
Decision Methods and Models
Master’s Degree in Computer Science

Roberto Cordone
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First geometric interpretation

min f (x) = (x1 − 1)2 + x22
g1 (x) = −x21 − x22 + 4 ≤ 0

g2 (x) = x1 − 3/2 ≤ 0

The objective f worsens when moving farther from (1, 0)

• Point (0, 2): g1 active (move up), g2 nonactive (free):
Cfeas(x) and Cimpr(x) intersect

• Point (−3/2,−
√
7/2): g1 active (move down-right), g2 active (move left):

Cfeas(x) and Cimpr(x) do not intersect: candidate (globally optimal)

• Point (−2,−2): g1 and g2 nonactive (free):
Cfeas(x) and Cimpr(x) do not intersect

• Point (−2, 0): g1 active (move left), g2 nonactive (free):
Cfeas(x) and Cimpr(x) (open!) do not intersect:
candidate (but not even locally optimal)
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A filtering approach

We have modified the filtering approach using analytic conditions

• nonregular points are identified and considered as candidates

• in regular points, analytic conditions identify feasible arcs

• analytic conditions identify improving arcs

XKKT := X\ NonRegular(g ,X );

For each x ∈ XKKT (continuous set for x)

For each p ∈ Rn : ∇gj (x)
T p ≤ 0, ∀j ∈ Ja (x) (arc ξ(α) in x feasible for X )

If ∇f (x̃)Tpξ < 0 (ξ(α) is improving in x for f (·))
then XKKT := XKKT \ {x}

XKKT := XKKT ∪ NonRegular(g ,X );

Return XKKT

But still we need to loop on continuous sets

• feasible regular solutions x ∈ XKKT

• potential tangent vectors p ∈ Rn

We need a powerful change of perspective
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Farkas’ lemma

Given f ∈ Rn and gj ∈ Rn with j = 1, . . . ,m

∃µj ≥ 0 : f =
m∑
j=1

µjgj ⇔ pT f ≤ 0 ∀p : pTgj ≤ 0 ∀j

Vector f is conic combination of vectors gj if and only if
all vectors pointing away from all gj point away from f

The direct implication is trivial

The converse implication is hard to prove
(we give it for granted)

We apply the converse implication to

• f = −∇f (x∗) (antigradient)

• gj = ∇gj (x
∗)
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Farkas’ lemma and local optimality

A vector p with pT∇gj(x) ≤ 0, ∀j ∈ Ja(x) is tangent to a feasible arc

We remove point x when ∇f (x)T p < 0 for all such vectors

Therefore, x is candidate when ∇f (x)T p ≥ 0 for all feasible tangents

pT∇f (x∗) ≤ 0 for all p : pT∇gj (x
∗) ≤ 0, ∀j ∈ Ja(x)

that is exactly the second expression mentioned in Farkas’ lemma

Replace it with the equivalent first expression

A regular point x is candidate for local optimality when

∃µj ≥ 0 : ∇f (x) +
∑

j∈Ja(x)

µj∇gj (x) = 0

Don’t loop on all x and p: solve a system of equations in µ and x
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Second geometric interpretation

• The antigradient −∇f (x) is the direction of quickest improvement

• The gradients of the active constraint ∇gj (x)
are the directions of quickest violation

• Multipliers µj ≥ 0 let combination
∑

j∈Ja(x)

µj∇gj (x) describe a cone,

denoted as Cg , the cone of the gradients of the active constraints

• In candidate points, the antigradient of the objective falls in Cg

−∇f (x) =
∑

j∈Ja(x)

µj∇gj (x)

When −∇f (x) ∈ Cg (x), the objective improves only violating constraints

Hence, no vector is tangent to a feasible and improving arc
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Example

The antigradient −∇f points towards (1, 0)

• Point (0, 2): g1 active; Cg (x) is the half-line pointing downwards
−∇f (x) does not belong to Cg (x)

• Point (−3/2,−
√
7/2): g1 and g2 active; Cg points up, right, partly left:

−∇f (x) falls inside Cg (x): candidate (globally optimal)

• Point (−2,−2): g1 and g2 nonactive; Cg (x) is empty:
−∇f (x) does not belong to Cg (x)

• Point (−2, 0): g1 active, g2 nonactive: Cg (x) is the half-line pointing right
−∇f (x) falls inside Cg (x): candidate (but not even locally optimal)
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Minor tweaks (1)

The analytic conditions still have a problem:

∇f (x) +
∑

j∈Ja(x)

µj∇gj (x) = 0

The sum applies only to the constraints active in an unknown point x!

