
Heuristic Algorithms
for Combinatorial Optimization problems

Ph.D. course in Computer Science

Roberto Cordone

DI - Università degli Studi di Milano

E-mail: roberto.cordone@unimi.it

Web page: https://homes.di.unimi.it/cordone/courses/2025-haco/2025-haco.html

Lesson 4: Constructive heuristics and metaheuristics Milano, A.A. 2024/25
1 / 77

https://homes.di.unimi.it/cordone/courses/2025-haco/2025-haco.html

Extensions of the basic constructive scheme

The basic scheme of constructive algorithms can be enhanced using

1 a more effective construction graph
• add more than one element to the current subset x
• add elements to x , but also remove elements from x

2 a more sophisticated selection criterium, such as
• a regret-based function that estimates potential future losses

associated with element i
• a look-ahead function that estimates the final value of the objective

obtained adding i to x

2 / 77

Extensions of the construction graph
The constructive algorithm adds one element at a time to the solution

It is possible to generalize this scheme with algorithms that at each step

1 add more than one element: the selection criterium φA (B+, x)
identifies a subset B+ ⊆ B \ x to add, instead of a single element i

2 add elements, but also remove a smaller number of elements:
the selection criterium φA (B

+,B−, x) identifies a subset B+ ⊆ B \ x
to add and a subset B− ⊆ x to remove, with |B+| > |B−|

These algorithms build an acyclic construction graph on the search space,
so that they never revisit any subset

The fundamental problem is to define a family ∆+
A (x) of subset pairs

such that optimising the selection criterium is a polynomial problem

min
(B+,B−)∈∆+

A (x)
φA

(
B+,B−, x

)
that is

• subsets efficiently optimisable (minimum paths,. . .)

• subsets of limited size (e. g., |B+| = 2 and |B−| = 1)

3 / 77

The Steiner Tree Problem (STP)

Given an undirected graph G = (V ,E), a cost function c : E → N
on the edges and a subset of special vertices U ⊂ V ,
find a tree connecting at minimum cost all special vertices

A B

C

S

2

22

1 1

1

The minimum tree spanning the special vertices is not necessarily optimal
(and it might not even exist)

4 / 77

The Distance Heuristic (DH) for the STP

A basic constructive algorithm could adopt the same search spaces as

• Kruskal’s algorithm: the set of all forests

• Prim’s algorithm: the set of all trees including a (special) vertex

but adding one edge at a time

• returns solutions with redundant edges, therefore expensive

• has a hard time distinguishing useful and redundant edges

The Distance Heuristic adopts as search space F
the collection of all trees including a given special vertex v1 (as in Prim)

It iteratively adds a path B+ between x and a special vertex
instead of a single edge, so that

• x remains a tree

• x spans a new special vertex

• the minimum cost path can be computed efficiently at each step

It terminates when all special vertices are spanned by x

5 / 77

Example

• start with a single special vertex a: x := ∅ (degenerate tree)

• add the closest special vertex (b) through path (a, e, d , b):
x = {(a, e) , (e, d) , (d , b)}

• add the closest special vertex (g) through path (g , h, d):
x = {(a, e) , (e, d) , (d , b) , (g , h) , (h, d)}

• all special vertices are in the solution: terminate

6 / 77

Example

• start with a single special vertex a: x := ∅ (degenerate tree)

• add the closest special vertex (b) through path (a, e, d , b):
x = {(a, e) , (e, d) , (d , b)}

• add the closest special vertex (g) through path (g , h, d):
x = {(a, e) , (e, d) , (d , b) , (g , h) , (h, d)}

• all special vertices are in the solution: terminate

7 / 77

Example

• start with a single special vertex a: x := ∅ (degenerate tree)
• add the closest special vertex (b) through path (a, e, d , b):

x = {(a, e) , (e, d) , (d , b)}
• add the closest special vertex (g) through path (g , h, d):

x = {(a, e) , (e, d) , (d , b) , (g , h) , (h, d)}
• all special vertices are in the solution: terminate

(this time, the solution is optimal)

The Distance Heuristic algorithm is 2-approximated

It is equivalent to computing a minimum spanning tree on a graph with
• vertices reduced to the special vertices
• edges corresponding to the minimum paths

8 / 77

Counterexample to optimality
Consider a complete graph G = (V ,E) with U = V \ {1} and cost

cuv =

{
(1 + ϵ)M for u or v = 1

2M for u, v ∈ U

(M is just used to obtain integer costs for any ϵ)

The DH returns a star spanning the special vertices: fDH = (n − 2) · 2M

The optimal solution is a spanning star centred in 1: f ∗ = (n − 1) · (1 + ϵ)M

The approximation ratio is ρDH =
fDH

f ∗
=

n − 2

n − 1
· 2

1 + ϵ
< 2

and converges to 2 as n increases and ϵ decreases

9 / 77

Insertion algorithms for the TSP

Several heuristic algorithms for the TSP define the search space FA as
the set of all circuits of the graph including a given node; a circuit

• cannot be obtained from another one by adding a single arc

• can be obtained adding two arcs (i , k), (k , j) and removing one (i , j)

1 Start with a zero-cost self-loop on node 1: x (0) = {(1, 1)}
It is not very different from an empty set

2 Select a node k to be added and an arc (i , j) to be removed

3 If the circuit does not visit all nodes, go back to point 2;
otherwise terminate

Such a scheme never visits again the same solution and
builds a feasible solution in n − 1 steps (each step adds a new node)

