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Mathematical Programming
We assume

• a preference relation Π with a known consistent utility function u (f )
• a certain environment: |Ω| = 1 ⇒ f (x , ω̄) reduces to f (x)
• a single decision-maker: |D| = 1 ⇒ Πd reduces to Π

The decision problem reduces to classical optimisation

max u (f (x))

x ∈ X

We discuss a solving technique that is
• very general
• complex and inefficient
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Basic assumptions
In mathematics, the most common form is

min f (x)

x ∈ X

where f (x) replaces −u (f (x)) (It is not the original f !)

We also assume regularity for the objective and the feasible region:

1 f (x) ∈ C 1(X )

2 X = {x ∈ Rn : gj(x) ≤ 0, j = 1, . . . ,m} with gj(x) ∈ C 1(X )

These are very general assumptions as

max
x∈X

f (x) ⇔ min
x∈X

−f (x)

gj(x) ≤ a ⇔ gj(x)− a ≤ 0

gj(x) ≥ a ⇔ a− gj(x) ≤ 0

hi (x) = 0 ⇔

{
hi (x) ≤ 0

−hi (x) ≤ 0

x ∈ Zn ⇔ sin(πx) = 0 (computationally useless!)
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Global and local optimum points

Given a set X ⊆ Rn and a function f : X → R
• global optimum point is a point x◦ ∈ X such that

f (x◦) ≤ f (x) for all x ∈ X
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Global and local optimum points

Given a set X ⊆ Rn and a function f : X → R
• global optimum point is a point x◦ ∈ X such that

f (x◦) ≤ f (x) for all x ∈ X

• local optimum point is a point x∗ ∈ X such that

∃ϵ > 0 : f (x∗) ≤ f (x) per ogni x ∈ X ∩ Ux∗,ϵ

Ux∗,ϵ = {x ∈ Rn : ∥x − x∗∥ < ϵ} is a neighbourhood of x∗ of radius ϵ

∥x − x∗∥ is the norm of vector x − x∗

(distance between x and x̃)

∥x−∗∥ =

√√√√ n∑
i=1

(xi − x∗i )
2

All global optimum points are also local optimum points: X ◦ ⊆ X ∗
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The general process

Instead of X ◦, we pursue necessary conditions for local optimality

Global optimum ⇒ Local optimum ⇒ Candidate point

X ◦ ⊆ X ∗ ⊆ XKKT

Then, we enumerate XKKT exhaustively to find X ◦

The Karush-Kuhn-Tucker (KKT) conditions identify candidate points

1 solve the conditions to build the set of candidate points XKKT

2 scan one by one the points in XKKT comparing their values

3 the best ones yield X ◦

We hope that XKKT is finite or f (x) easy to optimise in it

The basic tool will be linear approximation in small neighbourhoods

This is why we will get false positives
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Taylor’s (first-order) series expansion

Any regular function can be locally approximated in x̃ by its tangent line

What happens to f (x) moving a bit out of x̃?

If f : R → R and f ∈ C 1(Ux̃,ϵ), then

f (x) = f (x̃) + f ′(x̃)(x − x̃) + R1(|x − x̃ |)

with lim
x→x̃

R1(|x − x̃ |)
|x − x̃ |

= 0

Additional terms with higher exponents improve the approximation

We will not consider them
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Taylor’s (first-order) series expansion

For functions of many variables, the first-order expansion becomes

f (x) = f (x̃) + (∇f (x̃))T (x − x̃) + R1 (∥x − x̃∥)

where

lim
x→x̃

R1(∥x − x̃∥)
∥x − x̃∥

= 0

and ∇f (x) is the gradient vector

∇f (x) =


∂f

∂x1
. . .
∂f

∂xn


It is the direction of quickest increase for f (·)
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Regular arcs

The main difference is that Rn offers many ways to move away from x̃

Infinite straight lines and many more curves!

Given a point x̃ ∈ Rn, an arc in x̃ is a parametric curve ξ : R+ → Rn,

that is ξ (α) =

 ξ1 (α)
. . .

