
Heuristic Algorithms
Master’s Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule: Wednesday 13.30 - 16.30 in classroom Alfa

Thursday 09.30 - 12.30 in classroom Alfa

Office hours: on appointment

E-mail: roberto.cordone@unimi.it

Web page: https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html

Ariel site: https://myariel.unimi.it/course/view.php?id=7439

Lesson 3: Computational complexity Milano, A.A. 2025/26
1 / 30

https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html
https://myariel.unimi.it/course/view.php?id=7439

Efficiency of a heuristic algorithm

A heuristic algorithm is useful if it is

1 efficient: it “costs” much less than an exact algorithm

2 effective: it “frequently” returns a solution “close to” an exact one

Both aspects can be investigated with a

• theoretical analysis (a priori), proving that the algorithm finds always
or with a given frequency solutions with a given guarantee of quality

• experimental analysis (a posteriori), measuring the performance of
the algorithm on sampled benchmark instances
to show that a guarantee of quality is respected in practice

We here discuss

• the theoretical analysis

• of efficiency

2 / 30

Problems

Informally, a problem is a question on a system of mathematical objects

The same question can often be asked on many similar systems

• an instance I ∈ I is each specific system concerned by the question

• a solution S ∈ S is an answer corresponding to one of the instances

Example: “is n a prime number? ” is a problem with infinite instances
and two solutions (I = N+ \ {1} and S = { yes, no })
instance I = 7 corresponds to solution SI = yes

instance I ′ = 10 corresponds to solution SI ′ = no

. . .

Formally, a problem is the function which relates instances and solutions

P : I → S

Defining a function does not mean to know how to compute it

3 / 30

Algorithms

An algorithm is a formal procedure, composed by elementary steps,
in finite sequence, each determined by an input and by the results of the
previous steps

An algorithm for a problem P is an algorithm which,
given in input I ∈ I, returns in output SI ∈ S

A : I → S

An algorithm defines a function plus the way to compute it; it is

• exact if its associated function coincides with the problem

• heuristic otherwise

A heuristic algorithm is useful if it is

1 efficient: it “costs” much less than an exact algorithm

2 effective: it “frequently” provides a solution “close” to the right one

This lesson deals with efficiency

4 / 30

Cost of a heuristic algorithm

The “cost” of an (exact or heuristic) algorithm denotes

• not the monetary cost to buy or implement it

• but the computational cost of running it
• time required to terminate the finite sequence of elementary steps
• space occupied in memory by the results of the previous steps

The time is much more discussed because

• the space is a renewable resource, the time is not

• using space requires to use at least as much time

• it is technically easier to distribute the use of space than of time

Space and time are partly interchangeable:
it is possible to reduce the use of one by increasing the use of the other

5 / 30

A useful measure of time

The time required to solve a problem depends on several aspects

• the specific instance to solve

• the algorithm used

• the machine running the algorithm

• . . .

Our measure of the computational time should be

• unrelated to technology, that is the same for different machines

• concise, that is summarised in a simple symbolic expression

• ordinal, that is sufficient to compare different algorithms

The computational time in seconds for each instance violates all requisites

6 / 30

Worst-case asymptotic time complexity

The worst-case asymptotic complexity of an algorithm (nearly) provides
such a measure through the following passages

1 define time as the number T of elementary operations performed
(that is a value independent from the specific computer)

2 define the size of an instance as a suitable value n (e.g., the number
of elements of the ground set, variables or clauses of the CNF, rows
or columns of the matrix, nodes or arcs of the graph)

3 find the worst-case, i. e. the maximum of T on all instances of size n

T (n) = max
I∈In

T (I) n ∈ N

(now time complexity is only a function T : N → N)
4 approximate T (n) from above and/or below with a simpler function

f (n), considering only their asymptotic behaviour (for n → +∞)
(the algorithm should be efficient on instances of large size)

5 collect the functions in classes with the same approximating function
(the approximation relation is an equivalence relation)

7 / 30

The Θ functional spaces

T (n) ∈ Θ(f (n))

formally means that

∃c1, c2 ∈ R+, n0 ∈ N : c1 f (n) ≤ T (n) ≤ c2 f (n) for all n ≥ n0

where c1, c2 and n0 are independent from n

T (n) is “enclosed” between c1 f (n) and c2 f (n)

• for some “small” value of c1
• for some “large” value of c2
• for some “large” value of n0
• for some definition of “small”
and “large”

