# Decision Methods and Models Master's Degree in Computer Science

#### Roberto Cordone DI - Università degli Studi di Milano



| Schedule:     | Thursday 16.30 - 18.30 in Aula Magna (CS department)             |
|---------------|------------------------------------------------------------------|
|               | Friday 12.30 - 14.30 in classroom 301                            |
| Office hours: | on appointment                                                   |
| E-mail:       | roberto.cordone@unimi.it                                         |
| Web page:     | https://homes.di.unimi.it/cordone/courses/2024-mmd/2024-mmd.html |
| Ariel site:   | https://myariel.unimi.it/course/view.php?id=4467                 |

Lesson 11: Paretian preference (2)

Milano, A.A. 2024/25

1/1

# Weighted sum method

The idea is to aggregate all indicators into a convex combination

The result is a sufficient condition for a point to be globally Paretian

Theorem

If  $w_l > 0$  for all  $l \in P$ ,  $\sum_{l \in P} w_l = 1$  and  $x^\circ$  is a globally optimal point of

$$\min_{x\in X} z_w(x) = \sum_{l\in P} w_l f_l(x)$$

then  $x^{\circ}$  is a globally Paretian point for f in X

The proof is by contradiction: suppose that  $x^{\circ}$  is not globally Paretian:

$$\exists x' \in X : x' \prec x^{\circ} \Rightarrow \begin{cases} f_{l}(x') & \leq f_{l}(x^{\circ}) & \forall l \in P \\ \exists \overline{l} \in P : f_{\overline{l}}(x') & < f_{\overline{l}}(x^{\circ}) \end{cases}$$

This implies  $\sum_{l \in P} w_l f_l(x') < \sum_{l \in P} w_l f_l(x^\circ)$ , against the optimality of  $x^\circ$ 

The auxiliary problem is parametric, to be solved for all vectors w such that  $w_l > 0$  for all  $l \in P$  and  $\sum_{l \in P} w_l = 1$  ( $\infty^{p-1}$  values)

Consequently, the solutions provided form a hypersurface of  $\infty^{p-1}$  points

## Properties

The combination is convex, but the weights  $w_l$  are strictly positive Why only positive weights?

If weights equal to zero are allowed, the proof does not hold, because weakly Paretian solutions satisfy the condition, even if dominated

$$\begin{cases} f_{\overline{l}}(x') < f_{\overline{l}}(x^{\circ}) \\ f_{\overline{l}}(x') = f_{\overline{l}}(x^{\circ}) & \forall l \in P \setminus {\overline{l}} \end{cases} \text{ and } w_{\overline{l}} = 0 \Rightarrow \sum_{l \in P} w_l f_l(x') = \sum_{l \in P} w_l f_l(x^{\circ}) \\ \downarrow f_{\overline{l}}(x) & \forall l \in P \setminus {\overline{l}} \end{cases}$$

C is a global optimum point for  $z_{[0,1]}(x) = 0 \cdot f_1(x) + \frac{1}{2} \cdot f_2(x) = f_2$ 

Let  $W = \left\{ w \in \mathbb{R}^p : w_l > 0 \ \forall l \in P, \sum_{l \in P} w_l = 1 \right\}$  be the weight space

Given a Paretian solution  $x^{\circ} \in X^{\circ}$ , the support  $\operatorname{Supp}(x^{\circ}) \subseteq W$  is the set of weight vectors w such that  $x^{\circ} \in \arg\min_{x \in X} z_w(x)$ 

- continuous problems usually have ∞<sup>p-1</sup> Paretian solutions and ∞<sup>p-1</sup> weight vectors: the support of a Paretian solution often includes a single vector
- finite or combinatorial problems have a finite number of solution: the support of a Paretian solution often is a region in the weight space
- in general, however, unsupported solutions exist: they are Paretian solutions with empty support Supp(x°) = Ø

The weighted sum method finds only supported solutions

The weighted sum method and the KKT conditions are clearly related

• they both build a convex combination of the indicators

but the weighted sum method requires

- to compute the globally optimal points, instead of candidate locally optimal points
- 2 to impose strictly positive weights, instead of nonnegative ones

Therefore, the former returns a (often much) smaller region

# Example

The combined antigradient  $\nabla z_w = w \nabla f_1 + (1 - w) \nabla f_2$ is in the open cone identified by the original antigradients

