Heuristic Algorithms

Master's Degree in Computer Science/Mathematics

Roberto Cordone
DI - Universita degli Studi di Milano

Schedule: Wednesday 13.30 - 16.30 in classroom Alfa
Thursday 09.30 - 12.30 in classroom Alfa

Office hours: on appointment

E-mail: roberto.cordone@unimi.it
Web page: https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html
Ariel site: https://myariel.unimi.it/course/view.php?id=7439
Lesson 1: Generalities Milano, A.A. 2025/26}
1/19

https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html
https://myariel.unimi.it/course/view.php?id=7439

Aims of the course

This course aims to

@ show that heuristic algorithms are not recipes for specific problems:
heuristics and problems can be matched freely
(of course, with different performance)

® discuss the common and general aspects of these algorithms
© teach how to design a heuristic for a specific problem

@ teach how to evaluate its performance

2/19

Heuristics

eurisko = | find

It is a word derived from Greek

® inspired by the famous story of Archimedes and the golden crown

but it was
® never used by the ancient Greeks

® coined during the 19th century

3/19

Some historical facts

® Ath century CE: Pappus of Alexandria discusses the analyomenos
(treasure of analysis), that is how to build a mathematical proof

® how to move from the hypotheses to the thesis of a theorem
® how to move from the data to the solution of a geometrical problem
® 17th century: Descartes, Leibnitz et al. discuss the ars inveniendi
(art of finding), i. e. the attainment of truth through mathematics
® 19th century: Bernard Bolzano discusses in detail the most common
strategies to build mathematical proofs (Erfindungskunst)
® 19th-20th century: phylosophers, psychologists and economists
define heuristics as practical and simple decision rules that do not
aim at an optimal result, but at a satisficing one (Simon, 1957)
® 1945: the short essay How to solve it by Gyorgy Pdlya comes back
to the mathematical meaning of heuristic as an informal process that
leads to prove a thesis or to find a solution

So, what about heuristic algorithms?

4/19

Algorithms and heuristics

Some scientific sectors use the two words as opposites:

® algorithm as a formal, deterministic procedure,
consisting of a finite sequence of elementary steps

® heuristic as an informal, creative, open rule

One could even say that
® an algorithm is a correctness proof
® 3 heuristic is a bunch of common sense arguments
In fact, an algorithm has a correctness proof, a heuristic has none

The phrase heuristic algorithm is an oxymoron, in some respects

Then what does it mean?

5/19

Heuristic algorithms

A heuristic algorithm is an algorithm which does not guarantee a correct
solution

Then it is useless!

Quite to the contrary, it can be useful, provided that
@ it “costs” much less than a correct algorithm:
this requires a definition of computational cost of an algorithm
® time
® space
@ it “frequently” yields something “close” to the correct solution:
this requires to define a solution space endowed with

® a metric to express a “satisfactory distance” from the correct solution
® a probabilistic distribution to express the “satisfactory frequence” of
solutions at a satisfactory distance from the correct solutions

6/19

Proofs and algorithms

Mathematical proofs and algorithms are strictly related
® every algorithm has/is a correctness proof

® both are mechanical symbolic transformations from a starting point
(hypotheses/data) to an ending point (thesis/solution)

® Turing's undecidability proof mirrors Godel’s incompleteness proof

Heuristics are the construction of both proofs and algorithms
® in case of success, the heuristic is abandoned and the proof preserved

® otherwise, a good heuristic frequently provides a good result,
instead of always providing a perfect one

This is the motivation for heuristic algorithms

7/19

The focus of this course

The course focuses on heuristic algorithms
® that apply to Combinatorial Optimisation problems

® that are solution-based (as opposed to model-based)

So, we limit
@ the kind of problem
@ the kind of algorithm

It is still a pretty wide field

Let us further discuss the two limitations

8/19

Problem classification

A problem is a question on a mathematical system
Problems can be classified based on the nature of their solution:
® decision problems: their solution is either True or False

® search problems: their solution is any feasible subsystem
(that is, satisfying certain conditions)

® optimisation problems: their solution is the minimum or maximum
value of an objective function defined on the feasible subsystems

® counting problems: their solution is the number of feasible
subsystems

® enumeration problem: their solution is the collection of all feasible
subsystems