10 / 77

Insertion algorithms for the TSP
The selection criterium φA (B

+,B−, x) must choose an arc and a node;
there are (n − |x |) |x | ∈ O

(
n2
)
alternatives

• |x | possible arcs (si , si+1) to remove
• n − |x | possible nodes k to add through the arcs (si , k) and (k, si+1)

The Cheapest Insertion (CI) heuristic uses as a selection criterium

φA

(
B+,B−, x

)
= f

(
x ∪ B+ \ B−)

Objective function f (x) is additive, hence extensible to the whole of FA

Since f (x ∪ B+ \ B−) = f (x) + csi ,k + ck,si+1 − csi ,si+1

arg min
(B+,B−)

φA

(
B+,B−, x

)
= argmin

i,k
(csi ,k + ck,si+1 − csi ,si+1)

The computational cost of evaluating φA decreases from Θ (n) to Θ (1)

11 / 77

Cheapest Insertion heuristic for the TSP

Algorithm Cheapest Insertion

1 start with a zero-cost self-loop on node 1: x (0) = {(1, 1)}
It is also like starting with a single node

2 select the arc (si , si+1) ∈ x and the node k /∈ Nx such that
(csi ,k + ck,si+1 − csi ,si+1) is minimum

3 if the circuit does not visit all nodes, go back to point 2;
otherwise terminate

It is not exact, but 2-approximated, under the triangle inequality

12 / 77

An example

Start with a single node (as in the NN heuristic)

13 / 77

An example

Create a circuit (instead of a path)

14 / 77

An example

Add at each step the node that minimally increases the circuit cost

15 / 77

An example

Add at each step the node that minimally increases the circuit cost

16 / 77

An example

Terminate when the circuit visits all nodes

17 / 77

Cheapest Insertion heuristic for the TSP

The CI algorithm performs n − 1 steps: at each step t

• it evaluates (n − t) t node-arc pairs
• each evaluation requires constant time
• each evaluation possibly updates the best move

• it performs the best addition/removal

• it decides whether to terminate

The overall complexity is Θ
(
n3
)

It can be reduced to Θ
(
n2 log n

)
collecting in a min-heap

the insertion costs for each external node: each of the n steps

• selects the best insertion in O (n) time and performs it

• creates two new insertions and removes one for each external node;
updating each of the O (n) heaps takes O (log n) time

18 / 77

Nearest Insertion heuristic for the TSP

Algorithm Cheapest Insertion tends to select nodes close to circuit x :
minimising csi ,k + ck,si+1 − csi ,si+1 implies that csi ,k and csi+1,k are small

To accelerate, one can decompose criterium φA into two phases

Algorithm Nearest Insertion (NI)

1 start with a zero-cost self-loop on node 1: x (0) = {(1, 1)}
2 Add criterium: select the node k nearest to circuit x

k = arg min
ℓ/∈Nx

(
min
si∈Nx

csi ,ℓ

)
3 Delete criterium: select the arc (si , si+1) that minimises f

(si , si+1) = arg min
(si ,si+1)∈x

(csi ,k + ck,si+1 − csi ,si+1)

4 If the circuit does not visit all nodes, go back to point 2;
otherwise terminate

It is not exact, but 2-approximated, under the triangle inequality

19 / 77

An example

Start with a single vertex (as in NN and CI)

20 / 77

An example

Create a circuit (as in CI)

21 / 77

An example

The circuit grows differently, always adding the closest node,
even if this increases the cost more than another node

22 / 77

An example

Terminate when the circuit visits all nodes

23 / 77

Nearest Insertion heuristic for the TSP

The NI algorithm performs n − 1 steps: at each step t

• it evaluates the distance of (n − t) nodes from the circuit,
each one in Θ (t) time

• it selects the node at minimum distance

• it evaluates the removal of t arcs, each one in Θ (1) time

• it performs the best addition/removal

• it decides whether to terminate

The overall complexity is Θ
(
n3
)

It can be reduced to Θ
(
n2
)
collecting in a vector for each external node

the closest internal node: each of the n − 1 steps

• selects the closest node in O (n) time

• finds the insertion point in O (n) time

• inserts the node creating a new internal node for each external node,
which possibly becomes the closest saved in the vector;
each of the O (n) updates takes O (1) time

24 / 77

Farthest Insertion heuristic for the TSP
The choice of the closest node to the cycle is natural, but misleading:
since all nodes must be visited, it is preferable to service in the best way
the most problematic ones (i. e., the farthest ones)

Algorithm Farthest Insertion (FI)

1 start with a zero-cost self-loop on node 1: x (0) = {(1, 1)}
2 Add criterium: select the node k farthest from cycle x

k = argmax
ℓ/∈Nx

(
min
si∈Nx

csi ,ℓ

)
(the node that is farthest from the closest node of the cycle)

3 Delete criterium: select the arc (si , si+1) minimising

(si , si+1) = arg min
(si ,si+1)∈x

(csi ,k + ck,si+1 − csi ,si+1)

4 If the circuit does not visit all nodes, go back to point 2;
otherwise terminate

It is log n-approximated under the triangle inequality, hence worse than
the previous ones in the worst-case (but often experimentally better)

