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Abstract

In this paper we develop a variable neighborhood search (VNS) heuristic for solving mixed-integer programs
(MIPs). It uses CPLEX, the general-purpose MIP solver, as a black-box. Neighborhoods around the incumbent
solution are defined by adding constraints to the original problem, as suggested in the recent local branching (LB)
method of Fischetti and Lodi (Mathematical Programming Series B 2003;98:23–47). Both LB and VNS use the
same tools: CPLEX and the same definition of the neighborhoods around the incumbent. However, our VNS is
simpler and more systematic in neighborhood exploration. Consequently, within the same time limit, we were able
to improve 14 times the best known solution from the set of 29 hard problem instances used to test LB.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Combinatorial optimization problems usually may be formulated in different ways. Mathematical
programming formulations such as mixed integer programs (MIPs) are very popular, since they make
possible the use of general-purpose solvers, independently of some problem specific properties. However,
in some hard cases, a general-purpose solver might not be an adequate choice. In such cases one tends to use
a combinatorial formulation and build a heuristic solution method, thus loosing the advantage of working
in a generic and well-explored framework. Therefore, the tradeoff between the use of combinatorial

∗ Corresponding author. Fax: +1 514 3405665.
E-mail addresses: Pierre.Hansen@gerad.ca (P. Hansen), Nenad.Mladenovic@gerad.ca, nenad@mi.sanu.ac.yu
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and mathematical programming formulations is very often a major concern in solving hard real-word
optimization problems.

Metaheuristics, that is general frameworks to build heuristics, usually use combinatorial formulations.
They are more abstract than e.g. MIPs. Then, problem specific knowledge may be used for various steps
of the heuristic. (For discussion of the best-known metaheuristics the reader is referred to the books
of surveys edited by Reeves [1] and Glover and Kochenberger [2].) However, it is possible to design
heuristics based on metaheuristic rules for solving mathematical programming problems in general, and
more particularly, MIPs. For example, a Tabu search (TS) heuristic for solving MIP has been proposed in
[3]. The search through the solution space starts from a relaxed solution and then, using pivoting together
with TS rules, non-feasibility is decreased step by step.

A new boost in that direction was recently given by Fischetti and Lodi [4]. They suggest a new MIP
technique called local branching (LB). It uses CPLEX [5], the general-purpose MIP solver, as a black-box.
Neighborhoods around the incumbent solution are defined by adding constraints (or cuts) to the original
problem.

Variable neighborhood search (VNS) [6–8] is a recent metaheuristic which exploits systematically
the idea of neighborhood change, both in descent to local minima and in escape from the valleys which
contain them. In this paper we develop a VNS heuristic for solving MIPs. Our VNS uses the CPLEX
solver as a black-box as well. Also, the definition of neighborhoods around the incumbent solution is the
same as in LB. The main difference is that we change neighborhoods, (in both a local search and in a
diversification or shaking phase) more systematically, following the rules of the general VNS scheme.

This paper is organized as follows. In Section 2 we define MIP and briefly discuss rules of the LB
and VNS methods. In Section 3 we present a VNS heuristic for solving MIP. Section 4 consists of
computational results. Conclusions are drawn in Section 5.

2. Preliminaries

In this section, after the definition of 0–1 MIPs, we briefly recall the rules of LB and VNS methods.
Let us consider a generic MIP with some 0–1 variables of the form [4]:

(P) min cTx (1)
Ax�b, (2)
xj ∈ {0, 1} ∀j ∈ B �= ∅, (3)
xj �0, integer ∀j ∈ G, (4)
xj �0, ∀j ∈ C. (5)

The variable index set N = {1, 2, . . . , n} is partitioned into the three subsets (B,G,C), corresponding to
binary, general integer and continuous variables.

