Decision Methods and Models Master's Degree in Computer Science

Roberto Cordone

DI - Università degli Studi di Milano

Lesson 11: Paretian preference (2) [Milano, A.A. 2024/25](#page-0-0)

 $1/1$

Weighted sum method

The idea is to aggregate all indicators into a convex combination

The result is a sufficient condition for a point to be globally Paretian Theorem

If $w_l > 0$ for all $l \in P$, \sum $\sum_{l \in P} w_l = 1$ and x° is a globally optimal point of

$$
\min_{x \in X} z_w(x) = \sum_{l \in P} w_l f_l(x)
$$

then x° is a globally Paretian point for f in X

The proof is by contradiction: suppose that x° is not globally Paretian:

$$
\exists x' \in X : x' \prec x^{\circ} \Rightarrow \begin{cases} f_1(x') & \leq f_1(x^{\circ}) \quad \forall l \in P \\ \exists \overline{l} \in P : f_1(x') & < f_1(x^{\circ}) \end{cases}
$$

This implies \sum $\sum_{l\in P} w_l f_l(x') < \sum_{l\in P}$ $\sum_{l \in P} w_l f_l(x^{\circ})$, against the optimality of x° \Box

The auxiliary problem is parametric, to be solved for all vectors w such that $w_l > 0$ for all $l \in P$ and $\sum_{l \in P} w_l = 1$ (∞^{p-1} $(\infty^{p-1}$ values)

Consequently, the solutions provided form a hyp[ers](#page-0-0)u[rface of](#page-0-0) ∞^{p-1} ∞^{p-1} ∞^{p-1} ∞^{p-1} ∞^{p-1} [points](#page-0-0)

Properties

The combination is convex, but the weights w_l are strictly positive Why only positive weights?

If weights equal to zero are allowed, the proof does not hold, because weakly Paretian solutions satisfy the condition, even if dominated

$$
\begin{cases}\nf_{\overline{f}}(x') < f_{\overline{f}}(x^{\circ}) \\
f_{\overline{f}}(x') = f_{\overline{f}}(x^{\circ}) \quad \forall I \in P \setminus \{\overline{I}\} \\
\downarrow \qquad \text{and } w_{\overline{I}} = 0 \Rightarrow \sum_{I \in P} w_{I} f_{I}(x') = \sum_{I \in P} w_{I} f_{I}(x^{\circ}) \\
\downarrow \qquad \qquad \downarrow \qquad \text{and} \quad \text{for } \overline{I} \text{ and } \overline{I
$$

C is a global optimum point [f](#page-0-0)or $z_{[0,1]}(x) = 0 \cdot f_1(x) + 1 \cdot f_2(x) = f_2$ $z_{[0,1]}(x) = 0 \cdot f_1(x) + 1 \cdot f_2(x) = f_2$ $z_{[0,1]}(x) = 0 \cdot f_1(x) + 1 \cdot f_2(x) = f_2$ $z_{[0,1]}(x) = 0 \cdot f_1(x) + 1 \cdot f_2(x) = f_2$ $z_{[0,1]}(x) = 0 \cdot f_1(x) + 1 \cdot f_2(x) = f_2$ $z_{[0,1]}(x) = 0 \cdot f_1(x) + 1 \cdot f_2(x) = f_2$ $z_{[0,1]}(x) = 0 \cdot f_1(x) + 1 \cdot f_2(x) = f_2$ $z_{[0,1]}(x) = 0 \cdot f_1(x) + 1 \cdot f_2(x) = f_2$ $z_{[0,1]}(x) = 0 \cdot f_1(x) + 1 \cdot f_2(x) = f_2$

Let $W = \left\{ w \in \mathbb{R}^p : w_l > 0 \ \forall l \in P, \ \sum \right.$ $\sum\limits_{l\in P}w_l=1\bigg\}$ be the weight space

Given a Paretian solution $x^{\circ} \in X^{\circ}$, the support $\text{Supp}(x^{\circ}) \subseteq W$ is the set of weight vectors w such that $x^{\circ} \in \arg\min_{x \in X} z_w(x)$

- continuous problems usually have ∞^{p-1} Paretian solutions and ∞^{p-1} weight vectors: the support of a Paretian solution often includes a single vector
- finite or combinatorial problems have a finite number of solution: the support of a Paretian solution often is a region in the weight space
- in general, however, unsupported solutions exist: they are Paretian solutions with empty support $\mathrm{Supp}(x^\circ) = \emptyset$

The weighted sum method finds only supported solutions

The weighted sum method and the KKT conditions are clearly related

• they both build a convex combination of the indicators

but the weighted sum method requires

- **1** to compute the globally optimal points, instead of candidate locally optimal points
- **2** to impose strictly positive weights, instead of nonnegative ones