Solve the problem graphically (or apply KKT keeping only the globally optimal solutions)

$$\begin{array}{rcl} \min z_w(x) & = & w \left(-2 x_1 - x_2\right) + \left(1 - w\right) \left(-x_1 - 2 x_2\right) \\ g_1(x) & = & -x_1 \ge 0 \\ g_2(x) & = & -x_2 \ge 0 \\ g_3(x) & = & x_1^2 + x_2 - 4 \ge 0 \end{array}$$



We obtain the parabola arc from  $A = \left(\frac{1}{4}, \frac{63}{16}\right)$  to B = (1, 3), without the two extreme points

Not the full Paretian region:  $X^{WS} \subset X^{\circ}$ 

Given a complete graph of three vertices and two cost functions, find the minimum spanning tree

$$\begin{array}{c|cccc} f(x) & (1,2) & (1,3) & (2,3) \\ \hline f_1 & 1 & 3 & 6 \\ \hline f_2 & 13 & 10 & 8 \\ \end{array}$$

There are three feasible solutions

| Х                        | $f_1$ | $f_2$ |
|--------------------------|-------|-------|
| $T_1 = \{(1,2), (1,3)\}$ | 4     | 23    |
| $T_2 = \{(1,2), (2,3)\}$ | 7     | 21    |
| $T_3 = \{(1,3), (2,3)\}$ | 9     | 18    |



Applying the definition, all solutions are Paretian:  $X^{\circ} = \{T_1, T_2, T_3\}$ 

# A combinatorial example

All solutions correspond to impacts with an empty lower left quadrant



The inverse transformation method yields the whole Paretian region:

$$X^{IT} = X^{\circ} = \{T_1, T_2, T_3\}$$

The KKT conditions return all feasible solutions (locally Paretian)

The weighted sum method solves the auxiliary parametric problem

$$\min z_{w}(x) = w f_{1}(x) + (1 - w) f_{2}(x)$$

that is

$$\min z_w(x) = (13 - 12w) x_{12} + (1 - 7w) x_{13} + (8 - 2w) x_{23}$$

where x is a spanning tree

It is a minimum spanning tree with parametric costs on the edges  $c_{ij}(w)$ 

The problem can be solved with Kruskal's algorithm

- sort the edges by increasing costs
- include the edges that do not close loops

#### A parametric version of Kruskal's algorithm

- let the weight vector w vary in the weight space W, here (0,1)
- describe the costs  $c_{ij}(w)$  of the three edges as a function of w



#### A parametric version of Kruskal's algorithm

• find the regions in W where each arc is the cheapest, second, etc.

$$c_{23}(w) = c_{13}(w) \Leftrightarrow w = \frac{2}{5}$$
$$c_{13}(w) = c_{12}(w) \Leftrightarrow w = \frac{3}{5}$$
$$c_{23}(w) = c_{12}(w) \Leftrightarrow w = \frac{1}{2}$$

- apply Kruskal's algorithm to each region
  - if  $w \in (0, 2/5]$ , select (2, 3) and (1, 3)
  - if  $w \in [2/5, 3/5]$ , select (1, 3); then:
    - if  $w \in [2/5, 1/2]$ , select (2, 3)
    - if  $w \in [1/2, 3/5]$ , select (1, 2)
  - if  $w \in [3/5, 1)$ , select (1, 2) and (1, 3)



・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

# A parametric version of Kruskal's algorithm

In summary

• if 
$$w \in (0, 2/5]$$
,  $x = \{(2, 3)(1, 3)\} = T_3$ 

• if 
$$w \in [2/5, 1/2]$$
,  $x = \{(1,3), (2,3)\} = T_3$ 

• if 
$$w \in [1/2, 3/5]$$
,  $x = \{(1, 3)(1, 2)\} = T_1$ 

• if 
$$w \in [3/5, 1)$$
,  $x = \{(1, 2)(1, 3)\} = T_1$ 

Solution  $T_2$  is not found: it is unsupported  $(\text{Supp}(T_2) = \emptyset)$ 

Indeed,  $T_2$  is nonoptimal for any convex combination of the indicators, even if it can be a good compromise  $e^{w f_1 + (l-w) f_2}$ 



Note: the profiles  $z_w$  on the right refer to solutions, not edges,  $z_w = z_w$ 

# Weighted sum method and Multi-Attribute Utility Theory

Under suitable conditions, an additive utility function exist

$$\max_{x \in X} u(f(x)) = \sum_{l \in P} w_l \tilde{u}(f_l(x))$$

that is very similar to the auxiliary problem

$$\min_{x\in X} z_w(x) = \sum_{I\in P} w_I f_I(x)$$

Is there a relation with the weighted sum method?

