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Agenda

• Lesson 1 (Wednesday 17th, 14.30-17):
     Introduction to Combinatorial Optimization and Mathematical Programming.  
     Matheuristics: general features and classification. 
     Rounding and search around heuristics.

• Lesson 2 (Friday 19th, 10.30-13):
      Approximated heuristics. Dual heuristics.

• Lesson 3 (Tuesday 23th, 10.30-13):
     Relaxation techniques. Lagrangean heuristics. Surrogated heuristics.

• Lesson 4 (Friday 26th, 10.30-13):
     Decomposition based heuristics.
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What is a decision problem

Two conditions:

1. there must exist different alternatives or feasible 
solutions for the problem

2. at least one criterion or objective is specified
allowing to compare the feasible solutions (making
some of them better than others)



Combinatorial optimization problems

• A Combinatorial Optimization Problem (COP) is a decision problem with a 
finite (but exponential) number of feasible solutions

• A COP is characterized by:
1. a description of all its input parameters (e.g. costs, demand, capacity)
2. a statement of which properties a feasible solution must satisfy
3. an objective to be either minimized or maximized

• An instance of a COP is obtained each time the input parameters are 
specified (i.e. their numerical values are fixed)
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Example 1: shortest path problem

Given a directed graph G=(N,A), with costs 𝑐𝑖𝑗 for each 𝑖, 𝑗 ∈ 𝐴, and two nodes 

𝑜, 𝑑 ∈ 𝑁, determine a path from 𝑜 to 𝑑 such that the sum of the costs of its arcs 
is minimal.
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Example 2: knapsack problem
Given a knapsack with capacity C and n items with profit 𝑝𝑖 and size 𝑤𝑖, for 𝑖 =
1, . . , 𝑛, determine a subset of items such that their total profit is as large as 
possible and their total size does not exceed C
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Example 3: Traveling Salesman Problem (TSP)
Given a directed graph G=(N,A), with costs 𝑐𝑖𝑗 for each 𝑖, 𝑗 ∈ 𝐴, determine a 

cycle visiting all nodes such that the sum of the costs of its arcs is minimal.

Minimum cost tour of the 50 USA landmarks 
(from http://www.math.uwaterloo.ca/tsp/usa50/index.html )  7

http://www.math.uwaterloo.ca/tsp/usa50/index.html


Computational complexity of COPs
• The shortest path problem can be solved in polynomial time (e.g. in 𝑂(𝑛2) by 

Dijkstra’s algorithm, if 𝑐𝑖𝑗 ≥ 0, otherwise in 𝑂(𝑛3)  by Floyd-Warshall)

• Knapsack can be solved in pseudo-polynomial time (𝑂 𝑛𝐶  by dynamic progr.)

• For the TSP no pseudo-polynomial time algorithm: it is strongly NP-hard
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«I can’t find an efficient algorithm, I guess I’m just too dumb»

From Garey-Johnson’s book
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«I can’t find an efficient algorithm, because no such algorithm 
  is possible!»

From Garey-Johnson’s book
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«I can’t find an efficient algorithm, but neither can 
  all these famous people»

From Garey-Johnson’s book
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How to prove a COP is NP-hard ?
• Given a COP 𝑃1 we can prove its NP-hardness building a polynomial time 

reduction from another well-known NP-hard COP 𝑃2 to 𝑃1

• Whenever a COP includes as particular case another well-known NP-hard 
problem it is NP-hard too (e.g. the VRP is NP-hard since the TSP is so)

• Online compendium of NP-hard problems:
https://www.nada.kth.se/~viggo/problemlist/compendium.html  
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What are matheuristics?

Heuristics/Metaheuristcs

Mathematical Programming

Matheuristics = math.prog. based heuristics
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Mathematical Programming formulation
• A Mathematical Program is characterized by:

1. Decision variables 
2. One objective function 
3. Constraints

• General form of a Mathematical Program:
    min f(x)
           x  X
 Xn feasible solution set
 f: X →   objective function

• A Mathematical Program is a Linear Program if the objective function and the 
constraints are linear function of the decision variables 

• An Integer Linear Program (ILP) is a Linear Program with integer variables

• Most NP-hard COPs can be modeled as ILP (never as a compact LP)
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Formulation of a knapsack problem
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We want to realize a song compilation collecting in a CD with 800 Mb of capacity 
some music files. The level of appreciation of each song (in a scale from 1 to 10) 
and the size of each file are reported in the following table:

Song Appreciation Size (MB)

