
Decision Methods and Models
Master’s Degree in Computer Science

Roberto Cordone
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Multiple criteria optimisation

We assume

• a preference relation Π that is no longer a weak order

• a certain environment: |Ω| = 1 ⇒ f (x , ω̄) reduces to f (x)

• a single decision-maker: |D| = 1 ⇒ Πd reduces to Π

If Π is a preorder, we at least have nondominated solutions X ◦

but possibly incomparable with each other
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Paretian preference

Vilfredo Pareto made the first historical proposal of a complex preference

f ⪯ f ′ ⇔ fl ≤ f ′l for each l ∈ P

meaning that each indicator is a cost

This is easily extended to the case in which the indicators are

• all benefits

• mixed costs and benefits

It is a very “poor” preference (including few impact pairs)

In pratice, it is often a starting point: a simplified restriction from which
the real (richer) preference is built interacting with the decision-maker
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Properties

Theorem
The Paretian preference is a partial order

Indeed, it is

• reflexive, because fl = fl , ∀f ∈ F ⇒ fl ≤ fl ,∀l ∈ P ⇒ f ⪯ f , ∀f ∈ F

• transitive, because f ⪯ f ′ and f ′ ⪯ f ′′ imply fl ≤ f ′l and f ′l ≤ f ′′l , ∀l ∈ P,
but this clearly implies fl ≤ f ′′l ,∀l ∈ P,
and therefore f ⪯ f ′′, ∀f , f ′, f ′′ ∈ F

• antisymmetric, because f ⪯ f ′ and f ′ ⪯ f imply fl ≤ f ′l and
f ′l ≤ fl , ∀l ∈ P, but this clearly implies fl = f ′l for each l ∈ P,
and therefore f = f ′, ∀f , f ′ ∈ F

• not complete, because counterexamples exist:[
0
1

]
⪯̸

[
1
0

]
and

[
1
0

]
⪯̸

[
0
1

]
⇒

[
0
1

]
▷◁

[
1
0

]

Therefore, incomparable impacts are possible
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Domination

We can reformulate the concept of domination

The dominated solution set X \ X ◦ includes the alternatives x for which

∃x ′ ∈ X ,∃l̄ ∈ P :

{
fl(x

′) ≤ fl(x) for all l ∈ P

fl̄(x
′) < fl̄(x)

The nondominated solution set X ◦, known as Paretian region,
includes the alternatives x for which

∀x ′ ∈ X ,∃l ′ ∈ P : fl′(x) < fl′(x
′) or f (x) = f (x ′)

Unless for infinite chains, X ◦ is nonempty
and contains reciprocally incomparable solutions
(or indifferent solutions that have exactly the same impact)

We aim to enumerate X ◦ and then ask the decision-maker
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Paretian region enumeration

We will survey some methods to enumerate the Paretian region

Method Generality Practical limits Result provided

definition finite slow for CO exact

inverse transformation p = 2 human intervention exact

KKT conditions regular solving a system overestimate

weigthed sum general parametric problem underestimate
(inefficient sampling) (bad for large p)

ϵ-constraint general parametric problem overestimate
usually NP-hard (refined by
(inefficient sampling) repetition)
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Applying the definition

For finite problems, X ◦ can be found by pairwise comparisons,

of course taking Θ
(
p |X |2

)
time in the worst case

This can be huge in combinatorial problems, where |X | ∈ Θ(2n)

Example (choosing how to make a trip)

X Time Cost
Train 5.5 100
Car 4.0 150
Airplane 1.0 300
Coach 5.0 180
Taxi 4.0 400

The definition implies

• 4.0 < 5.0 and 150 < 180 ⇒ Car ≺ Coach

• 4.0 ≤ 4.0 and 150 < 400 ⇒ Car ≺ Taxi
(equal times: the preference is strict, but we call it weak dominance)

• 1.0 < 4.0 and 300 < 400 ⇒ Airplane ≺ Taxi
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Inverse transformation method

This is a graphical method in the impact space Rp

• it requires human intervention

• it can be applied only when the impact consists of two indicators

It consists of the following steps

1 compute the inverse x (f ) of the impact function f (x)
(if it is not unique, compute all inverse functions)

2 build the image of X in F through the impact function f (x)
by drawing the constraints gj (x (f )) ≤ 0

3 find graphically the nondominated impact subset F ◦ ⊆ F , exploiting
the property that these impacts have an empty lower left quadrant

