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Agenda

Lesson 1 (Wednesday 17th, 14.30-17):

Introduction to Combinatorial Optimization and Mathematical Programming.
Matheuristics: general features and classification.

Rounding and search around heuristics.

Lesson 2 (Friday 19th, 10.30-13):
Approximated heuristics. Dual heuristics.

Lesson 3 (Tuesday 23th, 10.30-13):
Relaxation techniques. Lagrangean heuristics. Surrogated heuristics.

Lesson 4 (Friday 26th, 10.30-13):
Decomposition based heuristics.



What is a decision problem

Two conditions:

1.  there must exist different alternatives or feasible
solutions for the problem

2. at least one criterion or objective is specified
allowing to compare the feasible solutions (making
some of them better than others)



Combinatorial optimization problems

A Combinatorial Optimization Problem (COP) is a decision problem with a
finite (but exponential) number of feasible solutions

e A COP is characterized by:
1. adescription of all its input parameters (e.g. costs, demand, capacity)
2. astatement of which properties a feasible solution must satisfy
3. anobjective to be either minimized or maximized

* Aninstance of a COP is obtained each time the input parameters are
specified (i.e. their numerical values are fixed)
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Example 1: shortest path problem
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Given a directed graph G=(N,A), with costs c;; for each (i,j) € A, and two nodes

o,d € N, determine a path from o to d such that the sum of the costs of its arcs




Example 2: knapsack problem

Given a knapsack with capacity C and n items with profit p; and size w;, fori =
1,..,n, determine a subset of items such that their total profit is as large as
possible and their total size does not exceed C




Example 3: Traveling Salesman Problem (TSP)

Given a directed graph G=(N,A), with costs c;; for each (i,j) € A, determine a
cycle visiting all nodes such that the sum of the costs of its arcs is minimal.

Minimum cost tour of the 50 USA landmarks
(from http://www.math.uwaterloo.ca/tsp/usa50/index.html ) 7



http://www.math.uwaterloo.ca/tsp/usa50/index.html

Computational complexity of COPs

* The shortest path problem can be solved in polynomial time (e.g. in 0(n?) by
Dijkstra’s algorithm, if ¢;; = 0, otherwise in 0(n3) by Floyd-Warshall)

» Knapsack can be solved in pseudo-polynomial time (O(nC) by dynamic progr.)

* For the TSP no pseudo-polynomial time algorithm: it is strongly NP-hard



From Garey-Johnson’s book

&

«l can’t find an efficient algorithm, | guess I’'m just too dumb»
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From Garey-Johnson’s book

«l can’t find an efficient algorithm, because no such algorithm
is possible!»

10



From Garey-Johnson’s book
AL L L L

/

«l can’t find an efficient algorithm, but neither can
all these famous people»
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How to prove a COP is NP-hard ?

Given a COP P; we can prove its NP-hardness building a polynomial time
reduction from another well-known NP-hard COP P, to P,

Whenever a COP includes as particular case another well-known NP-hard
problem it is NP-hard too (e.g. the VRP is NP-hard since the TSP is so)

Online compendium of NP-hard problems:
https://www.nada.kth.se/~viggo/problemlist/compendium.html

12
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What are matheuristics?

Matheuristics = math.prog. based heuristics

Heuristics/Metaheuristcs

13




Mathematical Programming formulation

A Mathematical Program is characterized by:
1. Decision variables
2. One objective function
3. Constraints

* General form of a Mathematical Program:
min f(x)
xe X
XcR" feasible solution set
f: X—> R objective function

* A Mathematical Program is a Linear Program if the objective function and the
constraints are linear function of the decision variables

* An Integer Linear Program (ILP) is a Linear Program with integer variables

* Most NP-hard COPs can be modeled as ILP (never as a compact LP)
14



Formulation of a knapsack problem

We want to realize a song compilation collecting in a CD with 800 Mb of capacity
some music files. The level of appreciation of each song (in a scale from 1 to 10)
and the size of each file are reported in the following table:

Song Appreciation Size (MB)
Light my fire 8 210
Fame 7 190
| will survive 8.5 235
Imagine 9 250
Let it be 7.5 200
| feel good 8 220