Light my fire 8 210 

Fame 7 190 

I will survive 8.5 235 

Imagine 9 250 

Let it be 7.5 200 

I feel good 8 220 

Parameters: n= # songs, gi = appreciation of song i, wi = size of i , C = CD capacity

Decision variables: 𝑥𝑖= 1 if file i is selected for the CD, 0 otherwise

max 𝑧 =෍

𝑖=1

𝑛

𝑔𝑖𝑥𝑖

෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 ≤ 𝐶

𝑥𝑖 ∈ 0,1 for 𝑖 = 1, . . , 𝑛



Mathematical Programming formulation

• The feasible region of an ILP is a subset S ⊂ ℤ𝑛

• A formulation of S ⊂ ℤ𝑛 is a polyhedron 𝑃 = {𝑥 ∈ ℝ𝑛: 𝐴𝑥 ≤ 𝑏} such that 𝑃 ∩ ℤ𝑛 = S
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Mathematical Programming formulation
• Given two formulations 𝑃1 and 𝑃2 of S ⊂ ℤ𝑛, 𝑃1 is better than 𝑃2 if 𝑃1 ⊂ 𝑃2
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• conv S is the 𝑖𝑑𝑒𝑎𝑙 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

     since 
𝑚𝑖𝑛 𝑓(𝑥)
𝑠. 𝑡. 𝑥 ∈ 𝑆

       ⇔ 
𝑚𝑖𝑛 𝑓(𝑥)

𝑠. 𝑡. 𝑥 ∈ 𝑐𝑜𝑛𝑣(𝑆)
 



Heuristics algorithms

• Motivation: finding the optimal solution of a NP-hard 

problem is computationally too heavy in practical cases 

(e.g. for big size instances)

Heuristic algorithm (from greek word eureka=discover):  

method providing a feasible solution, non necessarily 

optimal, for a problem

•  Heuristics with approximation guarantee

evaluation in the worst case (and sometimes in the 

average case, less frequent)

• Heuristics without approximation guarantee
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Heuristics algorithms classification

• Constructive heuristics:
➢ Greedy algorithm
➢ Regret algorithm
➢ Savings algorithm

• Local search
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Main idea: the solution is built step by step and at each 

step the more advantageous choice, compatible with the 

constraints, is made

greedy (input: E; output: S);

begin    S:=;

             while E   do

                   e:=element of E providing the best value of S  {e}; 

                   E := E – {e};

                   if  S  {e} is feasible then S:= S  {e}; 

             endwhile

             return S;

end;                    

these steps have to be efficient

Greedy algorithms
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Example: The Traveling Salesman Problem (TSP)

1. Choose a starting node p and mark it

2. Repeat (n–1) times:

          link last marked node with the nearest not marked node

3. Link the last marked node with node p

Nearest Neighbourhood  heuristic
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1. Choose two nodes and build a partial cycle between them

2. repeat (n–2) times:

          insert in the partial cycle the nearest node to one of the 

nodes in the cycle

Nearest Insertion heuristic

Example: The Traveling Salesman Problem (TSP)
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Example: We want to decide how to assign n tasks to n employees, on the 
basis of the following estimation of the times necessary to each employee to 
perform each task

Regret algorithms

Task 1 Task 2 Task 3 Task 4 Task 5

Empl. 1 15 22 18 35 27

Empl. 2 10 15 15 20 22

Empl. 3 12 30 13 25 23

Empl. 4 18 24 19 27 29

Empl. 5 13 23 14 32 25

Regret of each task: difference in absolute value between the 
minimum time and the second one
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Example: Clarke and Wright’ algorithm for capacitated Vehicle Routing 
Problem (VRP)

1. compute the savings for each arc (i,j): 𝑠𝑖𝑗 = 𝑐𝑖0 + 𝑐0𝑗 − 𝑐𝑖𝑗

2. Order the edges for non-increasing values of their savings

3. Add edges to routes until the capacity constraint cannot be satisfied

Saving algorithms
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Objective: find (quickly) good feasible solutions for NP-hard 

problems

Idea: improve iteratively the solutions obtained through 

heuristic algorithms (e.g., with greedy algorithms)

Technique: 

(a) Detect small changes (perturbations) in the structure of the 

feasible solutions preserving feasibility

(b) Apply the changes until the objective function value can 

improve

Local search algorithm
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Consider the generic problem

min ( )
s S

f s


where  S  rapresents the feasible solutions set

and f(s) is the objective function to be optimized 

Definition

We call move m from a solution to another one an operator

                                         m: S        S  

Given a feasible solution        , operator move m applied to s 

returns a feasible solution 

s S

( )m s S

Local search algorithm
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Definition

We call neighborhood of a solution s the set 

( ) { : ( )}N s s S m s m s=   =

N(s) is the set of all feasible solutions that it is possible to 

obtain applying to s the move m in all possible ways.