2.1. Local branching

LB is a new MIP technique [4] designed, in principle, as an exact method; however, if the total time
(tmax) allocated to solve a given instance is reached before an optimal solution is found and its optimality
proved, LB behaves as a heuristic, i.e., it stops at time tmax with the best solution known as output
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(or, possibly, with no feasible solution). The total time limit (tmax) is a first parameter. LB uses a general-
purpose MIP solver such as CPLEX. However, as direct application would be too time-consuming for
very large instances, the solution space is reduced, within a branching scheme, by introducing new linear
constraints. These constraints exploit the values of the binary variables in a feasible solution, specifying
that at most k (a second parameter, called size of the constraint) of them can be complemented. This defines
a neighborhood with 2k solutions in the binary variables only (observe that such neighborhoods are often
used in VNS [7,8] or Tabu search [10,11] heuristics, but not implemented through linear constraints).
After adding one or several linear constraints the resulting MIP, which has the same structure as the
original MIP but a smaller solution space, is solved by CPLEX, exactly or heuristically, within a node
time limit, tnode, a third parameter.

Branching: The LB algorithm starts with the original formulation, and CPLEX is called to get a feasible
solution x̃1. Then, a new constraint is added to reduce the solution space X, using a distance function
d(x, x̃1), to the set X1 = X ∩ Nk(x̃1), where

Nk(x̃1) = {x | d(x, x̃1)�k}. (6)

For the 0–1 MIP (1)–(5) given above, d(., .) represents the Hamming distance and Nk(x̃1) may be
expressed by the following so-called local branching constraint:

�(x, x̃1) =
∑

j∈S̄

(1 − xj ) +
∑

j∈B\S̄
xj �k, (7)

where S̄ = {j ∈ B | x̃1 = 1}. If a better solution x̃2 is found by CPLEX (within a given time limit tnode),
a new problem is generated as follows. Relation � in (7) is replaced by >, and a new local branching
constraint (7) is added, but centered around the new incumbent x̃2 (�(x, x̃2)�k). Thus, a feasible set X2
for this subproblem is given as

X2 = X ∩ (Nk(x̃2)\Nk(x̃1)) = (X\X1) ∩ Nk(x̃2).

CPLEX is called again, etc. This branching procedure is iterated as long as there are improvements in
the objective function values within tnode time: � new constraints are added in iteration � and the feasible
set is

X� = (X\X1\X2 . . . \X�) ∩ Nk(x̃�).

Intensification and diversification: If the solution is not improved within the tnode time limit, the
neighborhood X� is further reduced by replacing k in (7) with k/2 (�(x, x̃�)�k/2). This step is called
intensification step. If CPLEX reports proven infeasibility, or in tnode time a feasible solution is not found,
then the so-called diversification step takes place. Here, the right-hand side value of (7) is increased by
k/2 (�(x, x̃�)�k + k/2), a new constraint �(x, x̃�) > 1 added and all other branching constraints deleted.
CPLEX is called just to get a new feasible solution for the branching step that follows again. For the
diversification, another (fourth) parameter dvmax is used to indicate the maximum number of such steps
allowed. If dvmax = ∞, LB behaves as a pure heuristic. If dvmax < ∞ and if tmax = ∞, LB switches to
an exact solution method: the remaining time is used for running CPLEX.
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Fig. 1. Steps of the general VNS.

2.2. Variable neighborhood search

As mentioned above, variable neighborhood search exploits systematically the idea of neighborhood
change, both in descent to local minima and in escape from the valleys which contain them. In order to
apply VNS, a neighborhood structure must be defined on the solution space X. To define neighborhoods,
we need a distance function d(x̃, x̃′) between any two solutions x̃ and x̃′ from X. VNS exploits systemat-
ically the following observations: (i) a local minimum with respect to one neighborhood structure is not
necessarily one for another; (ii) a global minimum is a local minimum with respect to all possible neigh-
borhood structures; (iii) for many problems local minima with respect to one or several neighborhoods
are relatively close to each other.

Variable neighborhood descent (VND), a deterministic variant of VNS, is based on observation (i)
above, i.e., a local optimum within the neighborhood N1(x̃) is not necessarily one within neighborhood
N2(x̃). It may thus be advantageous to combine descent heuristics.

