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Given a fleet of vehicles assigned to a single depot, the
vehicle routing problem with time windows (VRPTW) con-
sists of determining a set of feasible vehicle routes to
deliver goods to a set of customers while minimizing,
first, the number of vehicles used and, second, total dis-
tance traveled. A large number of heuristic approaches
for the VRPTW have been proposed in the literature. In
this article, we present a large neighborhood search
algorithm that takes advantage of the power of branch-
and-price which is the leading methodology for the exact
solution of the VRPTW. To ensure diversification during the
search, this approach uses different procedures for defin-
ing the neighborhood explored at each iteration. Compu-
tational results on the Solomon’s and the Gehring and
Homberger’s benchmark instances are reported. Com-
pared to the best known methods, the proposed algo-
rithm produces better solutions, especially on the largest
instances where the number of vehicles used is signifi-
cantly reduced. © 2009 Wiley Periodicals, Inc. NETWORKS,
Vol. 54(4), 190–204 2009
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1. INTRODUCTION

Given a fleet of vehicles assigned to a single depot, the
vehicle routing problem with time windows (vrptw) consists
of determining a set of feasible routes (one route per vehicle
used) to deliver goods to a set N of scattered customers while
minimizing, first, the number of vehicles used and, second,
the total distance traveled (which is usually proportional to
the total traveling cost). Each customer i ∈ N must be visited

Received September 2007; accepted March 2008
Correspondence to: G. Desaulniers; e-mail: guy.desaulniers@gerad.ca
DOI 10.1002/net.20332
Published online 11 August 2009 in Wiley InterScience (www.interscience.
wiley.com).
© 2009 Wiley Periodicals, Inc.

exactly once by one vehicle within a prescribed time inter-
val [ai, bi], called a time window, to deliver a quantity qi of
goods. A route starts from the depot and visits a sequence of
customers before returning to the depot. It is feasible if the
total amount of goods delivered does not exceed the vehicle
capacity Q and if it respects the time window of each visited
customer.

The vrptw can be represented on a graph G = (V , A).
The node set V contains |N | + 2 nodes: one node for each
customer i ∈ N , as well as one source node o and one sink
node d representing the depot at the beginning and the end
of the planning horizon, respectively. The arc set A contains
start arcs (o, j), ∀ j ∈ N , end arcs (i, d), ∀ i ∈ N , and travel
arcs (i, j), ∀ i, j ∈ N such that customer j can be visited
immediately after customer i in at least one feasible route,
that is, if ai + tij ≤ bj, where tij is equal to the travel time
between i and j plus the service time (if any) at node i. Each
arc (i, j) has an associated travel cost (distance) cij. Note that,
in general, cij is proportional to the travel time or the distance
between i and j.

The vrptw has been well studied in the literature. In the
past 15 years, several exact methods for the vrptw have
been developed. Among them, branch-and-price algorithms
[6, 10, 11, 13, 22–24] have produced the best results, mostly
because of the quality of the lower bounds yielded by the
embedded column generation method. Also, a very large
number of heuristics have been proposed (see the survey
papers of [4, 5]), including a wide variety of metaheuristics
such as tabu search [7], evolutionary and genetic algorithms
[2, 26], large neighborhood search [27, 29], variable neigh-
borhood search [3,28], certain two-phase hybrid approaches
[1, 15, 18], iterated local search algorithms [19, 20], and one
parallel cooperative search approach that exploits several
known metaheuristics [25]. However, to our knowledge, no
heuristics taking advantage of the power of branch-and-price
have been proposed in the literature for the vrptw.
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In this article, we present such a method, namely a large
neighborhood search (lns) algorithm, that relies on a heuris-
tic branch-and-price method for neighborhood exploration.
An lns method is an iterative method where elements of a
solution are alternately removed (destruction step) and rein-
serted (reconstruction step) in order to improve the solution.
A neighborhood is thus the set of all solutions containing the
subset of elements that have not been removed at a given
iteration. Because the size of the neighborhood increases
exponentionally with the number of elements removed, it has
the potential to change a large portion of the solution, hence its
name. Like the approaches of Gehring and Homberger [15],
Bent and Van Hentenryck [1], and Homberger and Gehring
[18], our method has two phases: in the first, the minimiza-
tion of the number of vehicles is prioritized; in the second,
the priority is changed to reducing total traveled distance
with a fixed number of vehicles, namely, the minimum num-
ber attained in the first phase. However, as opposed to these
three hybrid approaches, our method applies a very similar
methodology in both phases.