25 / 77

An example

Start reaching immediately the farthest node

26 / 77

An example

And go on like that

27 / 77

An example

But always inserting these nodes in the best possible way

28 / 77

An example

The circuit grows more regularly, with much less crossings and twists

29 / 77

An example

Terminate when the circuit visits all nodes

30 / 77

Farthest Insertion heuristic for the TSP

The FI algorithm performs n − 1 steps: at each step t

• it evaluates the distance of (n − t) nodes from the circuit,
each one in Θ (t) time

• select the node at maximum distance

• it evaluates the removal of t arcs, each one in Θ (1) time

• it performs the best addition/removal

• it decides whether to terminate

The overall complexity is Θ
(
n3
)

It can be reduced to Θ
(
n2
)
as in the NI heuristic

31 / 77

Effectiveness and efficiency

A constructive algorithm performs at most n = |B| steps consisting of

1 the construction of ∆+
A (x)

2 the evaluation of φA (i , x) for each i ∈ ∆+
A (x)

3 the selection of the element i minimising φA (i , x)

4 the update of x (and auxiliary data structures)

In general, the complexity is a polynomial of rather low order
dominated by the first two components

TA (n) ∈ O
(
n
(
T∆+

A
(n) + TφA

(n)
))

32 / 77

General features of construction algorithms

Constructive algorithms

1 are intuitive

2 are simple to design, analyze and implement

3 are very efficient

4 have a strongly variable effectiveness
• on some problems they guarantee an optimal solution
• on other problems they provide an approximation guarantee
• on most problems they provide solutions of extremely variable

quality, often scarse
• on some problems they cannot even guarantee a feasible solution

Then, it is fundamental to study the problem before the algorithm

33 / 77

When are they used?

Constructive algorithm are used

1 when they provide the optimal solution

2 when the execution time must be very short
(e.g., for on-line problems: schedulers, on-call services, . . .)

3 when the problem has a huge size or requires heavy computations
(e.g., some data are obtained by simulation)

4 as component of other algorithms, for example as
• starting phase for exchange algorithms
• basic procedure for recombination algorithms

34 / 77

Destructive heuristics
It is an approach exactly complementary to the constructive one

• start with the full ground set: x (0) := B
• remove an element at a time, selected

• so as to remain within the search space FA

∆+
A (x) = {i ∈ x : x \ {i} ∈ FA}

• maximizing a selection criterium φA (i , x) (usually a cost reduction)
• terminate when ∆+

A (x) = ∅ (there is no way to remain in FA)

A destructive heuristic (for a minimization problem) can be described as

Algorithm Stingy(I)

x := B; x∗ := B;

If x ∈ X then f ∗ := f (x) else f ∗ := +∞;

While ∆+
A (x) ̸= ∅ do

i := arg max
i∈∆+

A (x)
φA (i , x);

x := x \ {i};
If x ∈ X and f (x) < f ∗ then x∗ := x ; f ∗ := f (x);

Return (x∗, f ∗);

35 / 77

Why are they less used?
When the solutions are much smaller than the ground set (|x | ≪ |B|)
a destructive heuristic

• requires a larger number of steps

• is more likely to make a wrong decision at an early step

• sometimes requires more time to evaluate ∆+
A (x) and φA (i , x)

When a constructive heuristic returns redundant solutions, it is useful to
append a destructive heuristic at its end as a post-processing phase

This auxiliary destructive heuristic

• starts from the solution x of the constructive heuristic, instead of B

• adopts as a search space the feasible region:

FA = X ⇒ ∆+
A (x) = {i ∈ x : x \ {i} ∈ X}

• adopts as the selection criterium the objective function:

φA (i , x) = f (x \ {i})

• terminates after very few steps

36 / 77

Constructive/destructive heuristic for the SCP

c 6 8 24 12

1 0 0 0
1 0 0 0

A 1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

1 The constructive heuristic selects, in order, columns 1, 2, 4 and 3
(each one covers new rows)

2 The solution is redundant: column 2 can be removed
(the following columns also cover already covered rows)

3 The auxiliary destructive heuristic removes column 2 and provides
the optimal solution x∗ = {1, 3, 4}

(columns 1, 3 and 4 are essential to cover rows 1, 2, 5 and 6)

37 / 77

Extensions of constructive algorithms

The basic scheme of constructive algorithms can be enhanced using

1 a more effective construction graph
• add more than one element to the current subset x
• add elements to x , but also remove elements from x

2 a more sophisticated selection criterium, such as
• a regret-based function that estimates potential future losses

associated with element i
• a look-ahead function that estimates the final value of the objective

obtained adding i to x

38 / 77

Regret-based constructive heuristics

Decisions taken in early steps can severely restrict the feasible choices
in later steps due to the constraints of the problem

• BPP: all objects must be put into a container, but early assignments
could make some containers unavailable for later objects

• TSP: all nodes must be visited, but early routing decisions could
make the visit of later nodes more expensive

(even impossible, if the graph is noncomplete)

• CMST: all vertices must be linked to the root through a subtree, but
early links could make some subtrees unavailable for later vertices

The selection criterium can take it into account implicitly

• BPP: the Decreasing First-Fit heuristic assigns the larger objects first

• TSP: the Farthest Insertion heuristic visits the farther nodes first

Some selection criteria aim explicitly to leave larger sets of good choices

39 / 77

Regret criterium

A typical regret-based heuristic consists in

• partitioning ∆+
A (x) into disjoint classes of choices

(the assignments of each object, the edges incident in each vertex)

• compute a basic selection criterium for all choices

• compute for each class the regret, i. e. the difference between
• the second-best choice or
• the average of the other choices (possibly weighted)

and the best choice in order to estimate the damage incurred
by postponing the best choice until it becomes impossible