Parameters: n= # songs, g, = appreciation of song i, w, = size of i , C = CD capacity
Decision variables: x;= 1 if file i is selected for the CD, 0 otherwise

n
max z = z giX;
i=1
n
z wix; < C
i=1

x; €{0,1}for i =1,..,n 5



Mathematical Programming formulation

* The feasible region of an ILP is a subset S ¢ Z"

* A formulation of S € Z" is a polyhedron P = {x € R™: Ax < b} suchthat P N Z" =

16



Mathematical Programming formulation

* Given two formulations P; and P, of S ©¢ Z", P, is better than P, if P; C P,

« conv(S)is the ideal formulation

min f(x) o min f(x)

since
s.t.x €S s.t. x € conv(S)

17



Heuristics algorithms

« Motivation: finding the optimal solution of a NP-hard
problem is computationally too heavy in practical cases
(e.g. for big size instances)

Heuristic algorithm (from greek word eureka=discover):

method providing a feasible solution, non necessarily
optimal, for a problem

e Heuristics with approximation guarantee

evaluation in the worst case (and sometimes in the
average case, less frequent)

 Heuristics without approximation guarantee

18



Heuristics algorithms classification

* Constructive heuristics:
» Greedy algorithm
» Regret algorithm
» Savings algorithm

* Local search

19



Greedy algorithms

Main idea: the solution is built step by step and at each
step the more advantageous choice, compatible with the
constraints, 1S made

greedy (input: E; output: S);
begin S:=;

while E = & do
e:=element of E providing the best value of S U {e};
E.=E-{e};
If S {e} isfeasible then S:=S U {e};

endwhile

| return S;
end

these steps have to be efficient

20



Example: The Traveling Salesman Problem (TSP)

Nearest Neighbourhood heuristic

1. Choose a starting node p and mark it

2. Repeat (n—1) times:

link last marked node with the nearest not marked node

3. Link the last marked node with node p

21



Example: The Traveling Salesman Problem (TSP)

Nearest Insertion heuristic

1. Choose two nodes and build a partial cycle between them

2. repeat (n—2) times:

Insert in the partial cycle the nearest node to one of the
nodes in the cycle

]
R

22



Regret algorithms

Example: We want to decide how to assign n tasks to n employees, on the
basis of the following estimation of the times necessary to each employee to

perform each task

|| Task1 | Task2 | Task3 | Taskd | Tasks_
15 22 18 35 27

Empl. 1
Empl. 2
Empl. 3
Empl. 4
Empl. 5

10 15 15 20 22
12 30 13 25 23
18 24 19 27 29
13 23 14 32 25

Regret of each task: difference in absolute value between the
minimum time and the second one

23



Saving algorithms

Example: Clarke and Wright’ algorithm for capacitated Vehicle Routing
Problem (VRP)

1. compute the savings for each arc (i,j): s;; = ¢jo + Coj — Cij
2. Order the edges for non-increasing values of their savings
3. Add edges to routes until the capacity constraint cannot be satisfied

24



|_ocal search algorithm

Objective: find (quickly) good feasible solutions for NP-hard
problems

Idea: improve iteratively the solutions obtained through
heuristic algorithms (e.g., with greedy algorithms)

Technique:

(a) Detect small changes (perturbations) in the structure of the
feasible solutions preserving feasibility

(b) Apply the changes until the objective function value can
Improve

25




|_ocal search algorithm

Consider the generic problem

min f(s)
SeS
where S rapresents the feasible solutions set

and f(s) is the objective function to be optimized

Definition
We call move m from a solution to another one an operator

m: S —S

Given a feasible solution s € S, operator move m applied to s
returns a feasible solution m(s) e S

26



Neighborhood

In general we use moves that do not modify too much the
structure of a solution

l.e., we prefer m(s) near to solution s

Definition

We call neighborhood of a solution s the set
N(s)={5 e S|gm:5 =m(s)}

N(s) is the set of all feasible solutions that it is possible to
obtain applying to s the move m in all possible ways.

27



Example:

consider the sequence s=(c,a,d,e,b) corresponding to the solution
of an ordering problem (e.g. of objects).

