Decision Methods and Models Master's Degree in Computer Science

Roberto Cordone

DI - Università degli Studi di Milano

Lesson 7: [M](#page-1-0)athematical Programming (1) M[ilan](#page-0-0)[o](#page-1-0)[, A](#page-0-0)[.A](#page-24-0)[. 2](#page-0-0)[02](#page-24-0)[4/2](#page-0-0)[5](#page-24-0)

1 / 25

Mathematical Programming

We assume

- a preference relation Π with a known consistent utility function $u(f)$
- a certain environment: $|\Omega| = 1 \Rightarrow f(x, \bar{\omega})$ reduces to $f(x)$
- a single decision-maker: $|D| = 1 \Rightarrow \Pi_d$ reduces to Π

The decision problem reduces to classical optimisation

max $u(f(x))$ $x \in X$

We discuss a solving technique that is

- very general
- complex and inefficient

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

Basic assumptions

In mathematics, the most common form is

min $f(x)$ $x \in X$

where $f(x)$ replaces $-u(f(x))$ (It is not the original f!) We also assume regularity for the objective and the feasible region: \mathbf{D} $f(x) \in C^1(X)$

a $X = \{x \in \mathbb{R}^n : g_j(x) \leq 0, j = 1, \ldots, m\}$ with $g_j(x) \in C^1(X)$

These are very general assumptions as

$$
\max_{x \in X} f(x) \Leftrightarrow \min_{x \in X} -f(x)
$$
\n
$$
g_j(x) \le a \Leftrightarrow g_j(x) - a \le 0
$$
\n
$$
g_j(x) \ge a \Leftrightarrow a - g_j(x) \le 0
$$
\n
$$
h_i(x) = 0 \Leftrightarrow \begin{cases} h_i(x) \le 0 \\ -h_i(x) \le 0 \end{cases}
$$
\n
$$
x \in \mathbb{Z}^n \Leftrightarrow \sin(\pi x) = 0 \quad (computationally useless!)
$$

Global and local optimum points

Given a set $X \subseteq \mathbb{R}^n$ and a function $f : X \to \mathbb{R}$

• global optimum point is a point $x^{\circ} \in X$ such that

 $f(x^{\circ}) \leq f(x)$ for all $x \in X$

Global and local optimum points

Given a set $X \subseteq \mathbb{R}^n$ and a function $f : X \to \mathbb{R}$

• global optimum point is a point $x^{\circ} \in X$ such that

 $f(x^{\circ}) \leq f(x)$ for all $x \in X$

• local optimum point is a point $x^* \in X$ such that

 $\exists \epsilon > 0 : f(x^*) \le f(x)$ per ogni $x \in X \cap \mathcal{U}_{x^*, \epsilon}$

 $\mathcal{U}_{x^*,\epsilon} = \{x \in \mathbb{R}^n : \|x - x^*\| < \epsilon\}$ is a neighbourhood of x^* of radius ϵ

All global optimum points are also local optimum points: $X^{\circ} \subseteq X^*$

 $(1 - \epsilon)$ (d) $(1 - \epsilon)$ (d) $(1 - \epsilon)$

The general process

Instead of X° , we pursue necessary conditions for local optimality

Global optimum \Rightarrow Local optimum \Rightarrow Candidate point X° \circ \subseteq X^* \subseteq X χ KKT

Then, we enumerate $X^{\rm KKT}$ exhaustively to find X°

The Karush-Kuhn-Tucker (KKT) conditions identify candidate points

- $\bf{0}$ solve the conditions to build the set of candidate points $X^{\rm KKT}$
- $\boldsymbol{2}$ scan one by one the points in X^{KKT} comparing their values
- \bullet the best ones yield X°

We hope that X^{KKT} is finite or $f(x)$ easy to optimise in it

The basic tool will be linear approximation in small neighbourhoods

This is why we will get false positives

KORKAR KERKER ORA

Taylor's (first-order) series expansion

Any regular function can be locally approximated in \tilde{x} by its tangent line What happens to $f(x)$ moving a bit out of \tilde{x} ?

