Decision Methods and Models Master's Degree in Computer Science

Roberto Cordone

DI - Università degli Studi di Milano

Structured models of preference [M](#page-1-0)[ilan](#page-0-0)[o](#page-1-0)[, A](#page-0-0)[.A](#page-15-0)[. 2](#page-0-0)[02](#page-15-0)[4/2](#page-0-0)[5](#page-15-0)

1 / 16

Structured models of preference

We assume

- a simple preference relation Π What does "simple" mean?
- a certain environment: $|\Omega| = 1 \Rightarrow f(x, \bar{\omega})$ reduces to $f(x)$
- a single decision-maker: $|D|=1 \Rightarrow \Pi_d$ reduces to Π

and discuss

- the general advantages of such simple models
- their relation with classical optimisation problems
- some specific models of this family

(the next lessons will introdu[ce](#page-0-0) a [m](#page-2-0)[o](#page-0-0)[re](#page-1-0) [g](#page-2-0)[en](#page-0-0)[er](#page-15-0)[al](#page-0-0) [mo](#page-15-0)[del](#page-0-0)[\)](#page-15-0)

The preference relation between impacts ($\Pi \subseteq F \times F$) projects onto an induced relation between solutions

Definition (for all $x, x' \in X$): $x \preceq x' \Leftrightarrow f(x) \preceq f(x')$

This implies a partition of the feasible region into

- dominated solutions: $x \in X$ such that $\exists x' \in X : x' \prec x$
- nondominated solutions X° : the other ones

Reflexivity looks very natural in a preference relation

When solving a decision problem, it is also rather natural to:

- exclude dominated solutions, that is choose $x^{\circ} \in X^{\circ}$
- choose an arbitrary solution from a set of mutually indifferent ones

but this conflicts with some possible situations:

- all solutions in a strict dominance circuit would be removed
- two solutions might be indifferent with respect to a third one, but incomparable with each other

Transitivity solves both problems

 \Rightarrow preorders are strong candidates to be preference relations

But decisions refer to dominance, not preference

Decision-making on preorders

Theorems:

- if preference Π is a preorder, the induced dominance is a preorder
- if preference Π is a preorder and X is finite and nonempty, nondominated solutions exist $(X^{\circ} \neq \emptyset)$

Strict preference graph

A finite X avoids infinite dominance chains (every solution is dominated) More complex conditions allow an extension to i[nfin](#page-3-0)[ite](#page-5-0)[set](#page-4-0)[s](#page-5-0)

Decision-making on preorders

Theorem:

- if preference Π is a preorder and X° is nonempty, the nondominated solutions partition into disjoint components
	- they are mutually indifferent within each component
	- they are mutually incomparable between different components

 \Rightarrow If there is only one component, the problem is solved

That would require completeness (no incomparability)

Decision-making on weak orders

Theorems:

- if preference Π is a weak order, the induced dominance is a weak order
- if preference Π is a weak order and X is finite and nonempty, nondominated solutions exist and are all mutually indifferent

Once again, an extension to infinite sets is possi[ble](#page-5-0)

Partial and total orders are not preserved!

• antisymmetry in Π can be lost during the projection

 $x \neq x' \nRightarrow f(x) \neq f(x')$

ADD A NICE PICTURE

But this is not actually a problem for decision making

Decision-making and classical optimisation

A value function on $F(v : F \to \mathbb{R})$, called utility function in economics, is any function associating real values to the elements of F

A value function is consistent with a preference relation Π when

 $f\preceq f' \Leftrightarrow \mathsf{v}(f)\geq \mathsf{v}(f')$ for each $f,f'\in\mathsf{F}$

that is

$$
\Pi = \{(f, f') \in F \times F : v(f) \geq v(f')\}
$$

This offers a compact way to represent preference relations

That is also good for computation

$$
\max_{x \in X} v(f(x))
$$

if we have analytic expressions for X and $v(f(\cdot))$ and a solving algorithm Value functions are not univocal (infinite equivalent ones always exist) $\mathbf{E} = \mathbf{A} \mathbf{E} \mathbf{A} + \mathbf{A} \mathbf{E} \mathbf{A} + \mathbf{A} \mathbf{E} \mathbf{A} + \mathbf{A} \mathbf{B} \mathbf{A}$

Relation between value functions and weak orders

Theorem:

If Π admits a consistent value function $v(f)$, then Π is a weak order

In practice, we start from a preference relation, not from a value function The converse would be more useful

The converse is not always true

The main counterexample is lexicographic preference

 $\lceil f_1$ $f₂$ $\begin{bmatrix} f_1' \ f_2' \end{bmatrix}$ $\Big] \Leftrightarrow f_{1} < f_{1}'$ or $\big(f_{1} = f_{1}'$ and $f_{2} < f_{2}' \big)$

Informally, the ∞^2 impacts are all different, \Rightarrow \Rightarrow \Rightarrow they cannot be [m](#page-8-0)apped on ∞ real valu[es](#page-8-0) [re](#page-0-0)m[ain](#page-9-0)i[ng](#page-0-0) [all](#page-15-0) [di](#page-0-0)[ffe](#page-15-0)re[nt](#page-15-0) QQ