To evaluate the efficiency of the proposed lns method,
we performed computational experiments on the well-known
56 Solomon’s [30] instances with 100 customers and also
on the 300 Gehring and Homberger’s [14] instances involv-
ing between 200 and 1,000 customers. Compared to the
best known methods, our lns method produced better solu-
tions, especially on the largest instances where the number
of vehicles used was significantly reduced. It succeded to
compute 145 new best solutions out of the 356 benchmark
instances. However, it required more computational time
than other leading methods such as that of Pisinger and
Ropke [27].

Combining mathematical programming techniques with
metaheuristics is a growing area of research. For instance,
De Franceschi et al. [8] developed an lns algorithm for the
distance-constrained vehicle routing problem (without time
windows) where the reconstruction step consists of solving
a set partitioning type problem using a commercial mixed-
integer programming solver. Their method differs from the
one we propose in several ways. Firstly, we use different
ad hoc operators to destroy the current solution at each
lns iteration. Secondly, reconstruction is performed using
a branch-and-price heuristic. Finally, the first phase of our
two-phase method aims at minimizing the number of vehicles
used, while De Franceschi et al. [8] consider a fixed number
of vehicles. Our work thus brings an interesting contribution
in this research trend.

The article is organized as follows. In the next section,
we present the lns algorithm framework, with an empha-
sis on the description of the two-phase solution process.
In Section 3, we present the set of destruction operators
that can be used to define the neighborhood to explore at
each iteration of the lns algorithm. Most of these opera-
tors are adaptations of operators already proposed in the
literature. Section 4 describes the branch-and-price heuristic
applied in the reconstruction step at each lns iteration. This
heuristic is composed of a heuristic branching strategy and a

heuristic column generation method where columns (routes)
are generated by tabu search. The results of our computational
experiments are reported in Section 5. Finally, conclusions
are drawn in Section 6.

2. ALGORITHM FRAMEWORK

An lns algorithm is an iterative process that destroys at
each iteration a part of the current solution using a cho-
sen neighborhood definition procedure and reconstructs it in
the hope of finding a better solution. Figure 1 illustrates the
framework of our lns algorithm that works in a two-phase
fashion. The first one, the vehicle number reduction phase
(vnr), as its name indicates, tries to reduce the total number
of vehicles used in the current solution, while the other one,
the total distance reduction phase (tdr) tries to reduce the
total mileage for a fixed number of vehicles. In this figure,
the numbers in circles indicate the algorithm step numbers.
Note that the two main steps (destruction and reconstruction)
of an lns algorithm appear in double-lined rectangles (Steps
8 and 9). The details of these two steps will be given in the
following sections.

The algorithm starts in Step 1 by computing an initial
solution using Solomon’s [30] I1 insertion heuristic. In Step 2,
it computes a lower bound mlb on the optimal number of
vehicles using the vehicle capacity Q and the total customer
demand:

mlb =
⌈∑

i∈N qi

Q

⌉
. (1)

It also sets an upper bound mub on this number to the number
of vehicles used in the initial solution, an iteration counter i
to 0, and the current phase at vnr (Step 3).