If $f : \mathbb{R} \to \mathbb{R}$ and $f \in C^1(\mathcal{U}_{\tilde{\mathsf{x}}, \epsilon})$, then

 $f(x) = f(\tilde{x}) + f'(\tilde{x})(x - \tilde{x}) + R_1(|x - \tilde{x}|)$

with $\lim_{x\to \tilde x}$ $R_1(|x-\tilde{x}|)$ $\frac{|x|^2}{|x-\tilde{x}|} = 0$

Additional terms with higher exponents improve the approximation

[We](#page-5-0) [wil](#page-7-0)[l](#page-5-0) [no](#page-6-0)[t](#page-7-0) [co](#page-0-0)[nsi](#page-24-0)[de](#page-0-0)[r t](#page-24-0)[he](#page-0-0)[m](#page-24-0)

Taylor's (first-order) series expansion

For functions of many variables, the first-order expansion becomes

$$
f(x) = f(\tilde{x}) + (\nabla f(\tilde{x}))^{T} (x - \tilde{x}) + R_1(||x - \tilde{x}||)
$$

where

$$
\lim_{x\to \tilde x}\frac{R_1(\|x-\tilde x\|)}{\|x-\tilde x\|}=0
$$

and $\nabla f(x)$ is the gradient vector

$$
\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}
$$

It is the direction of quickest increase for $f(\cdot)$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ │ 唐

The main difference is that \mathbb{R}^n offers many ways to move away from \tilde{x} Infinite straight lines and many more curves!

Given a point $\tilde{x} \in \mathbb{R}^n$, an arc in \tilde{x} is a parametric curve $\xi : \mathbb{R}^+ \to \mathbb{R}^n$, that is $\xi\left(\alpha\right) =% {\textstyle\int\nolimits_{-\infty}^{\infty}} \left(\alpha\right)$ $\sqrt{ }$ $\overline{}$ $\xi_1\left(\alpha\right)$. . . $\xi_n(\alpha)$ 1 , such that $\xi(0) = \tilde{x}$ and $\xi_1(\alpha) \in C^1(\mathbb{R}^+)$

An arc $\xi\left(\alpha\right)$ is feasible for a given region $X\subseteq\mathbb{R}^{n}$ when the curve remains in X for small α

$$
\exists \bar{\alpha}_{f} > 0 : \xi(\alpha) \in X \quad \forall \alpha \in [0; \bar{\alpha}_{f})
$$

An arc $\xi(\alpha)$ is improving for a given function $f: X \to \mathbb{R}$ when f is strictly better in $\xi(\alpha)$ than in \tilde{x} for all small positive α

 $\exists \bar{\alpha}_i > 0 : f(\xi(\alpha)) < f(\tilde{\mathsf{x}}) \quad \forall \alpha \in (0; \bar{\alpha}_i)$

Example

The rectilinear arc $\xi = \tilde{x} + \alpha \begin{bmatrix} 1 \ 1 \end{bmatrix}^T = \begin{bmatrix} \tilde{x}_1 + \alpha \ \tilde{x}_2 + \alpha \end{bmatrix}^T$ is

- feasible (with $\alpha \leq 2 \sqrt{2}$ 2) and improving in $\tilde{x}= (-2,-2)$
- feasible and nonimproving in $\tilde{x} = (0, 2)$
- nonfeasible and improving (with α < 1) in $\tilde{x} = (-2, 0)$

Why not restricting to lines?

Nonlinear equalities imply that no feasible rectilinear arc exists

Example: $X = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 = 4\}$

For any constant vector d, the points of line $\xi(\alpha) = \tilde{x} + \alpha d$, are unfeasible

$$
(\tilde{x}_1+\alpha d_1)^2+(\tilde{x}_2+\alpha d_2)^2=4 \quad \forall \alpha\in [0;\bar{\alpha}_f)
$$

implies

$$
\tilde{z}_1^2 + \tilde{x}_2^2 + \alpha^2 \left(d_1^2 + d_2^2\right) + 2\alpha \left(d_1 \tilde{x}_1 + d_2 \tilde{x}_2\right) = \cancel{4} \quad \forall \alpha \in [0; \bar{\alpha}_f)
$$

that is

$$
\alpha \left(d_1^2+d_2^2\right)+2\left(d_1\tilde{x}_1+d_2\tilde{x}_2\right)=0 \quad \forall \alpha \in [0; \bar{\alpha}_f)
$$

which is impossible

Lines are no[t e](#page-9-0)[no](#page-11-0)[ug](#page-9-0)[h](#page-10-0) [f](#page-11-0)[or](#page-0-0) [ou](#page-24-0)[r p](#page-0-0)[ur](#page-24-0)[po](#page-0-0)[se](#page-24-0) 299

A necessary local optimality condition

Theorem:

If $\tilde{x}\in X\subseteq \mathbb{R}^n$, $f(\cdot)\in C^1\left(X\right)$ and $\xi\left(\alpha\right)$ is an arc in $\tilde{x},$ feasible for X and improving for $f(\cdot)$, then \tilde{x} is not locally optimal for $f(\cdot)$ in X.

