

Heuristic Algorithms

Master's Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule: **Wednesday 13.30 - 16.30 in classroom Alfa**

Thursday 09.30 - 12.30 in classroom Alfa

Office hours: **on appointment**

E-mail: **roberto.cordone@unimi.it**

Web page: **<https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html>**

Ariel site: **<https://myariel.unimi.it/course/view.php?id=7439>**

A heuristic algorithm is useful if it is

- ① **efficient**: it “costs” much less than an exact algorithm
- ② **effective**: it “frequently” returns a solution “close to” an exact one

Both aspects can be investigated with a

- **theoretical analysis (*a priori*)**, proving that the algorithm finds always or with a given frequency solutions with a given guarantee of quality
- **experimental analysis (*a posteriori*)**, measuring the performance of the algorithm on sampled benchmark instances
to show that a guarantee of quality is respected in practice

We here discuss

- the theoretical analysis
- of efficiency

Problems

Informally, a problem is a question on a system of mathematical objects

The same question can often be asked on many similar systems

- an **instance** $I \in \mathcal{I}$ is each specific system concerned by the question
- a **solution** $S \in \mathcal{S}$ is an answer corresponding to one of the instances

Example: “*is n a prime number?*” is a problem with infinite instances and two solutions ($\mathcal{I} = \mathbb{N}^+ \setminus \{1\}$ and $\mathcal{S} = \{ \text{yes, no} \}$)

instance $I = 7$ corresponds to solution $S_I = \text{yes}$

instance $I' = 10$ corresponds to solution $S_{I'} = \text{no}$

...

Formally, a **problem** is the function which relates instances and solutions

$$P : \mathcal{I} \rightarrow \mathcal{S}$$

Defining a function does not mean to know how to compute it

An **algorithm** is a formal procedure, composed by elementary steps, in finite sequence, each determined by an input and by the results of the previous steps

An **algorithm for a problem P** is an algorithm which, given in input $I \in \mathcal{I}$, returns in output $S_I \in \mathcal{S}$

$$A : \mathcal{I} \rightarrow \mathcal{S}$$

An algorithm defines a function plus the way to compute it; it is

- **exact** if its associated function coincides with the problem
- **heuristic** otherwise

A heuristic algorithm is useful if it is

- ① **efficient**: it “costs” much less than an exact algorithm
- ② **effective**: it “frequently” provides a solution “close” to the right one

This lesson deals with efficiency

Cost of a heuristic algorithm

The “cost” of an (exact or heuristic) algorithm denotes

- not the monetary cost to buy or implement it
- but the computational cost of running it
 - time required to terminate the finite sequence of elementary steps
 - space occupied in memory by the results of the previous steps

The time is much more discussed because

- the space is a renewable resource, the time is not
- using space requires to use at least as much time
- it is technically easier to distribute the use of space than of time

Space and time are partly interchangeable:

it is possible to reduce the use of one by increasing the use of the other

A useful measure of time

The time required to solve a problem depends on several aspects

- the specific **instance** to solve
- the **algorithm** used
- the **machine** running the algorithm
- ...

Our **measure of the computational time** should be

- **unrelated to technology**, that is **the same** for different machines
- **concise**, that is **summarised** in a simple symbolic expression
- **ordinal**, that is **sufficient** to compare different algorithms

The computational time in seconds for each instance violates all requisites

Worst-case asymptotic time complexity

The **worst-case asymptotic complexity of an algorithm** (nearly) provides such a measure through the following passages

- ① define time as the **number T of elementary operations** performed (that is a value independent from the specific computer)
- ② define the **size of an instance** as a suitable value n (e.g., the number of elements of the ground set, variables or clauses of the CNF, rows or columns of the matrix, nodes or arcs of the graph)
- ③ find the **worst-case**, i. e. the **maximum of T on all instances of size n**

$$T(n) = \max_{I \in \mathcal{I}_n} T(I) \quad n \in \mathbb{N}$$

(now time complexity is only a function $T : \mathbb{N} \rightarrow \mathbb{N}$)