The vnr phase is skipped if mub = mlb (Step 6). Oth-
erwise, it begins by lowering the upper bound mub by one
(Step 7). This upper bound is enforced at each iteration dur-
ing reconstruction, while allowing (with a penalty cost) some
customers not to be serviced. If no feasible solution (cover-
ing all customers) can be found within a prespecified number
of iterations Imax

vnr (Step 12), the search is abandoned for that
bound and the tdr phase is started from the best feasible solu-
tion found so far. Otherwise, the upper bound mub is lowered
again by one (Step 7) and the algorithm has another Imax

vnr itera-
tions to find a feasible solution and so on. Note that, whenever
a feasible solution with mlb vehicles is obtained (case yes in
Step 6), the vnr phase is stopped and the tdr phase starts
from that last solution. In the tdr phase, Imax

tdr iterations are
performed (tested in Step 15).

At each iteration of the lns algorithm (either in the vnr or
the tdr phase), a neighborhood-defining operator is selected
(Step 8) within a set of four different operators using a
roulette-wheel that favors operators which were the most suc-
cessful at improving the current solution in the past iterations.
These four operators are described in Sections 3.1–3.4, while
the roulette-wheel procedure is discussed in Section 3.5. The
selected operator is then applied to destroy parts of the current
solution. The destruction consists of determining a subset of
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FIG. 1. Algorithm framework.

customers (hereafter called the removed customers) which
are disconnected from their current routes, leaving partial
routes and isolated customers. The neighborhood contains
all solutions that respect the partial routes. These solutions
must be feasible except, during the vnr phase, where they
might not cover all customers. Reconstruction is performed
afterwards in Step 9 by solving the resulting reoptimization
problem that corresponds to the original vrptw where parts
of the current solution routes are fixed. This restricted vrptw
is solved using a branch-and-price heuristic to create a new
solution. This heuristic is described in Section 4.1. Roulette-
wheel statistics are then updated (Step 10) and the process
starts over again.

3. DESTRUCTION

To diversify the search, we consider four different neigh-
borhood operators that can be used to destroy the current
solution in Step 8 of the algorithm. Each operator tries to
select a predetermined number of customers that are to be
removed from the current solution. In the vnr phase, uncov-
ered customers might not to be selected except when there

are less than ten of them, in which case they are all removed
from the solution. When a covered customer is removed,
adjacent arcs are removed from the solution, leaving par-
tial routes. To choose at each iteration which operator to
use, a roulette-wheel procedure is invoked. Each operator
and the roulette-wheel are slightly modified in the vnr phase
to promote the insertion of uncovered customers into routes.
Note that the part of the solution that has not been destroyed
is fixed in the reconstruction process, including the uncov-
ered customers that have not been selected (they will remain
uncovered).

3.1. Proximity Operator

The proximity operator is an extension of an operator pro-
posed by Shaw [29]. Its goal is to select customers that are
related geographically and temporally. An initial customer
is chosen randomly and added to an empty pool of removed
customers. For each additional customer, the selection pro-
cedure has three steps as follows. First, a seed customer i is
chosen randomly in the pool of removed customers. Second,
all remaining customers are ranked in decreasing order of
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a spatio-temporal proximity measure to i. This measure is
defined by

R(i, j) = 1(
min{cij ,cji}

cmax
i

+ 1
Tij+Tji

) , (2)

where cij is the cost of the arc from i to j and cmax
i is

the largest arc cost ci� or c�i for all customers � that have
not been removed yet. Similar to a time window proxim-
ity measure defined by Gendreau et al. [16], Tij is equal to
max{1, min{bj, bi +tij}−max{aj, ai +tij}}. In this expression,
min{bj, bi + tij}− max{aj, ai + tij} is the width of the interval
of the feasible visiting times at customer j when customer i
is visited immediately before j, if possible. If an arc exists
from i to j but not from j to i, we set cji = ∞, and, if no
arc exists either way, R(i, j) takes value 1. In the third step,
the next customer to remove is chosen randomly among the
remaining customers, favoring those having a greater prox-
imity measure to i. Indeed, the rank of the customer to be
chosen is �NρD�, where N is the number of remaining cus-
tomers, ρ a number generated randomly between 0 and 1,
and D a constant greater or equal to 1. A D value of 1 results
in complete randomness while an infinite value yields com-
plete determinism. For our experiments, the value of D was
set at 35.

