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Game theory

We assume

• multiple decision-makers: |D| > 1

• preference relations Πd that are weak orders,
possibly with a known consistent value function u(d) (f )

We consider a special class of games with strong properties that relate

• the worst-case strategies

• Nash equilibria
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Zero-sum games

In a zero-sum game the payoffs sum to zero in all profile strategies∑
d∈D

f (d)(x (1), . . . , x (|D|)) = 0 for all x ∈ X

A uniform sum f̄ is reduced to 0 by affine transformation f ′ = f − f̄

|D|
They have the same properties

A conventional simplified strategic form reporting only the row payoffs
is used for two-player games[

(a,-a) (c,-c)
(b,-b) (d,-d)

]
→

[
a c
b d

]
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Adaptations for the simplified form: dominance

Since the column payoffs are not explicitly provided, one must remember
that the column player minimises costs instead of maximising payoffs

Example

1 2
1 -2 3
2 -1 1

• there is no explicit dominance on rows

• column 1 dominates column 2 (smaller costs!)

• now, row 2 dominates row 1

Strategy profile (2, 1) is the rational choice for both players
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Adaptations for the simplified form: dominance

Since the column payoffs are not explicitly provided, one must remember
that the column player minimises costs instead of maximising payoffs

Example

1 2 3
1 2 2 1
2 -1 0 -1
3 3 2 1

• row 3 dominates rows 1 and 2
(weakly on some strategies, but strictly overall)

• column 3 dominates columns 1 and 2 (smaller costs!)

Strategy profile (3, 3) is the rational choice for both players
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Adaptations for the simplified form: dominance

Since the column payoffs are not explicitly provided, one must remember
that the column player minimises costs instead of maximising payoffs

Example

1 2 3
1 -1 0 -1
2 1 2 3
3 2 -1 -1

• row 2 dominates row 1

• now, column 2 dominates column 3 (smaller costs!)

The column domination was hidden in the original matrix
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Adaptations for the simplified form: equilibria

A similar adaptation must be applied to compute Nash equilibria:

(r , c) is an equilibrium ⇔

{
frc ≥ fic for all i ∈ X (r)

frc ≤ frj for all j ∈ X (c)

Therefore, mark the maxima in each column and the minima in each row:
the entries with two marks are equilibria

Example

1 2

1 −2| 3−

2 −1+ 1

Entry (2, 1) is an equilibrium
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Adaptations for the simplified form: equilibria
A similar adaptation must be applied to compute Nash equilibria:

(r , c) is an equilibrium ⇔

{
frc ≥ fic for all i ∈ X (r)

frc ≤ frj for all j ∈ X (c)

Therefore, mark the maxima in each column and the minima in each row:
the entries with two marks are equilibria

Example

1 2 3 4

1 2 1+ 1+ 3

2 −1− 0 −1− 4|

3 3| 1+ 1+ 2

4 −1− −1− 1 0

There are 4 reciprocally indifferent equilibria: (1, 2), (1, 4), (3, 2), (3, 4)

No equilibrium is strictly dominated
Is it a general property?
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Adaptations for the simplified form: equilibria

A similar adaptation must be applied to compute Nash equilibria:

(r , c) is an equilibrium ⇔

{
frc ≥ fic for all i ∈ X (r)

frc ≤ frj for all j ∈ X (c)

Therefore, mark the maxima in each column and the minima in each row:
the entries with two marks are equilibria

Example

1 2 3

1 −1− 0 −1−

2 1− 2| 3|

3 2| −1− −1−

There is no equilibrium
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The value of the game in zero-sum games
The value of the game for the row player is as usual

u(r) = max
i∈X (r)

min
j∈X (c)

fij

For the column player, it derives from the same function f

u(c) = max
j∈X (c)

min
i∈X (r)

−fij = max
j∈X (c)