ξn (α)

, such that ξ (0) = x̃ and ξ1 (α) ∈ C 1 (R+)

An arc ξ (α) is feasible for a given region X ⊆ Rn

when the curve remains in X for small α

∃ᾱf > 0 : ξ (α) ∈ X ∀α ∈ [0; ᾱf )

An arc ξ (α) is improving for a given function f : X → R
when f is strictly better in ξ (α) than in x̃ for all small positive α

∃ᾱi > 0 : f (ξ (α)) < f (x̃) ∀α ∈ (0; ᾱi )
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Example

Let X =
{
x ∈ R2 : x21 + x22 ≥ 4

}
and f (x) = x21 + x22

The rectilinear arc ξ = x̃ + α [1 1]T = [x̃1 + α x̃2 + α]T is

• feasible (with α ≤ 2−
√
2) and improving in x̃ = (−2,−2)

• feasible and nonimproving in x̃ = (0, 2)

• nonfeasible and improving (with α ≤ 1) in x̃ = (−2, 0)
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Why not restricting to lines?
Nonlinear equalities imply that no feasible rectilinear arc exists

Example: X =
{
x ∈ R2 : x21 + x22 = 4

}
For any constant vector d , the points of line ξ (α) = x̃ + αd , are unfeasible

(x̃1 + αd1)
2 + (x̃2 + αd2)

2 = 4 ∀α ∈ [0; ᾱf )

implies

���x̃21 + x̃22 + α2
(
d2
1 + d2

2

)
+ 2α (d1x̃1 + d2x̃2) = �4 ∀α ∈ [0; ᾱf )

that is
α
(
d2
1 + d2

2

)
+ 2 (d1x̃1 + d2x̃2) = 0 ∀α ∈ [0; ᾱf )

which is impossible

Lines are not enough for our purpose
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A necessary local optimality condition
Theorem:
If x̃ ∈ X ⊆ Rn, f (·) ∈ C 1 (X ) and ξ (α) is an arc in x̃ , feasible for X and
improving for f (·), then x̃ is not locally optimal for f (·) in X .

By assumption, for suitable values ᾱf > 0 and ᾱi > 0, we have

• ξ (α) feasible: ξ (α) ∈ X for all α ∈ [0, ᾱf )

• ξ (α) improving: f (ξ (α)) < f (x̃) for all α ∈ (0, ᾱi )

Since ξ (α) is a continuous arc

lim
α→0

ξ (α) = x̃ ⇔ ∀ϵ > 0, ∃ᾱϵ : ∥ξ (α)− x̃∥ < ϵ, ∀α ∈ (0, ᾱϵ)

that is, ξ (α) ∈ Ux̃,ϵ, ∀α ∈ (0, ᾱϵ)

Now α = 1
2
min (ᾱf , ᾱi , ᾱϵ) satisfies all three conditions

• α < ᾱf ⇒ ξ (α) ∈ X

• α < ᾱi ⇒ f (ξ (α)) < f (x̃)

• α < ᾱϵ ⇒ ξ (α) ∈ Ux∗,ϵ

but this contradicts local optimality

f (x) ≥ f (x̃) for all x ∈ Ux̃,ϵ ∩ X
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A filtering approach

This suggests a possible approach to find candidate points:
remove from X all the points that are provably nonoptimal

XKKT := X ;

For each x ∈ XKKT (continuous set for x)

For each arc ξ(α) in x feasible for X (continuous set for ξ, interval for α)

If ξ(α) is improving in x for f (·) (interval for α)

then XKKT := XKKT \ {x}
Return XKKT

This is obviously not an algorithm: it loops on continuous sets!

Then, replace the loops with more efficient analitic conditions,
that will be all based on first-order approximations
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Tangent direction

Given an arc ξ (α) in x̃ , its tangent direction is

pξ =

 ξ′1(0)
. . .
ξ′n(0)


Straight lines ξ (α) = x̃ + αd have tangent direction d

In fact, arcs generalise directions

Example: The arc in x̃ = (2, 0)

ξ (α) =

[
2 cosα
2 sinα

]
describes the circumference with centre in the origin and radius 2

Its tangent direction is

pξ =

[
−2 sin 0
2 cos 0

]
=

[
0
2

]
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Analitic condition for improvement
Theorem
If x∗ is locally optimal in X for f (·) and ξ(α) is a feasible arc in x∗ for X ,
then

∇f (x̃)Tpξ ≥ 0

In a locally optimal point, feasible arcs keep close to the gradient of f
(angle ≤ 90◦), so that the objective cannot feasibly improve

