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Decision-making under risk

We assume

• a preference relation Π that is a weak order
with a known consistent value function u (f ) (replaced by a cost f )

• an uncertain environment: |Ω| > 1 with probabilistic information

• a single decision-maker: |D| = 1⇒ Πd reduces to Π

We aim to overcome the limits of the expected value criterium

• introducing a number of desired properties (axioms)

• building a choice criterium that by construction satisfies them

After normalisation, there will be exactly one
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Stochastic utility theory

We have seen that the expected value criterium has problems, related to

• decision-makers having strict “preferences”
between alternatives of equal expected value

• decision-makers having different “preferences”
between the same pairs of alternatives

• paradoxes related to small probabilities and large impacts

Strictly speaking, preferences refer to impacts f and f ′,
but we refer here to a practical choice between alternatives x and x ′,
based on the impact vectors f (x , ·) and f (x ′, ·)

The Austrian-Hungarian mathematicians Janos Von Neumann and
Oskar Morgenstern proposed a constructive way out of these problems
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Lotteries

A finite simple lottery is a pair ℓ (f , π) = (f (ω), π(ω)) where

• f (ω) : Ω→ R is a random variable

• π(ω) : Ω→ [0, 1] is a probability function

• Ω =
{
ω(1), . . . , ω(r)

}
is a finite sample set

The extension to infinite sets is possible, but not considered here

Consequently, the set of all finite simple lotteries on Ω will be

LF ,Ω = F |Ω| × P (Ω)

In a decision problem in conditions of risk,
each alternative x ∈ X corresponds to a lottery ℓ(x) ∈ LX ⊂ LF ,Ω

x ← ℓ(x) = (f (x , ω1), π(ω1))⊕ . . .⊕ (f (x , ωr ), π(ωr ))

where we skip the terms of zero probability for the sake of brevity

This notation is nonstandard
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Special lotteries

Some particular cases compact the notation even further

• degenerate lottery, where a single scenario has probability 1

ℓf = (f , 1)

• binary lottery, where two scenarios have positive probability

ℓf ,α,f ′ = (f , α)⊕ (f ′, 1− α)
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Compound lotteries
The simple lottery set LF ,Ω extends by recursion to compound lotteries,
where the impact obtained in each scenario is allowed to be a lottery

The notation abuse is to avoid multiplying symbols

Compound lotteries model
• lotteries taking place in subsequent phases
• decisions taken before a sequence of uncertain events

They admit a graphical tree representation with
• uncertain events on the internal nodes
• deterministic impacts on the leaves
• conditional probabilities on the arcs
• probabilities summing to 1 on the arcs going out of each node
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Preference relations on lotteries
A preference between lotteries is a binary relation Π on the lottery set

Π ⊂ 2LF,Ω×LF,Ω

A stochastic utility function u : LF ,Ω → R is consistent with Π when

ℓ ⪯ ℓ′ ⇔ u(ℓ) ≥ u(ℓ′) for all ℓ, ℓ′ ∈ L

Von Neumann and Morgenstern

1 assume the existence of a preference relation Π on lotteries

2 impose suitable conditions on Π

3 build a stochastic utility function u (ℓ) that is consistent with Π

4 reduce the decision problem in conditions of risk to

max u (ℓ(x))

x ∈ X ⇔ ℓ(x) ∈ LX

where feasible region X corresponds to the feasible lotteries LX ⊂ LF ,Ω
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Stochastic utility axioms

The preference relation Π on LF ,Ω enjoys the following properties

1 weak ordering: it is reflexive, complete and transitive

2 monotony: lotteries giving larger probabilities to better outcomes
are preferable:

α ≥ β ⇔ (ℓ, α)⊕ (ℓ′, 1− α) ⪯ (ℓ, β)⊕ (ℓ′, 1− β) for all ℓ ⪯ ℓ′

3 continuity: any intermediate impact between two lotteries admits an
equivalent compound lottery with the two given ones as outcomes:

ℓ ⪯ f ⪯ ℓ′ ⇒ ∃α ∈ [0; 1] : f ∼ (ℓ, α)⊕ (ℓ′, 1− α)