In general we use moves that do not modify too much the 

structure of a solution

i.e., we prefer m(s)  near to solution s

Neighborhood
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Example:   

consider the sequence s=(c,a,d,e,b) corresponding to the solution 

of an ordering problem (e.g. of objects). 

Consider the move that changes the position of a pair of objects. 

The neighborhood of s is 

N(s)={(a,c,d,e,b); (d,a,c,e,b); (e,a,d,c,b); (b,a,d,e,c); 

           (c,d,a,e,b); (c,e,d,a,b); (c,b,d,e,a); 

           (c,a,e,d,b); (c,a,b,e,d); 

           (c,a,d,b,e) }



Alternatively the neighborhood can be defined through a 

distance between solutions in S

Defintion

We call l-neighborhood of a solution s 

                                                                                                                   

where                       defines a measure of distance in S

( ) { ( , ) }lN s s S d s s l=  

:d S S + →

Nl(s) is the set of all the feasible solutions that are at 

distance at most l from s
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When the feasible solutions of a problem can be represented 

through a boolean vector the Hamming distance can be used

Definition

The Hamming distance dH(s1,s2) between two boolean 

vectors  s1 and s2 is the number of components where the 

vectors are different

Example:   s1=(0 0 0 1 1 0 1 0 0 1)  and 

                 s2=( 1 0 1 1 0 0 1 0 1 1) 

have Hamming distance dH(s1,s2) equal to 4 
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the neighborhood                                                                                                          

consists of all the feasible solutions that differ from s in at most 

one component

1( ) { ( , ) 1}HN s s S d s s=  

Consider a feasible solution s=(1,0,1,1) of a knapsack problem 

with 4 objects

(0000)(0001)

(0010) (0100)

(1000)

(0011)

(0111)

(0101)(1001)

(0110)(1011)

(1101)

(1111)

(1010)

(1100)

(1110)
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the neighborhood                                                                                                          

consists of all the feasible solutions that differ from s in at most 

two components

2( ) { ( , ) 2}HN s s S d s s=  

(0000)(0001)

(0010) (0100)

(1000)

(0011)

(0111)

(0101)(1001)

(0110)(1011)

(1101)

(1111)

(1010)

(1100)

(1110)

Consider a feasible solution s=(1,0,1,1) of a knapsack problem 

with 4 objects
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Local_Search(s);

begin    s*:=s; END=false;

             repeat

                    s:=best solution in N(s)

                    if   f(s) < f(s*) then

                          s*:= s; 

                    else END=true;

             until  not END;             

             return s*;

end;                    

Minimum 

problem

Local search algorithm
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Local Optima

Definition

Solution          is called local optimum, respect neighborhood 

N(s), if the following relation holds 

s S

( ) ( ), ( )f s f s s N s  

The solutions detected by a local search algorithm are local 

optima respect the neighborhood used



35

Neighborhood  example 

Symmetric Traveling Salesman Problem (TSP) 

2-opt neighborhood

The move is the swap of a pair of edges with onother one

Note: after the removal of a pair of edges the choice of the edges 

to insert is unique



Symmetric Traveling Salesman Problem (TSP) 

3-opt neighborhood

The move is the swap of three edeges with other three ones

Note: after the removal of the three edges, the choice of the new 

three edges is not unique: how many alternatives are there ?
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Symmetric Traveling Salesman Problem (TSP) 

Remarks:

The 2-opt neighborhood is composed of O(n2) feasible 

solutions, one for each pair of removed edges.

The 3-opt neighborhood generates, on average, solutions of 

cost lower than those of the 2-opt neighborhood, but with a 

greater computational cost: it includes O(n3) feasible solution, 

three for each three edges removed
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Asymmetric Traveling Salesman Problem (TSP)

2-opt neighborhood

The move consists in the swap of a pair of arcs with another pair 

and the inversion of the arcs of  a part of the current path

Arc to be 

inverted

38



local optima

S

f(s)

Minimum 

problem

Metaheuristics algorithms
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Variable Neighborhood Search (VNS)

• Developed in‘97 by P. Hansen and N. Mladenovic

• Idea: a solution that is a local optimum for a neighborhood could be not a local optimum 

for another neighborhood

 

• Family of neighborhoods Ik, with k=1,…,kmax

• Ik  Ik+1 
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Variable Neighborhood Search (VNS)
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Primary Features of Tabu Search: 

Adaptive memory - remembers features of good/bad solutions that 

you encounter).