(
− max

i∈X (r)
fij
)
= − min

j∈X (c)
max
i∈X (r)

fij

and we usually redefine it as a cost of the game reversing its sign

u(c) = min
j∈X (c)

max
i∈X (r)

fij

Example

1 2 3
1 −1 0 −1 -1
2 1 2 3 1
3 2 −1 −1 -1

2 2 3

• u(r) = max (−1, 1,−1) = 1
• u(c) = min (2, 2, 3) = 2
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The worst-case strategy in zero-sum games

Equilibrium

(r , c) is an equilibrium ⇔

{
frc ≥ fic for all i ∈ X (r)

frc ≤ frj for all j ∈ X (c)

Value and cost of the game
u(r) = max

i∈X (r)
min
j∈X (c)

fij

u(c) = min
j∈X (c)

max
i∈X (r)

fij

They are related: both refer to maximum gains and minimum costs

The property is actually much stronger
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Equilibria and value of zero-sum games
Theorem (Von Neumann and Morgenstern)

For any two-player zero-sum game
• u(r) ≤ u(c)

• (i , j) is an equilibrium if and only if u(r) = u(c) = fij

The guaranteed gain of the row player is limited
by the guaranteed loss of the column player

Given that one gains what the other loses, this sounds natural

Example

1 2 3

1 −1− 0 −1− -1

2 1− 2| 3| 1

3 2| −1− −1− -1

2 2 3

No equilibrium and u(r) = max (−1, 1,−1) = 1 < 2 = max (2, 2, 3) = u(c)
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Equilibria and value of zero-sum games

Theorem (Von Neumann and Morgenstern)

For any two-player zero-sum game

• u(r) ≤ u(c)

• (i , j) is an equilibrium if and only if u(r) = u(c) = fij

Example

1 2

1 −2− 3| -2

2 −1+ 1 -1

-1 3

Entry (2, 1) is an equilibrium and u(r) = u(c) = −1 = fij
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Equilibria and value of zero-sum games

Theorem (Von Neumann and Morgenstern)

For any two-player zero-sum game

• u(r) ≤ u(c)

• (i , j) is an equilibrium if and only if u(r) = u(c) = fij

Example

1 2 3 4
1 2 1+ 1+ 3 1
2 −1− 0 −1− 4| -1
3 3| 1+ 1+ 2 1
4 −1− −1− 1 0 -1

3 1 1 4

Entries (1, 2), (1, 3), (3, 2) and (3, 3) are equilibria with payoff fij = 1
and u(r) = max (1,−1, 1,−1) = 1 = min (3, 1, 1, 4) = u(c)
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Mixed strategies
A mixed strategy ξ(d) for player d ∈ D
is a probability vector defined on X (d)

ξ(d) =
[
ξ
(d)
1 . . . ξ

(d)

|X |(d)

]T
∈ Ξ(d)

where
Ξ(d) =

{
ξ(d) ∈ [0, 1]n :

∑
i∈X (d)

ξ
(d)
i = 1

}
It can be interpreted in many ways, such as

• the probability with which d chooses strategy x (d)

• the frequency with which d chooses strategy x (d) in a repeated game
• the fraction of players who choose strategy x (d) in a team game

In these situation the payoff obtained becomes a random variable
and the aim becomes to maximise its expected value

max E
[
f (d)(ξ(1), . . . , ξ(|D|))

]
ξ(d) ∈ Ξ(d)

15 / 28



Pure and mixed strategies

A pure strategy x
(d)
i is the deterministic special case when ξ(d) ∈ {0, 1}n

x
(d)
i ↔

{
ξ
(d)
i = 1

ξ
(d)
i ′ = 0 for all i ′ ∈ X (d) \ {i}

While a zero-sum game can remain unsolved in pure strategies,
it always admits a solution in mixed strategies

• the worst-case criterium can be reformulated for mixed strategies

• the problem has equilibria in mixed strategies
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The expected value of the game