Since the arc is feasible, ξ (α) ∈ X for small α

Since the arc is regular and x∗ locally optimal, f (ξ (α)) ≥ f (x∗) for small α

Apply Taylor’s expansion to f (ξ (α)) in α = 0

����f (ξ (0)) + α
df

dα

∣∣∣∣
α=0

+ R1 (ξ (α)− ξ (0)) ≥���f (x∗) ⇒

⇒ ∇f (x∗)
T
pξ +

R1 (ξ (α)− ξ (0))

α
≥ 0

As α converges to 0, the inequality is preserved

lim
α→0

(
∇f (x∗)

T
pξ +

R1 (ξ (α)− ξ (0))

∥ξ (α)− ξ (0)∥
∥ξ (α)− ξ (0)∥

α

)
≥ 0 ⇒ ∇f (x∗)

T
pξ ≥ 0
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Example

min f (x) = x2

g1 (x) = x21 + x22 ≤ 4

with ∇f T = [0 1]

• Arc ξ (α) = x̃ + α [1 − 1]T is improving in x̃ = (−2, 0):
therefore, x̃ is not locally optimal

∇f (−2, 0)Tpξ = [0 1] · [1 − 1]T = −1 < 0

• arc ξ (α) = x̃ + α [1 1]T is nonimproving in x̃ = (0,−2):
x̃ could be locally optimal (it remains candidate until disproval)

∇f (0,−2)Tpξ = [0 1] · [1 1]T = 1 ≥ 0
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A filtering approach
For a feasible arc ξ (α)

• x∗ locally optimal ⇒ ∇f (x̃)Tpξ ≥ 0,

• conversely, ∇f (x̃)Tpξ < 0 ⇒ x∗ not locally optimal

This yields a sufficient condition to remove points

XKKT := X ;

For each x ∈ XKKT (continuous set for x)

For each arc ξ(α) in x feasible for X (continuous set for ξ, interval for α)

If ξ(α) is improving in x for f (·) (interval for α)

then XKKT := XKKT \ {x}
Return XKKT

can be simplified (possibly missing some removals) to

XKKT := X ;

For each x ∈ XKKT (continuous set for x)

For each arc ξ(α) in x feasible for X (continuous set for ξ, interval for α)

If ∇f (x̃)Tpξ < 0 (ξ(α) is improving in x for f (·))
then XKKT := XKKT \ {x}

Return XKKT

Then, we try and do the same for feasibility 17 / 25



Characterisation of the feasible arcs

Given the analytic description of the feasible region

X = {x ∈ Rn : gj (x) ≤ 0 for j = 1, . . . ,m}

we approximate each function gj(·) with Taylor’s expansion

However, feasibility differs from improvement in two regards

• it involves many inequalities, instead of a single objective

• it requires weak conditions, instead of a strict one

Given point x̃ , we partition the constraints into two classes

1 the active constraints (Ja(x̃)) are exactly satisfied: gj (x̃) = 0

2 the nonactive constraints are largely satisfied: gj (x̃) < 0
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Example

Ja(x) = {j ∈ {1, . . . ,m} : gj(x) = 0}

min f (x) = (x1 − 1)2 + x22
g1 (x) = −x21 − x22 + 4 ≤ 0

g2 (x) = x1 − 3/2 ≤ 0

The active constraints in various points are:

• for x = (−2,−2), no active constraint: Ja(−2,−2) = ∅
• for x = (−2, 0), one active constraint: Ja(−2, 0) = {1}
• for x = (3/2,

√
7/2), two active constraints: Ja(3/2,

√
7/2) = {1, 2}
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Characterisation of the feasible arcs

Theorem
If ξ (α) is a feasible arc in x̃ for X , then ∇gj (x̃)

T pξ ≤ 0 for all j ∈ Ja(x̃)

Feasible arcs keep far away from the gradients of all active constraints gj
(angle ≥ 90◦), so that such constraints cannot be violated

If ξ (α) is a feasible arc in x̃ for X , there exists ᾱf > 0 such that

gj (ξ (α)) ≤ 0 for all α ∈ [0; ᾱf ) and for j = 1, . . . ,m

which implies

gj (ξ (α)) = gj (ξ (0)) +
dgj
dα

∣∣∣∣
α=0

α+ R1 (ξ (α)− ξ (0)) =

= gj (x̃) + α∇gj (x̃)
T pξ + R1 (ξ (α)− ξ (0)) ≤ 0

For small α, the inequality is guaranteed for all nonactive constraints,

because gj (x̃) < 0 dominates the other terms
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Characterisation of the feasible arcs