• choose the best choice of the class for which the regret is maximum

This is effective when a single choice per class must be taken

40 / 77

Example
Consider the CMSTP and ground set B = V × T ((vertex,subtree) pairs)
Let the weights be uniform (wv = 1 for all v ∈ V) and capacity W = 2

Let the search space F include all partial solutions

The greedy algorithm puts vertex 2 in subtree 1, vertex 3 in subtree 2;
then vertex 4 in subtree 1 and finally vertex 5 in subtree 2:
c(x) = 1 + 1 + 2 + 100 = 104

The regret algorithm puts vertex 2 in subtree 1; now:

• the regret of vertex 3 is the difference c(3, 3)− c(3, 2) = 1− 1 = 0

• the regret of vertex 4 is the difference c(4, 2)− c(4, 1) = 10− 2 = 8

• the regret of vertex 5 is the difference c(5, 2)− c(5, 1) = 100− 3 = 97

The algorithm puts vertex 5 in subtree 1

Then, it proceeds putting vertices 2 and 4 in subtree 2:

c(x) = 1 + 3 + 1 + 4 = 9
41 / 77

Roll-out heuristics

They are also known as single-step look-ahead constructive heuristics
and were proposed by Bertsekas and Tsitsiklis (1997)

Given a basic constructive heuristic A

• start with an empty subset: x (0) = ∅
• at each step t

• extend the subset in each feasible way: x (t−1) ∪ {i} , ∀i ∈ ∆+
A (x)

• apply the basic heuristic to each extended subset and
compute the resulting solution xA(x

(t−1) ∪ {i})
• use the value of the solution as the selection criterium to choose i (t)

φA (i , x) = f
(
xA(x

(t−1) ∪ {i})
)

• terminate when ∆+
A (x) is empty

Try every feasible move, look at the result, go back and choose the move

The result of the roll-out heuristic dominates that of the basic heuristic
(under very general conditions)

The complexity remains polynomial, but is much larger:
in the worst case, Tro(A) = |B|2 TA

42 / 77

Example: roll-out for the SCP

c 25 6 8 24 12

1 1 0 0 0
1 1 0 0 0

A 1 1 1 0 0
1 0 1 1 0
1 0 0 1 0
1 0 0 0 1

1 start with the empty subset: x (0) = ∅
2 for each column i , apply the constructive heuristic

starting from subset x (0) ∪ {i} = {i}
• for i = 1, obtain xA ({1}) = {1} of cost f (xA ({1})) = 25
• for i = 2, obtain xA ({2}) = {2, 3, 5, 4} of cost f (xA ({2})) = 50
• for i = 3, obtain xA ({3}) = {3, 2, 5, 4} of cost f (xA ({3})) = 50
• for i = 4, obtain xA ({4}) = {4, 2, 5} of cost f (xA ({4})) = 43
• for i = 5, obtain xA ({5}) = {5, 2, 3, 4} of cost f (xA ({5})) = 50

3 the best solution is the first one, therefore i (1) = 1

4 all rows are covered: the algorithm terminates

43 / 77

Generalised roll-out heuristics

The scheme can be generalised

• applying several basic heuristics A[1], . . . ,A[ℓ]

• increasing the number of look-ahead steps,
i. e., using x (t−1) ∪ B+ with |B+| > 1

The result improves and the complexity worsens further

The overall scheme does not change significantly

• start from the empty subset: x (0) = ∅
• at each step t

• for each possible extension B+ ∈ ∆+
A (x

(t−1))
apply each basic algorithm A[l] starting from x (t−1) ∪ B+

• the selection criterium is minl fA[l](x (t−1) ∪ B+)
• use the value of the best solution as the selection criterium for i (t)

φA (i , x) = min
l=1,...,ℓ

f
(
xA(x

(t−1) ∪ {i})
)

• when ∆+
A (x) is empty, terminate

44 / 77

Constructive metaheuristics

The constructive algorithms have strong limitations on many problems

What can be done, without abandoning the general scheme?

Iterate the scheme to generate many (potentially) different solutions

• the efficiency decreases: the computational times are summed

• the effectiveness increases: the best solution is returned

The trade-off must be carefully tuned

The iterated scheme can apply

• multi-start, that is different algorithm at each iteration l = 1, . . . , ℓ
(this requires to define multiple FAl

and φAl
)

but it is more flexible to apply metaheuristics, that exploit

• randomisation (operations based on a random seed), as in the case
of semigreedy algorithms, GRASP and Ant System (partly, ART)

• memory (operations based on the solutions of previous iterations),
as in the case of ART, cost perturbation and Ant System

45 / 77

Termination condition

The iterated scheme can ideally proceed for an infinite time

In pratice, one uses termination conditions that can be “absolute”

1 a given total number of iterations of the basic scheme

2 a given total execution time

3 a given target value of the objective

or “relative” to the profile of f ∗

1 a given number of iterations of the basic scheme without
improving f ∗

2 a given execution time without improving f ∗

3 a given minimum ratio between the improvement of f ∗ and
the number of iterations of the basic scheme or the execution time
(e.g.: f ∗ improves less than 1% in the last 1 000 iterations)

Fair comparisons require absolute conditions

46 / 77

Constructive metaheuristics
The main constructive metaheuristics are

1 Adaptive Research Technique (ART) or Tabu Greedy:
forbid some moves based on the solutions of the previous iterations

min
i∈∆+

A[l]
(x)
φA (i , x)

with ∆+
A[l](x) =

{
i ∈ B \ x : x ∪ {i} ∈ F [l]