By assumption, for suitable values $\bar{\alpha}_f > 0$ and $\bar{\alpha}_i > 0$, we have

- $\xi(\alpha)$ feasible: $\xi(\alpha) \in X$ for all $\alpha \in [0, \bar{\alpha}_f)$
- $\xi(\alpha)$ improving: $f(\xi(\alpha)) < f(\tilde{x})$ for all $\alpha \in (0, \bar{\alpha}_i)$

Since $\xi(\alpha)$ is a continuous arc

$$
\lim_{\alpha \to 0} \xi(\alpha) = \tilde{x} \quad \Leftrightarrow \quad \forall \epsilon > 0, \exists \bar{\alpha}_{\epsilon} : \|\xi(\alpha) - \tilde{x}\| < \epsilon, \ \forall \alpha \in (0, \bar{\alpha}_{\epsilon})
$$

that is, $\xi(\alpha) \in \mathcal{U}_{\tilde{x},\epsilon}, \forall \alpha \in (0, \bar{\alpha}_{\epsilon})$

Now $\alpha=\frac{1}{2}$ min $(\bar{\alpha}_f,\bar{\alpha}_i,\bar{\alpha}_\epsilon)$ satisfies all three conditions

- $\alpha < \bar{\alpha}_f \Rightarrow \varepsilon(\alpha) \in X$
- $\alpha < \bar{\alpha}_i \Rightarrow f(\xi(\alpha)) < f(\tilde{x})$

$$
\bullet\ \alpha < \bar{\alpha}_{\epsilon} \Rightarrow \xi(\alpha) \in \mathcal{U}_{x^*,\epsilon}
$$

but this contradicts local optimality

 $f(x) \geq f(\tilde{x})$ for all $x \in \mathcal{U}_{\tilde{x}, \epsilon} \cap X$

12 / 25

 $(1 + 4\sqrt{7})$

This suggests a possible approach to find candidate points: remove from X all the points that are provably nonoptimal

 $X^{KKT} := X$: For each $x \in X^{KKT}$ (continuous set for x) For each arc $\xi(\alpha)$ in x feasible for X (continuous set for ξ , interval for α) If $\xi(\alpha)$ is improving in x for $f(\cdot)$ (interval for α) then $X^{KKT} := X^{KKT} \setminus \{x\}$ Return X^{KKT}

This is obviously not an algorithm: it loops on continuous sets!

Then, replace the loops with more efficient analitic conditions, that will be all based on first-order approximations

Tangent direction

Given an arc $\xi(\alpha)$ in \tilde{x} , its tangent direction is

$$
p_{\xi} = \left[\begin{array}{c} \xi_1'(0) \\ \ldots \\ \xi_n'(0) \end{array}\right]
$$

Straight lines $\xi(\alpha) = \tilde{x} + \alpha d$ have tangent direction d

In fact, arcs generalise directions

Example: The arc in $\tilde{x} = (2, 0)$

$$
\xi(\alpha) = \left[\begin{array}{c} 2\cos\alpha \\ 2\sin\alpha \end{array}\right]
$$

describes the circumference with centre in the origin and radius 2 Its tangent direction is

$$
p_{\xi} = \left[\begin{array}{c} -2\sin 0\\ 2\cos 0 \end{array}\right] = \left[\begin{array}{c} 0\\ 2 \end{array}\right]
$$

Analitic condition for improvement

Theorem

If x^* is locally optimal in X for $f(\cdot)$ and $\xi(\alpha)$ is a feasible arc in x^* for $X,$ then