- ④ approximate $T(n)$ from above and/or below with a simpler function $f(n)$, considering only their **asymptotic** behaviour (for $n \rightarrow +\infty$)
(the algorithm should be efficient on instances of large size)
- ⑤ collect the functions in classes with the same approximating function
(the approximation relation is an equivalence relation)

The Θ functional spaces

$$T(n) \in \Theta(f(n))$$

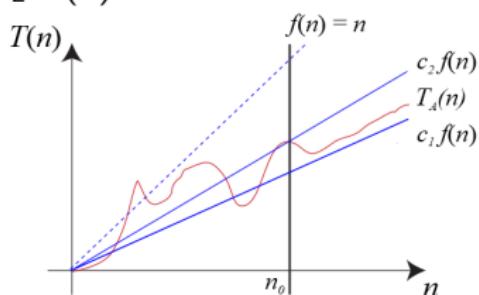
formally means that

$$\exists c_1, c_2 \in \mathbb{R}^+, n_0 \in \mathbb{N} : c_1 f(n) \leq T(n) \leq c_2 f(n) \text{ for all } n \geq n_0$$

where c_1, c_2 and n_0 are independent from n

$T(n)$ is “enclosed” between $c_1 f(n)$ and $c_2 f(n)$

- for some “small” value of c_1
- for some “large” value of c_2
- for some “large” value of n_0
- for some definition of “small” and “large”



Asymptotically, $f(n)$ estimates $T(n)$ up to a multiplying factor:

- for large instances, the computational time is at least and at most proportional to the values of function $f(n)$

The O functional spaces

$$T(n) \in O(f(n))$$

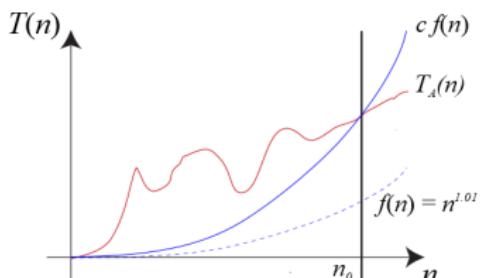
formally means that

$$\exists c \in \mathbb{R}^+, n_0 \in \mathbb{N} : T(n) \leq c f(n) \text{ for all } n \geq n_0$$

where c , and n_0 are independent from n

$T(n)$ is “dominated” by $c f(n)$

- for some “large” value of c
- for some “large” value of n_0
- for some definition of “small” and “large”



Asymptotically, $f(n)$ overestimates $T(n)$ up to a multiplying factor:

- for large instances, the computational time is at most proportional to the values of function $f(n)$

The Ω functional spaces

$$T(n) \in \Omega(f(n))$$

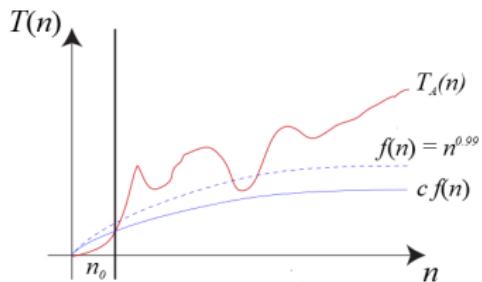
formally means that

$$\exists c > 0, n_0 \in \mathbb{N} : T(n) \geq c f(n) \text{ for all } n \geq n_0$$

where c and n_0 are independent from n

$T(n)$ “dominates” $c f(n)$

- for some “small” value of c
- for some “large” value of n_0
- for some definition of “small” and “large”



Asymptotically, $f(n)$ underestimates $T(n)$ up to a multiplying factor:

- for large instances, the computational time is at least proportional to the values of function $f(n)$

The exhaustive algorithm

For Combinatorial Optimisation problems the size of an instance can be measured by the cardinality of the ground set

$$n = |B|$$

The **exhaustive algorithm**

- considers each subset $x \subseteq B$, that is each $x \in 2^{|B|}$
- tests its feasibility ($x \in X$) in time $\alpha(n)$
- in the positive case, it evaluates the objective $f(x)$ in time $\beta(n)$
- if necessary, it updates the best value found so far