For the active constraints, gj (x̃) = 0, so that

gj (ξ (α)) = α (∇gj (x̃))
T pξ + R1 (ξ (α)− ξ (0)) ≤ 0

Dividing by α and computing the limit as α converges to 0:

lim
α→0

[
∇gj (x̃)

T pξ +
R1 (ξ (α)− ξ (0))

α

]
= ∇gj (x̃)

T pξ ≤ 0

Special case: equality constraints hi (x) = 0 are always active and
can be treated as pairs of active inequalities: hi (x) ≤ 0 and −hi (x) ≤ 0{

∇hi (x̃)
T pξ ≤ 0

−∇hi (x̃)
T pξ ≤ 0

⇒ ∇hi (x̃)
T pξ = 0

But the analytic condition is only necessary for feasibility, not sufficient!
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Example
For any feasible arc ξ (α), vector pξ satisfies the conditions above,
but a vector p that satisfies them is not always tangent to a feasible arc

min f (x) = x2

g1 (x) = (x1 − 1)3 + (x2 − 2) ≤ 0

g2 (x) = (x1 − 1)3 − (x2 − 2) ≤ 0

g3 (x) = −x1 ≤ 0

Since g1 (A) = g2 (A) = 0 and g3 (A) = −1, Ja (A) = {1, 2}
∇g1 (x) =

[
3 (x1 − 1)2 1

]
, ∇g2 (x) =

[
3 (x1 − 1)2 − 1

]
Vector p = [1 0]T satisfies the conditions:

∇g1 (A)
T p = [0 1]

[
1

0

]
≤ 0

∇g2 (A)
T p = [0 − 1]

[
1

0

]
≤ 0

but all arcs ξ with tangent vector pξ = [1 0]T are unfeasible

Why? The linear approximation! 22 / 25



Regular points

Luckily, the problem concerns only some degenerate points

A point is regular when it satisfies the constraint qualification condition:
the gradients of all active constraints are linearly independent

Theorem
If x̃ is a regular point, then ∇gj (x̃)

T p ≤ 0 for all j ∈ Ja (x̃) if and only if
there exists a arc ξ (α) in x̃ feasible for X with tangent direction pξ = p

The necessary conditions for feasibility are also sufficient in regular points

Problem: if equalities are turned into pairs of inequalities,
do all points become nonregular?

No, the equality guarantees the existence of a feasible arc lying on it
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A filtering approach
Given the previous results

• the analytic conditions can be used to check feasibility in all regular points

• nonregular points must be explicitly tested: they are candidates by default

XKKT := X ;

For each x ∈ XKKT (continuous set for x)

For each arc ξ(α) in x feasible for X (continuous set for ξ, interval for α)

If ∇f (x̃)Tpξ < 0 (ξ(α) is improving in x for f (·))
then XKKT := XKKT \ {x}

Return XKKT

can be simplified (possibly missing some removals) to

XKKT := X\ NonRegular(g ,X );

For each x ∈ XKKT (continuous set for x)

For each p ∈ Rn : ∇gj (x)
T p ≤ 0, ∀j ∈ Ja (x) (arc ξ(α) in x feasible for X )

If ∇f (x̃)Tpξ < 0 (ξ(α) is improving in x for f (·))
then XKKT := XKKT \ {x}

XKKT := XKKT ∪ NonRegular(g ,X );

Return XKKT
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First geometric interpretation
Denote by

• feasible cone Cfeas(x) the set of vectors tangent to feasible arcs
(scalar products ≤ 0 with all active constraint gradients)

• improving half-plane Cimpr(x): the set of improving vectors
(scalar products < 0 with the objective gradient)

The first is close, the second open!
If a regular point is locally optimal,
then its feasible cone and improving half-space do not intersect

x ∈ X ∗ ⇒ Cfeas (x) ∩ Cimpr (x) = ∅

min f (x) = (x1 − 1)2 + x22
g1 (x) = −x21 − x22 + 4 ≤ 0

g2 (x) = x1 − 3/2 ≤ 0

25 / 25