4 find a parametric form f ◦ (α) to describe F ◦

5 transform F ◦ into X ◦ through the inverse function x (f ◦ (α))

8 / 25



Inverse transformation method: example

min f1 = x1 + x2

min f2 = −x1

g1 = 3x21 + 4x2 − 12 ≤ 0

g2 = −x2 ≤ 0

f2

A B

f1

-2 2

3
x2

x1

−∇

−∇


1 compute the inverse x (f ) of the impact function f (x){
f1 = x1 + x2

f2 = −x1
⇔

{
x1 = −f2

x2 = f1 − x1 = f1 + f2
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Inverse transformation method: example

2 build the image of X in F by drawing the constraints gj (x (f )) ≤ 0{
g1(x) = 3f 22 + 4(f1 + f2)− 12 ≤ 0

g2(x) = −f1 − f2 ≤ 0
⇔

{
f1 ≤ −3/4f 22 − f2 + 3

f1 + f2 ≥ 0

3 find the nondominated impacts F ◦ with an empty lower left quadrant

f2

C

D

f1

(-2,2)

(2,-2)

F ◦ is segment CD with C = (−2, 2) and D = (2,−2)

This is where human intervention and p = 2 are required
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Inverse transformation method: example

4 describe F ◦ in parametric form f ◦ (α)

{
f ◦1 = α

f ◦2 = −α
with α ∈ [−2, 2]

f2

C

D

f1

(-2,2)

(2,-2)
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Inverse transformation method: example

5 transform F ◦ into X ◦ through the inverse function x (f ◦ (α)){
x◦1 = x1 (f

◦ (α)) = −f ◦2 (α)

x◦2 = x2 (f
◦ (α)) = f ◦1 (α) + f ◦2 (α)

⇒

{
x◦1 = α

x◦2 = α− α = 0

with α ∈ [−2, 2]

This is segment AB with A = (−2, 0) and B = (2, 0)

Notice that X ◦ has p − 1 dimensions

f2

C

D

f1

(-2,2)

(2,-2)

Both f1 and f2 improve downwards; they conflict rightwards or leftwards
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KKT conditions

The KKT conditions can be extended to Pareto preference
by repeating the derivation with minor changes

A locally Paretian point is a feasible solution x ∈ X not dominated by
any other feasible solution in a suitably small neighbourhood

∃Uϵ,x : x ′ ⊀ x for all x ′ ∈ Uϵ,x ∩ X

Let X ∗ denote the set of all locally Paretian points

Theorem
If X = {x ∈ Rn : gj(x) ≤ 0 for j = 1, . . . ,m} with fl(·), gj(·) ∈ C 1(X ),
then

XKKT ⊇ X ∗ ⊇ X ◦

The KKT conditions are necessary for local paretianity
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Global, local and weak Paretian points

First, generalise the concepts of globally and locally optimal point

In the picture (notice that it shows the impacts, not the solutions!)

• D is dominated (there are impacts below and on the left of f (D))

• A and B are globally Paretian (the lower left quadrant is empty)

• E is locally Paretian (the quadrant is empty in a neighbourhood)

• D is weakly Paretian (one indicator value is identical)

14 / 25



Nonimprovement conditions

Theorem
If ξ (α) is a feasible arc in x and ∇fl(x)

Tp < 0 for all l ∈ P,
then x is not a locally Paretian point

It is a sufficient condition to prove that ξ (α) is an improving arc for f (·)
in x , and therefore to filter x out of the candidate set XKKT

Notice that improving all indicators is not necessary for strict dominance:
Weakly Paretian points are dominated, but some indicators can’t improve

Therefore, weakly Paretian points satisfy the KKT conditions
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Feasibility conditions

Feasibility is treated in the same way as in Mathematical Programming

• nonregular points are candidate

• a regular point x is feasible if and only if

∇gj(x)
Tp ≤ 0 for all j ∈ Ja(x)
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First geometric interpretation
Denote by

• feasible cone Cfeas(x) the set of vectors tangent to feasible arcs
(scalar products ≤ 0 with all active constraint gradients)

• improving cone Cimpr(x): the set of improving vectors
(scalar products < 0 with all objective gradient)

The first is close, the second open!