The time complexity of the exhaustive algorithm is

$$T(n) \in \Theta(2^n (\alpha(n) + \beta(n)))$$

that is **at least exponential**, even if $\alpha(n)$ and $\beta(n)$ are small polynomials (which is the most frequent case)

Most of the time, the exhaustive algorithm is impractical

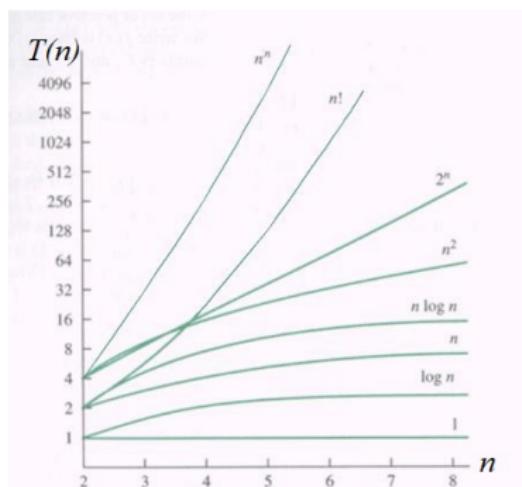
Polynomial and exponential complexity

In Combinatorial Optimisation, the main distinction is between

- **polynomial complexity:** $T(n) \in O(n^d)$ for a constant $d > 0$
- **exponential complexity:** $T(n) \in \Omega(d^n)$ for a constant $d > 1$

The first family includes efficient algorithms, the second inefficient ones

In general, the heuristic algorithms are polynomial algorithms for problems whose known exact algorithms are all exponential



Assuming 1 operation/ μ sec		
n	n^2 op.	2^n op.
1	1 μ sec	2 μ sec
10	0.1 msec	1 msec
20	0.4 msec	1 sec
30	0.9 msec	17.9 min
40	1.6 msec	12.7 days
50	2.5 msec	35.7 years
60	3.6 msec	366 centuries

Problem transformations and reductions

A relation between problems allows to design algorithms (*Interlude 5*):

- by **transformation**:
 - ① given I_P , (instance of P) build I_Q (instance of Q)
 - ② given I_Q , apply algorithm A_Q to obtain S_Q (solution of I_Q)
 - ③ given S_Q , build S_P (solution of I_P)
- by **reduction**: repeat the transformation 1-2-3 several times
correcting I_Q based on the solutions $\{S_Q\}$ already obtained

If A_Q is exact/heuristic, the overall algorithm A_P is exact/heuristic

The two algorithms often have a similar complexity:

if A_Q is polynomial/exponential and

- ① building I_Q takes polynomial time
- ② the number of iterations is polynomial
- ③ building S_P takes polynomial time

then A_P is polynomial/exponential

The worst-case complexity

- cancels all information on the easier instances
(*how are they made? how many are they?*)
- gives a rough overestimate of the computational time,
in some (rare) cases useless
(*see the simplex algorithm for Linear Programming*)

What if the hard instances are rare in the practical applications?

To compensate, one can investigate

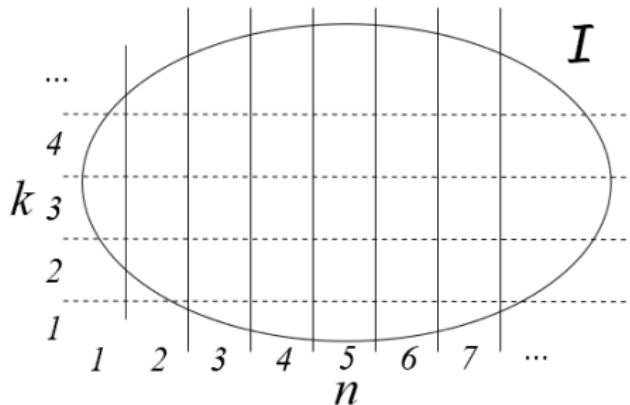
- the **parameterised complexity**, that is introduce some other relevant parameter k (besides the size n) and express the time as $T(n, k)$
- the **average-case complexity**, that is assume a probability distribution on \mathcal{I} and express the time as the expected value

