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Multiple criteria optimisation

We assume
® a preference relation I1 that is no longer a weak order
® 3 certain environment: || =1 = f(x,®) reduces to f(x)
® a single decision-maker: |D| =1 = Iy reduces to I1

Decision-makers

Multiple

Simple/Single Multiple

Scenarios

Preference

If M is a preorder, we at least have nondominated solutions X°
but possibly incomparable with each other
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Paretian preference

Vilfredo Pareto made the first historical proposal of a complex preference
f<f < f<f foreachl € P

meaning that each indicator is a cost

This is easily extended to the case in which the indicators are
® all benefits
® mixed costs and benefits

It is a very “poor” preference (including few impact pairs)

In pratice, it is often a starting point: a simplified restriction from which
the real (richer) preference is built interacting with the decision-maker
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Theorem
The Paretian preference is a partial order

Indeed, it is

reflexive, because ;= ,Vf e F= (< fi,Vle P=f <X f,Vf € F

transitive, because f < ' and f' < " imply fi < f/ and f/ < f/",VI € P,
but this clearly implies f; < /', VI € P,

and therefore f < " Vf, f',f" € F

antisymmetric, because f < f' and f’ < f imply fi < f/ and

f < £,VI € P, but this clearly implies f; = f/ for each | € P,

and therefore f = f' Vf,f' € F

not complete, because counterexamples exist:

HEBEIHEHMNEH

Therefore, incomparable impacts are possible
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Domination

We can reformulate the concept of domination

The dominated solution set X \ X° includes the alternatives x for which

fi(x") < fi(x) forall l € P

Ix e X, eP:
{fr(X’) < fi(x)

The nondominated solution set X°, known as Paretian region,
includes the alternatives x for which

Vx' € X,3I' e P: fu(x) < fu(X') or f(x) = f(xX')

Unless for infinite chains, X° is nonempty
and contains reciprocally incomparable solutions
(or indifferent solutions that have exactly the same impact)

We aim to enumerate X° and then ask the decision-maker
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Paretian region enumeration

We will survey some methods to enumerate the Paretian region

Method Generality | Practical limits Result provided
definition finite slow for CO exact

inverse transformation p=2 human intervention exact

KKT conditions regular solving a system overestimate
weigthed sum general parametric problem underestimate

(inefficient sampling) | (bad for large p)

e-constraint general parametric problem overestimate
usually NP-hard (refined by
(inefficient sampling) | repetition)
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Applying the definition

For finite problems, X° can be found by pairwise comparisons,
of course taking © (p \X|2) time in the worst case

This can be huge in combinatorial problems, where |X| € © (2")

Example (choosing how to make a trip)

X Time Cost
Train 5.5 100
Car 4.0 150
Airplane | 1.0 300
Coach 5.0 180
Taxi 4.0 400

The definition implies
® 4.0 < 5.0 and 150 < 180 = Car < Coach

® 4.0 <4.0 and 150 < 400 = Car < Taxi
(equal times: the preference is strict, but we call it weak dominance)

® 1.0 < 4.0 and 300 < 400 = Airplane < Taxi

7/25



Inverse transformation method

This is a graphical method in the impact space RP
® it requires human intervention
® it can be applied only when the impact consists of two indicators

It consists of the following steps

@ compute the inverse x () of the impact function f (x)
(if it is not unique, compute all inverse functions)

@® build the image of X in F through the impact function f (x)
by drawing the constraints gj (x (f)) <0

© find graphically the nondominated impact subset F° C F, exploiting
the property that these impacts have an empty lower left quadrant

O find a parametric form 7° («) to describe F°
@ transform F° into X° through the inverse function x (f° («))

L)/( %) £ F ) "ﬁ«h »gub 70

(et wy)
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Inverse transformation method: example

minfi = x3+x

minf, = —x
g = 3i+4x-12<0
& = —x<0

@ compute the inverse x (f) of the impact function f (x)
i = =-
1 =xatxe X f>
h =-—x xx =h—-xx=f1+h
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Inverse transformation method: example

@ build the image of X in F by drawing the constraints gj (x (f)) <0

gl(x)=3F+4(A+hHh)—12<0 - fi <-3/4ff —H+3
g2(x)=—-f—-H <0 i+HL>0

® find the nondominated impacts F° with an empty lower left quadrant
5

F° is segment CD with C = (—2,2) and D = (2, —2)

This is where human intervention and p = 2 are required

10/25



Inverse transformation method: example

O describe F° in parametric form ° («)

{fl - with o € [-2,2]
5 =-a
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Inverse transformation method: example

@ transform F° into X° through the inverse function x (f° («))
X = x (F° (a)) = —£2 (a) ©=a
o o o o j o
x5 =x (f° () = 7 (a) + £ (a) =
with o € [-2,2]
This is segment AB with A = (—2,0) and B = (2,0)

Notice that X° has p — 1 dimensions

/]

¥

Both f; and f; improve downwards; they conflict rightwards or leftwards
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KKT conditions

The KKT conditions can be extended to Pareto preference
by repeating the derivation with minor changes

A locally Paretian point is a feasible solution x € X not dominated by
any other feasible solution in a suitably small neighbourhood