Responsive exploration – exploration based on past exploration.

Tabu Search (Glover 1990)
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Basic Algorithmic Features:

• Always move to the best available neighborhood solution, even

if it is worse than the current solution.

• Tabu list: maintain a list of solution points that must be avoided

(not allowed) or a list of move features that are not allowed.

• Update the tabu list based on some memory structure (short-term

memory). Remove tabu moves after some time period has

elapsed (tenure).

• Allow for exceptions from the tabu list (aspiration criteria).

• Expand the search area, modify tenure or size of tabu list.

Tabu Search
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Tabu Search pseudocode
Algorithm Tabu search (S, c, *x ): 

  1. begin 

  2. Let x  = )(SFeasible ; 

  3. Let xx =* ; 

  4. Let TL={ x}; 

  5. Let k = 0,  stop = False; 

  6. while (stop = False) do 

  7.           while (k < max_no_improvement) do 

  8.                     Let }\)(:)(min{arg TLxIxxcx =  

  9.                     if )()( *xcxc   then do 

10.                                  let ;* xx =  

11.                                  let  k = 0; 

12.                    else k=k+1; 

13.                    update (TL);  

14.            end while   

15.            diversification and/or intensification;   

16.            if stop criterion is satisfied then stop = True 

17. end while 

18. end 
 

44



Example: Tabu Search applied to TSP

 























=

09325

9

3

2

5

0467

4083

68010

73100

C

 Solution z 

1,3,5,2,4,1 21 

1,5,3,2,4,1 29 

1,2,5,3,4,1 26 

1,3,2,5,4,1 29 

1,3,4,2,5,1 20 

1,2,4,5,3,1 31 

Starting solution by nearest neighborhood: 1, 3, 5, 2, 4, 1, cost 21

Its 2-opt neighborhood is:

Best solution 1, 3, 4, 2, 5, 1, cost 20
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Example: Tabu Search applied to TSP

The 2-opt neighborhood of 1, 3, 4, 2, 5, 1 is:

 Solution z 

1,3,4,2,5,1 20 

1,3,5,2,4,1 21 

1,3,2,4,5,1 31 

1,4,3,2,5,1 26 

1,2,4,3,5,1 28 

1,3,4,5,2,1 28 

Therefore 1, 3, 4, 2, 5, 1 is a local optimum

Instead TS selects 1, 4, 3, 2, 5, 1 although its cost (26) worsens 

the current solution 46



Example: Tabu Search applied to TSP

The 2-opt neighborhood of 1, 4, 3, 2, 5, 1 is:

 

Solution z  

1,4,3,2,5,1 26 tabu 

1,3,4,2,5,1 20 tabu 

1,2,3,4,5,1 36  

1,4,3,5,2,1 26  

1,4,2,3,5,1 29  

1,4,5,2,3,1 29  

Therefore TS selects 1, 4, 3, 5, 2, 1 although it is not improving 
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Example: Tabu Search applied to TSP

The 2-opt neighborhood of 1, 4, 3, 5, 2, 1 is:

Now TS selects 1, 4, 2, 5, 3, 1 that is improving! 

 

Solution z  

1,4,3,5,2,1 26 tabu 

1,4,3,2,5,1 26 tabu 

1,3,4,5,2,1 28  

1,5,3,4,2,1 28  

1,4,5,3,2,1 37  

1,4,2,5,3,1 21  
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Several metaeheuristics
• Adaptive Large Neighborhood Search
• Greedy Adaptive Search Procedure (GRASP)
• Simulated Annealing
• Ant Colony Optimization
• Bee Colony Optimization
• Genetic Algorithms
• Memetic Algorithms
• ….
• Applications of Metaheuristic are almost uncountable and appear in many 

journals (e.g. «Journal of Heuristics») and specialized conferences e.g. 
Metaheuristics International Conference (MIC)

• Their success is due to the fact that they are general purpose method that do not 
require problem specific knowledge
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Matheuristics: general features
• Matheuristics are also called hybrid heuristics since combine the use of exact 

techniques with metaheuristic frameworks

• They are tailor-made algorithm (since exploit the math. structure of the problem)
➢ Advantage: they have better performance compared to ‘general purpose’ 

metaheuristics
➢ Disadvantage: they can be used only for a specific class of problems

• The performance concerns:
1) The solution quality
2) The computational time
3) The robustness of the algorithm over a wide spectrum of instance types 

(e.g. to guarantee the algorithm can be used as optimization modules within 
decision support systems)

50



Matheuristics: a possible classification

51

J. Puchinger and G.R. Raidl, (2005). Combining metaheuristics and exact algorithms in 
combinatorial optimization: A survey and classification. 