$$T(n) = E[T(I) | I \in \mathcal{I}_n]$$

Parameterised complexity

Some algorithms are exponential in k and polynomial in n , and therefore

- efficient on instances with low k
- inefficient on instances with large k



Nature of the additional parameter

If the additional parameter k is a part of the input, such as

- a **numerical constant** (e. g., the capacity in the KP)
- the **maximum number of literals per clause** in logic function problems
- the **number of nonzero elements** in numerical matrix problems
- the **maximum degree**, the **diameter**, etc. . . in graph problems

one knows *a priori* whether the algorithm is efficient on a given instance

If the additional parameter k is a part of the solution, such as

- its **cardinality** (as in the VCP)

one will only find out *a posteriori*

*(but an *a priori* estimate could be available)*

An example: the *VCP*

Exhaustive algorithm: for each of the 2^n subsets of vertices, test if it covers all edges, compute its cardinality and keep the smallest one

$$T(n, m) \in \Theta(2^n(m+n))$$

(m can be removed observing that $m \leq n(n-1)/2$)

But if we already know a solution with $f(x) = |x| = k+1$,
we can look for a solution of k vertices, and progressively decrease k
(even better, use binary search on k)

Naive algorithm: for each subset of k vertices, test if it covers all edges

$$T(n, m, k) \in \Theta(n^k m)$$

For fixed k , this algorithm is polynomial *(but in general very slow)*

Bounded tree search for the VCP

A better algorithm can be based on the following useful property

$$x \cap (u, v) \neq \emptyset \text{ for all } x \in X, (u, v) \in E$$

Any feasible solution includes at least one extreme vertex for each edge

Bounded tree search algorithm to find x with $|x| \leq k$:

- ① choose any (u, v) : either $u \in x$ or $u \notin x$ and $v \in x$
- ② for each open case, remove the vertices of x and edges they cover

$$V := V \setminus x \quad E := E \setminus \{e \in E : e \cap x \neq \emptyset\}$$

(The edges covered by vertices in x are no longer constraining)

- ③ if $|x| \leq k$ and $E = \emptyset$, x is the required solution
- ④ if $|x| = k$ and $E \neq \emptyset$, there is no solution
- ⑤ otherwise go to step 1

The complexity is $T(n, m, k) \in \Theta(2^k m)$, polynomial in n ($m < n^2$)

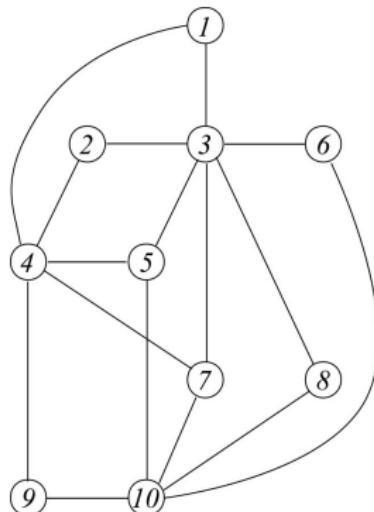
For $n \gg 2$, this algorithm is much more efficient than the naive one

Example

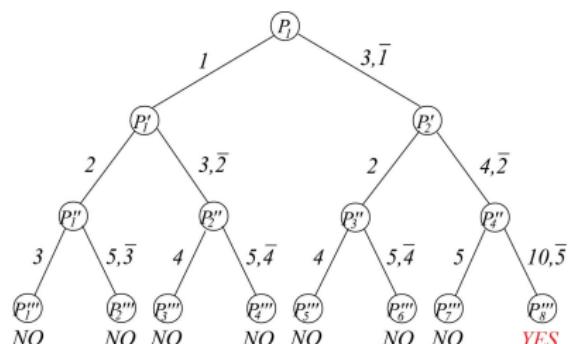
In the following graph $n = 10$, $m = 16$: is there a solution with $|x| \leq 3$?

