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Mathematical Programming

We assume

® a3 preference relation N with a known consistent utility function u (f)
® a certain environment: |Q| =1 = f(x,®) reduces to f(x)
® a single decision-maker: |D| =1 = My reduces to I

Decision-makers

Multiple

Simpleggingle Multiple

Scenarios

Complex,

Preference
The decision problem reduces to classical optimisation
max u (f (x))
xeX

We discuss a solving technique that is
® very general
® complex and inefficient
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Basic assumptions

In mathematics, the most common form is

min f (x)
xeX

where f (x) replaces —u (f (x))

(It is not the original f!)

We also assume regularity for the objective and the feasible region:

0 f(x) € CY{X)

O X ={xeR":g(x)<0,j=1,...,m} with gj(x) € C}(X)
These are very general assumptions as

127

g(x)<a
g(x) > a

h,‘(X) =0

xeZ"

=

554
=

min —f(x)

gi(x)—a<0
a—gi(x)<0

hi(x) <0
{—h;(x) <0

sin(mx) =0

(computationally useless!)
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Global and local optimum points

Given a set X C R"” and a function f : X - R
® global optimum point is a point x° € X such that

f(x°)<f(x) forallxeX

1/

e

4/25



Global and local optimum points

Given a set X C R"” and a function f : X — R

® global optimum point is a point x° € X such that
f(x°)<f(x) forallxeX
® |ocal optimum point is a point x* € X such that
Je>0:F(x")<f(x) perognixe XNl .

Uy e = {x € R": ||x — x*|| < €} is a neighbourhood of x* of radius ¢

||Ix — x*|| is the norm of vector x — x*
(distance between x and X)

All global optimum points are also local optimum points: X° C X*
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The general process

Instead of X°, we pursue necessary conditions for local optimality

Global optimum = Local optimum = Candidate point
X° C X* C XHKT

Then, we enumerate XKKT

The Karush-Kuhn-Tucker (KKT) conditions identify candidate points
XKKT

exhaustively to find X°

@ solve the conditions to build the set of candidate points

@ scan one by one the points in XKKT

© the best ones yield X°

comparing their values

We hope that XXX js finite or f (x) easy to optimise in it

The basic tool will be linear approximation in small neighbourhoods

This is why we will get false positives

6/25



Taylor's (first-order) series expansion

Any regular function can be locally approximated in X by its tangent line

What happens to f(x) moving a bit out of X7
If f:R— Rand f € C*(Us,.), then

F(x) = F(%) + F(R)(x = %) + Ru(Ix — %)

with lim
X—X ‘X —

We will not consider them
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Taylor's (first-order) series expansion

For functions of many variables, the first-order expansion becomes
- T . -
fF(x)=f(%)+ (VF(X)" (x =%)+ Ru(llx = X[])

where P B
im R =5 _
X—X ||X — XH

and Vf (x) is the gradient vector

of

Ixi
Vi(x)=1] ...
of
Oxp

It is the direction of quickest increase for f(-)
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Regular arcs

The main difference is that R” offers many ways to move away from X
Infinite straight lines and many more curves!

Given a point ¥ € R", an arc in X is a parametric curve £ : Rt — R”,

&1 (a)
that is £ (o) = ... |, such that £(0) = X and & () € CH(RT)

&n (@)

An arc £ () is feasible for a given region X C R"
when the curve remains in X for small «

Jar>0:&(a) € X Va0 ar)

An arc £ (o) is improving for a given function f : X — R
when f is strictly better in £ (a) than in X for all small positive «

Ja; >0:f(¢(a)) < F(X) VYae(0;a;)
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Let X = {x € R : x} + x3 >4} and f (x) = X + x3

X

*1

The rectilinear arc E = %+ a[11]’ = [f1 +a % +a]  is
e feasible (with o < 2 —/2) and improving in % = (-2, —2)
e feasible and nonimproving in X = (0,2)
® nonfeasible and improving (with & < 1) in X = (—2,0)
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Why not restricting to lines?

Nonlinear equalities imply that no feasible rectilinear arc exists

x

Example: X = {x € R2: x2 + x2 = 4}

For any constant vector d, the points of line £ (o) = X + ad, are unfeasible

()?1 + ad1)2 + ()?2 + ad2)2 =4 Vae€e [O; &f)
implies
B+ a? (df + d2) + 20 (di%1 + dh%e) = £ Va € [0;ar)
that is
a(df +d3) +2(di%1 + dok) =0 Va € [0; &)
which is impossible
Lines are not enough for our purpose
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A necessary local optimality condition

Theorem:
If x € X CR", f(-) € C*(X) and £ () is an arc in X, feasible for X and
improving for f(-), then X is not locally optimal for f(+) in X.