Basic VNS combines deterministic and stochastic search. A series of neighborhood structures, which
define neighborhoods around any point x̃ ∈ X of the solution space, are first selected. Then, the local
search is used and leads to a local optimum x̃.A point x̃′ is selected at random within the first neighborhood
N1(x̃) of x̃ and a descent from x̃′ is done with the local search routine. This leads to a new local minimum
x̃′′. At this point, three outcomes are possible: (i) x̃′′ = x̃, i.e., one is again at the bottom of the same
valley; in this case the procedure is iterated using the next neighborhood Nk(x̃), k�2; (ii) x̃′′ �= x̃ but
f (x̃′′)�f (x̃), i.e., another local optimum has been found, which is not better than the previous best
solution (or incumbent); in this case too the procedure is iterated using the next neighborhood; (iii)
x̃′′ �= x̃ and f (x̃′′) < f (x̃) i.e., another local optimum, better than the incumbent has been found; in this
case the search is re-centered around x̃′′ and begins again with the first neighborhood.Should the last
neighborhood be reached without a solution better than the incumbent being found, the search begins
again at the first neighborhood N1(x̃) until a stopping condition, (e.g., a maximum time or maximum
number of iterations or maximum number of iterations since the last improvement), is satisfied.

General VNS (GVNS): If instead of simple local search in basic VNS one uses VND, one obtains the
general VNS scheme that is presented in Fig. 1.
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Note that GVNS uses three parameters: tmax if the maximum time allowed is chosen for the stopping
condition; kmax the number of neighborhood structures used in the outer loop; �max the number of
neighborhoods used in the inner or VND loop. The last two parameters are fixed for a given heuristic,
while the first one may be changed according to the problem considered.

3. VNS for MIP

We next develop a VNS for MIP. A main fact that makes our method possible is the same as in LB: a
commercial MIP solver (CPLEX) is used for getting an initial solution, and in Shaking (step 2a) as well
as for the neighborhood exploration step (step 2b2).

A solution space X is supplied with the Hamming distance d(., .). Neighborhood structures Nk , k=1, . . .

induced by this metric are defined as in (6). The same neighborhoods are used for both inner and outer
loops of GVNS from Fig. 1, i.e., Nk and Nk are equivalent. As in LB, we use total time tmax as a global
stopping rule and the node time tnode as a local stopping rule for one call of the mixed integer solver
(CPLEX).

We do not fix k, the size of the neighborhood around the incumbent. Instead, in the outer loop, we
change it from kmin to kmax with a given step size kstep. In VND the neighborhood size � increases
from 1 to �max. However, we make our heuristic more user-friendly by reducing those three parame-
ters to only one (kstep) in the following way: (i) we allow increase of the neighborhood size without
limit, i.e., the kmax parameter is not specified. This size is reduced to kmin either when an improved
or no feasible solution (in tnode time) are found by CPLEX; (ii) we set kmin = kstep; (iii) the �max pa-
rameter is not specified either. It gets an initial value of 1 when a better solution than the current one
is found.

Thus, ourVNS uses three parameters: tmax (ortotal_time_limit), tnode (ornode_time_limit)
and kstep. Note that, by specifying that kmax is equal to the number of binary variables in the instance
considered and taking tmax =∞, the proposed GVNS heuristic becomes an exact method. A more detailed
description of our heuristic, called VnsBra function is given in Fig. 2.

Beside total_time_limit, node_time_limit and k_stepwhose meaning have already been
described, other variables used in the description of VnsBra function from Fig. 2 are:

• UB—input variable for CPLEX solver which represents the current upper bound;
• first—logical input variable for CPLEX solver which is true if the first solution lower than UB is

asked for in the output; if first = false, CPLEX returns the best solution found so far;
• TL—maximum time allowed for running CPLEX;
• rhs—right-hand side of constraint (6); it defines the size of the neighborhood within the inner or VND

loop;
• cont—logical variable which indicates if the inner loop continues (true) or not (false);
• x_opt and f_opt—incumbent solution and corresponding objective function value;
• x_cur, f_cur, k_cur—current solution, objective function value and neighborhood from where VND

local search starts (i.e., the distance between the new initial solution and the incumbent is equal to
k_cur), respectively;

• x_next and f_next—solution and corresponding objective function value obtained by CPLEX in inner
loop.
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Fig. 2. The overall VNS function VnsBra.