Asymptotically, f (n) estimates T (n) up to a multiplying factor:

• for large instances, the computational time is at least and at most
proportional to the values of function f (n)

8 / 30

The O functional spaces

T (n) ∈ O (f (n))

formally means that

∃c ∈ R+, n0 ∈ N : T (n) ≤ c f (n) for all n ≥ n0

where c , and n0 are independent from n

T (n) is “dominated” by c f (n)

• for some “large” value of c

• for some “large” value of n0
• for some definition of “small”
and “large”

Asymptotically, f (n) overestimates T (n) up to a multiplying factor:

• for large instances, the computational time is at most proportional
to the values of function f (n)

9 / 30

The Ω functional spaces

T (n) ∈ Ω (f (n))

formally means that

∃c > 0, n0 ∈ N : T (n) ≥ c f (n) for all n ≥ n0

where c and n0 are independent from n

T (n) “dominates” c f (n)

• for some “small” value of c

• for some “large” value of n0
• for some definition of “small”
and “large”

Asymptotically, f (n) underestimates T (n) up to a multiplying factor:

• for large instances, the computational time is at least proportional to
the values of function f (n)

10 / 30

The exhaustive algorithm

For Combinatorial Optimisation problems the size of an instance
can be measured by the cardinality of the ground set

n = |B|

The exhaustive algorithm

• considers each subset x ⊆ B, that is each x ∈ 2|B|

• tests its feasibility (x ∈ X) in time α (n)

• in the positive case, it evaluates the objective f (x) in time β (n)

• if necessary, it updates the best value found so far

The time complexity of the exhaustive algorithm is

T (n) ∈ Θ(2n (α (n) + β (n)))

that is at least exponential, even if α (n) and β (n) are small polynomials
(which is the most frequent case)

Most of the time, the exhaustive algorithm is impractical

11 / 30

Polynomial and exponential complexity
In Combinatorial Optimisation, the main distinction is between

• polynomial complexity: T (n) ∈ O
(
nd

)
for a constant d > 0

• exponential complexity: T (n) ∈ Ω (dn) for a constant d > 1

The first family includes efficient algorithms, the second inefficient ones

In general, the heuristic algorithms are polynomial algorithms
for problems whose known exact algorithms are all exponential

Assuming 1 operation/µsec
n n2 op. 2n op.
1 1µ sec 2µ sec
10 0.1 msec 1 msec
20 0.4 msec 1 sec
30 0.9 msec 17.9 min
40 1.6 msec 12.7 days
50 2.5 msec 35.7 years
60 3.6 msec 366 centuries

12 / 30

Problem transformations and reductions

A relation between problems allows to design algorithms (Interlude 5):

• by transformation:

1 given IP , (instance of P) build IQ (instance of Q)
2 given IQ , apply algorithm AQ to obtain SQ (solution of IQ)
3 given SQ , build SP (solution of IP)

• by reduction: repeat the transformation 1-2-3 several times
correcting IQ based on the solutions {SQ} already obtained

If AQ is exact/heuristic, the overall algorithm AP is exact/heuristic

The two algorithms often have a similar complexity:
if AQ is polynomial/exponential and

1 building IQ takes polynomial time

2 the number of iterations is polynomial

3 building SP takes polynomial time

then AP is polynomial/exponential

13 / 30

Beyond the worst-case complexity

The worst-case complexity

• cancels all information on the easier instances
(how are they made? how many are they?)

• gives a rough overestimate of the computational time,
in some (rare) cases useless

(see the simplex algorithm for Linear Programming)

What if the hard instances are rare in the practical applications?

To compensate, one can investigate

• the parameterised complexity, that is introduce some other relevant
parameter k (besides the size n) and express the time as T (n, k)

• the average-case complexity, that is assume a probability distribution
on I and express the time as the expected value

T (n) = E [T (I) |I ∈ In]

14 / 30

Parameterised complexity

Some algorithms are exponential in k and polynomial in n, and therefore

• efficient on instances with low k

• inefficient on instances with large k

15 / 30

Nature of the additional parameter

If the additional parameter k is a part of the input, such as

• a numerical constant (e. g., the capacity in the KP)

• the maximum number of literals per clause in logic function problems

• the number of nonzero elements in numerical matrix problems

• the maximum degree, the diameter, etc. . . in graph problems

one knows a priori whether the algorithm is efficient on a given instance

If the additional parameter k is a part of the solution, such as

• its cardinality (as in the VCP)

one will only find out a posteriori

(but an a priori estimate could be available)