Consider the move that changes the position of a pair of objects.
The neighborhood of s is
N(s)={(a,c,d,e,b); (d,a,c,e,b); (e,a,d,c,b); (b,a,d,e,c);

(c,d,a,e,b); (c,e,d,a,b); (c,b,d,e,a);

(c,a,e,d,b); (c,a,b,e,d);

(c,a,d,b,e) }

28




Alternatively the neighborhood can be defined through a
distance between solutions in S

Defintion

We call I-neighborhood of a solution s
N,(s)={5 e S|d(§,s) <}
whered :SxS — R* defines a measure of distance in S

N,(s) is the set of all the feasible solutions that are at
distance at most | from s

29



When the feasible solutions of a problem can be represented
through a boolean vector the Hamming distance can be used

Definition

The Hamming distance d,(s,,S,) between two boolean
vectors s, and s, Is the number of components where the
vectors are different

Example: s;=(

S,=(

0
1

0
0

0
1

1
1

il
0

010
010

0
1

1) and
1)

have Hamming distance d,,(s,,S,) equal to 4

30




Consider a feasible solution s=(1,0,1,1) of a knapsack problem
with 4 objects

the neighborhood  Ni(8) ={S € S|d},(5,5) <1}
consists of all the feasible solutions that differ from s in at most
one component

(0111) M (0001)  (0000)

(0011)  (1011)  (1010)  (0110)
(1110)  (1001)  (1000)  (0101)

(1100)  (1101) (0010) (0100)

31




Consider a feasible solution s=(1,0,1,1) of a knapsack problem
with 4 objects

the neighborhood N,(s)={5 eS|d,(5,s) <2}
consists of all the feasible solutions that differ from s in at most
two components

(0111) M (0001)  (0000)

(0011)  (1011)  (1010)  (0110)

>§< (1001)  (1000)  (0101)
(1100) M (0010)  (0100)

32




|_ocal search algorithm

Local Search(s);
begin s™:=s; END=false;
repeat
s:=best solution in N(s)
If f(s) <f(s”) then
S=;
else END=true,
until not END;
return s’
end,;

Minimum
problem

33



Local Optima

Definition

Solution s eSS is called local optimum, respect neighborhood
N(s), if the following relation holds f(s) < f(S), VS e N(s)

The solutions detected by a local search algorithm are local
optima respect the neighborhood used

34




Neighborhood example

Symmetric Traveling Salesman Problem (TSP)

2-opt neighborhood

5 2

The move is the swap of a pair of edges with onother one

Note: after the removal of a pair of edges the choice of the edges
to Insert Is unique

35




Symmetric Traveling Salesman Problem (TSP)

3-opt neighborhood

SN R

The move is the swap of three edeges with other three ones

Note: after the removal of the three edges, the choice of the new
three edges is not unique: how many alternatives are there ?

36




Symmetric Traveling Salesman Problem (TSP)

Remarks:

The 2-opt neighborhood is composed of O(n?) feasible
solutions, one for each pair of removed edges.

The 3-opt neighborhood generates, on average, solutions of
cost lower than those of the 2-opt neighborhood, but with a
greater computational cost: it includes O(n3) feasible solution,
three for each three edges removed

37




Asymmetric Traveling Salesman Problem (TSP)

Arc to be
Inverted

2-0pt neighborhood

/Q\ AR
Q>® KQ Q><> >Q
O\Q/d Q\Q/Q’

The move consists in the swap of a pair of arcs with another pair
and the inversion of the arcs of a part of the current path

38




Metaheuristics algorithms

Minimum
problem

f(s)

local optima

39



Variable Neighborhood Search (VNS)

Developed in‘97 by P. Hansen and N. Mladenovic

Idea: a solution that is a local optimum for a neighborhood could be not a local optimum
for another neighborhood

Family of neighborhoods I, with k=1,....k_..

Ik - Ik+1

40



Variable Neighborhood Search (VNS)

[ /&)

41



Tabu Search (Glover 1990)

Primary Features of Tabu Search:

Adaptive memory - remembers features of good/bad solutions that
you encounter).

Responsive exploration — exploration based on past exploration.

42



Tabu Search

Basic Algorithmic Features:

« Always move to the best available neighborhood solution, even
If it Is worse than the current solution.

« Tabu list: maintain a list of solution points that must be avoided
(not allowed) or a list of move features that are not allowed.