We address the combination of optimisation and search, that is,
we look for the optimal value and a subsystem assuming that value

9/19

Optimisation /search problems

An optimisation/search problem can be represented as

opt f(x)
xe X

where
® a solution x describes each subsystem of the problem
® the feasible region X (feasible solution space)
is the set of subsystems which satisfy given conditions
® the objective function : X — R quantitatively measures the quality
of each subsystem (opt € {min, max})

The problem consists in determining
® optimisation: the optimal value f* of the objective function:

f* = optf(x)
xeX

® search: at least one optimal solution, that is a subsystem
x* e X* =argopt f (x) = {X* € X :f(x*)=opt f(x)}
xeX xeX

10/19

Why optimisation /search problem?

Several application fields require objects or structures characterized by
very high or very low values of a suitable evaluation function
® bioinformatics: the most effective drugs bond with proteins in
configurations of minimal potential energy
® social networks: the best target for a campaign are the most
influentiable, most influential and most uncorrelated groups of
individuals
® machine learning: the most effective classification systems generate
the simplest classifications and the minimum amount of violations
® hardware design: the best logical circuits require the minimum space
and yield the minimum delay
® parameter estimation: the best physical models are the ones which
reproduce the observations with the minimum error

® finance: the most effective portfolio management algorithms
reproduce the target time series in the most precise way

Exact optimality is costly, not always required, or even desirable
(many heuristic solutions could be preferable to a single exact one)

11/19

Combinatorial Optimisation (CO)

A problem is a CO problem when the feasible region X is a finite set,
that is, it has a finite number of feasible solutions

This looks like a very restrictive assumption

However, the study of CO problems can be useful more in general:
@ infinite discrete problems can have a finite set of interesting solutions

® some continuous problems can be reduced to CO problems
(e. g., Linear Programming, Maximum Flow, Minimum Cost Flow)

© continuous problems can be reduced to discrete ones by sampling
(usually not very effective)

O ideas conceived for CO problems can be extended to other problems
(often quite effective)

12/19

Model-based heuristics

They describe the feasible region X with a “model”

A typical example is a Mathematical Programming formulation

opt f(x) ‘
xeX gi(§) <0 i=1,...,m

where
e ¢ € R" thatis, a solution is a vector of n real values
e X={¢ecR":g(§)<0,i=1,..., m}, that is, the feasible region

is the set of vectors which satisfy all the inequalities (constraints)

Model-based heuristics exploit the information derived from the model,
that is the analytical properties of functions ¢ and g; (i =1,...,m)

Other models can be based on SAT, etc. ..

We will not use these tools

13/19

An alternative definition of CO

A problem is a CO problem when:
@ the number of feasible solutions is finite
@ the feasible region is X C 2B for a given finite ground set B,
that is, the feasible solutions are all subsets of the ground set that
satisfy suitable conditions
The two definitions are equivalent:
2 = 1. if the ground set B is finite, every collection X C 2B is finite

1 = 2: if the number of feasible solutions is finite, define B as their set
and the feasible region X as the collection of all singletons of B
(a “solution” is a set containing a single solution)

In general, the sophisticated definition allows a deeper analysis, because
® X is not simply enumerated

® X is defined in a compact and significant way

14/19

Solution-based heuristics: a classification for CO problems

Solution-based heuristics consider solutions as subsets of the ground set
@ constructive/destructive heuristics:

® they start from an extremely simple subset (respectively,) or B)
® they add/remove elements until they obtain the desired solution

@® exchange heuristics:

® they start from a subset obtained in any way
® they exchange elements until they obtain the desired solution

© recombination heuristics:

® they start from a population of subsets obtained in any way
® they recombine different subsets producing a new population

Heuristic designers can creatively combine elements from different classes

15/19

Randomisation and memory

Two other distinctions concern
® the use of randomisation:

® deterministic heuristics, whose input includes only certain information
® randomized heuristics, whose input includes pseudorandom numbers
(they are deterministic algorithms anyway)

® the use of memory:

® heuristics whose input includes only current information
® heuristics whose input also includes previously generated solutions

These distinctions are independent from the previous classification

Metaheuristics (from the Greek, “beyond heuristics”) is the common
name for heuristic algorithms with randomisation and/or memory

16/19