Exhaustive algorithm: $\Theta(2^n(m+n))$, with $2^n(m+n) = 1024 \cdot (16+10)$

Naive algorithm: $\Theta(n^k m)$, with $n^k m = 1000 \cdot 16$



Bounded tree search algorithm: $\Theta(2^k m)$
with $2^k m = 8 \cdot 16$



(edges selected in lexicographic order)

Kernelisation (“problem reduction”)

Kernelisation transforms all instances of P into simpler instances of P , instead of instances of another problem Q

This is also known as problem reduction

Quite often, in fact, useful properties allow to prove that

- there exists an optimal solution not including certain elements of B
(\Rightarrow such elements can be removed)
- there exists an optimal solution including certain elements of B
(\Rightarrow such elements can be set apart and added later)

In short, remove elements of B without affecting the solution

Possible useful outcomes are

- an exact algorithm polynomial in n (parameterised complexity)
- faster exact and heuristic algorithms
- better heuristic solutions
- heuristic kernelisation: apply relaxed conditions sacrificing optimality

Kernelisation of the VCP

If $\delta_v \geq k + 1$, vertex v belongs to any feasible solution of value $\leq k$
(v has $k + 1$ incident edges that should be covered by as many vertices)

Kernelisation algorithm to keep only vertices of solutions x with $|x| \leq k$:

- start at step $t = 0$ with $k_0 = k$ and an empty vertex subset $x_t := \emptyset$
- set $t = t + 1$ and add to the solution the vertices of degree $\geq k_t + 1$

$$\delta_v \geq k_t + 1 \Rightarrow x_t := x_{t-1} \cup \{v\}$$

- update k_t : $k_t := k_0 - |x_t|$
- remove the vertices of zero degree, those of x and the covered edges

$$V := \{v \in V : \delta_v > 0\} \setminus x_t \quad E := \{e \in E : e \cap x_t = \emptyset\}$$

- if $|E| > k_t^2$, there is no feasible solution (k_t vertices are not enough)
- if $|E| \leq k_t^2 \Rightarrow |V| \leq 2k_t^2$; apply the exhaustive algorithm

The complexity is $T(n, k) \in \Theta(n + m + 2^{2k^2}k^2) = \Theta(n + m + 2^{|V|}|E|)$

Example

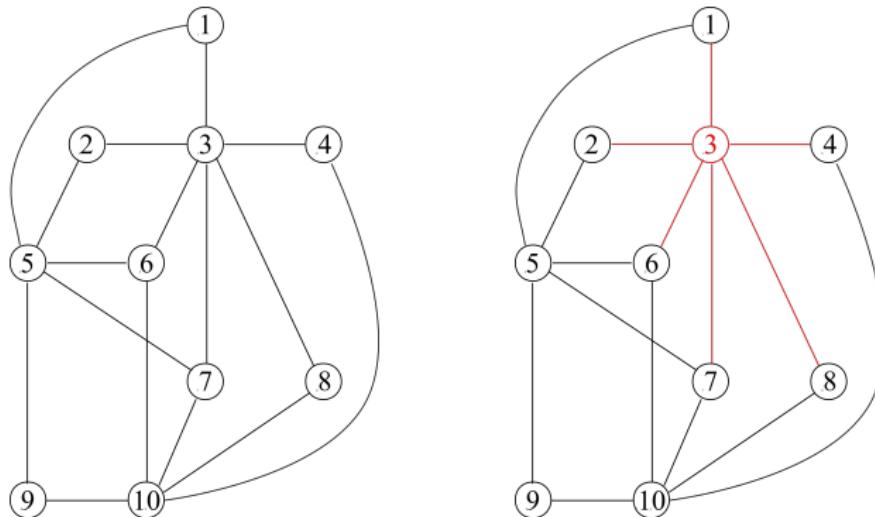
Given the following graph, is there a solution with $|x| \leq k_0 = 5$?