The initialization step is performed in lines 1 and 2. In line 3 the initial solution becomes both the
incumbent (x_opt) and starting solution for the VND local search (x_cur).

The outer loop starts from line 4. In line 5, initial parameters for the inner loop are defined: the first
neighborhood is 1 (rhs := 1); a best improvement strategy will be applied (i.e., first:=false). In the
computational results section we also tested first improvement VNS. This version is obtained when the
command first := false is removed from line 5.

From lines 7 to 20, statements of VND local search are given. At line 9 a local branching constraint is
introduced. The CPLEX solver gives four possible outputs. Only if a feasible solution is not found within
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the given time limit, is VND terminated. In the other three cases, the inner VND loop continues: if non
feasibility is proven, then the neighborhood is increased by 1 (rhs := rhs + 1); if an optimal or feasible
solution is found, which means that its value is better that f_cur, it becomes the new current solution, and
the search starts again from the first neighborhood (rhs := 1).

The move or not step of GVNS is presented at lines 21–23. If the new local minimum x_cur is better
than the incumbent, it becomes the new incumbent and the neighborhood for the next shaking step reverts
to the smallest size (i.e., k_min= k_step). Otherwise, the neighborhood is increased by k_step.

In the Shaking step, given at lines 24–31, the first feasible solution (i.e., first := true) is searched for
in the disk around the incumbent solution, with radii k_cur and k_cur + k_step. That solution x_cur
becomes the initial one for the VND local search. If there is no feasible solution in the current disk, then
k_cur is increased by k_step. Note that our VnsBra function switches to an exact algorithm if the
condition from line 25 (elapsedtime <total_time_limit) is replaced by (k_cur <k_max), with
an additional call of CPLEX.

The main idea of both LB and VNS for solving MIP is in fact change of the neighborhood during
the search. Therefore, LB could be seen as a specialized variant of VNS (or vice versa): (i) in LB the
local search step is performed in a fixed size neighborhood k > 1 (a parameter), instead of k = 1; (ii) as a
consequence of (i), backward instead of forward VNS (see [9]) is used in the inner loop (i.e., instead of
increasing neighborhood by 1 in VND or intensification step, its current size, initially set at k, is reduced
by half); (iii) the shaking step of VNS and diversification step of LB differ only in the area from where
a random feasible solution is chosen: in LB the area is a disk with radii 1 and k + dv [k/2] where dv is
the current number of diversifications (see [4] for details), while in our VNS disk is defined by radii kcur
and kcur + kstep.

4. Computational results

All programs are written in C++ and experiments conducted on a Pentium 4 computer with 1800 MHz
processor and 256 RAM memory. The same data sets as in testing LB (available at http://www.or.deis.
unibo.it) are used here: 7 MIPLIB-3.0 instances (set A in Table 1); 1 network design instance (set B);
2 crew scheduling instances (set C); 5 railway crew scheduling instances (set D); 1 nesting instance
(set E); 2 telecommunication network design instances (set F); 2 rolling stock and line planning instances
(set G); 5 lot-sizing instances (set H); and 4 railway line planning instances (set I).

In developing the final version of some heuristic, usually several possible set of parameters and their
values are experimentally examined. Beside exploring the parameter set {tmax, tnode, kstep}, we also tried
with {tmax, �max, kmax}. There appears to be no set of parameters that is better for all 29 instances.
We observe that there is no significant difference in average between two possible sets of parameters.
However, for some instances much better results are obtained with one or another parameter set. In order
to make comparison with LB easier (LB uses {tmax, tnode, k, dvmax}), we choose a set {tmax, tnode, kstep}
with the same values of tmax and tnode.

