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Decision-making under risk
We assume

• a preference relation Π that is a weak order
with a known consistent value function u (f ) (replaced by a cost f )

• a uncertain environment: |Ω| > 1 with probabilistic information

• a single decision-maker: |D| = 1 ⇒ Πd reduces to Π

• if Ω is discrete, a probability function:

π : Ω → [0, 1] such that
∑
ω∈Ω

π(ω) = 1

• if Ω is continuous, a probability density function:

π : Ω → R+ such that

∫
ω∈Ω

π(ω) = 1

We will consider only finite spaces (therefore, discrete) 2 / 24



Approaches to the modelling of risk
Exactly as for the impact function f (x , ω)

• the values of π(ω) derive from descriptive models

• we will assume that they are given

• they might be more or less reliable and this should be taken into
account (for example, with sensitivity studies)

Given a probabilistic model (sample set Ω and probability function π(ω))

• the impact f (x , ω) of any fixed solution x is a random variable

As for the case of ignorance, we will aim to define a choice criterium,
removing the dependence of the impact from the scenario:

f (x , ω) → ϕΩ,π(x)

Several approaches exist, but we will focus on

1 the expected value criterium, that is the first historical proposal
with a number of important limitations

2 the stochastic utility theory, that is a successful approach,
though not a perfect model of human attitudes with respect to risk
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The definition of probability: classical

Contrary to the impact, probability is a debated concept with definitions

• obtained from different sources

• with different meanings

• possibly contradictory

Let us make a quick survey

Classical probability: scenarios are composed by elementary cases

The probability of a scenario is the number of its elementary cases
divided by the overall number of elementary cases

π (ω) =
n(ω)

n(Ω)

Problems

• what is an elementary case?

• why are the elementary cases equally likely?
It looks like a circular definition

The classical definition works well for games (everything is under control)
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The definitions of probability: frequentist

Frequentist probability: the probability of a scenario is the
limit of its frequency in a number of observations increasing to infinity

π (ω) = lim
n→+∞

n(ω)

n

similar to the classical definition, but

• it does not require to identify elementary cases

• it allows nonuniform probabilities

• it requires a historical set of observations (Big Data)
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The definition of probability: frequentist

Problems of the frequentist definition

• the empirical information must be of good quality

• the quantity of observations must be very large

We are approximating a limit with a finite number

• the future behaviour must be similar to the past

We are using past data to take decisions for the future

In financial applications these requirements are rarely met

Example: what is the probability of default when investing in. . .

• . . . Argentinian treasury bonds? (8 defaults in about 200 years)

• . . . German treasury bonds? (3− 4 defaults in about 150 years)

• . . . Italian treasury bonds? (no default in about 160 years)

Markets (correctly) do not use frequentist probabilities
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The definition of probability: subjective

Subjective probability: the probability of a scenario is the
price considered fair to pay in order to gain

• 1 if the scenario occurs

• 0 if the scenario does not occur

π (ω̄) = u (f (ω)) where f (ω) =

{
1 if ω = ω̄

0 if ω ∈ Ω \ {ω̄}

It is the result of a gamble, based on economic reasoning

• it does not require repeated experiments in identical conditions

• it can exploit any kind of information

Problem

• it depends on the personal subjective opinion of the modeller

The personal attitudes are no longer limited to the preference
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The definition of probability: axiomatic

Axiomatic probability: the probability function is any function
that respects the basic axioms of probability theory (Kolmogorov)

• being restricted in [0, 1] for all ω ∈ Ω

• summing to 1 over all ω ∈ Ω

• being additive over sets of disjoint scenarios

Probability theory

• only guarantees that the theorems work

• does not provide numerical values to the probabilities

In practice, one adopts frequentist or subjective values (or a mix)
on a case-by-case basis and gets prepared to handle estimation errors
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The expected value criterium

One of the founders of probability theory, Blaise Pascal, proposed the
expected value criterium, that sums up the impacts of a solution over all
scenarios with the convex combination of impacts with probabilities

ϕEV (x) = E [f (x , ω)] =
∑
ω∈Ω

π(ω)f (x , ω)

In the continuous case, this becomes
∫
ω∈Ω

π(ω)f (x , ω) dω

Given the evaluation matrix U = {f (x , ω)}, this choice criterium can
also be expressed as

ϕEV (x) = U π

It is a “position measure” of the distribution of impact values:

• it lies in the range of these values

• it tends to lie in the “middle” of this range

• it is closer to the values with larger probability
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Example

f (x , ω) ω(1) ω(2) ω(3) ω(4)

x (1) 1 3 4 6
x (2) 2 2 2 4
x (3) 3 2 1 9
x (4) 6 6 1 3

π (ω) 0.20 0.25 0.50 0.05

The expected value criterium values are

x (1) x (2) x (3) x (4)

ϕ (x) 3.25 2.10 2.05 3.35

and imply the following ranking

x (3) ≺ x (2) ≺ x (1) ≺ x (4)
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Probability space
What if the probabilities are wrong?

