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Decision-making under risk

We assume

® a preference relation 1 that is a weak order
with a known consistent value function u () (replaced by a cost f)

® an uncertain environment: |Q| > 1 with probabilistic information
® asingle decision-maker: |D| =1 = Ty reduces to

Decision-makers

[Muliple

ingl ultiple

Scenarios

Comples,

Preference

We aim to overcome the limits of the expected value criterium
® introducing a number of desired properties (axioms)
® building a choice criterium that by construction satisfies them

After normalisation, there will be exactly one
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Stochastic utility theory

We have seen that the expected value criterium has problems, related to

® decision-makers having strict “preferences”
between alternatives of equal expected value

® decision-makers having different “preferences”
between the same pairs of alternatives

® paradoxes related to small probabilities and large impacts

Strictly speaking, preferences refer to impacts f and £/,
but we refer here to a practical choice between alternatives x and x’,
based on the impact vectors f (x,-) and f (X', )

The Austrian-Hungarian mathematicians Janos Von Neumann and
Oskar Morgenstern proposed a constructive way out of these problems
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A finite simple lottery is a pair £(f,7) = (f(w), 7(w)) where
® f(w):Q — Ris arandom variable
® 7(w):Q —[0,1] is a probability function
* Q= {wW, ... w} is a finite sample set

The extension to infinite sets is possible, but not considered here

Consequently, the set of all finite simple lotteries on € will be
Lra = FI% xP(Q)

In a decision problem in conditions of risk,
each alternative x € X corresponds to a lottery ¢(x) € Lx C L g

x +— U(x) = (f(x,w1),m(w1)) @ ... D (F(x,w,), 7(w,))

where we skip the terms of zero probability for the sake of brevity

This notation is nonstandard
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Special lotteries

Some particular cases compact the notation even further

® degenerate lottery, where a single scenario has probability 1
= (f,1)
® binary lottery, where two scenarios have positive probability

leogr = (F,0) D (f,1—a)
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Compound lotteries

The simple lottery set Lr o extends by recursion to compound lotteries,
where the impact obtained in each scenario is allowed to be a lottery

The notation abuse is to avoid multiplying symbols

Compound lotteries model
® |otteries taking place in subsequent phases
® decisions taken before a sequence of uncertain events

They admit a graphical tree representation with
® uncertain events on the internal nodes
deterministic impacts on the leaves
conditional probabilities on the arcs
probabilities summing to 1 on the arcs going out of each node
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Preference relations on lotteries

A preference between lotteries is a binary relation 1 on the lottery set

M C:QLRQXLRQ

A stochastic utility function v : Lr g — R is consistent with T when

(=0 s ull)>ul) forall 0 el

Von Neumann and Morgenstern
@ assume the existence of a preference relation I on lotteries
® impose suitable conditions on [1
® build a stochastic utility function v (¢) that is consistent with I1
O reduce the decision problem in conditions of risk to

max u (¢(x))
xeX & l(x)e Ly
where feasible region X corresponds to the feasible lotteries Lx C Lr o

7/28



Stochastic utility axioms

The preference relation 1 on Lg o enjoys the following properties
@ weak ordering: it is reflexive, complete and transitive

® monotony: lotteries giving larger probabilities to better outcomes
are preferable:

a>pfela)ys(l’1-—a)=2,pB) e (', 1-p) forall £ <

© continuity: any intermediate impact between two lotteries admits an
equivalent compound lottery with the two given ones as outcomes:

(2 f =l =Taec0l]: f~{a)s (' 1-a)

Changing the probabilities modifies the preference continuously

No impact remains uncovered

8/28



Stochastic utility axioms

@ independence (or substitution): the preference between two lotteries
does not change combining them with the same lottery with the

same probability:
(=0 s (La)d (", 1—a) 2 (la)® (W', 1—a) forall a € (0;1]

@ reduction: a compound lottery is indifferent to a simple lottery with
® the same final impacts
® probabilities given by the laws of

® conditional probabilities: multiply along each path
® total probabilities: sum on disjoint paths

Impacts and probabilities are relevant, the lottery structure is not
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The Von Neumann-Morgenstern theorem

The axioms look overall reasonable, even if some have been criticised
In particular, the independence axiom is often violated in practice
Theorem
Let F and Q be finite sets, and I a preference relation on lotteries.
Let 1 be not fully indifferent on F and satisfy the five axioms.