All methods use the same stoping rule tmax equal to 5 h, expect for the largest problem NSR8K, which
is run 10 h. Values for node time limit are the same as suggested in [4]. Based on data available at
http://www.spec.org/cpu2000/results/cfp2000.html, we concluded that our computer is about 30% faster
than the Digital Alpha Ultimate workstation 533 MHz that was used in testing LB. In all experiments we
set kstep = 5.

http://www.or.deis.unibo.it
http://www.or.deis.unibo.it
http://www.spec.org/cpu2000/results/cfp2000.html
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Table 1
Best known values for the hard MIP instances. Boldfaced are new best known values

Instance Set Problem paramet. Best known values

name m n |B| from [4] available new

mkc A 3411 5325 5323 −559.51 −563.85 −563.85
swath A 884 6805 6724 471.03 471.03 467.41
danoit A 664 521 56 65.67 65.67 65.67
markshare1 A 7 74 60 7.00 7.00 7.00
markshare2 A 6 62 50 14.00 14.00 14.00
arki001 A 1048 1388 415 7,581,034.85 7,580,889.44 7,580,889.44
seymour A 4944 1372 1372 424.00 423.00 423.00
net12 B 14,021 14,115 1603 255.00 255.00 214.00
biella1 C 1203 7328 6110 3,070,810.15 3,070,810.15 3,070,810.15
NSR8K C 6284 38,356 32,040 21,520,487.01 21,520,487.01 20,780,430.00
rail507 D 509 63,019 63,009 175.00 174.00 174.00
rail2536c D 2539 15,293 15,284 691.00 690.00 690.00
rail2586c D 2589 13,226 13,215 957.00 947.00 947.00
rail4284c D 4287 21,714 21,705 1078.00 1065.00 1065.00
rail4872c D 4875 24,656 24,645 1556.00 1534.00 1534.00
glass4 E 396 322 302 1,587,515,737.50 1,587,515,737.50 1,400,013,666.50
UMTS F 4465 2947 2802 30,160,547.00 30,139,634.00 30,139,634.00
van F 27,331 12,481 192 5.09 5.09 4.84
roll3000 G 2295 1166 246 13,065.00 13,065.00 12,890.00
nsrand_ipx G 735 6621 6620 51,520.00 51,520.00 51,520.00
A1C1S1 H 3312 3648 192 11,834.02 11,834.02 11,551.19
A2C1S1 H 3312 3648 192 11,251.10 11,251.10 10,889.14
B1C1S1 H 3904 3872 288 25,869.15 25,869.15 24,566.52
ABC1S1 H 3904 3872 288 26,297.63 26,297.63 26,073.78
tr12-30 H 750 1080 360 130,596.00 130,596.00 130,596.00
sp97ar I 1761 14,101 14,101 667,735,390.40 667,735,390.40 666,368,944.96
sp97ic I 1033 12,497 12,497 436,984,606.56 436,984,606.56 429,892,049.60
sp98ar I 1435 15,085 15,085 531,942,554.88 531,942,554.88 530,916,867.40
sp98ic I 825 10,894 10,894 449,915,159.36 449,915,159.36 449,226,843.52

Table 1 contains the following. In the first column, names of instances are given and in the second
the set they belong to. The next three columns give problem characteristics, while columns 6–8 report
the best known objective function values: column 6 contains the best known values obtained by three
methods and reported in [4] (i.e., cpx-O, cpx-F and LB). However, those values are not always the best
ones known from the literature. For instance, better values could be found for instances mkc (−563.85
instead of −559.81), seymour (423 instead of 424), rail507 (174 instead of 175), rail2586 (1534
instead of 1556), etc. That is why we also give in column 7 the best known solutions available to us.
Finally, we report new best known values that include results from this paper. Boldfaced are improved
values obtained by our VNS. It can be seen that 14 times (out of 29), the best solution has been improved.