« Update the tabu list based on some memory structure (short-term
memory). Remove tabu moves after some time period has
elapsed (tenure).

 Allow for exceptions from the tabu list (aspiration criteria).

« Expand the search area, modify tenure or size of tabu list.

43



Tabu Search pseudocode

Algorithm Tabu search (S, ¢, x*):
1. begin
2. Let x' = Feasible(S);
3. Let x"=x";
4, Let TL={x'};
5. Letk =0, stop = False;
6. while (stop = False) do

7. while (k < max_no_improvement) do
8. Let x'=argmin{c(x): x e I(x)\TL}
Q. If c(x")<c(x") then do

10. let x" =x";

11. let k=0;

12. else k=k+1;

13. update (TL);

14, end while

15. diversification and/or intensification;

16. if stop criterion is satisfied then stop = True

17. end while

18. end

44



Example: Tabu Search applied to TSP

0 10
10 O

8
/7 6
2

3 7 5
8 6 2
0 4 3
4 0 9
390

Starting solution by nearest neighborhood: 1, 3, 5, 2, 4, 1, cost 21

Its 2-opt neighborhood is:

Solution

1,3,9,2,4,1

21

1,5,3,2,4,1

29

1,2,5,3,4,1

26

1,3,2,5,4,1

29

1,3,4,2,5,1

20

1,2,4,5,3,1

31

Best solution 1, 3, 4, 2, 5, 1, cost 20

45



Example: Tabu Search applied to TSP

The 2-opt neighborhood of 1, 3, 4, 2,5, 1 is:

Solution | z
1,3,4,2,5,1|20
1,3,5,2,4,1 |21
1,3,2,45,1 |31
1,4,3,25,1|26
1,2,4,.3,5,1 |28
1,3,4,5,2,1 |28

Therefore 1, 3, 4, 2, 5, 1 is a local optimum

Instead TS selects 1, 4, 3, 2, 5, 1 although its cost (26) worsens
the current solution 46



Example: Tabu Search applied to TSP

The 2-opt neighborhood of 1, 4, 3, 2,5, 1 is:

Solution | z
1,4,3,2,5,1 |26 |tabu
1,3,4,2,5,1|20 | tabu
1,2,3,4,5,1|36
1,4,3,5,2,1|26
1,4,2,3,5,1|29
1,45,2,3,1|29

Therefore TS selects 1, 4, 3, 5, 2, 1 although it is not improving

47



Example: Tabu Search applied to TSP

The 2-opt neighborhood of 1, 4, 3,5, 2, 1 is:

Solution | z
1,4,3,5,2,1 |26 | tabu
1,4,3,2,5,1 |26 | tabu
1,3,45,2,1|28
15,3,4,2,1|28
1,453,2,1|37
1,4,25,3,1|21

Now TS selects 1, 4, 2, 5, 3, 1 that is improving!

48



Several metaeheuristics

Adaptive Large Neighborhood Search
Greedy Adaptive Search Procedure (GRASP)
Simulated Annealing

Ant Colony Optimization

Bee Colony Optimization

Genetic Algorithms

Memetic Algorithms

Applications of Metaheuristic are almost uncountable and appear in many
journals (e.g. «Journal of Heuristics») and specialized conferences e.g.
Metaheuristics International Conference (MIC)

Their success is due to the fact that they are general purpose method that do not
require problem specific knowledge

49



Matheuristics: general features

Matheuristics are also called hybrid heuristics since combine the use of exact
techniques with metaheuristic frameworks

They are tailor-made algorithm (since exploit the math. structure of the problem)
» Advantage: they have better performance compared to ‘general purpose’
metaheuristics
» Disadvantage: they can be used only for a specific class of problems

The performance concerns:
1) The solution quality
2) The computational time
3) The robustness of the algorithm over a wide spectrum of instance types
(e.g. to guarantee the algorithm can be used as optimization modules within
decision support systems)

50



Matheuristics: a possible classification

Combinations of Exact Algorithms and Metaheuristics ]

l '

Collaborative Combinations Integrative Combinations ]
—"'“[ Sequential Execution J ‘>[ Incorporating Exact Algorithms in Metaheuristics J
+[ Parallel or Intertwined Execution ] +[ Incorporating Metaheuristics in Exact Algorithms ]