Then, there exists a single function u(¢) that is consistent with I1,
equal to 0 in the worst impacts and to 1 in the best

If all impacts are indifferent, just set u(¢) uniform

In the other cases, the proof is constructive

@ set the utility of extreme impacts: since F is finite and I1 is a weak
order, there is a best impact f° and and a worst impact fT, with

o< ff

Otherwise, all impacts are indifferent

Now, set u(f°,1) =1 and u(ff,1) =0
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Consider the following decision problem in conditions of risk

fix,w) [ W@ W@ WO
x@ 10 20 50
x(2) 50 10 30

[ m(w) [025 050 0.25 |

Suppose that
® the impact set is F = {10, 20, 30,50} (finite)
® the impacts are benefits (no full indifference)

The theorem’s assumptions are satisfied

The first step amounts to
® finding the worst and best impact: fT =10 and f° = 50

® imposing the normalised extreme values of utility:
u(10) =0 u(50) =1
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The Von Neumann-Morgenstern theorem

@ set the utility of all degenerate lotteries: since f is intermediate
between fT and f°, by continuity

FO<F=<fl=3aec(0,1]:f~Llroqysi

The value oo must be indicated by the decision-maker

There is a unique «ayf for each f: by contradiction, assume two
Fire oot ~ bro g fi
By monotony

leo = lro and fi < fo=a>
{f,a,ﬁ_ Fo B, F1 = > ~f=a

é,coﬁﬁ = ZfO)afT and £t < f° = 6 >«

Now, set the utility u(f,1) = ar
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Consider the following decision problem in conditions of risk

fx,w) [ w® @ G
x™@ 10 20 50
x(2) 50 10 30

[ m(w) [025 050 0.25

The second step amounts to asking the decision-maker for each impact f
e finding a binary lottery £¢. ,, ¢+ equivalent to f
® 20 ~ (10, ago) &) (50, 1-— azo)
® 30 ~ (].07 a3o) (&) (507 1-— 0430)
® imposing the lottery probability as the utility of the impact
° U(20) = apo = 0.40
L4 u(30) = azp = 0.60
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The Von Neumann-Morgenstern theorem

© set the utility of general lotteries:

To keep it simple, consider a binary one: £ = (f(l),m) &) (f(z)

, T2)
Each final impact is equivalent to a binary lottery
F~ (F1,1— a0) @ (F,ap9)  (in short £7)

By substitution, we obtain from ) a compound lottery

OO NN (f(l),ﬂ'l) & (f(2)’ﬂ.2) ~ (5(1)’7“) & (f(2)’ﬂ.2)
Again by substitution we replace also @

OGN (f(2),7r2) ® (6(1)’7“) ~ (£(2),7r2) ® (ﬂ(l),m)
By transitivity, the original lottery is equivalent to the final one

0= (Y m) @ (FP m) ~ (¢, m) ® (€7, )
The order in the combinations is irrelevant
The result is a compound two-level lottery that returns only 1 and £°
O~ (11— ) @ (F° ), m2) @ ((F1, 1 = agw) @ (F°, apm), m1)
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The Von Neumann-Morgenstern theorem

By reduction the overall lottery can be replaced by a simple lottery

f~ (er,ﬂ'l(l — Oéf(1)) + 7T'2(1 — Ozf(z))) D (f°,7r1af(1) + 7T20£,—(2))

Now, set the utility of £ to the probability of £° in the final lottery:
u(t(f,m) =Y m(w) u(f(w))
we

since
H H o
® every scenario w corresponds to a path reaching f

® the paths consist of two arcs

m(w) is the probability on the first arc of the path

() = U(f(w)) is the probability on the second arc of the path
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The Von Neumann-Morgenstern theorem

The utility of a lottery is the expected value of the utility in the scenarios

As Bernouilli proposed, combine perceived utilities, not impacts!

In summary, the Von Neumann-Morgenstern theorem
® receives from the decision-maker u(f) for all f € F
® returns u({) for all £ € L

Since in a decision problem an alternative is a lottery

max E[u(f(x)]
xeX
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Since we know the utilities of the deterministic impacts

f 110 20 30 50
u(fy | 0 040 060 1

we can determine the utility of any lottery, such as

fix,w) [ @ W@ WO
x@ 10 20 50
x(2) 50 10 30
T 025 050 0.25

The utilities are
* u(x() =0.25-10+0.50 - 20 + 0.25 - 50 = 0.45
* u(x®) =0.25-50+0.50 - 10 + 0.25 - 30 = 0.40
and the former is better than the latter
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Stochastic utility and multi-attribute utility

Stochastic utility and multi-attribute utility exhibit strong similarities

® they are convex combinations of utilities with coefficients

Q(F) =Y win(f) (. ) = 3 () ane)
leP weN
® the utilities are normalised between a worst and a best impact
® the coefficients are normalised between 0 and 1 with unitary sum
but there are also strong differences

® additivity is intrinsically satisfied (no special condition required),
because the different scenarios do not interact, while indicators do