In Table 2 results obtained by first and best improvement VNS (FI and BI for short) are compared with
LB. Results for all three methods are for a single run, with parameter settings described above. Columns
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Table 2
Comparison on 29 test instances

Instance Objective value % GAP Time (s)

name FI BI LB FI BI LB FI BI LB

mkc −558.91 −551.71 −559.51 0.11 1.39 0.00 18,003 14,756 18,000
swath 467.41 467.41 471.03 −0.77 −0.77 0.00 456 7268 4840
danoint 65.67 65.67 65.67 0.00 0.00 0.00 52 89 100
markshare1 7.00 7.00 9.00 0.00 0.00 28.57 3920 16,246 7920
markshare2 14.00 14.00 25.00 0.00 0.00 78.57 3791 7712 10,800
arki001 7,581,138.36 7,580,889.44 7,581,034.85 0.00 0.00 0.00 4428 15,043 3600
seymour 426.00 426.00 424.00 0.47 0.47 0.00 13,372 4508 10,800
net12 214.00 214.00 296.00 −16.08 −16.08 16.08 2207 2210 5040
biella1 3,107,875.16 3,075,887.47 3,070,810.15 1.21 0.17 0.00 4813 225 16,200
NSR8K 20,942,744.00 20,780,430.00 21,520,487.01 −2.68 −3.76 0.00 36,000 36,000 36,000
rail507 176.00 176.00 175.00 0.57 0.57 0.00 12,267 13,987 4320
rail2536c 690.00 693.00 691.00 −0.14 0.29 0.00 290 208 720
rail2586c 955.00 955.00 957.00 −0.21 −0.21 0.00 4849 4870 13,200
rail4284c 1088.00 1088.00 1078.00 0.93 0.93 0.00 1535 1538 16,200
rail4872c 1547.00 1547.00 1556.00 −0.58 −0.58 0.00 15,565 15,563 16,200
glass4 1,460,013,800.00 1,400,013,666.50 1,587,515,737.50 −8.03 −11.81 0.00 9326 8783 16,200
UMTS 30,433,914.00 30,434,962.00 30,198,549.29 0.91 0.91 0.13 2056 1766 16,200
van 4.84 4.84 5.09 −4.91 −4.91 0.00 8389 12,902 7920
roll3000 12,921.00 12,890.00 13,065.00 −1.10 −1.34 0.00 11,269 11,627 6480
nsrand_ipx 52,000.00 52,000.00 51,520.00 0.93 0.93 0.00 16,254 14,276 7920
A1C1S1 11,554.43 11,551.19 11,834.02 −2.36 −2.39 0.00 17,658 18,041 16,200
A2C1S1 10,986.98 10,889.14 11,251.10 −2.35 −3.22 0.00 7278 8418 9360
B1C1S1 24,888.16 24,566.52 25,869.15 −3.79 −5.04 0.00 8193 14,209 12,000
B2C1S1 26,895.72 26,073.78 27,622.24 2.27 −0.85 5.04 8587 16,263 8640
tr12-30 130,942.00 130,979.00 131,029.58 0.26 0.29 0.33 16,674 15,395 5040
sp97ar 666,368,944.96 667,358,765.44 667,735,390.40 −0.20 −0.06 0.00 14,519 18,355 10,080
sp97ic 431,219,871.68 429,892,049.60 436,984,606.56 −1.32 −1.62 0.00 7581 8615 18,000
sp98ar 531,265,245.44 530,916,867.40 531,942,554.88 −0.13 −0.19 0.00 17,941 12,993 9360
sp98ic 450,442,580.16 449,226,843.52 449,915,159.36 0.12 −0.15 0.00 8551 14,794 10,800