(
x
[1]
A , . . . , x

[l−1]
A

)
⊆ F

}
This is much less popular than the other two

2 semigreedy and GRASP: use a randomised selection criterium

min
i :x∪{i}∈F

φ
[l]
A

(
i , x , ω[l]

)
3 Ant System (AS): use a randomised selection criterium

depending on the solutions of the previous iterations

min
i :x∪{i}∈F

φ
[l]
A

(
i , x , ω[l], x

[1]
A , . . . , x

[l−1]
A

)
New information on the arcs of the construction graph guides the search
The ART uses memory, the GRASP randomisation, the AS both

47 / 77

Adaptive Research Technique

It was proposed by Patterson et al. (1998) for the CMSTP

When deceivingly good elements are included in the first steps
the final solution can be quite bad

Aiming to avoid that

• the roll-out approach makes a look-ahead on each possible element
(but a single step can be insufficient to identify the misleading ones)

• the ART forbids some elements to drive subset x on the right path
in the search space

(how to identify the misleading elements?)

The prohibitions are temporary, with an expiration time of L iterations;
otherwise, building feasible solutions would become impossible

48 / 77

Adaptive Research Technique

Define a basic constructive heuristic A

Let Ti be the starting iteration of the prohibition for each element i ∈ B
and x∗ be the best solution found

Set Ti = −∞ for all i ∈ B to indicate that no element is forbidden

At each iteration l ∈ {1, . . . , ℓ}
1 apply heuristic A forbidding all elements i such that l ≤ Ti + L

(all prohibitions older than L iterations automatically expire);
let x [l] be the resulting solution

2 if x [l] is better than x∗, set x∗ := x [l] and save Ti − l for all i ∈ B

3 decide which elements to forbid and set Ti = l for them:
each element is forbidden with probability π (any better ideas?)

4 make minor tweaks to L, π or Ti

At the end, return x∗

49 / 77

Example: ART for the SCP

c 25 6 8 24 12

1 1 0 0 0
1 1 0 0 0

A 1 1 1 0 0
1 0 1 1 0
1 0 0 1 0
1 0 0 0 1

Let L = 2, π = 0.15, pseudorandom numbers 0.1, 0.9, 0.4, 0.5, 0.1, 0.2, . . .

1 the basic heuristic finds solution x [1] = {2, 3, 5, 4} of cost f
(
x [1]

)
= 50;

forbid column 2 (because 0.1 ≤ π < 0.9, 0.4 and 0.5)

2 the basic heuristic finds solution x [2] = {3, 1} (2 is forbidden)

of cost f
(
x [2]

)
= 33; forbid column 3 (because 0.1 ≤ π < 0.2)

3 the basic heuristic finds solution x [3] = {1} (3 and 2 are forbidden) of cost

f
(
x [2]

)
= 25, that is optimal

4 . . .

An unlucky sequence could forbid column 1 at step 2
50 / 77

Parameter tuning

The ART has three basic parameters

• the total number of iterations ℓ (tuned mainly by the available time)

• the length L of the prohibition

• the probability π of the prohibition

How to assign effective values to the parameters?

The experimental comparison of different values is necessary but complex

1 it requires long experimental campaigns, because
the number of configurations grows combinatorially with

• the number of parameters
• the number of tested values for each parameter

(the more sensitive the result, the more values must be tested)

2 it risks overfitting, that is labelling as absolutely good
values which are good only on the benchmark instances considered

The excess of parameters is an undesirable aspect, and often reveals an
insufficient study of the problem and of the algorithm

More on this point later

51 / 77

Diversification and intensification

Diversification aims to obtain different solutions at every iteration

The ART achieves it forbidding elements of the previous solutions

An excessive diversification can hinder the discovery of the optimum

Intensification aims to focus the search on the more promising subsets

Diversification and intensification play complementary roles

Their relative strength can be tuned through the parameters based on

• problem data: assign
• a smaller probability πi to be forbidden
• a shorter expiration time Li of the prohibition

to promising elements (e. g., cheaper ones)

• memory:
• assign a smaller πi or Li (i is never forbidden when πi = 0 or Li = 0)

to promising elements (e. g., appearing in the best known solutions)
• periodically restart the algorithm with the Ti − l values associated

with the best known solution, instead of Ti = −∞

52 / 77

Semi-greedy heuristics

A nonexact constructive algorithm has at least one step t which
builds a subset x (t) not included in any optimal solution

Since the element selected is the best according to the selection criterium

i∗ = arg min
i∈∆+

A (x)
φA (i , x)

necessarily φA (i , x) is incorrect, but probably not completely wrong

The semi-greedy algorithm (Hart and Shogan, 1987) assumes that
elements that lead to the optimum are very good for φA (i , x),
even if not strictly the best

How to know which one?

