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Weighted sum method
The idea is to aggregate all indicators into a convex combination

The result is a sufficient condition for a point to be globally Paretian

Theorem
If wl > 0 for all l ∈ P,

∑
l∈P

wl = 1 and x◦ is a globally optimal point of

min
x∈X

zw (x) =
∑
l∈P

wl fl(x)

then x◦ is a globally Paretian point for f in X

The proof is by contradiction: suppose that x◦ is not globally Paretian:

∃x ′ ∈ X : x ′ ≺ x◦ ⇒

{
fl(x

′) ≤ fl(x
◦) ∀l ∈ P

∃l̄ ∈ P : fl̄(x
′) < fl̄(x

◦)

This implies
∑
l∈P

wl fl(x
′) <

∑
l∈P

wl fl(x
◦), against the optimality of x◦

The auxiliary problem is parametric, to be solved for all vectors w
such that wl > 0 for all l ∈ P and

∑
l∈P

wl = 1 (∞p−1 values)

Consequently, the solutions provided form a hypersurface of ∞p−1 points
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Properties

The combination is convex, but the weights wl are strictly positive
Why only positive weights?

If weights equal to zero are allowed, the proof does not hold, because
weakly Paretian solutions satisfy the condition, even if dominated{
fl̄(x

′) < fl̄(x
◦)

fl(x
′) = fl(x

◦) ∀l ∈ P \ {l̄}
and wl̄ = 0 ⇒

∑
l∈P

wl fl(x
′) =

∑
l∈P

wl fl(x
◦)

C is a global optimum point for z[0,1](x) = 0 · f1(x) + 1 · f2(x) = f2
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Support of a Paretian solution

Let W =

{
w ∈ Rp : wl > 0 ∀l ∈ P,

∑
l∈P

wl = 1

}
be the weight space

Given a Paretian solution x◦ ∈ X ◦, the support Supp(x◦) ⊆ W
is the set of weight vectors w such that x◦ ∈ argmin

x∈X
zw (x)

• continuous problems usually have ∞p−1 Paretian solutions and
∞p−1 weight vectors: the support of a Paretian solution often
includes a single vector

• finite or combinatorial problems have a finite number of solution: the
support of a Paretian solution often is a region in the weight space

• in general, however, unsupported solutions exist:
they are Paretian solutions with empty support Supp(x◦) = ∅

The weighted sum method finds only supported solutions
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Weighted sum method and KKT conditions

The weighted sum method and the KKT conditions are clearly related

• they both build a convex combination of the indicators

but the weighted sum method requires

1 to compute the globally optimal points,
instead of candidate locally optimal points

2 to impose strictly positive weights,
instead of nonnegative ones

Therefore, the former returns a (often much) smaller region
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Example

The combined antigradient ∇zw = w∇f1 + (1− w)∇f2
is in the open cone identified by the original antigradients

Solve the problem graphically
(or apply KKT keeping only the globally optimal solutions)

min zw (x) = w (−2x1 − x2) + (1− w) (−x1 − 2x2)

g1(x) = −x1 ≥ 0

g2(x) = −x2 ≥ 0

g3(x) = x2
1 + x2 − 4 ≥ 0

A= (1/4,63/16)
B = (1,3)

f2−∇

f1−∇

x2

x1

We obtain the parabola arc from A =

(
1

4
,
63

16

)
to B = (1, 3),

without the two extreme points

Not the full Paretian region: XWS ⊂ X ◦
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A combinatorial example

Given a complete graph of three vertices and two cost functions,
find the minimum spanning tree

f (x) (1,2) (1,3) (2,3)
f1 1 3 6
f2 13 10 8

There are three feasible solutions

X f1 f2
T1 = {(1, 2), (1, 3)} 4 23
T2 = {(1, 2), (2, 3)} 7 21
T3 = {(1, 3), (2, 3)} 9 18

Applying the definition, all solutions are Paretian: X ◦ = {T1,T2,T3}
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A combinatorial example

All solutions correspond to impacts with an empty lower left quadrant

4

A = (4,23)

f

f

1

2

C = (9,18)

B = (7,21)

18

w = 1

21
23

7 9

The inverse transformation method yields the whole Paretian region:

X IT = X ◦ = {T1,T2,T3}

The KKT conditions return all feasible solutions (locally Paretian)
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A combinatorial example

The weighted sum method solves the auxiliary parametric problem

min zw (x) = w f1 (x) + (1− w) f2 (x)

that is

min zw (x) = (13− 12w) x12 + (1− 7w) x13 + (8− 2w) x23

where x is a spanning tree

It is a minimum spanning tree with parametric costs on the edges cij (w)

The problem can be solved with Kruskal’s algorithm

• sort the edges by increasing costs

• include the edges that do not close loops
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A parametric version of Kruskal’s algorithm

• let the weight vector w vary in the weight space W , here (0, 1)

• describe the costs cij (w) of the three edges as a function of w
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A parametric version of Kruskal’s algorithm

• find the regions in W where each arc is the cheapest, second, etc.

c23(w) = c13(w) ⇔ w =
2

5

c13(w) = c12(w) ⇔ w =
3

5

c23(w) = c12(w) ⇔ w =
1

2

• apply Kruskal’s algorithm to each region

• if w ∈ (0, 2/5], select (2, 3) and (1, 3)
• if w ∈ [2/5, 3/5], select (1, 3); then:

• if w ∈ [2/5, 1/2], select (2, 3)
• if w ∈ [1/2, 3/5], select (1, 2)

• if w ∈ [3/5, 1), select (1, 2) and (1, 3)
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A parametric version of Kruskal’s algorithm
In summary

• if w ∈ (0, 2/5], x = {(2, 3)(1, 3)} = T3

• if w ∈ [2/5, 1/2], x = {(1, 3), (2, 3)} = T3

• if w ∈ [1/2, 3/5], x = {(1, 3)(1, 2)} = T1

• if w ∈ [3/5, 1), x = {(1, 2)(1, 3)} = T1

Solution T2 is not found: it is unsupported (Supp (T2) = ∅)
Indeed, T2 is nonoptimal for any convex combination of the indicators,
even if it can be a good compromise

4

A = (4,23)

f

f

1

2

C = (9,18)

B = (7,21)

18

w = 1

21
23

7 9 0

A

w

C B

1

w  f  + (1 - w)  f1                        2

0.5

23
21

18

9
7
4

X f (X ) z : W → R
Note: the profiles zw on the right refer to solutions, not edges
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Weighted sum method and Multi-Attribute Utility Theory

Under suitable conditions, an additive utility function exist

max
x∈X

u (f (x)) =
∑
l∈P

wl ũ (fl (x))

that is very similar to the auxiliary problem

min
x∈X

zw (x) =
∑
l∈P

wl fl (x)

Is there a relation with the weighted sum method?

Not really, since in MAUT

• u (f (x)) assumes a weak order on impacts, not a partial order

• the weights wl have a fixed value in W

• the normalised utilities ũl are nonlinear and yield indifference curves,
that can reach unsupported solutions, unlike straight lines

But the basic concepts keep returning under different forms
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Advantages and disadvantages

The weighted sum method has several advantages

• it is absolutely general

• it is intuitive

• it usually allows to simply extend single-objective algorithms

but also disadvantages

• it requires a parametric version of the algorithm

• it requires to find all globally optimal solutions

• it finds only supported solutions: XWS ⊆ X ◦; moreover,
as p increases, the fraction of supported solutions decreases:

lim
p→+∞

|XWS|
|X ◦|

What about sampling W ?

• Sampling further reduces the subset found, and it can be inefficient
(finding the same solution for several different weight vectors)
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The ϵ-constraint method
The idea is to keep one indicator and quality constraints on the others

The result is a necessary condition for a point to be globally Paretian
(sufficient and necessary to be weakly Paretian)

Theorem
If x◦ is globally Paretian for f in X , ϵl = fl(x

◦) and ℓ ∈ P,
then x◦ is globally optimal for

min zϵ(x) = fℓ(x)

x ∈ X

fl ≤ ϵl l ∈ P \ {ℓ}

The proof is by contradiction: suppose that x◦ is not globally optimal:

∃x ′ ∈ X :

{
fℓ(x

′) < fℓ(x
◦)

fl(x
′) ≤ ϵl = fl(x

◦) l ∈ P \ {ℓ}
⇒ x ′ ≺ x◦

against the paretianity of x◦

The auxiliary problem is parametric, to be solved for all vectors ϵ ∈ Rp−1

(∞p−1 values)

Consequently, the solutions provided form a hypersurface of ∞p−1 points
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Example

Replacing min f1(x) with f1(x) ≤ ϵ1 and solving

min f2(x)

x ∈ X

f1(x) ≤ ϵ1

yields

• for small ϵ1, no solution

• for larger ϵ1, solutions mapping onto the arc from f (F ) to f (B)

• for large ϵ1, solutions mapping onto part or all of segment f (B)f (C)
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Example

4

A = (4,23)

f

f

1

2

C = (9,18)

B = (7,21)

18

w = 1

21
23

7 9

In this case, the ϵ-constraint method returns all Paretian solutions

For example, min f2 with x ∈ X and f1 ≤ ϵ yields

• for ϵ < 4, no solution

• for 4 ≤ ϵ < 7, solution T1

• for 7 ≤ ϵ < 9, solution T2

• for 9 ≤ ϵ, solution T3

The same holds solving with respect to f1 (x)
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ϵ-constraint method and lexicographic preference

The lexicographic method also focuses on a single indicator

Is there a relation with the ϵ-constraint method?

Not really, since lexicographic preference

• assumes a total order on impacts, not a partial order

• discriminates optimal impacts based on the secondary indicators

• does not impose aspiration levels ϵl on the secondary indicators

But the basic concepts keep returning under different forms

18 / 1



Advantages and disadvantages

The weighted sum method has several advantages

• it is absolutely general

• it is rather intuitive

but also disadvantages

• it requires a parametric version of the algorithm

• the additional constraints often make the basic algorithm unviable

• it requires to find all globally optimal solutions

• it finds also weakly Paretian solutions: X ϵc ⊇ X ◦;
this can be refined changing the reference indicator ℓ
and intersecting the regions obtained

What about sampling W ?

• Sampling can be inefficient
(finding the same solution for several different weight vectors)

• It yields an underestimate of an overestimate of X ◦
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