 $\nabla f(\tilde{\pmb{z}})^{\mathsf{T}} \pmb{p}_{\xi} \geq \pmb{0}$

In a locally optimal point, feasible arcs keep close to the gradient of f (angle $\leq 90^{\circ}$), so that the objective cannot feasibly improve Since the arc is feasible, $\xi(\alpha) \in X$ for small α Since the arc is regular and x^* locally optimal, $f\left(\xi\left(\alpha\right)\right)\geq f\left(x^*\right)$ for small α

Apply Taylor's expansion to $f(\xi(\alpha))$ in $\alpha = 0$

$$
\mathcal{L}(\xi(\theta)) + \alpha \frac{df}{d\alpha}\Big|_{\alpha=0} + R_1(\xi(\alpha) - \xi(0)) \ge f(x^*) \Rightarrow
$$

$$
\Rightarrow \nabla f(x^*)^T p_{\xi} + \frac{R_1(\xi(\alpha) - \xi(0))}{\alpha} \ge 0
$$

As α converges to 0, the inequality is preserved

$$
\lim_{\alpha \to 0} \left(\nabla f(x^*)^T p_{\xi} + \frac{R_1 \left(\xi(\alpha) - \xi(0) \right)}{\|\xi(\alpha) - \xi(0)\|} \frac{\|\xi(\alpha) - \xi(0)\|}{\alpha} \right) \geq 0 \Rightarrow \nabla f(x^*)^T p_{\xi} \geq 0
$$
\n
$$
\lim_{\alpha \to 0} \left(\nabla f(x^*)^T p_{\xi} \right) = 0
$$
\n
$$
\lim_{\alpha \to 0} \left(\nabla f(x^*)^T p_{\xi} \right) = 0
$$

Example

$$
\begin{array}{rcl}\n\min f(x) & = & x_2 \\
g_1(x) & = & x_1^2 + x_2^2 \le 4\n\end{array}
$$

with $\nabla f^{\, \mathcal{T}} = [0 \; 1]$

• Arc $\xi(\alpha) = \tilde{x} + \alpha \begin{bmatrix} 1 & -1 \end{bmatrix}^T$ is improving in $\tilde{x} = (-2, 0)$: therefore, \tilde{x} is not locally optimal

$$
\nabla f(-2,0)^T p_\xi = \left[0~1\right] \cdot \left[1~-1\right]^T = -1 < 0
$$

• arc $\xi(\alpha) = \tilde{x} + \alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix}^T$ is nonimproving in $\tilde{x} = (0, -2)$: \tilde{x} could be locally optimal (it remains candidate until disproval)

$$
\nabla f(0,-2)^T p_\xi = \left[0~1\right] \cdot \left[1~1\right]^T = 1 \geq 0
$$

A filtering approach

For a feasible arc $\xi(\alpha)$

- x^* locally optimal $\Rightarrow \nabla f(\tilde{x})^T p_{\xi} \geq 0$,
- $\bullet\,$ conversely, $\nabla f(\tilde x)^T p_\xi < 0 \Rightarrow x^\ast$ not locally optimal

This yields a sufficient condition to remove points

```
X^{KKT} = XFor each x \in X^{KKT} (continuous set for x)
   For each arc \xi(\alpha) in x feasible for X (continuous set for \xi, interval for \alpha)
     If \xi(\alpha) is improving in x for f(\cdot) (interval for \alpha)
       then X^{KKT} := X^{KKT} \setminus \{x\}Return X^{KKT}
```
can be simplified (possibly missing some removals) to

 $X^{KKT} = X$ For each $x \in X^{KKT}$ (continuous set for x) For each arc $\xi(\alpha)$ in x feasible for X (continuous set for ξ , interval for α) If $\nabla f(\tilde{x})^T p_{\varepsilon} < 0$ $(\xi(\alpha))$ is improving in x for $f(\cdot))$ then $X^{KKT} := X^{KKT} \setminus \{x\}$ Return X^{KKT}

Then, we try and [do](#page-15-0) t[he](#page-17-0) [s](#page-15-0)[am](#page-16-0)[e f](#page-0-0)[or](#page-24-0) [fea](#page-0-0)[sib](#page-24-0)[ili](#page-0-0)[ty](#page-24-0) $\frac{1}{17/25}$

Given the analytic description of the feasible region

$$
X = \{x \in \mathbb{R}^n : g_j(x) \leq 0 \text{ for } j = 1, \ldots, m\}
$$

we approximate each function $g_i(\cdot)$ with Taylor's expansion However, feasibility differs from improvement in two regards