By assumption, for suitable values &r > 0 and @; > 0, we have
e ¢ (a) feasible: £ (a) € X for all a € [0, ar)
® ¢ (a) improving: f (& (a)) < f(X) for all « € (0, &)
Since £ (a) is a continuous arc
Iimog(a) =X & Ve>0,3a.:||&(a)—X| <e Vae(0,ac)
a—
that is, & (a) € Us,c,Va € (0, &)
Now a = 1 min (ar, &, Gc) satisfies all three conditions
s a<ar=¢(a)eX
° a<a=f(f(a)<f(X)
® o< A = E(a) €U,
but this contradicts local optimality

f(x)>f(X) forall xeUz, N X
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A filtering approach

This suggests a possible approach to find candidate points:
remove from X all the points that are provably nonoptimal

XKKT = X
For each x € XXKT (continuous set for x)

For each arc £(a) in x feasible for X (continuous set for £, interval for o)

If £(e) is improving in x for f(-) (interval for «)
then XKKT .= XKKT \ [x}
Return XKKT

This is obviously not an algorithm: it loops on continuous sets!

Then, replace the loops with more efficient analitic conditions,
that will be all based on first-order approximations
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Tangent direction

Given an arc & (@) in X, its tangent direction is

£1(0)
pPe = -
£,(0)

Straight lines £ (o) = X + ad have tangent direction d

In fact, arcs generalise directions
Example: The arc in X = (2,0)

con =] 22

2sin o

describes the circumference with centre in the origin and radius 2

Its tangent direction is
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Analitic condition for improvement

Theorem
If x* is locally optimal in X for f(-) and &(«) is a feasible arc in x* for X,
then

V() pe >0

In a locally optimal point, feasible arcs keep close to the gradient of f
(angle <90°), so that the objective cannot feasibly improve

Since the arc is feasible, £ (o) € X for small «
Since the arc is regular and x* locally optimal, f (£ («)) > f (x*) for small a
Apply Taylor's expansion to f (£ (a)) ina =0
df
FeO ta | 4 Ri(E @) ~£(0) > £ =

a=0

= VF (x) pe + TLE(0) =¢(0) (al ©

As o converges to 0, the inequality is preserved

Ri (€ (c) — £(0)) 1€ (a) — £ 0)] o
L [ ELEA O
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minf(x) = x
a(x) = xF+x3<4

with VFT = [01]

e Arc ¢(a) =% +al —1] is improving in X = (—2,0):
therefore, X is not locally optimal

VA(=2,00Tpe =[01]-[1 —1]" =-1<0

° arc £(a) =%+ a[11]" is nonimproving in & = (0, —2):
X could be locally optimal (it remains candidate until disproval)

VF(0,-2)Tpe=[01]-[11]" =1>0
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A filtering approach

For a feasible arc & ()
® x* locally optimal = Vf(X)"pe > 0,
o conversely, V(%) pe < 0= x* not locally optimal

This yields a sufficient condition to remove points

XKKT .= X,
For each x € XKKT (continuous set for x)
For each arc £(a) in x feasible for X (continuous set for &, interval for )
If £&(«) is improving in x for f(-) (interval for )
then XKKT .= XKKT \ {x}
Return XXKT

can be simplified (possibly missing some removals) to

XKKT .= X;

For each x € XKKT

(continuous set for x)

For each arc £(a) in x feasible for X (continuous set for &, interval for o)

If VF(%)Tpe <0 (&(«) is improving in x for f(-))
then XKKT = XKKT \ {x}

Return XKKT

Then, we try and do the same for feasibility 17,5



Characterisation of the feasible arcs

Given the analytic description of the feasible region
X={xeR":gi(x)<0forj=1,...,m}

we approximate each function gj(-) with Taylor’s expansion

However, feasibility differs from improvement in two regards
® it involves many inequalities, instead of a single objective

® it requires weak conditions, instead of a strict one

Given point X, we partition the constraints into two classes
@ the active constraints (J,(X)) are exactly satisfied: g; (X) =0