® the attribute set P is replaced by scenario set €2, possibly infinite

® the weights w; are replaced by probabilities 7(w) that do not
necessarily require the decision-maker (they might be frequencies)
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Attitudes towards risk

Risk profile is the shape of u(f) for all f € F:
® it determines u (£ (f, 7)) for all £ € L, combining u (f) and 7 (w)
® therefore, it shows the attitude of the decision-maker towards risk

For the sake of simplicity, we will assume that
® f is a benefit
® the impact set is an interval F = [fT,f°]

* consequently, the risk profile increases from (fT,0) to (°,0)

The extension to more general cases is possible
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Attitudes towards risk

Now consider
® an intermediate deterministic impact £, = (1 — a)fT + af°®
® a binary lottery {0, s+ combining f° and fT with coefficient o

They are equivalent for the expected value criterium
pev (fa) = fo = ¢ev (Lroart)
What about their stochastic utilities u(fy) and u({se o £1)?

The utility of any binary lottery (¢u) , f2) can be computed
from the segment between points (f(1), u(f(1))) and (f@, u(£?))

u (L a,f1) = au(f) + (1 — a)u(fT)
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Attitudes towards risk

Three relevant cases (not exhaustive) exist:

@ convex case: the risk profile is above the segment from (£7,0)) to
(f°,1) and the lottery is preferred to the deterministic impact

u(fo) < u(lponri) forallae(0,1]

0.8

0.6

0.4

0.2

0

The decision-maker is risk-prone
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Attitudes towards risk

Three relevant cases (not exhaustive) exist:

@ linear case: the risk profile is lying on the segment from (f7,0)) to
(f°,1) and the lottery and the deterministic impact are equivalent

u(f) = u(Cpo o) forallae[0,1]

0.8

0.6

0.4

The decision-maker is risk-neutral

The expected value criterium is confirmed
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Attitudes towards risk

Three relevant cases (not exhaustive) exist:

© concave case: the risk profile is below the segment from (fT,0)) to
(f°,1) and the deterministic impact is preferred to the lottery

u(fo) > u(Cpo o pi) forallae[0,1]

1

0.8

0.6

0.4

The decision-maker is risk-averse
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Suppose that the impact is a benefit and its set is F = [0,1000]

The decision-maker has a concave risk profile

and is, therefore, risk-averse

The feasible region consists of two alternatives:
* x =(250,1) (deterministic impact)
e x' =(810,0.1) ® (360, 0.5) & (160, 0.4) (lottery)

The corresponding utilities are

/ 250
L4 U(X): m:05

® u(x')=0.1-u(810) + 0.5 u(360) + 0.4 - u(160) =
01-09405-0.6+0.4-0.4=0.55
The lottery is better
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Certainty equivalent

Assume that the risk profile u (f) is invertible (strictly increasing):
the inverse function f (u)

® provides an equivalent information

® can be useful to present a situation in more intuitive terms
Taking part to the lottery is like obtaining a certain gain

Given lottery ¢, its certainty equivalent CE (/)
is the deterministic impact that is equivalent to the lottery:

CE(l)="f(u(t)) < f(u®)~¢

u(f)

u(l)
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The risk profile is invertible and its inverse is

f

u(f) = Too & f (u) = 1000 uv?

Its certainty equivalent is CE(x") = f(0.55) = 1000 - 0.55% = 302.5

The decision-maker would consider the alternative x’
equivalent to a deterministic gain of 302.5, that is larger than f (x)
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The certainty equivalent can differ from the expected value of the impact

Given a lottery /¢ of utility u
® the expected value of the impact is gy (¢) = E [f (¢,w)]
® the certainty equivalent is CE (¢) = f(u(¢))

The risk premium RP (¢) is the difference of the two terms
RP(£) = dev () — CE () = E[f (¢,w)] = f(u(?))

It measures the variation on all impacts required to make the lottery
equivalent to deterministically gaining its original expected value
u(f)

R

Risk Premium

/' f=CE EV r f

u(l)
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As we have seen, lottery x’ = (810,0.1) & (360,0.5) ¢ (160, 0.4)
has a certainty equivalent CE(x’) = 302.5

Its impact, however, has an expected value equal to
¢ev (') = E[f (x',w)] = 0.1-810+0.5-360+0.4-160 = 81+180+64 = 325

that is larger (confirming that the decision-maker is risk-averse)

In order to make the lottery x’ equivalent to its expected impact,
we should modify all impacts by a fixed amount equal to the risk premium

RP (x") = ¢ev (x') — CE (x") = 325 — 302.5 = 22.5
increasing them (risk aversion, once again) to

(832.5,0.1) @ (382.5,0.5) @ (182.5,0.4)

These numbers aim to be more intuitive than abstract normalised utilities
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