A sensitivity analysis can tell if the ranking is stable or not

Probability space if the set of all possible probability vectors

P(Ω) =

{
πω ∈ [0, 1]|Ω| :

∑
ω∈Ω

πω = 1

}

It is defined by r = |Ω| parameters summing to 1 (r − 1 are independent)

r = 2 ⇒ 1D r = 3 ⇒ 2D r = 4 ⇒ 3D

Every probability vector π ∈ P(Ω) corresponds to optimal solution x∗π
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Probability support and sensitivity analysis
Probabilistic support of a solution x ∈ X is the set of probability vectors
π for which x is the best according to the expected value criterium

Supp (x) =

{
π ∈ P(Ω) : x ∈ arg min

x′∈X
ϕEV (x ′)

}

A complete sensitivity analysis partitions P(Ω) into the various supports

Of course, it becomes quite complex for r > 2

We consider a simplified analysis
• one scenario ω̄ has a very uncertain probability
• the other scenarios have an overall very uncertain probability,

but reliable ratios to each other

For example, consider

• scenario set Ω = { “cloudy”, “rainy”, “sunny”, “snowy” }
• assume an uncertain value for P[“sunny”]

• consequently have an uncertain value for P[“bad weather”],
where “bad weather” = { “cloudy”, “rainy”, “snowy” }

• assume precise conditional probabilities for P[“cloudy”|“bad weather”],
P[“rainy”|“bad weather”] and P[“snowy”|“bad weather”]
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Probability support and sensitivity analysis

Assume a nominal probability value π◦ (ω) for each scenario ω ∈ Ω
and study the sensitivity to the variations of π

(
ω(3)

)
= α

f (x , ω) ω(1) ω(2) ω(3) ω(4)

x(1) 1 3 4 6

x(2) 2 2 2 4

x(3) 3 2 1 9

x(4) 6 6 1 3

π◦ (ω) 0.20 0.25 0.50 0.05

For the sake of simplicity, let us denote as

• π◦
k the nominal probability π◦ (ω(k)

)
• πk the unknown real probability π

(
ω(k)

)
• π′

k the conditional probability π
(
ω(k)|

(
Ω \ {ω(3)}

))
(for k ̸= 3)
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Example: the algebraic way

Setting π3 = α, we obtain that{
π◦
k = (1− π◦

3 )π
′
k for k ̸= 3

πk = (1− α)π′
k for k ̸= 3

⇒ πk = π◦
k

1− α

1− π◦
3

for k ̸= 3

All probabilities are linear functions in α

Consequently, also ϕEV (x) is linear in α

In the present case, 1− π◦
3 = (1− 0.5) from which:

ω(1) ω(2) ω(3) ω(4)

ϕEV (x) (2.5 + 1.5α) (2.2− 0.2α) (3.1− 2.1α) (5.7− 4.7α)
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Example: the algebraic way

ω(1) ω(2) ω(3) ω(4)

ϕEV (x) (2.5 + 1.5α) (2.2− 0.2α) (3.1− 2.1α) (5.7− 4.7α)

Two solutions have nonempty support, and the threshold is obtained
by intersecting their impact values

2.2− 0.2α = 3.1− 2.1α ⇒ 1.9α = 0.9 ⇒ α = 9/19

so that Supp
(
x (2)

)
= [0, 9/19] and Supp

(
x (3)

)
= [9/19, 1]
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Example: the geometric way
Since all probabilities are linear in α, the profiles of the impacts for all
alternatives can be drawn from two given values:

• α = 1 trivially implies ϕEV (x) = f (x , ω(3)) = [ 4 2 1 1 ]

• α = 0 makes ω(3) impossible, so that the other three scenarios divide
the original probabilities by (1− π◦

3 )

[ 0.20 0.25 0.50 0.05] → [ 0.40 0.50 − 0.10 ]

f (x , ω) ω(1) ω(2) ω(3) ω(4)

x (1) 1 3 4 6
x (2) 2 2 2 4
x (3) 3 2 1 9
x (4) 6 6 1 3

π◦ (ω) 0.40 0.50 - 0.10

which implies

x (1) x (2) x (3) x (4)