Changing the probabilities modifies the preference continuously

No impact remains uncovered
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Stochastic utility axioms

4 independence (or substitution): the preference between two lotteries
does not change combining them with the same lottery with the
same probability:

ℓ ⪯ ℓ′ ⇔ (ℓ, α)⊕ (ℓ′′, 1− α) ⪯ (ℓ′, α)⊕ (ℓ′′, 1− α) for all α ∈ (0; 1]

5 reduction: a compound lottery is indifferent to a simple lottery with
• the same final impacts
• probabilities given by the laws of

• conditional probabilities: multiply along each path
• total probabilities: sum on disjoint paths

Impacts and probabilities are relevant, the lottery structure is not
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The Von Neumann-Morgenstern theorem

The axioms look overall reasonable, even if some have been criticised

In particular, the independence axiom is often violated in practice

Theorem
Let F and Ω be finite sets, and Π a preference relation on lotteries.
Let Π be not fully indifferent on F and satisfy the five axioms.
Then, there exists a single function u(ℓ) that is consistent with Π,
equal to 0 in the worst impacts and to 1 in the best

If all impacts are indifferent, just set u(ℓ) uniform

In the other cases, the proof is constructive

1 set the utility of extreme impacts: since F is finite and Π is a weak
order, there is a best impact f ◦ and and a worst impact f †, with

f ◦ ≺ f †

Otherwise, all impacts are indifferent

Now, set u(f ◦, 1) = 1 and u(f †, 1) = 0
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Example

Consider the following decision problem in conditions of risk

f (x , ω) ω(1) ω(2) ω(3)

x (1) 10 20 50
x (2) 50 10 30

π (ω) 0.25 0.50 0.25

Suppose that

• the impact set is F = {10, 20, 30, 50} (finite)
• the impacts are benefits (no full indifference)

The theorem’s assumptions are satisfied

The first step amounts to

• finding the worst and best impact: f † = 10 and f ◦ = 50

• imposing the normalised extreme values of utility:

u(10) = 0 u(50) = 1
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The Von Neumann-Morgenstern theorem

2 set the utility of all degenerate lotteries: since f is intermediate
between f † and f ◦, by continuity

f ◦ ⪯ f ⪯ f † ⇒ ∃α ∈ [0, 1] : f ∼ ℓf ◦,α,f †

The value α must be indicated by the decision-maker

There is a unique αf for each f : by contradiction, assume two

f ∼ ℓf ◦,α,f † ∼ ℓf ◦,β,f †

By monotony{
ℓf ◦,α,f † ⪯ ℓf ◦,β,f † and f † ⪯ f ◦ ⇒ α ≥ β

ℓf ◦,β,f † ⪯ ℓf ◦,α,f † and f † ⪯ f ◦ ⇒ β ≥ α
⇒ β = α

Now, set the utility u(f , 1) = αf

12 / 28



Example

Consider the following decision problem in conditions of risk

f (x , ω) ω(1) ω(2) ω(3)

x (1) 10 20 50
x (2) 50 10 30

π (ω) 0.25 0.50 0.25

The second step amounts to asking the decision-maker for each impact f

• finding a binary lottery ℓf ◦,αf ,f † equivalent to f
• 20 ∼ (10, α20)⊕ (50, 1− α20)
• 30 ∼ (10, α30)⊕ (50, 1− α30)

• imposing the lottery probability as the utility of the impact
• u(20) = α20 = 0.40
• u(30) = α30 = 0.60
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The Von Neumann-Morgenstern theorem

3 set the utility of general lotteries:
To keep it simple, consider a binary one: ℓ = (f (1), π1)⊕ (f (2), π2)

Each final impact is equivalent to a binary lottery

f (r) ∼ (f †, 1− αf (r))⊕ (f ◦, αf (r)) (in short ℓ(r))

By substitution, we obtain from f (1) a compound lottery

f (1) ∼ ℓ(1) ⇒ (f (1), π1)⊕ (f (2), π2) ∼ (ℓ(1), π1)⊕ (f (2), π2)

Again by substitution we replace also f (2)

f (2) ∼ ℓ(2) ⇒ (f (2), π2)⊕ (ℓ(1), π1) ∼ (ℓ(2), π2)⊕ (ℓ(1), π1)

