
MATHEURISTICS
FOR COMBINATORIAL

OPTIMIZATION PROBLEMS

Module 1- Lesson 1

Prof. Maurizio Bruglieri

Politecnico di Milano

Agenda

• Lesson 1 (Wednesday 17th, 14.30-17):
 Introduction to Combinatorial Optimization and Mathematical Programming.
 Matheuristics: general features and classification.
 Rounding and search around heuristics.

• Lesson 2 (Friday 19th, 10.30-13):
 Approximated heuristics. Dual heuristics.

• Lesson 3 (Tuesday 23th, 10.30-13):
 Relaxation techniques. Lagrangean heuristics. Surrogated heuristics.

• Lesson 4 (Friday 26th, 10.30-13):
 Decomposition based heuristics.

2

3

What is a decision problem

Two conditions:

1. there must exist different alternatives or feasible
solutions for the problem

2. at least one criterion or objective is specified
allowing to compare the feasible solutions (making
some of them better than others)

Combinatorial optimization problems

• A Combinatorial Optimization Problem (COP) is a decision problem with a
finite (but exponential) number of feasible solutions

• A COP is characterized by:
1. a description of all its input parameters (e.g. costs, demand, capacity)
2. a statement of which properties a feasible solution must satisfy
3. an objective to be either minimized or maximized

• An instance of a COP is obtained each time the input parameters are
specified (i.e. their numerical values are fixed)

4

Example 1: shortest path problem

Given a directed graph G=(N,A), with costs 𝑐𝑖𝑗 for each 𝑖, 𝑗 ∈ 𝐴, and two nodes

𝑜, 𝑑 ∈ 𝑁, determine a path from 𝑜 to 𝑑 such that the sum of the costs of its arcs
is minimal.

5

Example 2: knapsack problem
Given a knapsack with capacity C and n items with profit 𝑝𝑖 and size 𝑤𝑖, for 𝑖 =
1, . . , 𝑛, determine a subset of items such that their total profit is as large as
possible and their total size does not exceed C

6

Example 3: Traveling Salesman Problem (TSP)
Given a directed graph G=(N,A), with costs 𝑐𝑖𝑗 for each 𝑖, 𝑗 ∈ 𝐴, determine a

cycle visiting all nodes such that the sum of the costs of its arcs is minimal.

Minimum cost tour of the 50 USA landmarks
(from http://www.math.uwaterloo.ca/tsp/usa50/index.html) 7

http://www.math.uwaterloo.ca/tsp/usa50/index.html

Computational complexity of COPs
• The shortest path problem can be solved in polynomial time (e.g. in 𝑂(𝑛2) by

Dijkstra’s algorithm, if 𝑐𝑖𝑗 ≥ 0, otherwise in 𝑂(𝑛3) by Floyd-Warshall)

• Knapsack can be solved in pseudo-polynomial time (𝑂 𝑛𝐶 by dynamic progr.)

• For the TSP no pseudo-polynomial time algorithm: it is strongly NP-hard

8

«I can’t find an efficient algorithm, I guess I’m just too dumb»

From Garey-Johnson’s book

9

«I can’t find an efficient algorithm, because no such algorithm
 is possible!»

From Garey-Johnson’s book

10

«I can’t find an efficient algorithm, but neither can
 all these famous people»

From Garey-Johnson’s book

11

How to prove a COP is NP-hard ?
• Given a COP 𝑃1 we can prove its NP-hardness building a polynomial time

reduction from another well-known NP-hard COP 𝑃2 to 𝑃1

• Whenever a COP includes as particular case another well-known NP-hard
problem it is NP-hard too (e.g. the VRP is NP-hard since the TSP is so)

• Online compendium of NP-hard problems:
https://www.nada.kth.se/~viggo/problemlist/compendium.html

12

https://www.nada.kth.se/~viggo/problemlist/compendium.html

What are matheuristics?