- it involves many inequalities, instead of a single objective
- it requires weak conditions, instead of a strict one

Given point \tilde{x} , we partition the constraints into two classes

- **1** the active constraints $(J_a(\tilde{x}))$ are exactly satisfied: $g_i(\tilde{x}) = 0$
- **2** the nonactive constraints are largely satisfied: $g_i(\tilde{x}) < 0$

イロメ 不個 メイミメイミメー 君

Example

$$
J_a(x) = \{j \in \{1, \ldots, m\} : g_j(x) = 0\}
$$

$$
\begin{array}{rcl} \min f(x) & = & \left(x_1 - 1\right)^2 + x_2^2 \\ g_1(x) & = & -x_1^2 - x_2^2 + 4 \leq 0 \\ g_2(x) & = & x_1 - 3/2 \leq 0 \end{array}
$$

The active constraints in various points are:

- for $x = (-2, -2)$, no active constraint: $J_a(-2, -2) = \emptyset$
- for $x = (-2, 0)$, one active constraint: $J_a(-2, 0) = \{1\}$ √
- for $x = (3/2, \sqrt{2})$ $7/2)$, two active constraints: $J_a(3/2)$ $(7/2) = \{1,2\}$

Characterisation of the feasible arcs

Theorem If $\xi(\alpha)$ is a feasible arc in \tilde{x} for X , then $\nabla g_j\left(\tilde{x}\right)^T p_\xi \leq 0$ for all $j\in J_a(\tilde{x})$ Feasible arcs keep far away from the gradients of all active constraints g_i (angle $\geq 90^{\circ}$), so that such constraints cannot be violated

If $\xi(\alpha)$ is a feasible arc in \tilde{x} for X, there exists $\bar{\alpha}_f > 0$ such that

$$
g_j\left(\xi\left(\alpha\right)\right)\leq 0\quad\text{for all }\alpha\in\left[0;\bar{\alpha}_f\right)\text{ and for }j=1,\ldots,m
$$

which implies

$$
\begin{aligned} g_j\left(\xi\left(\alpha\right)\right) &= g_j\left(\xi\left(0\right)\right) + \left.\frac{dg_j}{d\alpha}\right|_{\alpha=0} \alpha + R_1\left(\xi\left(\alpha\right) - \xi\left(0\right)\right) = \\ &= g_j\left(\tilde{x}\right) + \alpha \nabla g_j\left(\tilde{x}\right)^T \rho_\xi + R_1\left(\xi\left(\alpha\right) - \xi\left(0\right)\right) \leq 0 \end{aligned}
$$

For small α , the inequality is guaranteed for all nonactive constraints, because $g_i(\tilde{x}) < 0$ dominates the other terms

Characterisation of the feasible arcs

For the active constraints, $g_i(\tilde{x}) = 0$, so that

$$
g_{j}\left(\xi\left(\alpha\right)\right)=\alpha\left(\nabla g_{j}\left(\tilde{x}\right)\right)^{\mathsf{T}}\mathsf{p}_{\xi}+\mathsf{R}_{1}\left(\xi\left(\alpha\right)-\xi\left(0\right)\right)\leq0
$$

Dividing by α and computing the limit as α converges to 0:

$$
\lim_{\alpha\to 0}\left[\nabla g_j\left(\tilde{x}\right)^{\mathsf{T}}\rho_{\xi}+\frac{R_1\left(\xi\left(\alpha\right)-\xi\left(0\right)\right)}{\alpha}\right]=\nabla g_j\left(\tilde{x}\right)^{\mathsf{T}}\rho_{\xi}\leq 0
$$

Special case: equality constraints $h_i(x) = 0$ are always active and can be treated as pairs of active inequalities: $h_i(x) \leq 0$ and $-h_i(x) \leq 0$

$$
\begin{cases} \nabla h_i \left(\tilde{x} \right)^T p_{\xi} & \leq 0 \\ -\nabla h_i \left(\tilde{x} \right)^T p_{\xi} & \leq 0 \end{cases} \Rightarrow \nabla h_i \left(\tilde{x} \right)^T p_{\xi} = 0
$$

But the analytic condition is only necessary for feasibility, not sufficient!