Therefore, the former returns a (often much) smaller region

Example

The combined antigradient $\nabla z_w = w \nabla f_1 + (1 - w) \nabla f_2$ is in the open cone identified by the original antigradients

Solve the problem graphically (or apply KKT keeping only the globally optimal solutions)

$$
\min z_w(x) = w(-2x_1 - x_2) + (1 - w)(-x_1 - 2x_2)
$$
\n
$$
g_1(x) = -x_1 \ge 0
$$
\n
$$
g_2(x) = -x_2 \ge 0
$$
\n
$$
g_3(x) = x_1^2 + x_2 - 4 \ge 0
$$

We obtain the parabola arc from $A=\left(\frac{1}{4}\right)$ $\left(\frac{1}{4},\frac{63}{16}\right)$ to $B=(1,3)$, without the two extreme points

Not the full Pa[ret](#page-4-0)i[an region:](#page-0-0) $X^{WS} \subset X^{\circ}$ $X^{WS} \subset X^{\circ}$

 x_{α}

Given a complete graph of three vertices and two cost functions, find the minimum spanning tree

$$
\begin{array}{c|cc}\nf(x) & (1,2) & (1,3) & (2,3) \\
\hline\nf_1 & 1 & 3 & 6 \\
f_2 & 13 & 10 & 8\n\end{array}
$$

There are three feasible solutions

Applying the definition, all solutions are Paretian: $X^{\circ} = \{T_1, T_2, T_3\}$

A combinatorial example

All solutions correspond to impacts with an empty lower left quadrant

The inverse transformation method yields the whole Paretian region:

$$
X^{IT} = X^{\circ} = \{T_1, T_2, T_3\}
$$

The KKT conditions return all feasible solutions (locally Paretian)

The weighted sum method solves the auxiliary parametric problem

$$
\min z_{w}(x) = w f_{1}(x) + (1 - w) f_{2}(x)
$$

that is

$$
min\ z_{w}\left(x\right)=\left(13-12w\right)x_{12}+\left(1-7w\right)x_{13}+\left(8-2w\right)x_{23}
$$

where x is a spanning tree

It is a minimum spanning tree with parametric costs on the edges $c_{ii} (w)$

The problem can be solved with Kruskal's algorithm

- sort the edges by increasing costs
- include the edges that do not close loops

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

A parametric version of Kruskal's algorithm

- let the weight vector w vary in the weight space W , here $(0, 1)$
- describe the costs $c_{ii} (w)$ of the three edges as a function of w

A parametric version of Kruskal's algorithm

 \bullet find the regions in W where each arc is the cheapest, second, etc.

$$
c_{23}(w) = c_{13}(w) \Leftrightarrow w = \frac{2}{5}
$$

$$
c_{13}(w) = c_{12}(w) \Leftrightarrow w = \frac{3}{5}
$$

$$
c_{23}(w) = c_{12}(w) \Leftrightarrow w = \frac{1}{2}
$$

- apply Kruskal's algorithm to each region
	- if $w \in (0, 2/5]$, select $(2, 3)$ and $(1, 3)$
	- if $w \in [2/5, 3/5]$, select $(1, 3)$; then:
		- if $w \in [2/5, 1/2]$, select $(2, 3)$
		- if $w \in [1/2, 3/5]$, select $(1, 2)$
	- if $w \in [3/5, 1)$, select $(1, 2)$ and $(1, 3)$

 $A \Box B$ A B B A B B A B B

A parametric version of Kruskal's algorithm

In summary

• if
$$
w \in (0, 2/5]
$$
, $x = \{(2, 3)(1, 3)\} = T_3$

• if
$$
w \in [2/5, 1/2]
$$
, $x = \{(1,3), (2,3)\} = T_3$

• if
$$
w \in [1/2, 3/5]
$$
, $x = \{(1,3)(1,2)\} = T_1$

• if
$$
w \in [3/5, 1)
$$
, $x = \{(1, 2)(1, 3)\} = T_1$

Solution T_2 is not found: it is unsupported $(\text{Supp} (T_2) = \emptyset)$

Indeed, T_2 is nonoptimal for any convex combination of the indicators, even if it can be a good compromise $+ (1 - w) f,$

Note: the profiles z_w on the right refer to soluti[ons](#page-10-0), [not edges](#page-0-0)

Weighted sum method and Multi-Attribute Utility Theory

Under suitable conditions, an additive utility function exist

$$
\max_{x \in X} u(f(x)) = \sum_{l \in P} w_l \tilde{u}(f_l(x))
$$

that is very similar to the auxiliary problem

$$
\min_{x \in X} z_w(x) = \sum_{l \in P} w_l f_l(x)
$$

Is there a relation with the weighted sum method?