Lexicographic preference

By contrast, they can if one component has infinite, but discrete, values

$$
v_{6} = -\frac{1}{2}T_{2nh} (6) = -\frac{1}{2}T_{2nh} (6) = -\frac{1}{2}T_{2nh} (6)
$$

$$
v(f)=-f_1-\frac{1}{2}\tanh f_2
$$

mapping all values of f_2 for $f_1 = k$ on interval $(-k - 1/2, -k + 1/2)$

 $\mathbf{E} = \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{D} + \mathbf{A} \mathbf{D}$ Ω 11 / 16

When the impact is one-dimensional, it is often easy (though not always) to turn it into a value function

- if the impact is a benefit: just set $v(f) = f$ Examples: profit, quality, ...
- if the impact is a cost: just set $v(f) = -f$ Examples: monetary cost, time, pollution, ...
- if the impact has a target value \bar{f} : just set $v(f) = -\text{dist}(f, \bar{f})$ Examples: a goal to reach, an ideal impact, ...

 \bullet ...

(but what if the problem is multidimensional or hard to model?)

Weak order preference models: the Borda count

In the finite case, every weak order admits a value function (Borda count)

 $B(f) = |\{f' \in F : f \preceq f'\}|$

Example:

This is not very useful to solve the problem: better to apply domination (but we will use it for group decisions)

(but what if the problem is not finite?)

K ロ ト K 何 ト K ヨ ト K ヨ ト

つくへ 13 / 16

Weak order preference models: lexicographic order

If the indicators are all costs (or benefits) and are sorted by importance $(P = (\pi_1, \pi_2, ..., \pi_p))$, the preference relation Π is a total order

$$
f \preceq f' \Leftrightarrow f_{\pi_1} < f'_{\pi_1} \text{ or } \left\{ \begin{array}{l} f_{\pi_1} = f'_{\pi_1} \\ f_{\pi_2} < f'_{\pi_2} \end{array} \right\} \text{ or } \dots \text{ or } \left\{ \begin{array}{l} f_{\pi_1} = f'_{\pi_1} \\ f_{\pi_2} = f'_{\pi_2} \\ \vdots \\ f_{\pi_p} \le f'_{\pi_p} \end{array} \right\}
$$

Examples:

- first find a trip with minimum cost, then with minimum time
- first maximise the serviced demand, then minimise the costs

It does not admit value functions, but it can be solved as follows:

- 1) find the whole set $X^{\circ}_{\pi_1}$ of optimal solutions for $\min_{x \in X} f_{\pi_1}(x)$
- 2) find the whole set $X_{\pi_2}^{\circ}$ of optimal solutions for $\min_{x \in X_{\pi_1}^{\circ}} f_{\pi_2}(x)$
- .) \ldots
- p) find a single optimal solution $x_{\pi_p}^{\circ}$ for $\min_{x \in X_{\pi_{p-1}}^{\circ}} f_{\pi_p}(x)$

(but what if the indicators are not [ab](#page-12-0)[so](#page-14-0)[lu](#page-12-0)[tel](#page-13-0)[y](#page-14-0) [hi](#page-0-0)[er](#page-15-0)[arc](#page-0-0)[hic](#page-15-0)[al?](#page-0-0)[\)](#page-15-0) Ω

Weak order preference models: utopia point

Utopia is an inexistent ideal place (Thomas More, 1516)

- *ou-tòpos* $=$ no place
- eu-tòpos $=$ good place

The utopia point model of preference

 $\mathbf 0$ identifies an ideal impact f° independently optimising each indicator

$$
f_l^\circ = \min_{x \in X} f_l(x)
$$

and combining the optimal values in a vector: $f^{\circ}=\left[f_{1}^{\circ}\ldots f_{p}^{\circ}\right]^{T}$ $\bm{2}$ finding a solution with impact having minimum "distance" from f°

 $\min_{x \in X} \text{dist}(f(x), f^{\circ})$

T[ha](#page-13-0)t [s](#page-15-0)[ee](#page-13-0)[m](#page-14-0)[s](#page-15-0) [to](#page-0-0) [m](#page-15-0)[ak](#page-0-0)[e s](#page-15-0)[en](#page-0-0)[se](#page-15-0) QQ

Weak order preference models: utopia point

Different definitions of distance imply different results and the choice is arbitrary

For the sake of simplicity, assume that $f(x) = x$ $(F = X)$ Then, $f^{\circ} = (0,0)$ and we solve min dist($f(x)$, $(0, 0)$) $x_1 + 2x_2 \geq 3$ $x_1 > 0$ $x_2 > 0$

The optimal solution is

- $(0, 3/2)$ for distance $L_1 = |f_1| + |f_2|$
- \bullet $(3/5,6/5)$ for distance $L_2=\sqrt{f_1^2+f_2^2}$
- (1, 1) for distance $L_{\infty} = \max(f_1, f_2)$

If the indicators are heterogeneous, the units of measure have an influence and arbitrary conversion coefficients ar[e re](#page-14-0)[qu](#page-15-0)[ir](#page-14-0)[ed](#page-15-0),

 Ω 16 / 16