Heuristics/Metaheuristcs

Mathematical Programming

Matheuristics = math.prog. based heuristics

13

Mathematical Programming formulation
• A Mathematical Program is characterized by:

1. Decision variables
2. One objective function
3. Constraints

• General form of a Mathematical Program:
 min f(x)
 x  X
 Xn feasible solution set
 f: X →  objective function

• A Mathematical Program is a Linear Program if the objective function and the
constraints are linear function of the decision variables

• An Integer Linear Program (ILP) is a Linear Program with integer variables

• Most NP-hard COPs can be modeled as ILP (never as a compact LP)
14

Formulation of a knapsack problem

15

We want to realize a song compilation collecting in a CD with 800 Mb of capacity
some music files. The level of appreciation of each song (in a scale from 1 to 10)
and the size of each file are reported in the following table:

Song Appreciation Size (MB)

Light my fire 8 210

Fame 7 190

I will survive 8.5 235

Imagine 9 250

Let it be 7.5 200

I feel good 8 220

Parameters: n= # songs, gi = appreciation of song i, wi = size of i , C = CD capacity

Decision variables: 𝑥𝑖= 1 if file i is selected for the CD, 0 otherwise

max 𝑧 =෍

𝑖=1

𝑛

𝑔𝑖𝑥𝑖

෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 ≤ 𝐶

𝑥𝑖 ∈ 0,1 for 𝑖 = 1, . . , 𝑛

Mathematical Programming formulation

• The feasible region of an ILP is a subset S ⊂ ℤ𝑛

• A formulation of S ⊂ ℤ𝑛 is a polyhedron 𝑃 = {𝑥 ∈ ℝ𝑛: 𝐴𝑥 ≤ 𝑏} such that 𝑃 ∩ ℤ𝑛 = S

16

x1

x2

0 1 2 3 4

1

2

3

4

Mathematical Programming formulation
• Given two formulations 𝑃1 and 𝑃2 of S ⊂ ℤ𝑛, 𝑃1 is better than 𝑃2 if 𝑃1 ⊂ 𝑃2

17

x1

x2

0 1 2 3 4

1

2

3

4

• conv S is the 𝑖𝑑𝑒𝑎𝑙 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 since
𝑚𝑖𝑛 𝑓(𝑥)
𝑠. 𝑡. 𝑥 ∈ 𝑆

 ⇔
𝑚𝑖𝑛 𝑓(𝑥)

𝑠. 𝑡. 𝑥 ∈ 𝑐𝑜𝑛𝑣(𝑆)

Heuristics algorithms

• Motivation: finding the optimal solution of a NP-hard

problem is computationally too heavy in practical cases

(e.g. for big size instances)

Heuristic algorithm (from greek word eureka=discover):

method providing a feasible solution, non necessarily

optimal, for a problem

• Heuristics with approximation guarantee

evaluation in the worst case (and sometimes in the

average case, less frequent)

• Heuristics without approximation guarantee

18

Heuristics algorithms classification

• Constructive heuristics:
➢ Greedy algorithm
➢ Regret algorithm
➢ Savings algorithm

• Local search

19

Main idea: the solution is built step by step and at each

step the more advantageous choice, compatible with the

constraints, is made

greedy (input: E; output: S);

begin S:=;

 while E   do

 e:=element of E providing the best value of S  {e};

 E := E – {e};

 if S  {e} is feasible then S:= S  {e};

 endwhile

 return S;

end;

these steps have to be efficient

Greedy algorithms

20

Example: The Traveling Salesman Problem (TSP)

1. Choose a starting node p and mark it

2. Repeat (n–1) times:

 link last marked node with the nearest not marked node

3. Link the last marked node with node p

Nearest Neighbourhood heuristic

21

1. Choose two nodes and build a partial cycle between them

2. repeat (n–2) times:

 insert in the partial cycle the nearest node to one of the

nodes in the cycle

Nearest Insertion heuristic

Example: The Traveling Salesman Problem (TSP)

22

Example: We want to decide how to assign n tasks to n employees, on the
basis of the following estimation of the times necessary to each employee to
perform each task

Regret algorithms

Task 1 Task 2 Task 3 Task 4 Task 5

Empl. 1 15 22 18 35 27

Empl. 2 10 15 15 20 22

Empl. 3 12 30 13 25 23

Empl. 4 18 24 19 27 29

Empl. 5 13 23 14 32 25

Regret of each task: difference in absolute value between the
minimum time and the second one

23

Example: Clarke and Wright’ algorithm for capacitated Vehicle Routing
Problem (VRP)

