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Decision-making under uncertainty

We assume

• a preference relation Π that is a weak order
with a known consistent value function u (f ) (replaced by a cost f )

• a uncertain environment: |Ω| > 1

• a single decision-maker: |D| = 1 ⇒ Πd reduces to Π

The problem becomes min
x∈X

f (x , ω) with ω ∈ Ω known after x is selected

If ω is known in advance, the problem falls into parametric optimisation:
solution x∗ (ω) represents a strategy prepared for every possible scenario
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Applications

The situation has applications in many different fields

• finance: decide how much to invest and in what

• marketing: decide prices and advertising campaigns

• research and development: decide which research projects to finance
and how much

• . . .

but also less obvious fields such as algorithmics

• X is the set of alternative algorithms for a problem

• Ω is the set of instances

• f (x , ω) is the optimality gap (or computational time)
achieved by algorithm x on instance ω
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Varieties of uncertainty

Descriptive models provide information on the scenarios

Different kinds of information generate different classes of problems

1 ignorance: the only information is the scenario set Ω

2 risk: we know the scenario set Ω and a probability function πω

3 . . .

Notice that even ruling out unpredicted scenarios is hard (“black swans”)

Given X and Ω, other descriptive models provide the impacts f (x , ω)
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Strong dominance

Suitable conditions allow to introduce a relation on alternatives
that can filter out some of them and simplify (or even solve) the problem

x ⪯ x ′ ⇔ f (x , ω) ⪯ f (x ′, ω) for all ω ∈ Ω

If the strong domination is strict, solution x ′ can be safely removed

The definition is formally equivalent to Paretian preference,
with scenario ω ∈ Ω replacing indicators l ∈ P: fl (x) → f (x , ω)

• similar methods find nondominated solutions and Paretian solutions

• but, while the indicators are p, the scenarios can be infinitely many
(in that case, the extension is not trivial)
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Example

Consider a set of investments with the corresponding impacts (benefits)

ROI Recession Moderate growth Strong growth
Stock fund -25% 0% 35%
Bond fund -10% 5% 15%
Treasuries 8% 8% 8%
“Toxic” fund -5% 6% 8%

The toxic fund is dominated by treasuries

6 / 11



Probabilistic dominance

x ⪯ x ′ ⇔ Pr(f (x) ≤ f ) ≥ Pr(f (x ′) ≤ f ) for all f ∈ F

A strongly dominates B (yield as good for all possible outcomes of the die roll)

C does not strongly dominate B (B gives a better yield in scenarios 4 to 6)

C probabilistically dominates B because

• Pr(B ≥ 1) = Pr(C ≥ 1) = 1

• Pr(B ≥ 2) = Pr(C ≥ 2) = 3/6

• Pr(B ≥ 3) = 0 < Pr(C ≥ 3) = 3/6

A and C exhibit no probabilistic dominance

• Pr(A ≥ 2) = 4/6 > Pr(C ≥ 2) = 3/6

• Pr(C ≥ 3) = 3/6 > Pr(A =≥ 3) = 0
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Dominance and algorithm performance
A typical application is the selection of heuristic algorithms where

• an alternative x is a heuristic algorithm A

• a scenario ω is a problem instance I

• the impact f (x , ω) is the percent gap (relative difference) δA (I )

In this context

• strong dominance means a lower gap on all instances (very rare)

A ⪯ A′ ⇔ δA(I ) ≤ δA′(I ) for all I ∈ P

• probabilistic dominance means hitting below any given threshold δ̄ for
more instances (higher Solution Quality Distribution diagram):

A ⪯ A′ ⇔ Pr(δA(I ) ≤ δ̄) ≥ Pr(δA′(I ) ≤ δ̄) for all f ∈ F
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Different scenario modelling approaches
The scenario set Ω is in general a set of vectors in Rs

Two notable cases are

1 the scenario-based description (common in economy):
Ω is a finite list of scenarios

Ω =
{
ω(1), . . . , ω(|Ω|)

}
2 the interval-based description (common in engineering): Ω is the

Cartesian product of a s real intervals on the exogenous variables

Ω =
[
ωmin
1 , ωmax

1

]
× . . .×

[
ωmin
s , ωmax

s

]
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Example
Suppose that we are computing the fastest path on a street network
in which two arcs have uncertain travel times ω1 and ω2

• in a scenario-based description, we might have

ω =

[
2
1

]
or

[
5
1

]
or

[
2
6

]
⇔ Ω = {(2, 1), (5, 1), (2, 6)}

• in an interval-based description, we might have{
2 ≤ ω1 ≤ 5

1 ≤ ω2 ≤ 6
⇔ Ω = [2, 5]× [1, 6]
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How to choose?

The appropriate description depends on

• the precision of the representation

• the simplicity of the solution process (is there an algorithm?)

On the one hand, the scenario description has a finite number of cases

• are they all and only the possible cases? (precision)

• are they few or combinatorially many? (simplicity)

On the other hand, the interval description

• implies that the exogenous variable are independent (precision)

• the scenario are infinitely many, but the worst scenario might be
• the same for all solutions
• easy to find (simplicity)

For example, take the maximum for all travel times

11 / 11