The players aim to optimise the expected value of the game, that is

v (r) = max
ξ(r)∈Ξ(r)

min
ξ(c)∈Ξ(c)

E [f (ξ)]

v (c) = min
ξ(c)∈Ξ(c)

max
ξ(r)∈Ξ(r)

E [f (ξ)]

where
E [f (ξ)] =

∑
i∈X (r),j∈X (c)

ξ(r)ξ(c)fij

is the expected gain of the row player and loss of the column player

This looks like a complex problem:

• the row player has infinite strategies to increase the gain

• the column player has infinite strategies to reduce the loss

Who is going to win? Actually, both

This is why mixed strategies are useful in practice
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A useful lemma
Lemma

In a two-player game, the worst case for any strategy of a player
corresponds to one of the pure strategies of the adversary

• v (r) = max
ξ(r)∈Ξ(r)

min
j∈X (c)

E [f (ξ(r), j)] (instead of max
ξ(r)∈Ξ(r)

min
ξc∈Ξ(c)

E [f (ξ)])

• v (c) = min
ξ(c)∈Ξ(c)

max
i∈X (r)

E [f (f (i , ξc))] (instead of max
ξ(r)∈Ξ(r)

min
ξr∈Ξ(r)

E [f (ξ)])

The intuitive idea is to assume that
• the row player adopts a mixed strategy ξ(r), so that E [f (ξ)] = ξ

(r)
i fij

• one of the column strategies j ∈ X c is the strongest against ξ(r)

• then, systematically playing j hits harder than watering it down
in a convex combination with weaker strategies

• do the same for the column player

This simplifies the problem, requiring just a parametric expression for

• min
j∈X (c)

E [f (ξ(r), j)] = min
j∈X (c)

( ∑
i∈X (r)

ξ
(r)
i fij

)
• max

i∈X (r)
E [f (i , ξ(c))] =max

i∈X (r)

( ∑
j∈X (c)

ξ
(c)
j fij

)
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Example

1 2
1 2 −3
2 −1 1

The game has

• no dominated strategy

• no Nash equilibrium

• values u(r) = −1 and u(c) = 1

Assume a general mixed strategy ξ(r) = (α, 1− α) for the row player

Consider the |X (c)| = 2 pure strategies available to the column player

1 the expected value of the payoff is

E [f (ξ)] = α · 2 + (1− α) · (−3) = 3α− 1

2 the expected value of the payoff is

E [f (ξ)] = α · (−1) + (1− α) · (1) = 1− 4α
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Example
The expected payoff for the pure column strategies is a linear function

1 j = 1 ⇒ E [f (ξ)] = 3α− 1

2 j = 2 ⇒ E [f (ξ)] = 1− 4α

• for mixed strategies it is a linear function in the intermediate region
• the worst case corresponds to the lower envelope (minimum gain)
• it changes for different mixed row strategies α,

but is always one of the two pure strategies
• the best mixed row strategy α∗ can be computed graphically

3α∗ − 1 = 1− 4α∗ ⇒ α∗ =
2

7
⇒ E [f (ξ∗)] = −1

7
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Example

1 2
1 2 −3
2 −1 1

For mixed column strategy ξ(c) = (β, 1− β), the pure row strategies give
1 i = 1 ⇒ E [f (ξ)] = β · 2 + (1− β) · (−3) = 5β − 3
2 i = 2 ⇒ E [f (ξ)] = β · (−1) + (1− β) · 1 = 1− 2β

• the worst case corresponds to the upper envelope (maximum loss)
• the best mixed column strategy β∗ can be computed graphically

5β∗ − 3 = 1− 2β∗ ⇒ β∗ =
4

7
⇒ E [f (ξ∗)] = −1

7
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Odds and evens

Odd Even
Odd 1 −1
Even −1 1

Once again
• there is no dominated strategy
• there is no Nash equilibrium
• the values of the game are u(r) = −1 and u(c) = 1 (useless)