J. Puchinger and G.R. Raidl, (2005). Combining metaheuristics and exact algorithms in
combinatorial optimization: A survey and classification.

o1



Master-slave structure of Matheuristics

* Two different alternative possibilities:
i. The metaheuristics acts at a higher level and controls the calls to the exact
approach;
ii. The exact technigue acts as the master and calls and controls the use of the
metaheuristic scheme

* In casei. the definition of the neighborhood follows the logic of a metaheuristic, while
the exploration of the neighborhood is left to the exact approach (e.g. Corridor Method,
large scale neighborhood search, local branching)

e Caseii. occurs e.g., in modern branch and cut solvers that exploits the potential of
metaheuristics to quickly obtain good quality feasible solutions (useful for the pruning);
or in order to find the first feasible solution, the feasibility pump matheuristic has been
developed

52



Key questions desighing Matheuristics

. Which components should be “hybridized” to create an effective algorithm

. Identification of the most effective exact methods to solve the COP (e.g., in
Corridor Method: which exact method can effectively tackle the problem if of
reduced size)

. Size and boundaries of the neighborhood (they depend on the power of the
exact method used)

. Intensification-diversification tradeoff (e.g., the CM does not consider

diversification, while RINS being based on the LP relaxations of the search tree
put more emphasis in diversification)

53



Matheuristics based on linear relaxation

The simplest matheuristic for a COP consists in rounding the solution of the linear
(or continuous) relaxation of its ILP formulation

In general this kind of approach is not good for COP with binary variables since
rounding a fractional solution to 0/1 can introduce more error

Nevertheless there are cases where this matheuristic works well even for ILP

formulation with binary variables: e.g., the Minimum Weight Node Cover Problem
(MWNC)

54



A rounding matheuristic for the MWNC

Given an undirected graph G=(V,E) with a node cost function ¢, the Minimum
Weight Node Cover Problem (MWNC) consists in finding a subset of vertices that
covers i.e. touches each edge at least once and whose total cost is minimal.

n

minz = E CiX;

i=1
xi+x; = 1V[i,j] €EE

x; €{0,1}for i =1,..,n

 Let X the optimal solution of the linear relaxation:
VI[ij] €E, X;=050rk =0.5

e Therefore if we round up every X; = 0.5 and to 0 the others we obtain a feasible solution

* The value of this feasible solution, Z is < 2Z being Z the optimal value of the LR

* Hence, 2 < 2Z < 277, i.e., this is a 2-approximated algorithm!

55



Key questions for rounding matheuristics

1. What thresholds should be used for rounding?
2. What is the maximum (or average) error introduced by rounding?

3. What s the likelihood that a large number of variables will be 1 in a “typical” LP
solution?

4. What is the likelihood that a large number of variable values will be close to 0
or 1in a typical solution?

56



A relaxation based heuristic for the MAX-FS

 E. Amaldi, M. Bruglieri, G. Casale, (2008). A two-phase relaxation-based
heuristic for the maximum feasible subsystem problem, Computers &
Operations Research, vol. 35. issue 5, pp.1465-1482

* Max FS: Given an infeasible Ax2 b with Ae'R™"and beR™
find a Maximum Feasible Subsystem, i.e. a feasible subsystem containing as many
inequalities as possible.

e We focus on the version where all variables x (or all but one) are bounded.

e Discriminant analysis: design optimal linear classifier
(Glover ‘81, Mangasarian '92/'95)

e Telecommunications: determine antenna emission power
so as to maximize coverage (Rossi et al. ’01)

S7



Linear discriminant analysis

(asl’isz) o /, g \ Ax X ta0X, >= D
o ® o X
O 20 o
) . P -
O 7 g OO (811,815)
DA
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Complexity and Approximability

 Max FS is strongly NP-hard (Sankaran ‘93)

 Max FS is approximable within 2 but does not admit
a PTAS, unless P=NP (Amaldi & Kann‘95)



Dealing with Infeasibility

. Easy to detect infeasibility (phase 1 simplex)

. Obstructions to feasibility

IIS (Irriducibile Infeasible Subsystem):

Infeasible set of inequalities that becomes feasible if any of the
inequalities is removed