1. compute the savings for each arc (i,j): 𝑠𝑖𝑗 = 𝑐𝑖0 + 𝑐0𝑗 − 𝑐𝑖𝑗

2. Order the edges for non-increasing values of their savings

3. Add edges to routes until the capacity constraint cannot be satisfied

Saving algorithms

24

25

Objective: find (quickly) good feasible solutions for NP-hard

problems

Idea: improve iteratively the solutions obtained through

heuristic algorithms (e.g., with greedy algorithms)

Technique:

(a) Detect small changes (perturbations) in the structure of the

feasible solutions preserving feasibility

(b) Apply the changes until the objective function value can

improve

Local search algorithm

26

Consider the generic problem

min ()
s S

f s


where S rapresents the feasible solutions set

and f(s) is the objective function to be optimized

Definition

We call move m from a solution to another one an operator

 m: S S

Given a feasible solution , operator move m applied to s

returns a feasible solution

s S

()m s S

Local search algorithm

27

Definition

We call neighborhood of a solution s the set

() { : ()}N s s S m s m s=   =

N(s) is the set of all feasible solutions that it is possible to

obtain applying to s the move m in all possible ways.

In general we use moves that do not modify too much the

structure of a solution

i.e., we prefer m(s) near to solution s

Neighborhood

28

Example:

consider the sequence s=(c,a,d,e,b) corresponding to the solution

of an ordering problem (e.g. of objects).

Consider the move that changes the position of a pair of objects.

The neighborhood of s is

N(s)={(a,c,d,e,b); (d,a,c,e,b); (e,a,d,c,b); (b,a,d,e,c);

 (c,d,a,e,b); (c,e,d,a,b); (c,b,d,e,a);

 (c,a,e,d,b); (c,a,b,e,d);

 (c,a,d,b,e) }

Alternatively the neighborhood can be defined through a

distance between solutions in S

Defintion

We call l-neighborhood of a solution s

where defines a measure of distance in S

() { (,) }lN s s S d s s l=  

:d S S + →

Nl(s) is the set of all the feasible solutions that are at

distance at most l from s

29

30

When the feasible solutions of a problem can be represented

through a boolean vector the Hamming distance can be used

Definition

The Hamming distance dH(s1,s2) between two boolean

vectors s1 and s2 is the number of components where the

vectors are different

Example: s1=(0 0 0 1 1 0 1 0 0 1) and

 s2=(1 0 1 1 0 0 1 0 1 1)

have Hamming distance dH(s1,s2) equal to 4

31

the neighborhood

consists of all the feasible solutions that differ from s in at most

one component

1() { (,) 1}HN s s S d s s=  

Consider a feasible solution s=(1,0,1,1) of a knapsack problem

with 4 objects

(0000)(0001)

(0010) (0100)

(1000)

(0011)

(0111)

(0101)(1001)

(0110)(1011)

(1101)

(1111)

(1010)

(1100)

(1110)

32

the neighborhood

consists of all the feasible solutions that differ from s in at most

two components

2() { (,) 2}HN s s S d s s=  

(0000)(0001)

(0010) (0100)

(1000)

(0011)

(0111)

(0101)(1001)

(0110)(1011)

(1101)

(1111)

(1010)

(1100)

(1110)

Consider a feasible solution s=(1,0,1,1) of a knapsack problem

with 4 objects

33

Local_Search(s);

begin s*:=s; END=false;

 repeat

 s:=best solution in N(s)

 if f(s) < f(s*) then

 s*:= s;

 else END=true;

 until not END;

 return s*;

end;

Minimum

problem

Local search algorithm

34

Local Optima

Definition

Solution is called local optimum, respect neighborhood

N(s), if the following relation holds

s S

() (), ()f s f s s N s  

The solutions detected by a local search algorithm are local

optima respect the neighborhood used

35

Neighborhood example

Symmetric Traveling Salesman Problem (TSP)

2-opt neighborhood

The move is the swap of a pair of edges with onother one

Note: after the removal of a pair of edges the choice of the edges

to insert is unique

Symmetric Traveling Salesman Problem (TSP)

3-opt neighborhood

The move is the swap of three edeges with other three ones

Note: after the removal of the three edges, the choice of the new

three edges is not unique: how many alternatives are there ?

