_{\min}} \text{ for each } i \in \mathcal{C}$$

$$\Rightarrow E[f_A(I, \omega)] \geq \sum_{i \in \mathcal{C}} w_i \cdot \left[1 - \left(\frac{1}{2}\right)^{k_{\min}}\right] = \left[1 - \left(\frac{1}{2}\right)^{k_{\min}}\right] \sum_{i \in \mathcal{C}} w_i$$

and since $\sum_{i \in \mathcal{C}} w_i \geq f^*(I)$ for each $I \in \mathcal{I}$ one obtains

$$\frac{E[f_A(I, \omega)]}{f^*(I)} \geq \left[1 - \left(\frac{1}{2}\right)^{k_{\min}}\right] \geq \frac{1}{2}$$