П

Example

For any feasible arc $\xi(\alpha)$, vector p_{ξ} satisfies the conditions above, but a vector p that satisfies them is not always tangent to a feasible arc

$$
\begin{array}{rcl}\n\min f(x) & = & x_2 \\
g_1(x) & = & (x_1 - 1)^3 + (x_2 - 2) \le 0 \\
g_2(x) & = & (x_1 - 1)^3 - (x_2 - 2) \le 0 \\
g_3(x) & = & -x_1 \le 0\n\end{array}
$$

Since $g_1(A) = g_2(A) = 0$ and $g_3(A) = -1$, $J_a(A) = \{1, 2\}$ $\nabla g_1\left(x\right)=\left[3\left(x_1-1\right)^2\ 1\right]$, $\nabla g_2\left(x\right)=\left[3\left(x_1-1\right)^2\ -1\right]$ Vector $\boldsymbol{p} = \left[1\ 0\right]^{\mathsf{T}}$ satisfies the conditions:

$$
\begin{cases} \nabla g_1 \left(A \right)^T p = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \leq 0 \\ \nabla g_2 \left(A \right)^T p = \begin{bmatrix} 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \leq 0 \end{cases}
$$

but all arcs ξ with tang[e](#page-20-0)nt vector $\boldsymbol{\mathcal{p}}_{\xi} = \left[1 \ 0 \right]^{\mathcal{T}}$ are un[fea](#page-20-0)s[ibl](#page-22-0)e Why? The lin[ear](#page-21-0) [a](#page-22-0)[pp](#page-0-0)[rox](#page-24-0)[im](#page-0-0)[ati](#page-24-0)[on](#page-0-0)[!](#page-24-0) $22/25$ Luckily, the problem concerns only some degenerate points

A point is regular when it satisfies the constraint qualification condition: the gradients of all active constraints are linearly independent

Theorem

If \tilde{x} is a regular point, then $\nabla g_j\left(\tilde{x}\right)^{\mathcal{T}}\rho\leq 0$ for all $j\in J_{\mathsf{a}}\left(\tilde{x}\right)$ if and only if there exists a arc $\xi(\alpha)$ in \tilde{x} feasible for X with tangent direction $p_{\xi} = p$

The necessary conditions for feasibility are also sufficient in regular points

Problem: if equalities are turned into pairs of inequalities, do all points become nonregular?

No, the equality guarantees the existence of a feasible arc lying on it

A filtering approach

Given the previous results

- the analytic conditions can be used to check feasibility in all regular points
- nonregular points must be explicitly tested: they are candidates by default

 $X^{KKT} := X$: For each $x \in X^{KKT}$ (continuous set for x) For each arc $\xi(\alpha)$ in x feasible for X (continuous set for ξ , interval for α) If $\nabla f(\tilde{x})^T p_{\varepsilon} < 0$ $(\xi(\alpha))$ is improving in x for $f(\cdot))$ then $X^{KKT} := X^{KKT} \setminus \{x\}$ Return X^{KKT}

can be simplified (possibly missing some removals) to

 $X^{KKT} := X \setminus \text{NonRegular}(g, X);$ For each $x \in X^{KKT}$ (continuous set for x) For each $\pmb{p}\in\mathbb{R}^n:\nabla \mathcal{g}_j\left(x\right)^{\mathcal{T}}\pmb{p}\leq0,\forall j\in J_a\left(x\right)$ (arc $\xi(\alpha)$ in x feasible for $X)$ If $\nabla f(\tilde{x})^T p_{\varepsilon} < 0$ $(\xi(\alpha)$ is improving in x for $f(\cdot)$) then $X^{KKT} := X^{KKT} \setminus \{x\}$ $X^{KKT} := X^{KKT} \cup \text{NonRegular}(e, X)$ Return X^{KKT} $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

First geometric interpretation

Denote by

- feasible cone $C_{\text{feas}}(x)$ the set of vectors tangent to feasible arcs (scalar products ≤ 0 with all active constraint gradients)
- improving half-plane $C_{\text{impr}}(x)$: the set of improving vectors (scalar products < 0 with the objective gradient)

The first is close, the second open!

If a regular point is locally optimal,

then its feasible cone and improving half-space do not intersect

 $x \in X^* \Rightarrow C_{\text{feas}}(x) \cap C_{\text{impr}}(x) = \emptyset$