16 / 30

An example: the VCP

Exhaustive algorithm: for each of the 2n subsets of vertices, test if it
covers all edges, compute its cardinality and keep the smallest one

T (n,m) ∈ Θ(2n (m + n))

(m can be removed observing that m ≤ n(n − 1)/2)

But if we already know a solution with f (x) = |x | = k + 1,
we can look for a solution of k vertices, and progressively decrease k

(even better, use binary search on k)

Naive algorithm: for each subset of k vertices, test if it covers all edges

T (n,m, k) ∈ Θ
(
nkm

)
For fixed k , this algorithm is polynomial (but in general very slow)

17 / 30

Bounded tree search for the VCP

A better algorithm can be based on the following useful property

x ∩ (u, v) ̸= ∅ for all x ∈ X , (u, v) ∈ E

Any feasible solution includes at least one extreme vertex for each edge

Bounded tree search algorithm to find x with |x | ≤ k :

1 choose any (u, v): either u ∈ x or u /∈ x and v ∈ x

2 for each open case, remove the vertices of x and edges they cover

V := V \ x E := E \ {e ∈ E : e ∩ x ̸= ∅}

(The edges covered by vertices in x are no longer constraining)

3 if |x | ≤ k and E = ∅, x is the required solution

4 if |x | = k and E ̸= ∅, there is no solution

5 otherwise go to step 1

The complexity is T (n,m, k) ∈ Θ
(
2km

)
, polynomial in n (m < n2)

For n ≫ 2, this algorithm is much more efficient than the naive one

18 / 30

Example

In the following graph n = 10, m = 16: is there a solution with |x | ≤ 3?

Exhaustive algorithm: Θ (2n (m + n)), with 2n (m + n) = 1024 · (16 + 10)

Naive algorithm: Θ
(
nkm

)
, with nkm = 1000 · 16

Bounded tree search algorithm: Θ
(
2km

)
with 2km = 8 · 16

(edges selected in lexicographic order)

19 / 30

Kernelisation (“problem reduction”)

Kernelisation transforms all instances of P into simpler instances of P,
instead of instances of another problem Q

This is also known as problem reduction

Quite often, in fact, useful properties allow to prove that

• there exists an optimal solution not including certain elements of B
(⇒ such elements can be removed)

• there exists an optimal solution including certain elements of B
(⇒ such elements can be set apart and added later)

In short, remove elements of B without affecting the solution

Possible useful outcomes are

• an exact algorithm polynomial in n (parameterised complexity)

• faster exact and heuristic algorithms

• better heuristic solutions

• heuristic kernelisation: apply relaxed conditions sacrificing optimality

20 / 30

Kernelisation of the VCP

If δv ≥ k + 1, vertex v belongs to any feasible solution of value ≤ k

(v has k + 1 incident edges that should be covered by as many vertices)

Kernelisation algorithm to keep only vertices of solutions x with |x | ≤ k:

• start at step t = 0 with k0 = k and an empty vertex subset xt := ∅
• set t = t + 1 and add to the solution the vertices of degree ≥ kt + 1

δv ≥ kt + 1 ⇒ xt := xt−1 ∪ {v}

• update kt : kt := k0 − |xt |
• remove the vertices of zero degree, those of x and the covered edges

V := {v ∈ V : δv > 0} \ xt E := {e ∈ E : e ∩ xt = ∅}

• if |E | > k2
t , there is no feasible solution (kt vertices are not enough)

• if |E | ≤ k2
t ⇒ |V | ≤ 2k2

t ; apply the exhaustive algorithm

The complexity is T (n, k) ∈ Θ
(
n +m + 22k

2

k2
)
= Θ

(
n +m + 2|V ||E |

)
21 / 30

Example

Given the following graph, is there a solution with |x | ≤ k0 = 5?
(n = 10, m = 16)

Exhaustive algorithm: Θ (2n (m + n)) ⇒ T ≈ 210 (10 + 16) = 26 624

Naive algorithm: Θ
(
nkm

)
⇒ T ≈ 105 · 16 = 16 000 000

δ3 = 6 ≥ k0 + 1 ⇒ x1 := {3}, remove the incident edges and k1 = 4

22 / 30

Example

Given the following graph, is there a solution with |x | ≤ k0 = 5?
(n = 10, m = 16)