How to find them?
The conditions are reformulated

1 adding also the gradients of the nonactive constraints

∇f (x) +
m∑
j=1

µj∇gj (x) = 0

2 forcing to zero the multipliers of the nonactive constraints

µjgj (x) = 0, for j = 1, . . . ,m

These equalities are called the complementarity conditions,
as they are equivalent to gj (x) < 0 ⇒ µj = 0
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Minor tweaks (2)

Equality constraints can be replaced by pairs of inequalities

hi (x) = 0 ⇔

{
gj′i (x) = hi (x) ≤ 0

gj′′i (x) = −hi (x) ≤ 0

but it is simpler to

1 use a single multiplier λi

2 relax the nonnegativity condition on the multiplier: λi ∈ R

In fact {
∇gj′i (x) = ∇hi (x)

∇gj′′i (x) = −∇hi (x)

and

µj′i
∇gj′i (x) + µj′′i

∇gj′′i (x) =
(
µj′i

− µj′′i

)
∇hi (x) = λi∇hi (x)

with µj′i
≥ 0, µj′′i

≥ 0 and µj′i
− µj′′i

= λi free in R

9 / 13



Karush-Kuhn-Tucker conditions
Theorem
Let

• f ∈ C 1 (X )
• X = {x ∈ Rn : hi (x) = 0 with hi ∈ C 1 (X ) for i = 1, . . . , s,

gj (x) ≤ 0, with gj ∈ C 1 (X ) for j = 1, . . . ,m}
• x∗ is a locally optimal point for f in X
• x∗ is a regular point in X

Then there exist multipliers λi ∈ R and µj ≥ 0 such that

∇f (x∗) +
s∑

i=1

λi∇hi (x
∗) +

m∑
j=1

µj∇gj (x
∗) = 0

hi (x
∗) = 0 i = 1, . . . , s

µjgj (x
∗) = 0 j = 1, . . . ,m

gj (x
∗) ≤ 0 j = 1, . . . ,m

µj ≥ 0 j = 1, . . . ,m

It is no longer required to scan continuous sets of points, arcs or vectors:
we just need to solve a system of equalities and inequalities
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Balance between equations and variables

The system consists of n + s +m equations

• n equations from Farkas’ lemma

• s equations from equality constraints

• m equations from the complementarity conditions

imposed on n + s +m variables

• n variables to determine the solution x

• s variables to determine the multiplier vector λ

• m variables to determine the multiplier vector µ

and is therefore balanced

The 2m inequalities

• m constraints on the solution

• m nonnegativity conditions on the multipliers

remove solutions, but do not decrease the freedom degrees

The number of solutions is probably finite
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Relevant particular cases

• unconstrained problems are solved by the classical condition
on first derivatives

∇f (x) = 0 ⇔ ∂f

∂xi
= 0 for all i = 1, . . . , n

• linear programming is solved imposing:
• Farkas’ lemma, that corresponds to the dual constraints
• the complementarity conditions, that correspond to complementary

slackness
• the feasibility constraints, that correspond to the primal constraints
• the nonnegativity conditions, that correspond to the nonnegativity of

the dual variables

• on discrete problems the conditions are correct, but useless:
the integrality constraint

X ⊆ Zn ⇔ hi (x) = sin (πxi ) = 0

occurs explicitly in the system and every feasible point is candidate:
the KKT conditions reduce to the exhaustive algorithm

This is obvious: isolated points are locally optimal!
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Example

min f (x) = (x1 − 1)2 + x22
g1 (x) = −x21 − x22 + 4 ≤ 0

g2 (x) = x1 − 3/2 ≤ 0

See the detailed computations in the lecture notes
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