36

Symmetric Traveling Salesman Problem (TSP)

Remarks:

The 2-opt neighborhood is composed of O(n2) feasible

solutions, one for each pair of removed edges.

The 3-opt neighborhood generates, on average, solutions of

cost lower than those of the 2-opt neighborhood, but with a

greater computational cost: it includes O(n3) feasible solution,

three for each three edges removed

37

Asymmetric Traveling Salesman Problem (TSP)

2-opt neighborhood

The move consists in the swap of a pair of arcs with another pair

and the inversion of the arcs of a part of the current path

Arc to be

inverted

38

local optima

S

f(s)

Minimum

problem

Metaheuristics algorithms

39

Variable Neighborhood Search (VNS)

• Developed in‘97 by P. Hansen and N. Mladenovic

• Idea: a solution that is a local optimum for a neighborhood could be not a local optimum

for another neighborhood

• Family of neighborhoods Ik, with k=1,…,kmax

• Ik  Ik+1

40

Variable Neighborhood Search (VNS)

41

Primary Features of Tabu Search:

Adaptive memory - remembers features of good/bad solutions that

you encounter).

Responsive exploration – exploration based on past exploration.

Tabu Search (Glover 1990)

42

Basic Algorithmic Features:

• Always move to the best available neighborhood solution, even

if it is worse than the current solution.

• Tabu list: maintain a list of solution points that must be avoided

(not allowed) or a list of move features that are not allowed.

• Update the tabu list based on some memory structure (short-term

memory). Remove tabu moves after some time period has

elapsed (tenure).

• Allow for exceptions from the tabu list (aspiration criteria).

• Expand the search area, modify tenure or size of tabu list.

Tabu Search

43

Tabu Search pseudocode
Algorithm Tabu search (S, c, *x):

 1. begin

 2. Let x =)(SFeasible ;

 3. Let xx =* ;

 4. Let TL={ x};

 5. Let k = 0, stop = False;

 6. while (stop = False) do

 7. while (k < max_no_improvement) do

 8. Let }\)(:)(min{arg TLxIxxcx =

 9. if)()(*xcxc  then do

10. let ;* xx =

11. let k = 0;

12. else k=k+1;

13. update (TL);

14. end while

15. diversification and/or intensification;

16. if stop criterion is satisfied then stop = True

17. end while

18. end

44

Example: Tabu Search applied to TSP























=

09325

9

3

2

5

0467

4083

68010

73100

C

 Solution z

1,3,5,2,4,1 21

1,5,3,2,4,1 29

1,2,5,3,4,1 26

1,3,2,5,4,1 29

1,3,4,2,5,1 20

1,2,4,5,3,1 31

Starting solution by nearest neighborhood: 1, 3, 5, 2, 4, 1, cost 21

Its 2-opt neighborhood is:

Best solution 1, 3, 4, 2, 5, 1, cost 20

45

Example: Tabu Search applied to TSP

The 2-opt neighborhood of 1, 3, 4, 2, 5, 1 is:

 Solution z

1,3,4,2,5,1 20

1,3,5,2,4,1 21

1,3,2,4,5,1 31

1,4,3,2,5,1 26

1,2,4,3,5,1 28

1,3,4,5,2,1 28

Therefore 1, 3, 4, 2, 5, 1 is a local optimum

Instead TS selects 1, 4, 3, 2, 5, 1 although its cost (26) worsens

the current solution 46

Example: Tabu Search applied to TSP

The 2-opt neighborhood of 1, 4, 3, 2, 5, 1 is:

Solution z

1,4,3,2,5,1 26 tabu

1,3,4,2,5,1 20 tabu

1,2,3,4,5,1 36

1,4,3,5,2,1 26

1,4,2,3,5,1 29

1,4,5,2,3,1 29

Therefore TS selects 1, 4, 3, 5, 2, 1 although it is not improving

47

Example: Tabu Search applied to TSP

The 2-opt neighborhood of 1, 4, 3, 5, 2, 1 is:

Now TS selects 1, 4, 2, 5, 3, 1 that is improving!