Average −1.27 −1.37 4.44 9376 11,016 10,719

2–4 report values obtained by the three methods: FI, BI and LB. In columns 5–7, the % gap is calculated
as

fmethod − fbest

fbest
× 100,

where fbest is the best known value from the column 6 (i.e., from the column “from [4]”) of Table 1.
Thus, a negative gap shows improvement over the three methods from [4]. The last three columns report
CPU time (in s) when the best solution was found by each method.
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Table 3
Comparison of LB and VNS on the same computer (1.8 MHz Pentium 4) and with the same CPLEX 8.1 version

Instance Local branching (LB) Best improvement VNS (BI)

Value % Dev Time Value % Dev Time

mkc −560.33 −0.15 7434 −551.71 1.39 14,756
swath 478.03 1.49 5135 467.41 −0.77 7268
danoint 65.67 0.00 14 65.67 0.00 89
markshare1 8.00 14.29 875 7.00 0.00 16,246
markshare2 18.00 28.57 3029 14.00 0.00 7712
arki001 7,580,928.08 0.00 2663 7,580,889.44 0.00 15,043
seymour 425.00 0.24 5620 426.00 0.47 4508
net12 296.00 16.08 873 214.00 −16.08 2210
biella1 3,079,184.35 0.27 17,561 3,055,887.47 0.17 225
NSR8K 21,520,487.00 0.00 89,900 20,780,430.00 −3.76 36,000
rail507 175.00 0.00 5780 176.00 0.57 13,987
rail2536c 691.00 0.00 2721 693.00 0.29 208
rail2586c 956.00 −0.10 16,849 955.00 −0.21 4870
rail4284c 1078.00 0.00 7315 1088.00 0.93 1538
rail4872c 1555.00 −0.06 16,539 1547.00 −0.58 15,563
glass4 1,600,013,433.33 0.79 18,000 1,400,013,666.50 −11.81 8783
UMTS 30,678,670.00 1.72 17,436 30,434,962.00 0.91 1766
van 5.09 0.00 8519 4.84 −4.91 12,902
roll3000 12,934.00 −1.00 16,898 12,890.00 −1.34 11,627
nsrand_ ipx 51,680.00 0.31 15,754 52,000.00 0.93 14,276
A1C1S1 11,759.88 −0.63 4034 11,551.19 −2.39 18,041
A2C1S1 10,951.40 −2.66 3554 10,889.14 −3.22 8418
B1C1S1 25,659.21 −0.81 10,470 24,566.52 −5.04 14,209
B2C1S1 27,480.77 4.50 16,726 26,073.78 −0.85 16,263
tr12-30 130,628.00 0.02 16,245 130,979.00 0.29 15,395
sp97ar 666,368,944.96 −0.20 14,425 667,358,765.44 −0.06 18,355
sp97ic 432,400,213.12 −1.05 5610 429,892,049.60 −1.62 8615
sp98ar 530,480,924.48 −0.27 6119 530,916,867.40 −0.19 12,993
sp98ic 450,442,580.16 0.12 2321 449,226,843.52 −0.15 14,794

Average 2.12 −1.37

It appears that: (i) negative average gaps forVNS methods indicate that their results are better in average
than those obtained by the three methods reported in [4]; (ii) the score between BI-VNS and LB is: 19
times VNS was better, 8 times BI, with 2 ties; (iii) running time for all three methods were similar.

An anonymous referee suggested that further experimental tests be done in order to see if the above
mentioned improvements are due, at least in part, to the fact that we used a more recent version of
CPLEX (i.e., 8.1) than Fischetti and Lodi (i.e., 7.1). Indeed, it is well known that CPLEX is constantly
being improved, embedding many new ideas from the mathematical programming community.