In the vnr phase, the seed customer is chosen randomly
among the uncovered customers. The other uncovered cus-
tomers are removed only if they are chosen according to their
spatio-temporal proximity.

3.2. Route Portion Operator

The proximity operator described above can remove single
customers on certain routes, leaving almost no flexibility to
change these routes. To avoid this drawback, the route portion
operator, presented as the SMART (SMAll RouTing) opera-
tor by Rousseau et al. [28], removes portions of routes around
pivot customers. The first pivot is chosen randomly, then adja-
cent customers on the same route of the current solution are
removed as well. A second pivot customer on another route
is chosen based on the spatio-temporal proximity measure
to the first pivot (defined in the preceding section). Adjacent
customers are removed and a third pivot is chosen based on
the proximity measure to the first pivot as well, and so on
until enough customers are removed or all routes are covered
by a pivot since there can only be one pivot per route.

Adjacent customers are chosen according to a maximum
distance to the pivot customer (distance is measured along the
route, not directly between the customers). All customers on
each side of the pivot within the maximum distance as well
as the first customer outside of this distance are removed.
The maximum distance d̄ is set once per call to this operator
as follows. Let j be the first pivot customer, and i and k its
immediate preceding and succeding customers (or depot) on
its route, respectively. Then, d̄ = frp max{cij, cjk}, where the
multiplicator frp evolves throughout the solution process. The
first time the route portion operator is called, frp has a value of

1. If less than the target number of customers have been cho-
sen after selecting a pivot in each route, frp is multiplied by
this target number divided by the number of actually removed
customers for the next call to the operator. This ensures that,
after a few calls to this operator, the right number of customers
can be removed from solutions having fewer routes. Further-
more, frp also adapts to the fact that the distance between
adjacent customers typically lowers as the solution process
evolves.

Like for the proximity operator, the first pivot in the vnr
phase is chosen randomly between the uncovered customers
and, in this case, the maximum distance is equal to the dis-
tance from this pivot to the depot. Other uncovered customers
can be chosen as subsequent pivots. When an uncovered
customer is selected as a pivot, no adjacent customers are
removed.

3.3. Longest Detour Operator

The longest detour operator was presented as well by
Rousseau et al. [28]. The purpose of this operator is to remove
the customers yielding in the current solution the largest dis-
tance increases for servicing them. All the customers are
first ordered decreasingly by the detour they generate in the
current solution. For a customer j being serviced between i
and k (customers or depot), its associated detour is equal to
cij + cjk − cik . Like for the proximity operator, the customers
are removed randomly, favoring those generating a greater
detour.

In the vnr phase, uncovered customers do not generate
any detour. Therefore, to also select uncovered customers in
this phase, each time that a covered customer i is removed
according to its detour, the uncovered customer which is
the closest to customer i according to the spatio-temporal
proximity measure is also removed unless it was previously
removed. In this latter case, no other uncovered customer is
selected with respect to i.

3.4. Time Operator

The time operator simply removes customers that are ser-
viced almost at the same time. It first selects randomly a
specific time ts within the horizon. The customers are then
ordered increasingly according to a value vi defined for each
customer i as

vi =



a′
i − ts if ts < a′

i
0 if a′

i ≤ ts ≤ b′
i

ts − b′
i if ts > b′

i

(3)

where [a′
i, b′

i] is the interval of times at which customer i
can be visited along its route in the current solution while it
remains feasible. The bounds of this interval are computed
recursively along this route as follows:

a′
i(0) = amin (4)

a′
i(r) = max

{
ai(r), a′

i(r−1) + ti(r−1),i(r)
}

r = 1, . . . , rmax

(5)
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b′
i(rmax)

= bmax (6)

b′
i(r) = min

{
bi(r), b′

i(r+1) − ti(r),i(r+1)

}
r = rmax − 1, . . . , 0 (7)

where r is the rank of the customer on the route, ranks 0 and
rmax correspond both to the depot, and i(r) is the customer
(or depot) in rank r. amin and bmax are the earliest departure
time from the depot and the latest arrival time at the depot,
respectively. Once the customers are ordered, they are chosen
with the same procedure presented for the proximity operator.