If it is not possible to refine φA (i , x)

• define a suitable probability distribution on ∆+
A (x)

favouring the elements with the best values of φA (i , x)

• select i∗ (ω) according to the distribution function

53 / 77

Semi-greedy heuristics

Since the set of alternative choices is finite, this means to assign

• probability πA (i , x) to arc (x , x ∪ {i}) of the construction graph
(with a sum equal to 1 for the outgoing arcs of each node)∑

i∈∆+
A (x)

πA (i , x) = 1 for all x ∈ FA : ∆+
A (x) ̸= ∅

• higher probabilities to the better elements for the selection criterium

φA (i , x) ≤ φA (j , x) ⇔ πA (i , x) ≥ πA (j , x)

for each i , j ∈ ∆+
A (x) , x ∈ FA

This heuristic approach has important properties

• it can reach an optimal solution if there is a path from ∅ to X ∗

(this is a basic condition)

• it can be reapplied several times obtaining different solutions and
the probability to reach the optimum grows gradually

(each iteration decreases the probability of missing an optimal path)

54 / 77

Convergence to the optimum

The probability of

• following a path γ is the product of the probabilities on the arcs∏
(y ,y∪{i}∈γ)

πA (i , y)

• obtaining a solution x is the sum of those of the paths Γx reaching x∑
γ∈Γx

∏
(y ,y∪{i}∈γ)

πA (i , y)

This implies that the probability to reach the optimum:

1 is nonzero if and only if there exists a path of nonzero probability
from ∅ to X ∗

2 increases as ℓ→ +∞
(the probability of not reaching it decreases gradually)

It tends to 1 for probabilistically approximatively complete algorithms

55 / 77

Convergence to the optimum

In this context, a random walk is a constructive metaheuristic in which
all the arcs going out of the same node have equal probability

• it finds a path to the optimum with probability 1 (if one exists)

• the time required can be extremely long

The exhaustive algorithm is exact and requires finite time

A deterministic constructive heuristic sets all probabilities to zero
except for those on the arcs of a single path

• it finds the optimum only if it enjoys specific properties

• it finds the optimum in a single run

Randomised heuristics that favour promising arcs and penalise the others

• accelerate the average convergence time

• decrease the guarantee of convergence in the worst case

There is a trade-off between expected and worst result

Arcs with zero probability can block the path to the optimum

Arcs with probability converging to zero reduce the probability to find it
56 / 77

Semi-greedy and GRASP

GRASP, that is Greedy Randomised Adaptive Search Procedure (Feo and
Resende, 1989) is a sophisticated variant of the semi-greedy heuristic

• Greedy indicates that it uses a constructive basic heuristic

• Randomised indicates that the basic heuristic makes random steps

• Adaptive indicates that the heuristic uses an adaptive selection
criterium φA (i , x), depending also on x (not strictly necessary)

• Search indicates that it alternates the constructive heuristic and an
exchange heuristic (differently from the semi-greedy approach)

The use of auxiliary exchange heuristics allows strongly better results

This aspect will be investigated in the following lessons

57 / 77

What probability function?

Several functions πA (i , x) are monotonous with respect to φA (i , x)

φA (i , x) ≤ φA (j , x) ⇔ πA (i , x) ≥ πA (j , x)

• uniform probability: each arc going out of x has the same πA (i , x);
the algorithm performs a random path in FA (random walk)

• Heuristic-Biased Stochastic Sampling (HBSS):
• sort the arcs going out of x by nonincreasing values of φA (i , x)
• assign a decreasing probability according to the position in the order

based on a simple scheme (linear, exponential, ecc. . .)

• Restricted Candidate List (RCL):
• sort the arcs going out of x by nonincreasing values of φA (i , x)
• insert the best arcs in a list (How many?)
• assign uniform probability to the arcs of the list, zero to the others

The most common strategy is the RCL, even if the zero probability arcs
potentially cancel the global convergence to the optimum

58 / 77

Common probability functions

Suppose that at the current step
∣∣∆+

A (x)
∣∣ = 10 elements can be added

59 / 77

Definition of the RCL

Two main strategies are used to define the RCL

• cardinality: the RCL includes the best µ elements of ∆+
A (x),

where µ ∈
{
1, . . . ,

∣∣∆+
A (x)

∣∣} is a parameter fixed by the user
• µ = 1 yields the constructive basic heuristic
• µ = |B| (i, e.,

∣∣∆+
A (x)

∣∣ for each x) yields the random walk

• value: the RCL includes all the elements of ∆+
A (x) whose value is

between φmin and (1− µ)φmin + µφmax where

φmin (x) = min
i∈∆+

A (x)
φA (i , x) φmax (x) = max

i∈∆+
A (x)

φA (i , x)

and µ ∈ [0; 1] is a parameter fixed by the user
• µ = 0 yields the constructive basic heuristic
• µ = 1 yields the random walk

60 / 77

General scheme of GRASP

Algorithm GRASP(I)

x∗ := ∅; f ∗ := +∞; { Best solution found so far }
For l = 1 to ℓ do

{ Constructive heuristic with random steps }
x := ∅;
While ∆+

A (x) ̸= ∅ do

φi := φA (i , x) for each i ∈ ∆+
A (x)

π := AssignProbabilities
(
∆+

A (x) , φ, µ
)
;

i := RandomExtract(∆+
A (x) , π);

x := x ∪ {i};
EndWhile;

x := Search(x); { Exchange heuristic }
If x ∈ X and f (x) < f ∗ then x∗ := x ; f ∗ := f (x);

EndFor;

Return (x∗, f ∗);

61 / 77

Example: GRASP for the SCP

c 25 6 8 24 12

1 1 0 0 0
1 1 0 0 0

A 1 1 1 0 0
1 0 1 1 0
1 0 0 1 0
1 0 0 0 1

Let µ = 2 and the pseudorandom sequence be: 0.6, 0.8, . . .