($n = 10$, $m = 16$)

Exhaustive algorithm: $\Theta(2^n(m+n)) \Rightarrow T \approx 2^{10}(10+16) = 26\,624$

Naive algorithm: $\Theta(n^k m) \Rightarrow T \approx 10^5 \cdot 16 = 16\,000\,000$

$\delta_3 = 6 \geq k_0 + 1 \Rightarrow x_1 := \{3\}$, remove the incident edges and $k_1 = 4$



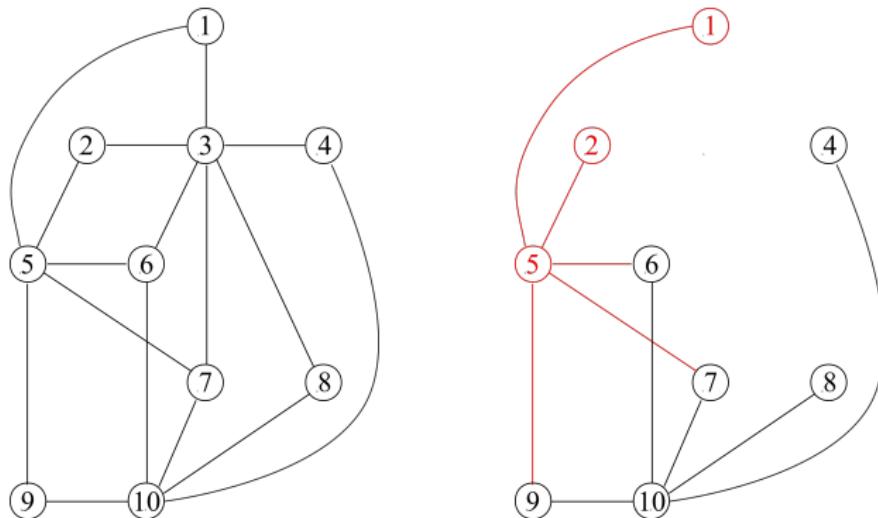
Example

Given the following graph, is there a solution with $|x| \leq k_0 = 5$?
($n = 10$, $m = 16$)

Exhaustive algorithm: $\Theta(2^n(m+n)) \Rightarrow T \approx 2^{10}(10+16) = 26\,624$

Naive algorithm: $\Theta(n^k m) \Rightarrow T \approx 10^5 \cdot 16 = 16\,000\,000$

$\delta_5 = 5 \geq k_1 + 1 \Rightarrow x_2 := \{3, 5\}$, remove the incident edges and $k_2 = 3$



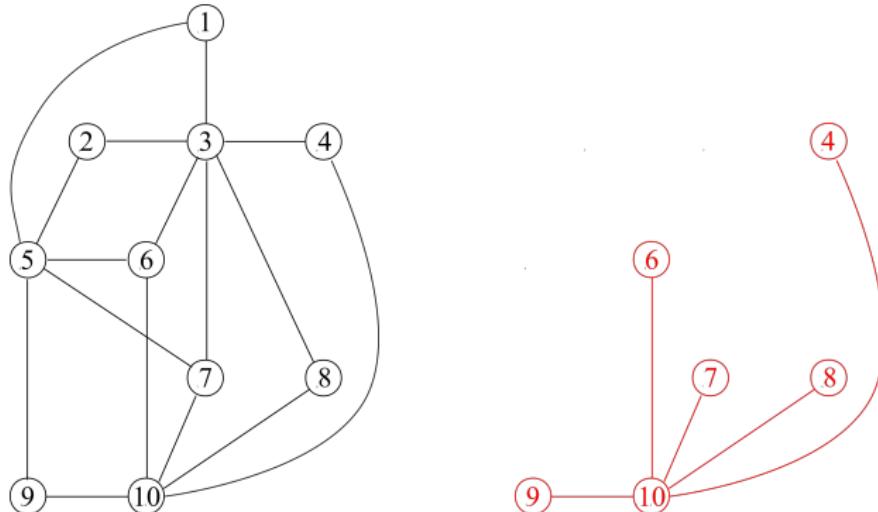
Example

Given the following graph, is there a solution with $|x| \leq k_0 = 5$?
($n = 10$, $m = 16$)

Exhaustive algorithm: $\Theta(2^n (m + n)) \Rightarrow T \approx 2^{10} (10 + 16) = 26\,624$