In the vnr phase, the time interval of an uncovered
customer i is its time window [ai, bi].

3.5. Roulette-Wheel Procedure

At each iteration of the lns algorithm, the roulette-wheel
procedure selects in Step 8 which operator is applied to define
the neighborhood. It is similar to the procedure introduced in
Pisinger and Ropke, 2007 [27]. Each destruction operator is
assigned a value πi that starts at 5. Each time that an operator
i is selected and allows to improve the current solution, πi

is incremented by 1. At the beginning of each lns iteration,
the destruction operator is selected randomly, where each
operator i has a probability of πi∑

i πi
of being selected.

In the vnr phase, the πi value of an operator that yields
a solution with fewer uncovered customers is increased by 2
in order to prioritize operators which are best at reducing the
number of uncovered customers.

4. RECONSTRUCTION

At each iteration of the lns algorithm, the vrptw
restricted to the selected neighborhood can be modeled as
a set partitioning problem where the variables are feasible
routes. Let � be a subset of all feasible routes (respecting the
fixed parts of the solution). With each route p ∈ �, associate
the following parameters: cp, its cost and vip, ∀i ∈ N , taking
value 1 if customer i is serviced by route p and 0 otherwise.
Finally, a binary variable θp is defined for each route p ∈ �,
taking a value of 1 if route p is part of the solution and 0
otherwise. With this notation, the restricted vrptw can be
formulated as:

Minimize
∑
p∈�

cpθp (8)

subject to:
∑
p∈�

vipθp = 1, ∀ i ∈ N (9)

∑
p∈�

θp ≤ mub, (10)

θp binary, ∀ p ∈ �. (11)

The objective function (8) aims at minimizing total cost. Set
partitioning constraints (9) ensure that each customer is vis-
ited exactly once by one vehicle. Constraint (10) imposes

an upper bound on the number of vehicles that can be used.
Finally, (11) provide binary requirements on the variables.

In general, an lns algorithm must perform many iterations
to reach very good quality solutions. Therefore, to keep com-
putational times relatively low, the reconstruction process
must be fast and effective. We thus propose to solve, in Step
9 of the overall algorithm, model (8)–(11) using a heuristic
branch-and-price method, that is, a heuristic column gener-
ation method embedded into a heuristic branch-and-bound
search. The column generation method and the branching
scheme are described in the following sections.

4.1. Heuristic Column Generation

Column generation is used to solve the linear relaxation
of model (8)–(11). Column generation is an iterative process
that solves at each iteration this linear relaxation restricted
to a subset of the variables. This restricted problem is called
the restricted master problem (rmp). The dual solution of
the rmp is then transfered to a subproblem whose objective
is to generate negative reduced cost variables to be added
back to the rmp. The latter is then solved again with the
augmented subset of variables. An exact column generation
method ends when the optimal solution of the subproblem has
a nonnegative reduced cost. We can conclude thereof that the
solution to the rmp is optimal for the whole linear relaxation
because no more negative reduced cost variables exist.

The rmp is solved by a linear programming algorithm
such as the primal simplex method. For the vrptw, the col-
umn generation subproblem is an elementary shortest path
problem with resource constraints (espprc) defined on a
restricted network which guarantees that the fixed parts of
the routes in the current solution remain untouched. The esp-
prc is NP-hard [12] but can be solved heuristically. The
proposed column generation heuristic is an adaptation of
the exact method developed by Desaulniers et al. [10]. In
their method, a sequence of column generators with varying
solution times is used at each iteration to generate negative
reduced cost variables. At each iteration, the first generator
invoked is a tabu search algorithm that rapidly finds nega-
tive reduced cost columns in most iterations. When failing to
do so, an attempt is made to generate such columns using a
heuristic dynamic programming algorithm. If failure occurs
again, an exact dynamic programming algorithm, is called to
ensure the optimality of the solution process. In the proposed
heuristic, both dynamic programming procedures are omitted
and the tabu search method is used as the sole column genera-
tor. The subproblem and the tabu search method used to solve
it are described in Sections 4.1.1 and 4.1.2, respectively.