1 start with the empty subset: x (0) = ∅
2 build the RCL with columns 2 (φ2 = 2) and 3 (φ3 = 4);

select column 3 (because 0.6 > 1/2);

3 build the RCL with columns 2 (φ2 = 3) and 1 (φ3 = 6.25);
select column 1 (because 0.8 > 1/2);

4 the solution obtained is x = {3, 1} of cost f (x) = 33

With µ = 2, the optimal solution cannot be obtained; with µ = 3 it can

The optimum is found with µ = 2 if a destructive phase is applied
62 / 77

Reactive parameter tuning

Once again there are parameters to tune:

• the number of iterations ℓ

• the value µ determining the size of the RCL

An idea to exploit memory is to learn from the previous results

1 select m configurations of parameters µ1, . . . , µm and set ℓr = ℓ/m

2 run each configuration µr for ℓr iterations

3 evaluate the mean f̄ (µr) of the results obtained with µr

4 update the number of iterations ℓr for each µr based on f̄ (µr)

ℓr =

1
f̄ (µr)

m∑
s=1

1
f̄ (µs)

ℓ for r = 1, . . . ,m

increasing it for the more effective configurations

5 repeat the whole process, going back to point 2, for R times

Other schemes use scores based on the number of best known results

63 / 77

Cost perturbation methods

Instead of forbidding/forcing some choices, or modifying their probability,
it is possible to modify the appeal of the available choices

Given a basic constructive heuristic A, at each step of iteration l

• tune the selection criterium φA (i , x) with a factor τ
[l]
A (i , x)

ψ
[l]
A (i , x) =

φA (i , x)

τ
[l]
A (i , x)

• update τ
[l]
A (i , x) based on the previous solutions x [1], . . . , x [l−1]

The elements with a better φA (i , x) tend to be favoured,

but τ
[l]
A (i , x) tunes this effect, promoting

• intensification if τ
[l]
A (i , x) increases for the most frequent elements;

this favours solutions similar to the previous ones

• diversification if τ
[l]
A (i , x) decreases for the most frequent elements;

this favours solutions different from the previous ones

64 / 77

Ant Colony Optimization

It was devised by Dorigo, Maniezzo and Colorni in 1991
drawing inspiration from the social behaviour of ants

Stigmergy = indirect communication among different agents who are
influenced by the results of the actions of all agents

Each agent is an application of the basic constructive heuristic

• it leaves a trail on the data depending on the solution generated

• it performs choices influenced by the trails left by the other agents

The choices of the agent have also a random component

65 / 77

Trail

As in the semi-greedy heuristic

• a basic constructive heuristic A is given

• each step performs a partially random choice

Differently from the semi-greedy heuristic

• each iteration l runs h times heuristic A (population)

• all the choices of ∆+
A (x) are feasible (there is no RCL)

• the probability πA (i , x) depends on

1 the selection criterium φA (i , x)
2 auxiliary information τA (i , x) denoted as trail produced in previous

iterations (sometimes by other agents in the same iteration)

The trail is uniform at first (τA (i , x) = τ0), and later tuned

• increasing it to favour promising choices

• decreasing it to avoid repetitive choices

For the sake of simplicity, the trail τA (i , x) is not associated to each arc
(x , x ∪ {i}), but is the same for blocks of arcs (e.g., depending only on i)

66 / 77

Random choice

Instead of selecting the best element according to criterium φA (i , x),
i is extracted from ∆+

A (x) with probability

πA (i , x) =
τA (i , x)

µτ ηA (i , x)
µη∑

j∈∆+
A (x)

τA (j , x)µτ ηA (j , x)
µη

where

• the denominator normalizes the probability

• the visibility is the auxiliary function

ηA (i , x) =


φA (i , x) for maximisation problems

1

φA (i , x)
for minimisation problems

The promising choices have larger visibility

• the parameters µτ and µη tune the weights of the two terms

67 / 77

Balancing given and learned information

The original Ant System tunes the probabilities

πA (i , x) =
τA (i , x)

µτ ηA (i , x)
µη∑

j∈∆+
A (x)

τA (j , x)µτ ηA (j , x)
µη

with parameters µη and µτ that control the amount of randomness

• µη ≈ 0 and µτ ≈ 0 push towards randomness

• large values of µη and µτ push towards determinism
(favour arg max

i∈∆+(x)
τA (i , x)

µτ ηA (i , x)
µη)

and the relative weight of the data and of memory

• µη ≫ µτ favours the data, simulating the basic constructive heuristic
which makes sense when the known solutions are not very significant

• µη ≪ µτ favours memory, keeping close to the previous solutions
which makes sense when the known solutions are very significant

68 / 77

Balancing given and learned information
The Ant Colony System variant splits the selection into two phases

1 decide the selection procedure to use
• with probability q, choose i deterministically
• with probability (1− q), choose i stochastically

where parameter q tunes the randomness
• q ≈ 0 favours random choices
• q ≈ 1 favours deterministic choices

2 apply the selection procedure
• the deterministic one selects the best element

i∗ = arg max
i∈∆+(x)

τA (i , x) ηA (i , x)
µη

• the stochastic one select a random element with probabilities

πA (i , x) =
τA (i , x) ηA (i , x)

µη∑
j∈∆+

A
(x)

τA (j , x) ηA (j , x)
µη

where parameter µη tunes the relative weight of data and memory
• µη ≫ 1 favours the data
• µη ≪ 1 favours memory