By transitivity, the original lottery is equivalent to the final one

ℓ = (f (1), π1)⊕ (f (2), π2) ∼ (ℓ(1), π1)⊕ (ℓ(2), π2)

The order in the combinations is irrelevant

The result is a compound two-level lottery that returns only f † and f ◦

ℓ ∼ ((f †, 1− αf (2))⊕ (f ◦, αf (2)), π2)⊕ ((f †, 1− αf (1))⊕ (f ◦, αf (1)), π1)

14 / 28



The Von Neumann-Morgenstern theorem

By reduction the overall lottery can be replaced by a simple lottery

ℓ ∼ (f †, π1(1− αf (1)) + π2(1− αf (2)))⊕ (f ◦, π1αf (1) + π2αf (2))

Now, set the utility of ℓ to the probability of f ◦ in the final lottery:

u(ℓ(f , π)) =
∑
ω∈Ω

π(ω) u(f (ω))

since

• every scenario ω corresponds to a path reaching f ◦

• the paths consist of two arcs

• π(ω) is the probability on the first arc of the path

• αf (ω) = u(f (ω)) is the probability on the second arc of the path
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The Von Neumann-Morgenstern theorem

The utility of a lottery is the expected value of the utility in the scenarios

u(ℓ) = E [u(f )]

As Bernouilli proposed, combine perceived utilities, not impacts!

In summary, the Von Neumann-Morgenstern theorem

• receives from the decision-maker u(f ) for all f ∈ F

• returns u(ℓ) for all ℓ ∈ L

Since in a decision problem an alternative is a lottery

maxE [u(f (x)]

x ∈ X
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Example

Since we know the utilities of the deterministic impacts

f 10 20 30 50
u(f ) 0 0.40 0.60 1

we can determine the utility of any lottery, such as

f (x , ω) ω(1) ω(2) ω(3)

x (1) 10 20 50
x (2) 50 10 30
π 0.25 0.50 0.25

The utilities are

• u
(
x (1)

)
= 0.25 · 10 + 0.50 · 20 + 0.25 · 50 = 0.45

• u
(
x (2)

)
= 0.25 · 50 + 0.50 · 10 + 0.25 · 30 = 0.40

and the former is better than the latter
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Stochastic utility and multi-attribute utility

Stochastic utility and multi-attribute utility exhibit strong similarities

• they are convex combinations of utilities with coefficients

ũ (f ) =
∑
l∈P

wl ũl (fl) u(ℓ(f , π)) =
∑
ω∈Ω

π(ω) αf (ω)

• the utilities are normalised between a worst and a best impact

• the coefficients are normalised between 0 and 1 with unitary sum

but there are also strong differences

• additivity is intrinsically satisfied (no special condition required),
because the different scenarios do not interact, while indicators do

• the attribute set P is replaced by scenario set Ω, possibly infinite

• the weights wl are replaced by probabilities π(ω) that do not
necessarily require the decision-maker (they might be frequencies)
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Attitudes towards risk

Risk profile is the shape of u (f ) for all f ∈ F :

• it determines u (ℓ (f , π)) for all ℓ ∈ L, combining u (f ) and π (ω)

• therefore, it shows the attitude of the decision-maker towards risk

For the sake of simplicity, we will assume that

• f is a benefit

• the impact set is an interval F =
[
f †, f ◦

]
• consequently, the risk profile increases from

(
f †, 0

)
to (f ◦, 0)

The extension to more general cases is possible
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Attitudes towards risk
Now consider
• an intermediate deterministic impact fα = (1− α)f † + αf ◦

• a binary lottery ℓf ◦,α,f † combining f ◦ and f † with coefficient α

They are equivalent for the expected value criterium

ϕEV (fα) = fα = ϕEV

(
ℓf ◦,α,f †

)
What about their stochastic utilities u(fα) and u(ℓf ◦,α,f †)?