Two strategies are used to speed up the reconstruction
process. First, for large instances (400 customers or more),
column generation is prematurely halted when no improve-
ment in the objective value of the rmp has been realized in
the last Imax

CG column generation iterations (Imax
CG was set at 5

for our experiments). Second, the column generation heuris-
tic is warm started at each lns iteration by introducing, into
the first rmp, variables that were generated in previous lns
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iterations and whose corresponding routes are still valid for
the current neighborhood. The management of these variables
is explained in Section 4.1.3.

4.1.1. Subproblem. As mentioned earlier, the subprob-
lem is an espprc which can be defined over the network
G = (V , A) described in the introduction. However, to com-
pute the path with the least reduced cost when solving the
subproblem, the costs cij, (i, j) ∈ A, are replaced by reduced
costs

c̄ij =
{

cij − αi if i ∈ N
cij − µ if i = o,

where αi, i ∈ N , and µ are the dual variable values of the
rmp constraints (9) and (10) at the current column generation
iteration, respectively.

Each feasible vehicle route can be represented by a path in
G. However, resource constraints (see Ref. [21]) are required
in the subproblem to ensure the feasibility of the path with
respect to time windows, vehicle capacity, and elementarity.
A resource is a quantity that accumulates along a path and
is restricted to an interval at each node. For further details
about the espprc subproblem, consult Irnich and Desaulniers
[21].

4.1.2. Tabu Search. The tabu search method used to solve
the espprc was proposed by Desaulniers et al. [10] to quickly
generate negative reduced cost columns. Tabu search (see
Ref. [17]) is a metaheuristic that has been successful at solv-
ing a wide variety of combinatorial optimization problems. It
is an iterative method that starts from an initial solution and
applies moves to improve it. Possible moves can be defined
by a set of operators and are generally quite simple. A neigh-
bor is a solution that differs from a current solution by only
one move, and at each iteration, the move creating the best
neighbor is chosen even if the objective value is deteriorated.
To avoid cycling, a memory of past moves, the tabu list, is
kept in order to forbid recent moves to be reversed for a num-
ber of iterations. This allows the search to escape from local
minima.

For the espprc, the tabu method that we use relies on
two operators, inserting a customer in the current route and
removing a customer from this route. Each time that a cus-
tomer is inserted or removed, the reverse move becomes tabu
for a fixed number of iterations. Therefore, at each iteration,
all possible moves are to remove every (non-tabu) customer
individually from the route and to insert every other (non-
tabu) customer individually at every possible insertion point
in the route. The search space is limited to only feasible
routes. Thus, for each insertion move, route feasibility is
checked in terms of time windows and vehicle capacity. No
feasibility checks are needed for customer removal moves.
Since sequences of customers can be fixed with respect to
the neighborhood defined by the destruction operators, the
tabu method treats these sequences as aggregated customers
that cannot be visited separately.

To diversify the search, the tabu search method is started
multiple times from a set of different initial solutions and
limited to a maximum number I tabu,sol

max to be performed for
each initial solution. The set of initial solutions differs in both
phases of our algorithm. In the vnr phase, only the routes
associated with non-degenerate variables in the current rmp
solution are used. Because the number of these variables can
vary, the total number of tabu search iterations per column
generation iteration I tabu,tot

max is fixed and evenly divided among
these variables. In the tdr phase, the routes associated with
all basic variables (regardless of their value) are used as initial
solutions. In both cases, all initial solutions have a reduced
cost of 0, and are thus very good initial solutions since we
are looking for negative reduced cost values.