Not really, since in *MAUT*

- $u(f(x))$ assumes a weak order on impacts, not a partial order
- the weights w_l have a fixed value in W
- the normalised utilities \tilde{u}_l are nonlinear and yield indifference curves, that can reach unsupported solutions, unlike straight lines

But the basic concepts keep returning under different forms

 $\mathbf{E} = \mathbf{A} \in \mathbf{E} \times \mathbf{A} \in \mathbf{B} \times \mathbf{A} \oplus \mathbf{B} \times \mathbf{A} \oplus \mathbf{A}$

Advantages and disadvantages

The weighted sum method has several advantages

- it is absolutely general
- it is intuitive
- it usually allows to simply extend single-objective algorithms

but also disadvantages

- it requires a parametric version of the algorithm
- it requires to find all globally optimal solutions
- \bullet it finds only supported solutions: $X^{\rm WS}\subseteq X^{\circ};$ moreover, as p increases, the fraction of supported solutions decreases:

$$
\lim_{p\to+\infty}\frac{|X^{\rm WS}|}{|X^{\circ}|}
$$

What about sampling W ?

• Sampling further reduces the subset found, and it can be inefficient (finding the same solution for several different weight vectors)

The ϵ -constraint method

The idea is to keep one indicator and quality constraints on the others

The result is a necessary condition for a point to be globally Paretian (sufficient and necessary to be weakly Paretian)

Theorem

If x° is globally Paretian for f in X, $\epsilon_{l} = f_{l}(x^{\circ})$ and $l \in P$, then x° is globally optimal for

> $\min z_{\epsilon}(x) = f_{\ell}(x)$ $x \in X$ $f_1 \leq \epsilon_l \quad l \in P \setminus \{\ell\}$

The proof is by contradiction: suppose that x° is not globally optimal:

$$
\exists x' \in X : \begin{cases} f_{\ell}(x') < f_{\ell}(x^{\circ}) \\ f_{l}(x') \leq \epsilon_{l} = f_{l}(x^{\circ}) & l \in P \setminus \{\ell\} \end{cases} \Rightarrow x' \prec x^{\circ}
$$

against the paretianity of x°

The auxiliary problem is parametric, to be solved for all vectors $\epsilon \in \mathbb{R}^{p-1}$ $(\infty^{p-1}$ values)

Consequently, the solutions provided form a hyp[ers](#page-13-0)u[rface of](#page-0-0) [∞](#page-0-0)<su[p](#page-0-0)>p-[1](#page-0-0)</sup> [points](#page-0-0) one 15 / 1

Example

Replacing min $f_1(x)$ with $f_1(x) \leq \epsilon_1$ and solving

min $f_2(x)$ $x \in X$ $f_1(x) \leq \epsilon_1$

yields

- for small ϵ_1 , no solution
- for larger ϵ_1 , solutions mapping onto the arc from $f(F)$ to $f(B)$
- [f](#page-0-0)or large ϵ_1 , solutions mapping onto part or all [of](#page-14-0) s[egment](#page-0-0) $f(B)f(C)$ $f(B)f(C)$ $f(B)f(C)$ $f(B)f(C)$ $f(B)f(C)$ $f(B)f(C)$ $f(B)f(C)$

Example

In this case, the ϵ -constraint method returns all Paretian solutions

For example, min f_2 with $x \in X$ and $f_1 \leq \epsilon$ yields

- for ϵ < 4, no solution
- for $4 \leq \epsilon < 7$, solution T_1
- for $7 \leq \epsilon \leq 9$, solution T_2
- for $9 \leq \epsilon$, solution T_3

The same holds solv[ing](#page-15-0) [with respect to](#page-0-0) $f_1(x)$ $f_1(x)$ $f_1(x)$ $f_1(x)$ $f_1(x)$

The lexicographic method also focuses on a single indicator

Is there a relation with the ϵ -constraint method?

Not really, since lexicographic preference

- assumes a total order on impacts, not a partial order
- discriminates optimal impacts based on the secondary indicators
- does not impose aspiration levels ϵ_l on the secondary indicators

But the basic concepts keep returning under different forms

Advantages and disadvantages

The weighted sum method has several advantages

- it is absolutely general
- it is rather intuitive

but also disadvantages

- it requires a parametric version of the algorithm
- the additional constraints often make the basic algorithm unviable
- it requires to find all globally optimal solutions
- it finds also weakly Paretian solutions: $X^{\epsilon\epsilon} \supseteq X^{\circ}$; this can be refined changing the reference indicator ℓ and intersecting the regions obtained

What about sampling W ?

• Sampling can be inefficient

(finding the same solution for several different weight vectors)

• It yields an underestimate of an overestimate of X°