Not really, since in MAUT

- u(f(x)) assumes a weak order on impacts, not a partial order
- the weights  $w_l$  have a fixed value in W
- the normalised utilities  $\tilde{u}_l$  are nonlinear and yield indifference curves, that can reach unsupported solutions, unlike straight lines

But the basic concepts keep returning under different forms

# Advantages and disadvantages

The weighted sum method has several advantages

- it is absolutely general
- it is intuitive
- it usually allows to simply extend single-objective algorithms

but also disadvantages

- it requires a parametric version of the algorithm
- it requires to find all globally optimal solutions
- it finds only supported solutions: X<sup>WS</sup> ⊆ X°; moreover, as p increases, the fraction of supported solutions decreases:

$$\lim_{p\to+\infty}\frac{|X^{\rm WS}|}{|X^{\circ}|}$$

What about sampling W?

 Sampling further reduces the subset found, and it can be inefficient (finding the same solution for several different weight vectors)

#### The $\epsilon$ -constraint method

The idea is to keep one indicator and quality constraints on the others

The result is a necessary condition for a point to be globally Paretian (sufficient and necessary to be weakly Paretian)

#### Theorem

If  $x^{\circ}$  is globally Paretian for f in X,  $\epsilon_l = f_l(x^{\circ})$  and  $\ell \in P$ , then  $x^{\circ}$  is globally optimal for

 $\min z_{\epsilon}(x) = f_{\ell}(x)$   $x \in X$   $f_{l} \leq \epsilon_{l} \qquad l \in P \setminus \{\ell\}$ 

The proof is by contradiction: suppose that  $x^{\circ}$  is not globally optimal:

$$\exists x' \in X : \begin{cases} f_{\ell}(x') < f_{\ell}(x^{\circ}) \\ f_{l}(x') \le \epsilon_{l} = f_{l}(x^{\circ}) & l \in P \setminus \{\ell\} \end{cases} \Rightarrow x' \prec x^{\circ}$$

against the paretianity of  $x^\circ$ 

The auxiliary problem is parametric, to be solved for all vectors  $\epsilon \in \mathbb{R}^{p-1}$ ( $\infty^{p-1}$  values)

Consequently, the solutions provided form a hypersurface of  $\infty^{p-1}$  points  $\Im_{15/1}$ 

# Example



Replacing min  $f_1(x)$  with  $f_1(x) \leq \epsilon_1$  and solving

 $\min f_2(x) \\ x \in X \\ f_1(x) \leq \epsilon_1$ 

yields

- for small ε<sub>1</sub>, no solution
- for larger  $\epsilon_1$ , solutions mapping onto the arc from f(F) to f(B)
- for large  $\epsilon_1$ , solutions mapping onto part or all of segment  $\overline{f(B)f(C)}$

# Example



In this case, the  $\epsilon$ -constraint method returns all Paretian solutions

For example, min  $f_2$  with  $x \in X$  and  $f_1 \leq \epsilon$  yields

- for  $\epsilon < 4$ , no solution
- for  $4 \le \epsilon < 7$ , solution  $T_1$
- for  $7 \le \epsilon < 9$ , solution  $T_2$
- for  $9 \le \epsilon$ , solution  $T_3$

The same holds solving with respect to  $f_1(x)$ 

The lexicographic method also focuses on a single indicator

Is there a relation with the  $\epsilon$ -constraint method?

Not really, since lexicographic preference

- assumes a total order on impacts, not a partial order
- discriminates optimal impacts based on the secondary indicators
- does not impose aspiration levels  $\epsilon_l$  on the secondary indicators

But the basic concepts keep returning under different forms

# Advantages and disadvantages

The weighted sum method has several advantages

- it is absolutely general
- it is rather intuitive

but also disadvantages

- it requires a parametric version of the algorithm
- the additional constraints often make the basic algorithm unviable
- it requires to find all globally optimal solutions
- it finds also weakly Paretian solutions: X<sup>€C</sup> ⊇ X<sup>°</sup>; this can be refined changing the reference indicator ℓ and intersecting the regions obtained

What about sampling W?

Sampling can be inefficient

(finding the same solution for several different weight vectors)

It yields an underestimate of an overestimate of X°