Exhaustive algorithm: Θ (2n (m + n)) ⇒ T ≈ 210 (10 + 16) = 26 624

Naive algorithm: Θ
(
nkm

)
⇒ T ≈ 105 · 16 = 16 000 000

δ5 = 5 ≥ k1 + 1 ⇒ x2 := {3, 5}, remove the incident edges and k2 = 3

23 / 30

Example
Given the following graph, is there a solution with |x | ≤ k0 = 5?
(n = 10, m = 16)

Exhaustive algorithm: Θ (2n (m + n)) ⇒ T ≈ 210 (10 + 16) = 26 624

Naive algorithm: Θ
(
nkm

)
⇒ T ≈ 105 · 16 = 16 000 000

δ10 = 5 ≥ k2 + 1 ⇒ x3 := {3, 5, 10}, remove the incident edges and k3 = 2

Kernelisation: Θ (n +m) ⇒ T ≈ 10 + 16 = 26
24 / 30

Average-case complexity

The worst-case description of complexity might be not very significant:
some algorithms are efficient on nearly all instances

(see the simplex algorithm for Linear Programming)

A theoretical study of the average-case complexity

• defines a probabilistic model of the problem, assuming
a (usually simple) probability distribution on In for each n ∈ N

• estimates the expected value of T (I)

T (n) = E [T (I) |I ∈ In]

How do we define a probability distribution on In for each n ∈ N?

Let us see some examples

25 / 30

Probabilistic models for numerical matrices

Binary random matrix with a given size (m rows and n columns)

1 equiprobability: list all 2mn binary matrices and
select one of the matrices with uniform probability

2 uniform probability: set each cell to 1 with a given probability p

Pr [aij = 1] = p (i = 1, . . . ,m; j = 1, . . . , n)

If p = 0.5, it coincides with the equiprobability model,
for other values some instances are more likely than others

3 fixed density: extract δmn cells out of mn with uniform probability
and set them to 1

If δ = p, it resembles the uniform probability model,
but some instances cannot be generated

26 / 30

Probabilistic models for graphs

Random graph with a given number of vertices n

1 equiprobability: list all 2
n(n−1)

2 graphs and
select one of the graphs with uniform probability

2 Gilbert’s model, or uniform probability G (n, p):

Pr [(i , j) ∈ E] = p (i ∈ V , j ∈ V \ {i})

All graphs with the same number of edges m have the same

probability pm (1− p)
n(n−1)

2 −m (different for each m)

If p = 0.5, it coincides with the equiprobability model

3 Erdős-Rényi model G (n,m): extract m unordered vertex pairs out of
n(n−1)

2 with uniform probability and create an edge for each one

If m = p n(n−1)
2 , it resembles the uniform probability model,

but some instances cannot be generated

27 / 30

Probabilistic models for logic functions

Random CNF with a given number of variables n
and a given number of literals k for each logic clause

1 fixed-probability ensemble:
list all

(
n
k

)
2k clauses of k distinct and consistent literals and

add each one to the CNF with probability p

2 fixed-size ensemble:
build m clauses, adding to each one k distinct and consistent
literals, extracted with uniform probability

If m = p
(
n
k

)
2k , it resembles the fixed-probability model,

but some instances cannot be generated

28 / 30

Computational cost of heuristic algorithms

The time complexity of a heuristic algorithm is usually

• strictly polynomial (with low exponents)

• fairly robust with respect to secondary parameters

Therefore, the worst-case estimation is also good on average

Metaheuristics use random steps or memory

• the complexity is well defined for single components of the algorithm

• the overall complexity is not clearly defined
• in theory, it could extend indefinitely (but the pseudorandom number

generator or the memory configurations would yield an infinite loop)
• in practice, it is defined by a condition imposed by the user

(more about this later)

Their analysis usually focuses on the single components

29 / 30

Conclusions

So,why discussing the previous topics in a course on heuristics?

1 to guide the search for the correct algorithm: an exact algorithm can
be efficient in the given case, even if inefficient in the worst case

2 to show that exact and heuristic algorithms can interact proficuously:
heuristic algorithms provide information to improve exact algorithms

(they become more efficient)

3 to show that kernelisation improves also heuristic algorithms
(they become more efficient and more effective)

4 to identify a priori the harder instances
(of course, not all algorithms have the same hard instances)

30 / 30