FU. X' A x forall X' € U, N X

Let X* denote the set of all locally Paretian points

Theorem
If X ={xeR":gj(x)<0forj=1,...,m} with fi(-), g(-) € C}(X),
then

XKKT 2 X* 2 X°

The KKT conditions are necessary for local paretianity
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Global, local and weak Paretian points

First, generalise the concepts of globally and locally optimal point

1

In the picture (notice that it shows the impacts, not the solutions!)
® D is dominated (there are impacts below and on the left of f (D))
® A and B are globally Paretian (the lower left quadrant is empty)
® E is locally Paretian (the quadrant is empty in a neighbourhood)

D is weakly Paretian (one indicator value is identical)
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Nonimprovement conditions

Theorem

If ¢ () is a feasible arc in x and V£ (x)Tp < 0 for all / € P,
then x is not a locally Paretian point

It is a sufficient condition to prove that £ («) is an improving arc for f(-)
in x, and therefore to filter x out of the candidate set XXKT

Notice that improving all indicators is not necessary for strict dominance:
Weakly Paretian points are dominated, but some indicators can't improve

Therefore, weakly Paretian points satisfy the KKT conditions
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Feasibility conditions

Feasibility is treated in the same way as in Mathematical Programming
® nonregular points are candidate

® a regular point x is feasible if and only if

Vgi(x)"p <0 forall j € Jo(x)
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First geometric interpretation

Denote by
e feasible cone Cieas(x) the set of vectors tangent to feasible arcs
(scalar products < 0 with all active constraint gradients)
® improving cone Gipr(x): the set of improving vectors
(scalar products < 0 with all objective gradient)
The first is close, the second open!

If a regular point is locally Paretian,
then its feasible cone and improving cone do not intersect

x € X* = Creas (X) N Gimpr (x) =0

Xy

minfi = —2xi—x
minf, = —x1—2x

g = —x1<0

& = —x<0

& = x12 +x—4<0

Check A= (2,0) and B =(1/2,15/4)
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Separating the improving and the feasible cone

In order to separate two cones, we need a separating hyperplane,
that has two opposite orthogonal vectors:

® vector  is on the opposite side of all p € Cieas
pTy <0forall p:p"Vgi(x) <0 forall j € Jy(x)
® vector — is on the opposite side of all p € Gpr
p’ (=) <O0forall p: VAi(x)" (—p) <O forall I € P

and now we can apply Farkas' lemma to both expressions, obtaining that
® vector +y falls in the cone of the gradients of the active constraints

= 0:y= > Vg (x)
Jj€Ja(x)
® vector —v falls in the cone of the gradients of the objectives
dw; >0: —y = Z w; V1 (x)
lep

and finally sum the two expressions
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KKT conditions

Jp; > 0,w; >0 ZW/Vf/(X)"r Z ,ungj(x) =0
leP JE€JA(x)

Once again, we introduce the complementarity conditions

ZW/Vf +Z,LLJVgJ

wigi(x) =0 j=1...,m
gi(x) <0 j=1,...,m

Notice that for any solution (x, w, 1), also (x, aw, au) is a solution,
that provides the same candidate point x

Then, introduce a normalisation condition
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Normalisation condition

p m
We could set >~ w; + > pj =1, but we know that x is regular:
=1 j=1

e if wy=0forall /€ P, then > ujVgi(x)= > pnjVg(x)=0,
j=1 JEJA(x)

® the active constraints should have linearly dependent gradients
® but in a regular point this is impossible!

The w; multipliers cannot be all equal to zero

Consequently, we add the normalisation condition

p
ZW/ =1
=1
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minfi = —2x1— X
minf, = —x1—2x

g = —x1<0

& = —x<0

g = x12 +x —4<0

Setting w; = w and wy =1 — w, the KKT conditions become
2w —1(1 —w) — p1 +2xu3 =

—w —2(1—w) — pp + 3

—p1x1

—H2X2

—130d +x2 — 4)

0<w

Hj

&(x)

I
©O o~ oo o oo

IN IV IA
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The first equation becomes

2xipu3 =w+14+pu; = puz3 >0and x3 >0

which implies ;1 =0 and x, = 4 — X12

The equations reduce to

w+1
X1 = ) M3

po=w—2+ 3
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Now we can split the problem with respect to the condition psx, =0

1
® in problem py > 0, we have that xo = 0= x3 =2 = u3 = %

5
but this implies 1 = ~—* < 0, unfeasible

® in problem uy; = 0, we have that pu3 = 2 — w, which implies

w+1

22— w)  withwe[0,1]

X2:4—x12

X1 =

This is an arc of the parabola xo = 4 — x?:
® it starts in A= (1/4,63/16) for w =0
® itendsin B=(1,3) forw=1
® since x; increases with w, the values of w € [0, 1]
correspond to the intermediate points
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This is an arc of the parabola x; = 4 — x?Z:
® it starts in A = (1/4,63/16) for w =0
® itendsin B=(1,3) forw=1
® since x; increases with w, the values of w € [0, 1]
correspond to the intermediate points

%)
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Equation balance

The KKT condition system has n+ p + m variables
® p variables for vector x
® p variables for vector w
® m variables for vector
and n+ 1 4+ m equalities
® n equations for the KKT conditions
® 1 equation for the normalisation condition

® m equations for the complementarity conditions

In general, it will have coP~! solutions describing a hypersurface
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