@® the nonactive constraints are largely satisfied: gj (X) < 0
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L(x)={j€e{1,...,m}: gi(x) =0}

minf(x) = (q—17°+x3
g1 (x) —x} - x34+4<0
&(x) = x1—3/2<0

The active constraints in various points are:
e for x = (—2,—2), no active constraint: J,(—2,—2) =10
e for x = (—2,0), one active constraint: J,(—2,0) = {1}
e for x = (3/2,1/7/2), two active constraints: J,(3/2,v7/2) = {1,2}
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Characterisation of the feasible arcs

Theorem
If £ () is a feasible arc in X for X, then Vg; ()"()Tpf < 0 for all j € Ja(X)

Feasible arcs keep far away from the gradients of all active constraints g;j
(angle > 90°), so that such constraints cannot be violated

If £ () is a feasible arc in X for X, there exists & > 0 such that
g (£(a)) <0 forall e [0;ar) and for j=1,...,m

which implies

g (€(0) =g E0)+ B atR(E(a)—£(0) =

da a0
=g (%) +aVg (%) pe+ Ri({(a) —€(0) <0

For small «, the inequality is guaranteed for all nonactive constraints,
because gj (X) < 0 dominates the other terms
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Characterisation of the feasible arcs

For the active constraints, gj (X) = 0, so that
g (£()) = a(Vgi (%) pe + Ri(£(a) —£(0)) <O

Dividing by o and computing the limit as « converges to 0:

m, | Ve (7 pe + =S ON g ()7 <0

li
a—0

Special case: equality constraints h; (x) = 0 are always active and
can be treated as pairs of active inequalities: hj (x) <0 and —h; (x) <0

Vhi (X T <0
() e =0 Oh(%) e =0
=Vhi(X) p: <0

But the analytic condition is only necessary for feasibility, not sufficient!
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Example

For any feasible arc £ (), vector pe satisfies the conditions above,
but a vector p that satisfies them is not always tangent to a feasible arc

minf (x) = x
G = (-1 +(e-2)<0
2(x) = (-17-(x-2)<0
&a(x) = —x<0

Since g1 (A) = & (A) = 0 and g3 (A) = -1, J,(A) ={1,2}
Ve (x) = [3(x—1)° 1], Vg (x) = [3(x1 — 1)* —1]

Vector p = [10]” satisfies the conditions:

Vgl(A)Tp:[ou{l <0

0

Vg2(A)Tp:[0—11[;]so

but all arcs € with tangent vector ps = [10]” are unfeasible
Why? The linear approximation!  22/25



Regular points

Luckily, the problem concerns only some degenerate points

A point is regular when it satisfies the constraint qualification condition:
the gradients of all active constraints are linearly independent

Theorem
If X is a regular point, then Vg; ()?)Tp < 0 for all j € J,(X) if and only if
there exists a arc £ («) in X feasible for X with tangent direction p:; = p

The necessary conditions for feasibility are also sufficient in regular points

Problem: if equalities are turned into pairs of inequalities,
do all points become nonregular?

No, the equality guarantees the existence of a feasible arc lying on it
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A filtering approach

Given the previous results
® the analytic conditions can be used to check feasibility in all regular points

® nonregular points must be explicitly tested: they are candidates by default

XKKT .= X;
For each x € XKKT (continuous set for x)
For each arc () in x feasible for X (continuous set for &, interval for )
If VF(X)Tpe <0 (&(«@) is improving in x for f(-))
then XKKT .= XKKT \ {x}
Return XKKT

can be simplified (possibly missing some removals) to

XHKKT .= X\ NonRegular(g, X);
For each x € XKKT
For each p € R" : Vg; ()T p <0,Vj € Ja(x) (arc &(cx) in x feasible for X)
If VF(X)Tpe <0 (&() is improving in x for f(-))
then XKKT .= XKKT \ {x}

XHKKT .= XKKT U NonRegular(g, X);
XKKT

(continuous set for x)

Return
24/25



First geometric interpretation

Denote by
e feasible cone Coas(x) the set of vectors tangent to feasible arcs
(scalar products < 0 with all active constraint gradients)
® improving half-plane G,pr(x): the set of improving vectors
(scalar products < 0 with the objective gradient)
The first is close, the second open!
If a regular point is locally optimal,
then its feasible cone and improving half-space do not intersect

x € X* = Creas (X) N Gimpr (x) =0

. B 2, 2
minf(x) = (x1—1)" +x3 oo
g(x) = —f-—x+4<0
&(x) = x—3/2<0
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