Master-slave structure of Matheuristics
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• Two different alternative possibilities:
i. The metaheuristics acts at a higher level and controls the calls to the exact 

approach;
ii. The exact technique acts as the master and calls and controls the use of the 

metaheuristic scheme

• In case i. the definition of the neighborhood follows the logic of a metaheuristic, while 
the exploration of the neighborhood is left to the exact approach (e.g. Corridor Method, 
large scale neighborhood search, local branching)

• Case ii. occurs e.g., in modern branch and cut solvers that exploits the potential of 
metaheuristics to quickly obtain good quality feasible solutions (useful for the pruning); 
or in order to find the first feasible solution, the feasibility pump matheuristic has been 
developed



Key questions designing Matheuristics

53

1. Which components should be “hybridized” to create an effective algorithm

2. Identification of the most effective exact methods to solve the COP (e.g., in 
Corridor Method: which exact method can effectively tackle the problem if of 
reduced size)

3. Size and boundaries of the neighborhood (they depend on the power of the 
exact method used)

4. Intensification-diversification tradeoff (e.g., the CM does not consider 
diversification, while RINS being based on the LP relaxations of the search tree 
put more emphasis in diversification) 



Matheuristics based on linear relaxation
• The simplest matheuristic for a COP consists in rounding the solution of the linear 

(or continuous) relaxation of its ILP formulation

• In general this kind of approach is not good for COP with binary variables since 
rounding a fractional solution to 0/1 can introduce more error

• Nevertheless there are cases where this matheuristic works well even for ILP 
formulation with binary variables: e.g., the Minimum Weight Node Cover Problem 
(MWNC)
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A rounding matheuristic for the MWNC
• Given an undirected graph G=(V,E) with a node cost function c, the Minimum 

Weight Node Cover Problem (MWNC) consists in finding a subset of vertices that 
covers i.e. touches each edge at least once and whose total cost is minimal.
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m𝑖𝑛 𝑧 =෍

𝑖=1

𝑛

𝑐𝑖𝑥𝑖

𝑥𝑖+ 𝑥𝑗 ≥ 1 ∀ 𝑖, 𝑗 ∈ 𝐸

𝑥𝑖 ∈ 0,1 for 𝑖 = 1, . . , 𝑛

• Let ෤𝑥 the optimal solution of the linear relaxation: 
      ∀ [𝑖, 𝑗] ∈ 𝐸, ෥𝑥𝑖 ≥ 0.5 or ෥𝑥𝑗 ≥ 0.5

• Therefore if we round up every ෥𝑥𝑖 ≥ 0.5 and to 0 the others we obtain a feasible solution

• The value of this feasible solution, Ƹ𝑧 is ≤ 2 ǁ𝑧 being ǁ𝑧 the optimal value of the LR

• Hence, Ƹ𝑧 ≤ 2 ǁ𝑧 ≤ 2𝑧∗, i.e., this is a 2-approximated algorithm!



Key questions for rounding matheuristics

56

1. What thresholds should be used for rounding?

2. What is the maximum (or average) error introduced by rounding?

3. What is the likelihood that a large number of variables will be 1 in a “typical” LP 
solution?

4. What is the likelihood that a large number of variable values will be close to 0 
or 1 in a typical solution?



A relaxation based heuristic for the MAX-FS 

• Max FS: Given an infeasible Ax≥ b with Amxn and bm
,

   find a Maximum Feasible Subsystem, i.e. a feasible subsystem containing as many    
   inequalities as possible.

• We focus on the version where all variables x (or all but one) are bounded.