Solution z

1,4,3,5,2,1 26 tabu

1,4,3,2,5,1 26 tabu

1,3,4,5,2,1 28

1,5,3,4,2,1 28

1,4,5,3,2,1 37

1,4,2,5,3,1 21

48

Several metaeheuristics
• Adaptive Large Neighborhood Search
• Greedy Adaptive Search Procedure (GRASP)
• Simulated Annealing
• Ant Colony Optimization
• Bee Colony Optimization
• Genetic Algorithms
• Memetic Algorithms
• ….
• Applications of Metaheuristic are almost uncountable and appear in many

journals (e.g. «Journal of Heuristics») and specialized conferences e.g.
Metaheuristics International Conference (MIC)

• Their success is due to the fact that they are general purpose method that do not
require problem specific knowledge

49

Matheuristics: general features
• Matheuristics are also called hybrid heuristics since combine the use of exact

techniques with metaheuristic frameworks

• They are tailor-made algorithm (since exploit the math. structure of the problem)
➢ Advantage: they have better performance compared to ‘general purpose’

metaheuristics
➢ Disadvantage: they can be used only for a specific class of problems

• The performance concerns:
1) The solution quality
2) The computational time
3) The robustness of the algorithm over a wide spectrum of instance types

(e.g. to guarantee the algorithm can be used as optimization modules within
decision support systems)

50

Matheuristics: a possible classification

51

J. Puchinger and G.R. Raidl, (2005). Combining metaheuristics and exact algorithms in
combinatorial optimization: A survey and classification.

Master-slave structure of Matheuristics

52

• Two different alternative possibilities:
i. The metaheuristics acts at a higher level and controls the calls to the exact

approach;
ii. The exact technique acts as the master and calls and controls the use of the

metaheuristic scheme

• In case i. the definition of the neighborhood follows the logic of a metaheuristic, while
the exploration of the neighborhood is left to the exact approach (e.g. Corridor Method,
large scale neighborhood search, local branching)

• Case ii. occurs e.g., in modern branch and cut solvers that exploits the potential of
metaheuristics to quickly obtain good quality feasible solutions (useful for the pruning);
or in order to find the first feasible solution, the feasibility pump matheuristic has been
developed

Key questions designing Matheuristics

53

1. Which components should be “hybridized” to create an effective algorithm

2. Identification of the most effective exact methods to solve the COP (e.g., in
Corridor Method: which exact method can effectively tackle the problem if of
reduced size)

3. Size and boundaries of the neighborhood (they depend on the power of the
exact method used)

4. Intensification-diversification tradeoff (e.g., the CM does not consider
diversification, while RINS being based on the LP relaxations of the search tree
put more emphasis in diversification)

Matheuristics based on linear relaxation
• The simplest matheuristic for a COP consists in rounding the solution of the linear

(or continuous) relaxation of its ILP formulation

• In general this kind of approach is not good for COP with binary variables since
rounding a fractional solution to 0/1 can introduce more error

• Nevertheless there are cases where this matheuristic works well even for ILP
formulation with binary variables: e.g., the Minimum Weight Node Cover Problem
(MWNC)

54

A rounding matheuristic for the MWNC
• Given an undirected graph G=(V,E) with a node cost function c, the Minimum

Weight Node Cover Problem (MWNC) consists in finding a subset of vertices that
covers i.e. touches each edge at least once and whose total cost is minimal.

55

m𝑖𝑛 𝑧 =෍

𝑖=1

𝑛

𝑐𝑖𝑥𝑖

𝑥𝑖+ 𝑥𝑗 ≥ 1 ∀ 𝑖, 𝑗 ∈ 𝐸

𝑥𝑖 ∈ 0,1 for 𝑖 = 1, . . , 𝑛

• Let ෤𝑥 the optimal solution of the linear relaxation:
 ∀ [𝑖, 𝑗] ∈ 𝐸, ෥𝑥𝑖 ≥ 0.5 or ෥𝑥𝑗 ≥ 0.5

• Therefore if we round up every ෥𝑥𝑖 ≥ 0.5 and to 0 the others we obtain a feasible solution

• The value of this feasible solution, Ƹ𝑧 is ≤ 2 ǁ𝑧 being ǁ𝑧 the optimal value of the LR

• Hence, Ƹ𝑧 ≤ 2 ǁ𝑧 ≤ 2𝑧∗, i.e., this is a 2-approximated algorithm!