The utility of any binary lottery ℓf (1),α,f (2) can be computed

from the segment between points
(
f (1), u(f (1))

)
and

(
f (2), u(f (2))

)
u
(
ℓf ◦,α,f †

)
= αu(f ◦) + (1− α)u(f †)
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Attitudes towards risk

Three relevant cases (not exhaustive) exist:

1 convex case: the risk profile is above the segment from
(
f †, 0)

)
to

(f ◦, 1) and the lottery is preferred to the deterministic impact

u(fα) ≤ u
(
ℓf ◦,α,f †

)
for all α ∈ [0, 1]

The decision-maker is risk-prone
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Attitudes towards risk

Three relevant cases (not exhaustive) exist:

2 linear case: the risk profile is lying on the segment from
(
f †, 0)

)
to

(f ◦, 1) and the lottery and the deterministic impact are equivalent

u(fα) = u
(
ℓf ◦,α,f †

)
for all α ∈ [0, 1]

The decision-maker is risk-neutral

The expected value criterium is confirmed
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Attitudes towards risk

Three relevant cases (not exhaustive) exist:

3 concave case: the risk profile is below the segment from
(
f †, 0)

)
to

(f ◦, 1) and the deterministic impact is preferred to the lottery

u(fα) ≥ u
(
ℓf ◦,α,f †

)
for all α ∈ [0, 1]

The decision-maker is risk-averse
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Example

Suppose that the impact is a benefit and its set is F = [0, 1 000]

The decision-maker has a concave risk profile

u (f ) =

√
f

1 000

and is, therefore, risk-averse

The feasible region consists of two alternatives:

• x = (250, 1) (deterministic impact)

• x ′ = (810, 0.1)⊕ (360, 0.5)⊕ (160, 0.4) (lottery)

The corresponding utilities are

• u (x) =

√
250

1 000
= 0.5

• u (x ′) = 0.1 · u(810) + 0.5 · u(360) + 0.4 · u(160) =
0.1 · 0.9 + 0.5 · 0.6 + 0.4 · 0.4 = 0.55

The lottery is better
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Certainty equivalent
Assume that the risk profile u (f ) is invertible (strictly increasing):
the inverse function f (u)

• provides an equivalent information
• can be useful to present a situation in more intuitive terms

Taking part to the lottery is like obtaining a certain gain

Given lottery ℓ, its certainty equivalent CE (ℓ)
is the deterministic impact that is equivalent to the lottery:

CE (ℓ) = f (u(ℓ)) ⇔ f (u(ℓ)) ∼ ℓ
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Example

The risk profile is invertible and its inverse is

u (f ) =

√
f

1 000
⇔ f (u) = 1 000 u2

Its certainty equivalent is CE (x ′) = f (0.55) = 1 000 · 0.552 = 302.5

The decision-maker would consider the alternative x ′

equivalent to a deterministic gain of 302.5, that is larger than f (x)
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Risk premium
The certainty equivalent can differ from the expected value of the impact

Given a lottery ℓ of utility u
• the expected value of the impact is ϕEV (ℓ) = E [f (ℓ, ω)]
• the certainty equivalent is CE (ℓ) = f (u(ℓ))

The risk premium RP (ℓ) is the difference of the two terms

RP (ℓ) = ϕEV (ℓ)− CE (ℓ) = E [f (ℓ, ω)]− f (u(ℓ))

It measures the variation on all impacts required to make the lottery
equivalent to deterministically gaining its original expected value
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Example

As we have seen, lottery x ′ = (810, 0.1)⊕ (360, 0.5)⊕ (160, 0.4)
has a certainty equivalent CE (x ′) = 302.5

Its impact, however, has an expected value equal to

ϕEV (x ′) = E [f (x ′, ω)] = 0.1·810+0.5·360+0.4·160 = 81+180+64 = 325

that is larger (confirming that the decision-maker is risk-averse)

In order to make the lottery x ′ equivalent to its expected impact,
we should modify all impacts by a fixed amount equal to the risk premium

RP (x ′) = ϕEV (x ′)− CE (x ′) = 325− 302.5 = 22.5

increasing them (risk aversion, once again) to

(832.5, 0.1)⊕ (382.5, 0.5)⊕ (182.5, 0.4)

These numbers aim to be more intuitive than abstract normalised utilities
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