• Telecommunications: determine antenna emission power 
   so as to maximize coverage (Rossi et al. ’01)

• Discriminant analysis: design optimal linear classifier 
   (Glover ’81, Mangasarian ’92/’95)

• E. Amaldi, M. Bruglieri, G. Casale, (2008). A two-phase relaxation-based 
heuristic for the maximum feasible subsystem problem, Computers & 
Operations Research, vol. 35. issue 5, pp.1465-1482  
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Linear discriminant analysis

O a_1

a_2

(a11,a12)

(a21,a22)

(a31,a32) a*1x1+a*2x2 >= b
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Complexity and Approximability

• Max FS is strongly NP-hard (Sankaran ‘93)

• Max FS is approximable within 2 but does not admit
a PTAS, unless P=NP (Amaldi & Kann‘95)
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Dealing with Infeasibility
• Easy to detect infeasibility (phase 1 simplex)

• Obstructions to feasibility

IIS (Irriducibile Infeasible Subsystem): 
Infeasible set of inequalities that becomes feasible if any of the 

inequalities is removed 

x1+x2≥1
x1≤0 
x2≤0

NB: Exponentially many IIS’s

• To recover feasibility: find a MAX FS or 
equivalently a  MIN IIS Cover
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Algorithmic Approaches

• MILP formulations ( ai x ≥ bi-M(1-yi) with yi{0,1} )

• Partial IIS set covering formulation with dynamic IIS generation 
(Parker & Ryan ’96)

• First Branch & Cut (Pfetsch ’02)

• Combinatorial Benders’Cuts (Codato & Fischetti ’04)

Exact methods:
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Filtering Heuristics

• Chinneck’s Algorithm: iteratively remove a single constraint 
until the remaining subsystem is feasible

• The removed constraint is chosen using an elastic program
E(S) associated to the infeasible system S

=
i

isSINF min:
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Two Phase Relaxation-Based 
Heuristic
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Bilinear Formulation

• Bilinear continuous formulation of the MAX FS:

Linear Program with Equilibrium Constraints (LPEC)
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Linearization of bilinear formulation

• Each bilinear term is replaced by a single variable

• The resulting formulation is thus:

• Nevertheless, the linearization involves a loss of 
information!

(*)
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Assumptions

• Since each variable xj  [lj,uj] 

we can assume w.l.o.g. lj=0:

- if uj<0, replace xj with -xj

- if uj≥ 0 and lj  0, then

- if lj<0 then xj= xj
+-xj

-

- if lj>0 then xj= xj
++lj

• Advantage: in constraints (*), we can replace zij with xj, 
for all i and j s.t. aij ≥ 0, since this helps to satisfy 
inequalities, being xj ≥ 0
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Constraints on zij

• If yi{0,1} then zij = yi xj if and only if:

• Condition (C1) can be modelled as: 

while (C2) as:

(C1)

(C2)

0..,,...,1,,...,1, == ijijij atsnjmiyuz
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Resulting linearization
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Observations

• The set I of inequalities with yi=1 is feasible

• Set I is not necessarily a subset of a MAX FS

• The inequalities corresponding to yi<1 are not 
always inconsistent with the inequalities of I



70

Two Phase Algorithm

Phase 1:

Solve a relaxation of the MAX FS obtaining a 
solution ỹ

Determine I1={i: ỹi=1, i=1 ,.., m}

Phase 2:

Solve an exact formulation of MAX FS fixing yi=1 
for all i  I1
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Experimental Campaign

• 2-ph-bilin, 2-ph-bigM

• Exact-bigM

• Branch & Cut (Pfetsch ’02)

• CBC (Codato & Fischetti ’04) 

• Filtering (Chinneck ’96)

• Time-limit 10000 sec on an Intel Xeon 2.80 Ghz

• Gaps with the best known optimal value (or the best 
known upper bound)
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Instances
• Random Instances (Pfetsch’s PhD thesis)

– 28 groups each composed of 3 random instances

– A and b have full density, m ≈ 20-100 and n ≈ 5-20

•  CBC-ML (Codato et al. ’04) :
    -Set of linear classification problem from 
     the UCI Machine Learning repository 
    - m ≈ 100-700 and n ≈ 10-40

•  ML:
  - a different set of instances from the same repository

• DVB (Rossi et al. ’01) :
 - sparse instances arising in Digital Video Broadcasts
 - m ≈ 1000-20000 and n ≈ 500 
 - large difference in the coeff. values ranging between  10-11 and 1011
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Numerical results (CBC-ML)
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Summary of average gaps
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Conclusions
• Simple 2-phase heuristic yields solutions with comparable 

quality of sophisticated exact methods within much lower 
CPU times

• Computational cost does not depend on the number of 
inequalities to be deleted to achieve feasibility (Filtering)

• Using LP relaxation of big-M formulation in Phase 1, 
drammatically reduces CPU times without substantially affect 
the solution quality

Better relaxations for Phase 1?
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