ϕEV (x) 2.50 2.20 3.10 5.70
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Example: the geometric way

Combining the two values for each alternatives yields the same profiles

ϕEV (x) x (1) x (2) x (3) x (4)

α = 0 2.50 2.20 3.10 5.70
α = 1 4 2 1 1
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Formal defects of the expected value criterium

The expected value criterium, however, has strong defects

1 the actual preferences are inconsistent with the expected values

2 extreme values of probability and impact have paradoxical effects

Concerning the inconsistencies, consider the following four alternatives

1 throw a die and gain 100 Euros for all outcomes

2 throw a die and gain 200 Euros for 4, 5, 6

3 throw a die and gain 600 Euros for 6

4 throw a die and gain 200 Euros for 2, 3, 4, 5, 6 and −400 Euros for 1

All four alternatives have equal expected value: ϕEV (x) = 100,∀x ∈ X

Most decision-maker, however, would consider them as very different

Simply prescribing that people should consider them as equivalent
and labelling them as irrational and inconsistent if they do not,
seems very questionable
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Formal defects of the expected value criterium

Pascal’s wager is a famous thought experiment: it has the form of a
conversation with a gambler to convince him to repent and convert

• humans have two alternative choices: believe and not believe

• there are two scenarios: God exists or does not exist

Someone considers it a proof of God’s existence (Pascal is very nuanced)

The four configurations have the following impacts

f (x , ω) ∃ God ∄ God
Believe A b

Disbelieve c d

where d > b (earthly enjoyment), but A is a huge prize (eternal life)

The probability of the two scenarios are α and 1− α

Repeated experiments? Subjective probabilities?
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Formal defects of the expected value criterium

If we apply the expected value criterium, we obtain

• ϕEV (Believe) = αA+ (1− α)b

• ϕEV (Disbelieve) = αc + (1− α)d

Consequently, believing is the right choice as long as

α >
1

1 +
(A− c)

(d − b)

For a sufficiently large reward A, this is always true, because

lim
A→+∞

1

1 +
(A− c)

(d − b)

= 0

However, the reasoning is not fully convincing: in particular,
combining small probabilities with large impacts looks problematic
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Saint Petersburg’s paradox

Daniel Bernouilli provided a more down-to-earth example of this defect

The situation concerns once again a gamble:

• the gambler pays P to take part to the game

• we flip a coin until a tail is obtained

• the gambler wins a sum depending on the number of flips before the
end of the game

The model of the game is the following:

• alternatives: do not play or play

• scenarios: the coin is flipped k times obtaining heads before the first
tail (Ω = N)

• probability function: πk =
1

2k+1

• impact function:
• if we do not play, f (P, k) = 0
• if we do play, f (P, k) = 2k − P

What is the largest P one should be willing to pay to play the game?
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Saint Petersburg’s paradox

Let us apply the expected value criterium

• if we do not play, ϕEV (P) = 0

• if we do play, ϕEV (P) =
∑
k∈N

2k − P

2k+1
=

∑
k∈N

1

2
−

∑
k∈N

P

2k+1
= +∞

Playing pays out an infinite gain: any cost P is justified

However, in real life different people would pay different amounts
and nobody would pay a large sum

Why doesn’t the criterium represent real choices?

Combining small probabilities with large impacts looks problematic
(even without the complicating theological aspects of Pascal’s wager)
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A possible way out

Bernouilli suggested not to multiply probabilities and impacts:

• for finite creatures the utility of a gain is not proportional to it

• the marginal increase in utility is decreasing

For example, consider the case of a gourmand

• a 1 000 salary allows to dine out 1 evening a week (say)

• a 2 000 salary might mean dining out 2 evenings a week

• a 4 000 salary probably does not mean dining out 4 evenings a week,
but maybe 2 evenings in a more expensive place

• a 8 000 salary certainly does not mean dining out 8 evenings a week,
and probably also not 4 evenings in a more expensive place

• . . .

As the gain increases, it becomes progressively harder to spend it
(depending on one’s personality)
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A possible way out

Bernouilli suggested that utility increases logaritmically with the gain

u = log(f )

This solves the original Saint Petersburg’s paradox, but not a variant
with gains f increasing more than exponentially at each coin flip

The paradox disappears only when the utility function is upper bounded

The stochastic utility theory will provide a sound solution

• introducing axioms to describe desirable properties

• a constructive theorem to build exactly one function to satisfy them
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