So, we ran again the 29 test problems described above with the same parameter setting, using Fischetti
and Lodi’s LB code with CPLEX 8.1, on our computer. This ensures differences in machine, compiler
and general-purpose MIP solver are eliminated. Results are presented in Table 3. The first column gives
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Table 4
Comparison with recent pivot and shift (PS) heuristic

Instance Objective value %gap or difference

name PS(18′) LB(5 h) BI(18′) BI(5 h) PS BI(18′) BI

sp97ic 442,866,080.00 436,984,608.00 435,761,056.00 429,892,064.00 1.346 −0.280 −1.623
sp98ic 461,222,592.00 449,915,168.00 460,654,656.00 449,226,848.00 2.513 2.387 −0.153
rail507 199.00 175.00 192.00 176.00 24 17 1
rail2536c 767.00 691.00 701.00 690.00 76 10 −1
B2C1S1 27,500.22 27,622.24 33,439.48 26,073.78 −0.442 21.060 −5.606
roll3000 12,936.00 13,065.00 13,201.14 12,890.00 −0.987 1.042 −1.339
glass4 1,900,018,690.00 1,587,515,780.00 1,583,340,670.00 1,400,013,700.00 19.685 −0.263 −11.811

again problem names, the second the obtained value, the third the percentage deviation from the best
known value (before results of our paper) and the fourth the time at which this solution was found.

It appears that improved solutions, as compared to those of [4], are obtained in 10 cases and that in
average the best solution found are 2.12% above the best known one. This is an improvement upon the
4.44% average obtained by CPLEX 7.1. To compare with results of our VNS, the corresponding results
are reproduced on columns 5–7 of Table 3. It appears, that in one case where LB got an improved result
(sp98ar) its solution is better than that one obtained by VNS, in one case there is a tie and in the 8 other
cases the VNS solutions are better. So, our conclusions remain essentially the same.

Since this paper was submitted for publication, two papers on related topics have appeared. Fischetti
et al. [12] begin to explore the “possibility that LB be used to design a genuine MIP metaheuristic
framework akin to Tabu Search (TS) or Variable Neighborhood Search (VNS) based on an external MIP
solver”. They “address MIPs with binary variables and propose a variant of the classical VNS scheme
that [they] call Diversification, Refining and Tight-refining (DRT)”. The proposed method is successfully
applied to hard facility location problem arising in telecommunication network design. Of particular
interest is a method given there to detect automatically the presence of first-level variables the fixation of
which produce easier to solve but still hard subproblems in the remaining or second level variables.

Balas et al. [13] develop the pivot and shift (PS) heuristic for MIP, which exploits the well-known
pivot-and-complement [14] heuristic for pure 0–1 programs. It is “essentially a rounding procedure
amended with two variants of a neighborhood search”. This search is akin to LB and done with general-
purpose problem solver XPRESS. The combined procedure “finds better solutions faster than the MIP
solver alone”. Among the 12 difficult problems for which the solution process is reported in detail are 7
considered also in [4]. We reproduce the best solution values found in 20 min of CPU time on a PC with
a 1.7 GH Pentium 4 processor for those problems in the second column of Table 4.

It appears that for 2 of them, the solutions were better than those obtained by LB, and worse for the 5
other cases (but bear in mind the differences of computing times and machines). To compare the results
of VNS we reproduce values obtained after 18 min and after 5 h of computing time for those problems
in columns 4 and 5, respectively, and the corresponding % gaps as difference in the two last columns.
While again the results of Balas et al. [13] are better in 2 cases and worse in 5 out of 7 when computing
times are comparable, solution of VNS for long computing times are always better.
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5. Conclusions

We presented a VNS heuristic for solving Mixed Integer Programming problem. It is similar to the
recent Local Branching method [4], which is also based on the idea of changing neighborhood during
the search for a better solution. We suggested a more systematic change in both intensification and
diversification phases. In that way we improve best known solutions of 14 out of 29 hard test instances
from the literature. Results obtained are also better than those of the pivot and shift heuristic [13] for the
7 instances among those 29 ones considered there.

It thus appears that combining heuristic frameworks with the use of general-purpose problem solvers
already gives significantly improvements in the resolution of large general MIPs as well as of specific
subclasses of them. It is a topic well worth further study.
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[8] Hansen P, Mladenović N.Variable neighborhood search. In: Glover F, Kochenberger G, editors. Handbook of metaheuristics.

Boston, Dordrecht, London: Kluwer Academic Publisher; 2003. p. 145–84.
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