If the row player applies mixed strategy ξ(r) = (α, 1− α)
• when the column player chooses Odd,

E [f (ξ)] = α · 1 + (1− α) · (−1) = 2α− 1
• when the column player chooses Even,

E [f (ξ)] = α · (−1) + (1− α) · 1 = 1− 2α

If the column player applies mixed strategy ξ(c) = (β, 1− β)
• when the row player chooses Odd,

E [f (ξ)] = β · 1 + (1− β) · (−1) = 2β − 1
• when the row player chooses Even,

E [f (ξ)] = β · (−1) + (1− β) · 1 = 1− 2β
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Odds and evens
Once again, we can solve the game graphically

The optimal strategies are
• for the row player:

2α∗ − 1 = 1− 2α∗ ⇒ α∗ =
1

2
⇒ E [f (ξ∗)] = 0

• for the column player:

2β∗ − 1 = 1− 2β∗ ⇒ β∗ =
1

2
⇒ E [f (ξ∗)] = 0
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The general case

Both examples have two strategies for each player

What happens when the number of pure strategies increases?

• the linear functions depend on more than one probability:
the lines become hyperplanes

• the number of linear functions increases:
the worst case is still given by their lower or upper envelope

The first modification makes a graphical resolution less viable

Von Neumann and Morgenstern

• proved that the basic properties hold also in the general case

• found a way to compute the optimal strategies
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The minimax theorem

Theorem (Von Neumann and Morgenstern)

For any two-player zero-sum game

• u(r) ≤ v (r) = v (c) ≤ u(c)

• at least one mixed strategy profile has this expected value

• this strategy profile is a saddle point with respect to mixed strategies

The guaranteed expected gain of the row player
coincides with the guaranteed expected loss of column

Adopting a different strategy implies the risk of a worse expected value
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The minimax theorem
Sketch of the proof
(exploiting the general theory of duality, that was unknown at the time)

Given the lemma, the row player aims to optimise the following problem

maxϕ(ξ(r)) = min
j∈X (c)

∑
i∈X (r)

ξ
(r)
i fij∑

i∈X (r)

ξ
(r)
i = 1

ξ
(r)
i ≥ 0 i ∈ X (r)

This can be turned into a Linear Programming problem:

max v

v ≤
∑
i∈X (r)

ξ
(r)
i fij j ∈ X (c)

∑
i∈X (r)

ξ
(r)
i = 1

ξ
(r)
i ≥ 0 i ∈ X (r)
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The minimax theorem

Similarly, the column player aims to optimise the following problem

minψ(ξ(c)) = max
i∈X (r)

∑
j∈X (c)

ξ
(c)
j fij

∑
j∈X (c)

ξ
(c)
j = 1

ξ
(c)
j ≥ 0 j ∈ X (c)

that can be linearised as

minw

w ≥
∑
j∈X (c)

ξ
(c)
j fij i ∈ X (r)

∑
j∈X (c)

ξ
(c)
j = 1

ξ
(c)
j ≥ 0 j ∈ X (c)
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The minimax theorem

max v

v ≤
∑

i∈X (r)

ξ
(r)
i fij j ∈ X (c)

∑
i∈X (r)

ξ
(r)
i = 1

ξ
(r)
i ≥ 0 i ∈ X (r)

minw

w ≥
∑

j∈X (c)

ξ
(c)
j fij i ∈ X (r)

∑
j∈X (c)

ξ
(c)
j = 1

ξ
(c)
j ≥ 0 j ∈ X (c)

The two problems are reciprocally dual:

• max ↔ min

• constraints → variables

• right-hand-side coefficients → cost coefficients

• variables → constraints

• cost coefficients → right-hand-side coefficients

• all but one nonnegative variables ↔ all but one “natural” constraints

• one free variable ↔ one equality constraint

Duality implies that the two problems have the same optimal value
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