4.1.3. Long-Term Column Memory. At the end of each
iteration of the lns algorithm, the columns present in the
last rmp solved are added to a pool of columns that can
be reused in subsequent iterations. After defining the neigh-
borhood at each iteration, the pool of columns is scanned
to find columns that are valid with respect to the neigh-
borhood structure. These columns are added to the rmp to
warm start it. This procedure typically reduces the number
of column generation iterations and gives access to columns
that tabu search may not be able to generate. With these ini-
tial columns, column generation is usually faster and can
produce higher quality heuristic solutions. However, man-
aging this pool of columns requires a significant amount of
computational time at each lns iteration. This management
time often outweighs the time saved by the column genera-
tion heuristic when the pool contains a very large number of
columns. Therefore, we limit the number of columns in this
pool to benefit from them while tempering the resulting pool
management time. When the number of columns in mem-
ory is greater than a predetermined upper limit at the end of
an lns iteration, columns are eliminated randomly from the
pool until a lower limit is reached (set at 70% of the upper
limit).

4.2. Branching Strategy

In order to quickly derive integer solutions, we propose to
use an effective heuristic branching method. As suggested in
Desaulniers et al. [9], we impose decisions on the route vari-
ables θp and explore the search tree using a depth-first strategy
without backtracking. At the end of each linear relaxation,
when a fractional solution is found, the route variable with
the largest fractional value is simply fixed at 1. No back-
tracking is allowed, that is, branching decisions cannot be
reversed to go up in the search tree. Because of this, the
solution found at the end of the branching process might
be worst than the previous one or even no feasible solution
might be found. In the former case, the deteriorated solution
is kept to contribute to the diversification of the search. In
the latter case, the previous solution is reused as the current
solution.
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5. COMPUTATIONAL EXPERIMENTS

We tested our method on the well-known benchmark
vrptw instances of Solomon [30], and Gehring and
Homberger [14]. All our tests were performed on an amd
opteron processor clocked at 2.3 GHz. The branch-and-
price heuristic was implemented using the Gencol software
library, version 4.5, (developed at the gerad research center
in Montreal) and relied on the cplex solver, version 9.1, for
solving the rmp. This section describes the instances, gives
the parameter setting, and reports the main results before pro-
viding the results of a sensitivity analysis on certain parameter
values.

5.1. Instances

Solomon [30] designed 56 vrptw instances with 100 cus-
tomers divided into six classes R1, R2, RC1, RC2, C1, and
C2, each containing between 8 and 12 instances. In the R
class instances, the customers are distributed randomly in
the space. In the C class instances, they are clustered. The
RC class instances have a mixed distribution of customers.
Type 1 instances have a shorter scheduling horizon and thus
allow fewer customers to be serviced per route, while Type
2 instances have a longer scheduling horizon. The average
width of the time windows and the number of customers
with constraining time windows also vary from one instance
to another within the same class. Based on the same princi-
ples, Gehring and Homberger [14] introduced larger vrptw
instances involving 200, 400, 600, 800, and 1000 customers,
with 10 instances in each class for each size.

In the following, instances are identified with ids. Each
instance id starts with its class, followed by a number indi-
cating its size, and another number corresponding to the rank
of the instance within its class. For example, instance R2_6_9
is the ninth instance of the class R2 with 600 customers.

5.2. Parameter Values

All parameter values have been adjusted through a series
of preliminary tests on a subset of the instances. Table 1
provides the parameter values that were not given previously

TABLE 1. Parameter values.

