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First geometric interpretation

. B 2 2

minf(x) = (x1—1)" +x3 vf(Crgde
gi(x) = —x{-x+4<0
&(x) = x—3/2<0

The objective f worsens when moving farther from (1, 0)

® Point (0,2): g1 active (move up), g» nonactive (free):
Creas(x) and Gimpr(x) intersect

® Point (—3/2,—/7/2): g1 active (move down-right), g» active (move left):
Creas(x) and Gimpr(x) do not intersect: candidate (globally optimal)

® Point (—2,—2): g1 and g» nonactive (free):
Creas(x) and Gimpr(x) do not intersect

® Point (—2,0): g1 active (move left), g» nonactive (free):
Creas(x) and Gimpr(x) (open!) do not intersect:
candidate (but not even locally optimal)
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A filtering approach

We have modified the filtering approach using analytic conditions
® nonregular points are identified and considered as candidates
® in regular points, analytic conditions identify feasible arcs

® analytic conditions identify improving arcs

XHKKT .= X\ NonRegular(g, X);

For each x € XKKT (continuous set for x)
For each p € R" : Vg; (x)T p <0,Vj € Ja(x) (arc £&(cx) in x feasible for X)
If VF(X)Tpe <0 (&(«) is improving in x for f(-))

then XKKT .= XKKT \ {x}
XHKKT .= XKKT | NonRegular(g, X);
Return XKKT
But still we need to loop on continuous sets
e feasible regular solutions x € XKKT
® potential tangent vectors p € R”

We need a powerful change of perspective
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Farkas' lemma

Given f ¢ R" and g; € R" with j =1,...,m

I =0:Ff=> g < p F<0Vp:p'g <0V
j=1

Vector f is conic combination of vectors g; if and only if
all vectors pointing away from all g; point away from f

The direct implication is trivial

The converse implication is hard to prove
(we give it for granted)

We apply the converse implication to
® f=—Vf(x*) (antigradient)
° g =Vg(x7)
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Farkas' lemma and local optimality

A vector p with p"Vgj(x) < 0, Vj € J5(x) is tangent to a feasible arc

We remove point x when Vf (x)Tp < 0 for all such vectors

Therefore, x is candidate when Vf(x)Tp > 0 for all feasible tangents
p'VFf(x*)<0forall p: p'Vgi(x*) <0, Vj€ Ja(x)

that is exactly the second expression mentioned in Farkas' lemma
Replace it with the equivalent first expression

A regular point x is candidate for local optimality when

duj > 0: VF(x)+ Z 1 Vei(x) =0
J€Ja(x)

Don't loop on all x and p: solve a system of equations in x4 and x
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Second geometric interpretation

® The antigradient —Vf (x) is the direction of quickest improvement

® The gradients of the active constraint Vgj (x)
are the directions of quickest violation

® Multipliers y1; > 0 let combination >~ 1;Vgj(x) describe a cone,
J€Ja(x)
denoted as (,, the cone of the gradients of the active constraints

® In candidate points, the antigradient of the objective falls in C,

—VF(x)= Y wVg(x)

jEJa(X)

When —Vf (x) € Cg(x), the objective improves only violating constraints

Hence, no vector is tangent to a feasible and improving arc
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The antigradient —Vf points towards (1, 0)

Point (0,2): g1 active; Cg(x) is the half-line pointing downwards

—Vf(x) does not belong to Cg(x)

Point (—3/2, —v/7/2): g1 and g active; C; points up, right, partly left:
—Vf(x) falls inside Cgz(x): candidate (globally optimal)

Point (—2,—2): g1 and g» nonactive; Cz(x) is empty:

—Vf(x) does not belong to Cg(x)

Point (—2,0): g1 active, g» nonactive: Cg(x) is the half-line pointing right

—Vf(x) falls inside Cg(x): candidate (but not even locally optimal)
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Minor tweaks (1)

The analytic conditions still have a problem:
V)4 YD Ve (x) =0
jeJa(X)
The sum applies only to the constraints active in an unknown point x!

How to find them?
The conditions are reformulated

@ adding also the gradients of the nonactive constraints
VF(x)+ Z Vg (x)=0
j=1

@® forcing to zero the multipliers of the nonactive constraints

These equalities are called the complementarity conditions,
as they are equivalent to gj (x) < 0= p; =0
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Minor tweaks (2)

Equality constraints can be replaced by pairs of inequalities

(o) gy (x) =hi
m =0 {gj,, ()= —hi(x) <0

X
N
o

but it is simpler to
@ use a single multiplier );

@ relax the nonnegativity condition on the multiplier: \; € R

In fact
Vg () = Vhi(x)
Vg (x) =—Vhi(x)

and
1V g (x) + pjr Vg (x) = (g — pyr) Vhi (x) = A\iVhi (x)

with pjr >0, pjr > 0 and pyy — pjrr = A free in R
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Karush-Kuhn-Tucker conditions

Theorem
Let
e fecCHX)
® X ={x€eR":hj(x)=0with h € C}(X) fori=1,...,s,
g (x) <0, with g; € C*(X) forj=1,...,m}
® x* is a locally optimal point for f in X
® x* is a regular point in X
Then there exist multipliers \; € R and p; > 0 such that

}:AVh +§:%v& )=0

j=1
hi(x*)=0 i=1,...,s
g (x*)=0 j=1,....m
g(x)<o0o j=1,....m
i >0 j=1....m

It is no longer required to scan continuous sets of points, arcs or vectors:
we just need to solve a system of equalities and inequalities
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Balance between equations and variables

The system consists of n+ s + m equations

® n equations from Farkas’ lemma

® s equations from equality constraints

® m equations from the complementarity conditions
imposed on n+ s+ m variables

® n variables to determine the solution x

® s variables to determine the multiplier vector A

® m variables to determine the multiplier vector p

and is therefore balanced

The 2m inequalities
® m constraints on the solution
® m nonnegativity conditions on the multipliers

remove solutions, but do not decrease the freedom degrees

The number of solutions is probably finite
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Relevant particular cases

® unconstrained problems are solved by the classical condition
on first derivatives
of .
Vf(x)=0& — =0foralli=1,...,n
()X,'
® linear programming is solved imposing:
® Farkas' lemma, that corresponds to the dual constraints
® the complementarity conditions, that correspond to complementary
slackness
® the feasibility constraints, that correspond to the primal constraints
® the nonnegativity conditions, that correspond to the nonnegativity of
the dual variables
® on discrete problems the conditions are correct, but useless:
the integrality constraint

X CZ" < hi(x)=sin(mx;)) =0
occurs explicitly in the system and every feasible point is candidate:
the KKT conditions reduce to the exhaustive algorithm

This is obvious: isolated points are locally optimal!
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minf(x) = (q—172+x3
a(x) = —X2—x22+4§0
&(x) = x—-3/2<0

See the detailed computations in the lecture notes
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