X;+X,21
X,<0
X,<0

NB: Exponentially many IIS’s

e To recover feasibility: find a MAX FS or
equivalently a MIN IIS Cover



Algorithmic Approaches

Exact methods:

MILP formulations (a'x 2 b.-M(1-y.) with y.{0,1})

Partial IIS set covering formulation with dynamic |IS generation
(Parker & Ryan "96)

First Branch & Cut (Pfetsch ’'02)

Combinatorial Benders’Cuts (Codato & Fischetti '04)



Filtering Heuristics

* Chinneck’s Algorithm: iteratively remove a single constraint
until the remaining subsystem is feasible

 The removed constraint is chosen using an elastic program
E(S) associated to the infeasible system S

relation elastic relation
Zﬂijir'j > b; Ej Qi T + S > b;
]
SINF := min ) s,
) aiz < b > 05T — s < b Z |
]

_ i 0o
E @i T; = b Ej ;T + S; — 8; = b,
J



Two Phase Relaxation-Based
Heuristic



Bilinear Formulation

e Bilinear continuous formulation of the MAX FS:

max > Y

5.t. Y Z;_::l a;;T; > Yib; i=1,..., m
l; <z; <uy 73=1,..., n
0<y; <1 1=1,..., m

Linear Program with Equilibrium Constraints (LPEC)

64



Linearization of bilinear formulation

* Each bilinear term is replaced by a single variable
Zij = YiTj
* The resulting formulation is thus:

max 2 im1 Y
s.t. Z;l:l aijzt-j :_:" yt'bt' 1=1,..., m (*)

EJEIJ{_:HJ _j":]. ..... n
0<y, <1 i=1,...,m
ijzo j':]_ ..... mn,

 Nevertheless, the linearization involves a loss of
information!
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Assumptions

* Since each variable x; € [l,u]
we can assume w.l.0.g. |;=0:
- if u<0, replace x; with -x;
- if u=0 and Ij;& 0, then
- if <0 then x;= x;*-x;’
- if | >0 then x;= x;*+,
* Advantage: in constraints (*), we can replace z; with x;,

foralliand js.t. a;20, since this helps to satisfy
inequalities, being x;2 0



Constraints on Z;

* Ify,e{0,1} then z; = y; x; if and only if:
i =0=—=2;; =0 forall j=1,..., n (C]_)
yi =1 = z;; = z; for all 7 =1,..., n. (CZ)

e Condition (C1) can be modelled as:

z; <uyy;, 1=1..,m, J=1..n, st a; <0

while (C2) as:

&
|
=
L
g
|
s 4
NP
VAN VAN
NN
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Resulting linearization

max D im1 Y
s.t. Zj:ai},{g ai;jzij + E;:a!—}-za ai;z; > yb;  i=1,...,m
Zij < UY;, 1=1,...,m, 3=1,...,n, sit. a;; <0
zij S x; 1=1,...,m, 3=1,...,n, st. a;; <0
z; —u; (1 —y;) < 25 i=1...,m, j=1 ..., n, st. a;; <0
[ <z; < j=1...,n
0<y; <1 1=1,...,m
zi; =2 0 1=1,...,m, j=1,...,n, st. a;; <0.
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Observations

* The set | of inequalities with y,=1 is feasible
e Set | is not necessarily a subset of a MAX FS

* The inequalities corresponding to y.<1 are not
always inconsistent with the inequalities of |



Two Phase Algorithm

Phase 1:

Solve a relaxation of the MAX FS obtaining a
solution y

Determine /,={i: =1, i=1,.., m}
Phase 2:

Solve an exact formulation of MAX FS fixing y;=1
foralli e I,



Experimental Campaign

2-ph-bilin, 2-ph-bigM
Exact-bigM

Branch & Cut (Pfetsch '02)
CBC (Codato & Fischetti '04)
Filtering (Chinneck "96)

Time-limit 10000 sec on an Intel Xeon 2.80 Ghz

Gaps with the best known optimal value (or the best
known upper bound)



Instances

 Random Instances (Pfetsch’s PhD thesis)
— 28 groups each composed of 3 random instances

— A and b have full density, m = 20-100 and n = 5-20

e CBC-ML (Codato et al.’04) :
-Set of linear classification problem from
the UCI Machine Learning repository
-m = 100-700 and n = 10-40

e ML:
- a different set of instances from the same repository

e DVB (Rossi et al. '01) :

- sparse instances arising in Digital Video Broadcasts

- m = 1000-20000 and n = 500

- large difference in the coeff. values ranging between 10! and 10!