Key questions for rounding matheuristics

56

1. What thresholds should be used for rounding?

2. What is the maximum (or average) error introduced by rounding?

3. What is the likelihood that a large number of variables will be 1 in a “typical” LP
solution?

4. What is the likelihood that a large number of variable values will be close to 0
or 1 in a typical solution?

A relaxation based heuristic for the MAX-FS

• Max FS: Given an infeasible Ax≥ b with Amxn and bm
,

 find a Maximum Feasible Subsystem, i.e. a feasible subsystem containing as many
 inequalities as possible.

• We focus on the version where all variables x (or all but one) are bounded.

• Telecommunications: determine antenna emission power
 so as to maximize coverage (Rossi et al. ’01)

• Discriminant analysis: design optimal linear classifier
 (Glover ’81, Mangasarian ’92/’95)

• E. Amaldi, M. Bruglieri, G. Casale, (2008). A two-phase relaxation-based
heuristic for the maximum feasible subsystem problem, Computers &
Operations Research, vol. 35. issue 5, pp.1465-1482

57

58

Linear discriminant analysis

O a_1

a_2

(a11,a12)

(a21,a22)

(a31,a32) a*1x1+a*2x2 >= b

59

Complexity and Approximability

• Max FS is strongly NP-hard (Sankaran ‘93)

• Max FS is approximable within 2 but does not admit
a PTAS, unless P=NP (Amaldi & Kann‘95)

60

Dealing with Infeasibility
• Easy to detect infeasibility (phase 1 simplex)

• Obstructions to feasibility

IIS (Irriducibile Infeasible Subsystem):
Infeasible set of inequalities that becomes feasible if any of the

inequalities is removed

x1+x2≥1
x1≤0
x2≤0

NB: Exponentially many IIS’s

• To recover feasibility: find a MAX FS or
equivalently a MIN IIS Cover

61

Algorithmic Approaches

• MILP formulations (ai x ≥ bi-M(1-yi) with yi{0,1})

• Partial IIS set covering formulation with dynamic IIS generation
(Parker & Ryan ’96)

• First Branch & Cut (Pfetsch ’02)

• Combinatorial Benders’Cuts (Codato & Fischetti ’04)

Exact methods:

62

Filtering Heuristics

• Chinneck’s Algorithm: iteratively remove a single constraint
until the remaining subsystem is feasible

• The removed constraint is chosen using an elastic program
E(S) associated to the infeasible system S

=
i

isSINF min:

63

Two Phase Relaxation-Based
Heuristic

64

Bilinear Formulation

• Bilinear continuous formulation of the MAX FS:

Linear Program with Equilibrium Constraints (LPEC)

65

Linearization of bilinear formulation

• Each bilinear term is replaced by a single variable

• The resulting formulation is thus:

• Nevertheless, the linearization involves a loss of
information!

(*)

66

Assumptions

• Since each variable xj  [lj,uj]

we can assume w.l.o.g. lj=0:

- if uj<0, replace xj with -xj

- if uj≥ 0 and lj  0, then

- if lj<0 then xj= xj
+-xj

-

- if lj>0 then xj= xj
++lj

• Advantage: in constraints (*), we can replace zij with xj,
for all i and j s.t. aij ≥ 0, since this helps to satisfy
inequalities, being xj ≥ 0

67

Constraints on zij

• If yi{0,1} then zij = yi xj if and only if:

• Condition (C1) can be modelled as:

while (C2) as:

(C1)

(C2)

0..,,...,1,,...,1, == ijijij atsnjmiyuz

68

Resulting linearization

69

Observations

• The set I of inequalities with yi=1 is feasible

• Set I is not necessarily a subset of a MAX FS

• The inequalities corresponding to yi<1 are not
always inconsistent with the inequalities of I

70

Two Phase Algorithm

Phase 1:

Solve a relaxation of the MAX FS obtaining a
solution ỹ

Determine I1={i: ỹi=1, i=1 ,.., m}

Phase 2:

Solve an exact formulation of MAX FS fixing yi=1
for all i  I1

71

Experimental Campaign

• 2-ph-bilin, 2-ph-bigM

• Exact-bigM

• Branch & Cut (Pfetsch ’02)