(setting µτ = 1 as a form of normalisation)
69 / 77

Trail update

At each iteration ℓ

1 run h istances of the basic heuristic A

2 select a subset X̃ [l] of the solutions obtained,
in order to favour their elements in the following iterations

3 update the trail according to the formula

τA (i , x) := (1− ρ) τA (i , x) + ρ
∑

y∈X̃ [l]:i∈y

FA (y)

where

• ρ ∈ [0; 1] is an oblivion parameter

• FA (y) is a fitness function expressing the quality of solution y
(such that F > τ : e.g., F (y) = Q/f (y) for a suitable constant Q)

The purpose of the update is to

1 increase the trail on the elements of specific solutions (y ∈ X̃ [l])

2 decrease the trail on the other elements

70 / 77

The oblivion parameter

τA (i , x) := (1− ρ) τA (i , x) + ρ
∑

y∈X̃ [l]:i∈y

FA (y)

The oblivion parameter ρ ∈ [0; 1] tunes the behaviour of the algorithm:

• diversification: a high oblivion (ρ ≈ 1) cancels the current trail
based on the intuition that

• the solutions obtained are not trustworthy
• different solutions should be explored

• intensification: a low oblivion (ρ ≈ 0) preserves the current trail
based on the intuition that

• the solutions obtained are trustworthy
• similar solutions should be explored

71 / 77

Selection of the influential solutions

X̃ [l] collects the solutions around which the search will be intensified

• the classical Ant System considers all the solutions of iteration l − 1

• the elitist methods consider the best known solutions
• the best solution of iteration l − 1
• the best solution of all iterations < l

The elitist methods

• find better results in shorter time

• require additional mechanisms to avoid premature convergence

72 / 77

Some variants of the Ant System

• MAX −MIN Ant System: imposes on the trail a limited range of
values [τmin; τmax], experimentally tuned

• HyperCube Ant Colony Optimization (HC-ACO):
normalizes the trail between 0 and 1

• Ant Colony System: updates the trail on two levels
• the global update (already seen) modifies it at each iteration ℓ

The purpose is to intensify the search
• the local update updates the trail at each application g of the basic

heuristic in order to discourage identical choices in the following

τA (i , x) := (1− ρ) τA (i , x) for each i ∈ x
[l,g]
A

The purpose is to diversify the search

73 / 77

General scheme of the Ant System

Algorithm AntSystem(I)

x∗ := ∅; f ∗ := +∞; { Best solution found so far }
τA := τ0;

For l = 1 to ℓ do

X̃ [l] := ∅;
For g = 1 to h do

x := A (I , τA); { Basic heuristic with random steps and memory }
x := Search(x); { Exchange heuristic }
τA := LocalUpdate(τA, x); { Local update of the trail }
If f (x) < f ∗ then x∗ := x ; f ∗ := f (x);

X̃ [l] := Update(X̃ [l], x);

EndFor;

τA := GlobalUpdate(τA, X̃
[l]); { Global update of the trail }

EndFor;

Return (x∗, f ∗);

74 / 77

Convergence to the optimum

Some variants of the Ant System converge to the optimum with
probability 1 (Gutjahr, 2002)

The analysis is based on the construction graph

• the trail τA (i , x) is laid down on the arcs (x , x ∪ {i})
• no information from the data is used, that is ηA (i , x) ≡ 1 (this
strange assumption simplifies the proof, but is not necessary)

• τ [l] is the trail function at the beginning of iteration l

• γ[l] is the best path on the graph at the end of iteration l ,

•
(
τ [l], γ[l−1]

)
is the state of a nonhomogeneous Markov process:

• the probability of each state depends only on the previous iteration
• the process is nonhomogeneous because the dependency varies with l

The proof concludes that for ℓ→ +∞, with probability 1

1 the best path found γ is one of the optimal paths in F
2 the trail τ tends to a maximum along γ, to zero on the other arcs

provided that a suitable parameter tuning is adopted

75 / 77

First variant with global convergence

The trail is updated with a variable coefficient of oblivion

τ [l] (i , x) :=


(
1− ρ[l−1]

)
τ [l−1] (i , x) + ρ[l−1] 1

|γ[l−1]|
if (x , x ∪ {i}) ∈ γ[l−1](

1− ρ[l−1]
)
τ [l−1] (i , x) otherwise

where γ[l−1] is the best path found in the graph up to iteration l − 1 and
|γ[l−1]| is the number of its arcs (to normalise the trail)

If the oblivion decreases slowly enough

ρ[l] ≤ 1− log l

log (l + 1)
and

+∞∑
l=0

ρ[l] = +∞

then with probability 1 the state converges to (τ∗, γ∗), where

• γ∗ is an optimal path in the construction graph

• τ∗ (i , x) =
1

|γ∗|
for (x , x ∪ {i}) ∈ γ∗, 0 otherwise

76 / 77

Second variant with global convergence

Alternatively, if the oblivion ρ remains constant,
but the trail is forced a slowly decreasing minimum threshold

τ (i , x) ≥ cl
log (l + 1)

and lim
l→+∞

cl ∈ (0; 1)

then with probability 1 the state converges to (τ∗, γ∗)

Here the oblivion is restricted by the minimum threshold

In pratice, all algorithms proposed so far in the literature

• associate the trail to groups of arcs (x , x ∪ {i})
(e.g., to element i)

• use constant values for parameters ρ and τmin

therefore do not guarantee convergence

The trail τ , and therefore π, can tend to zero on every optimal path

77 / 77