If a regular point is locally Paretian,
then its feasible cone and improving cone do not intersect

x ∈ X ∗ ⇒ Cfeas (x) ∩ Cimpr (x) = ∅

min f1 = −2x1 − x2

min f2 = −x1 − 2x2

g1 = −x1 ≤ 0

g2 = −x2 ≤ 0

g3 = x2
1 + x2 − 4 ≤ 0

Check A = (2, 0) and B = (1/2, 15/4)
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Separating the improving and the feasible cone
In order to separate two cones, we need a separating hyperplane,
that has two opposite orthogonal vectors:

• vector γ is on the opposite side of all p ∈ Cfeas

pTγ ≤ 0 for all p : pT∇gj(x) ≤ 0 for all j ∈ Ja(x)

• vector −γ is on the opposite side of all p ∈ Cimpr

pT (−γ) ≤ 0 for all p : ∇fl(x)
T (−p) < 0 for all l ∈ P

and now we can apply Farkas’ lemma to both expressions, obtaining that

• vector γ falls in the cone of the gradients of the active constraints

∃µj ≥ 0 : γ =
∑

j∈Ja(x)

µj∇gj (x)

• vector −γ falls in the cone of the gradients of the objectives

∃wl ≥ 0 : −γ =
∑
l∈P

wl∇fl (x)

and finally sum the two expressions
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KKT conditions

∃µj ≥ 0,wl ≥ 0 :
∑
l∈P

wl∇fl (x) +
∑

j∈Ja(x)

µj∇gj (x) = 0

Once again, we introduce the complementarity conditions

p∑
l=1

wl∇f (x) +
m∑
j=1

µj∇gj (x) = 0

µjgj (x) = 0 j = 1, . . . ,m

gj (x) ≤ 0 j = 1, . . . ,m

wl ≥ 0 l = 1, . . . , p

µj ≥ 0 j = 1, . . . ,m

Notice that for any solution (x ,w , µ), also (x , αw , αµ) is a solution,
that provides the same candidate point x

Then, introduce a normalisation condition
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Normalisation condition

We could set
p∑

l=1

wl +
m∑
j=1

µj = 1, but we know that x is regular:

• if wl = 0 for all l ∈ P, then
m∑
j=1

µj∇gj (x) =
∑

j∈Ja(x)

µj∇gj (x) = 0,

• the active constraints should have linearly dependent gradients

• but in a regular point this is impossible!

The wl multipliers cannot be all equal to zero

Consequently, we add the normalisation condition

p∑
l=1

wl = 1
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Example

min f1 = −2x1 − x2

min f2 = −x1 − 2x2

g1 = −x1 ≤ 0

g2 = −x2 ≤ 0

g3 = x2
1 + x2 − 4 ≤ 0

Setting w1 = w and w2 = 1− w , the KKT conditions become

−2w − 1(1− w)− µ1 + 2x1µ3 = 0

−w − 2(1− w)− µ2 + µ3 = 0

−µ1x1 = 0

−µ2x2 = 0

−µ3(x
2
1 + x2 − 4) = 0

0 ≤ w ≤ 1

µj ≥ 0

gj (x) ≤ 0
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Example

The first equation becomes

2x1µ3 = w + 1 + µ1 ⇒ µ3 > 0 and x1 > 0

which implies µ1 = 0 and x2 = 4− x21

The equations reduce to x1 =
w + 1

2
µ3

µ2 = w − 2 + µ3
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Example

Now we can split the problem with respect to the condition µ2x2 = 0

• in problem µ2 > 0, we have that x2 = 0 ⇒ x1 = 2 ⇒ µ3 =
w + 1

4
,

but this implies µ2 =
5w − 7

4
< 0, unfeasible

• in problem µ2 = 0, we have that µ3 = 2− w , which impliesx1 =
w + 1

2(2− w)
x2 = 4− x21

with w ∈ [0, 1]

This is an arc of the parabola x2 = 4− x21 :

• it starts in A = (1/4, 63/16) for w = 0

• it ends in B = (1, 3) for w = 1

• since x1 increases with w , the values of w ∈ [0, 1]
correspond to the intermediate points
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Example
This is an arc of the parabola x2 = 4− x21 :

• it starts in A = (1/4, 63/16) for w = 0
• it ends in B = (1, 3) for w = 1
• since x1 increases with w , the values of w ∈ [0, 1]

correspond to the intermediate points

A= (1/4,63/16)
B = (1,3)

f2−∇


f1−∇


x2

x1
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Equation balance

The KKT condition system has n + p +m variables

• n variables for vector x

• p variables for vector w

• m variables for vector µ

and n + 1 +m equalities

• n equations for the KKT conditions

• 1 equation for the normalisation condition

• m equations for the complementarity conditions

In general, it will have ∞p−1 solutions describing a hypersurface
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