Naive algorithm: $\Theta(n^k m) \Rightarrow T \approx 10^5 \cdot 16 = 16\,000\,000$

$\delta_{10} = 5 \geq k_2 + 1 \Rightarrow x_3 := \{3, 5, 10\}$, remove the incident edges and $k_3 = 2$



Kernelisation: $\Theta(n + m) \Rightarrow T \approx 10 + 16 = 26$

Average-case complexity

The worst-case description of complexity might be not very significant:
some algorithms are efficient on nearly all instances

(see the simplex algorithm for Linear Programming)

A theoretical study of the average-case complexity

- defines a **probabilistic model** of the problem, assuming a (usually simple) **probability distribution** on \mathcal{I}_n for each $n \in \mathbb{N}$
- estimates the **expected value** of $T(I)$

$$T(n) = E[T(I) | I \in \mathcal{I}_n]$$

How do we define a probability distribution on \mathcal{I}_n for each $n \in \mathbb{N}$?

Let us see some examples

Binary random matrix with a given size (m rows and n columns)

- ① **equiprobability**: list all 2^{mn} binary matrices and select one of the matrices with uniform probability
- ② **uniform probability**: set each cell to 1 with a given probability p

$$\Pr[a_{ij} = 1] = p \quad (i = 1, \dots, m; j = 1, \dots, n)$$

If $p = 0.5$, it coincides with the equiprobability model, for other values some instances are more likely than others

- ③ **fixed density**: extract δmn cells out of mn with uniform probability and set them to 1

If $\delta = p$, it resembles the uniform probability model, but some instances cannot be generated

Probabilistic models for graphs

Random graph with a given number of vertices n

- ① **equiprobability**: list all $2^{\frac{n(n-1)}{2}}$ graphs and select one of the graphs with uniform probability
- ② **Gilbert's model**, or **uniform probability** $G(n, p)$:

$$\Pr [(i, j) \in E] = p \quad (i \in V, j \in V \setminus \{i\})$$

All graphs with the same number of edges m have the same probability $p^m (1 - p)^{\frac{n(n-1)}{2} - m}$ (different for each m)

If $p = 0.5$, it coincides with the equiprobability model

- ③ **Erdős-Rényi model** $G(n, m)$: extract m unordered vertex pairs out of $\frac{n(n-1)}{2}$ with uniform probability and create an edge for each one

If $m = p \frac{n(n-1)}{2}$, it resembles the uniform probability model, but some instances cannot be generated

Random CNF with a given number of variables n and a given number of literals k for each logic clause

① fixed-probability ensemble:

list all $\binom{n}{k} 2^k$ clauses of k distinct and consistent literals and add each one to the CNF with probability p

② fixed-size ensemble:

build m clauses, adding to each one k distinct and consistent literals, extracted with uniform probability

If $m = p \binom{n}{k} 2^k$, it resembles the fixed-probability model, but some instances cannot be generated

Computational cost of heuristic algorithms

The time complexity of a heuristic algorithm is usually

- **strictly polynomial** (with low exponents)
- **fairly robust** with respect to secondary parameters

Therefore, **the worst-case estimation is also good on average**

Metaheuristics use random steps or memory

- the complexity is well defined for single components of the algorithm
- **the overall complexity is not clearly defined**
 - **in theory, it could extend indefinitely** (but the pseudorandom number generator or the memory configurations would yield an infinite loop)
 - **in practice, it is defined by a condition imposed by the user**
(more about this later)

Their analysis usually focuses on the single components

Conclusions

So, why discussing the previous topics in a course on heuristics?

- ① to guide the search for the correct algorithm: an exact algorithm can be efficient in the given case, even if inefficient in the worst case
- ② to show that exact and heuristic algorithms can interact profitably: heuristic algorithms provide information to improve exact algorithms
(they become more efficient)
- ③ to show that kernelisation improves also heuristic algorithms
(they become more efficient and more effective)
- ④ to identify *a priori* the harder instances
(of course, not all algorithms have the same hard instances)