Numerical results (CBC-ML)

exaci-tighd CRC 2-ple-big M f-ph-hilinsar Filterig
F& CFU | F§  CPU Fs CPU F5 CP1 F§  CPU

Instance phi  ph2 phi phit2 | phi ph2  phi  phi42

Chorales-116 92 3650 [ 02 5&D I 8z 0d 22 55 o2 3 i} 2 14
BalloonsTé 66 T | 88 0a 52 66 0. 0.1 52 66 0.1 1 G i
BOW-367 359 365 | 360 1 333 350 0.1 0.3 338 350 a3 a3 358 5
BOW-653 673 6750 | 672 10 643 673 0.1 2 6490 673 675 &70 672 10
WPBC-194 180 2270 | 189 299 161 180 0.1 1 166 180 1025 1030 | 180 3
Breast-Cancer-400 376 71| aTe 0l a4 76 0.1 0.2 374 ime 01 3 374 13
Glass-163 150 3849 | 160 3 102 150 0.1 0.1 146 149 & 9 150 10
Horse-colic-151 148 502 | 146 12 128 146 0.1 0.1 130 146 82 84 146 2
Chorales-134 I@jub:113) [ 104 72T 30 104 0.3 16 50 104 2 33 04 27
Chorales- 107 BO(ub : B5) t BO 67 31 B0 02 22 36 80 1 19 T 14
Eridges-132 108{ub: 121) [ 1080 136 67 109 0.1 58 74 1009 33 430 108 14
Meoch-analysis-152 | 130(ub: 126) | 131 139 86 121 0.2 12 117 131 & & 128 18
Membs-tr-124 10jub s 104) | 1000 56 50 00 0l 22 55 100 3 2 a7 7
Momks-tr-115 B{ub : 56) i BE 48T 25 B8 0 6 19 a7 2 56 B8 24
Solar-flare-323 282(ub:300) f | 285 3 241 2/ 01 1 264 284 o4 06 281 45
Ev-0s-376 387(ub: 360) | 388 125 340 36T 01 5 341 368 404 505 367 6
BusVand45 436(ub:438) | 437 102 | 411 437 0.1 4 412 437 320 383 487 5
Flags-169 15ajub:163) | 168 - 118 168 0.2 78 130 150 13 135 150 6
Horse-colic-253 U0(ub: 248) | 240 - 188 240 04 854 196 M40 1 127 240 15
Horse-colic-185 1T3jub:177) | 173 - 137 172 0.1 42 145 172 138 172 g
Average | 9100 | 3450 0.34% .25 | 1876% 0.38% 20500 | 0.86% 944

Lagend: 1= tims limit exceaded
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Summary of average gaps

Testbed 2-ph-begM 2-ph-bilinear Z-ph-artificial Filtering
ph.1 ph. 2 ph.l ph. 2 ph.1 ph. 2

Random | 13.45%  2.16% | 20.19% 1.29% | 16.40%  3.47% 2.25%

CBC-ML | 34.50% 0.34% | 18.76% 0.33% | 21.16%  0.56% 0.86%

ML 23.49%  T.22% | 20.73%  T.38% | 28.87%  7.53% T.11%

DVDB’ 1.73% 0.05% | 1.96%  1.14% | 16.02% 6.12% | 1.33%

DVEB? 9.73%  7.26% | 7.55% @ 6.40% | 44.04% 15.74% -

Legend: P=instances solved by all methods

J=instances solved by two-phase algorithms
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Conclusions

* Simple 2-phase heuristic yields solutions with comparable
quality of sophisticated exact methods within much lower
CPU times

 Computational cost does not depend on the number of
inequalities to be deleted to achieve feasibility (Filtering)

e Using LP relaxation of big-M formulation in Phase 1,
drammatically reduces CPU times without substantially affect
the solution quality

Better relaxations for Phase 17
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