• CBC (Codato & Fischetti ’04)

• Filtering (Chinneck ’96)

• Time-limit 10000 sec on an Intel Xeon 2.80 Ghz

• Gaps with the best known optimal value (or the best
known upper bound)

72

Instances
• Random Instances (Pfetsch’s PhD thesis)

– 28 groups each composed of 3 random instances

– A and b have full density, m ≈ 20-100 and n ≈ 5-20

• CBC-ML (Codato et al. ’04) :
 -Set of linear classification problem from
 the UCI Machine Learning repository
 - m ≈ 100-700 and n ≈ 10-40

• ML:
 - a different set of instances from the same repository

• DVB (Rossi et al. ’01) :
 - sparse instances arising in Digital Video Broadcasts
 - m ≈ 1000-20000 and n ≈ 500
 - large difference in the coeff. values ranging between 10-11 and 1011

73

Numerical results (CBC-ML)

74

Summary of average gaps

75

Conclusions
• Simple 2-phase heuristic yields solutions with comparable

quality of sophisticated exact methods within much lower
CPU times

• Computational cost does not depend on the number of
inequalities to be deleted to achieve feasibility (Filtering)

• Using LP relaxation of big-M formulation in Phase 1,
drammatically reduces CPU times without substantially affect
the solution quality

Better relaxations for Phase 1?

References
• E. Amaldi, M. Bruglieri, G. Casale, (2008). A two-phase relaxation-based heuristic for the

maximum feasible subsystem problem, Computers & Operations Research, vol. 35. issue 5,
pp.1465-1482

• M. O. Ball, (2011). Heuristics based on mathematical programming. Surveys in Operations
Research and Management Science, 16, pp. 21-38.

• M.Bruglieri, A. Colorni. Ricerca Operativa. Zanichelli, 2012.
• M. Caserta, S.Voβ, (2009). Metahueristics: intelligent problem solving. In: V. Maniezzo et al,

(eds), Matheuristics, Annals of Information Systems, 10, pp. 1-38
• M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman, San Francisco, CA, 1979.
• P. Hansen, V. Maniezzo, and S. Voß, (2009). Special issue on mathematical contributions to

metaheuristics editorial. Journal of Heuristics, 15(3):197–199.
• G.L. Nemhauser, L.A. Wolsey. Integer and Combinatorial Optimization. John Wiley&Sons, 1999
• J. Puchinger and G.R. Raidl, (2005). Combining metaheuristics and exact algorithms in

combinatorial optimization: A survey and classification. IWINAC 2005, LNCS 3562, pp. 41–53.
• G.R. Raidl, (2006). A unified view on hybrid metaheuristics. In F. Almeida, M.J. Blesa, C. Blum,

J.M. Moreno-Vega, M.M. Perez, A. Roli, and M. Sampels, editors, Hybrid Metaheuristics,
volume 4030 of Lecture Notes in Computer Science, pages 1–12. Springer.

• M. Sniedovich and S. Voß, (2006). The corridor method: A dynamic programming inspired
metaheuristic. Control and Cybernetics, 35:551–578.

	Diapositiva 1: MATHEURISTICS FOR COMBINATORIAL OPTIMIZATION PROBLEMS
	Diapositiva 2
	Diapositiva 3: What is a decision problem
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58: Linear discriminant analysis
	Diapositiva 59: Complexity and Approximability
	Diapositiva 60: Dealing with Infeasibility
	Diapositiva 61: Algorithmic Approaches
	Diapositiva 62: Filtering Heuristics
	Diapositiva 63: Two Phase Relaxation-Based Heuristic
	Diapositiva 64: Bilinear Formulation
	Diapositiva 65: Linearization of bilinear formulation
	Diapositiva 66: Assumptions
	Diapositiva 67: Constraints on zij
	Diapositiva 68: Resulting linearization
	Diapositiva 69: Observations
	Diapositiva 70: Two Phase Algorithm
	Diapositiva 71: Experimental Campaign
	Diapositiva 72: Instances
	Diapositiva 73: Numerical results (CBC-ML)
	Diapositiva 74: Summary of average gaps
	Diapositiva 75: Conclusions
	Diapositiva 76