Parameter Instance sizes Value

Number of customers removed 100–200 70
400–1,000 100

Maximum number of columns in 100–1,000 50,000
memory pool

Number of tabu iterations per column 100–1,000 |N |
generation iteration in vnr
phase (I tabu,tot

max )

Number of tabu iterations per initial 100–1,000 5
solution in tdr phase (I tabu,sol

max )

Maximum number of vnr iterations to 100–1,000 600
find a feasible solution (Ivnr

max)

Number of tdr iterations (Itdr
max) 100–1,000 800

and that were used for the results presented in Subsection
5.3. These parameters are the most sensible ones and will be
subject to a sensitivity analysis in Subsection 5.4. Note that
for the number of customers removed at each lns iteration,
we used two different values: 70 for the small instances (with
100 and 200 customers) and 100 for the larger ones.

5.3. Main Results

Tables 2–7 present the results of our algorithm on the
benchmark instances and those of the best algorithms that
can be found in the literature. For the 100-customer instances
(Table 2), these are the algorithms of Pisinger and Ropke
[27], Bent and Van Hentenryck [1], Bräysy [3], and Ibaraki
et al. [19], which are abbreviated by PR, BVH, B, and IIK-
MUY, respectively. For the larger instances (Tables 3–7),
the algorithms of Pisinger and Ropke [27], Gehring and
Homberger [15], Mester and Bräysy [26], Le Bouthillier
et al. [25], abbreviated by PR, GH, MB, and LCK, respec-
tively, serve as a comparison basis. Note that the algorithm
of Homberger and Gehring [1] has not been retained because
the best results they report were obtained using multiple
runs with multiple parameter configurations for each instance
[18]. Furthermore, the results of Ibaraki et al. [20] are also
not considered because they were derived using the mini-
mum number of vehicles reported in the literature for each
instance [20].

For each instance class and each method, we provide in
the following tables two values: the mean number of vehi-
cles used and the mean total traveled distance. Rows CNV and
CTD show, respectively, the cumulative number of vehicles
and the cumulative total distance for all instances in the data
set. Row CPU presents the type of processor used and row
Time (min), the average time in minutes taken by the algo-
rithm for solving an instance once. The last row, Runs, gives
the number of runs performed in order to obtain the results.
The results of our algorithm (PDR) are, however, presented
in two columns. The first one, Best, indicates the best results
obtained in five runs, while the second one, Avg, specifies
the average value of the solutions obtained. Bold numbers
highlight the best results for each class.

On these main runs, our algorithm succeded to improve
the best known solution value of 106 instances (of 356), com-
pared to values reported on the Sintef website1, as of August
30, 2007, and the website2 presenting the detailed results of
Ibaraki et al. [20]. In all the experiments performed during
this project including parameter tuning and sensitivity analy-
sis, a total of 145 new best solutions were found. The values
of these new solutions are reported in Table 8. Bold values
indicate solutions reducing the number of vehicles compared
to the previously best known solutions.

Compared to other methods, our lns algorithm finds bet-
ter CNVs and CTDs for all instance sizes, when taking the

1www.sintef.no/static/am/opti/projects/top/vrp/benchmarks.html
2www.al.cm.is.nagoya-u.ac.jp/∼yagiura/papers/vrpctw_abst.html
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TABLE 2. Solomon’s instances with 100 customers.

PDR

Best Avg PR (2007) BVH (2004) B (2003) IIKMUY (2005)

R1 11.92 11.92 11.92 11.92 11.92 11.92
1210.34 1211.69 1212.39 1211.10 1222.12 1217.40

R2 2.73 2.85 2.73 2.73 2.73 2.73
955.74 939.861 957.72 954.27 975.12 959.11

RC1 11.50 11.50 11.50 11.50 11.50 11.50
1384.16 1386.98 1385.78 1384.17 1389.58 1391.03

RC2 3.25 3.28 3.25 3.25 3.25 3.25
1119.44 1115.68 1123.49 1124.46 1128.38 1122.79

C1 10.00 10.00 10.00 10.00 10.00 10.00
828.38 828.38 828.38 828.38 828.38 828.38

C2 3.00 3.00 3.00 3.00 3.00 3.00
589.86 589.86 589.86 589.86 589.86 589.86

CNV 405 406.6 405 405 405 405
CTD 57240 57101 57332 57273 57710 57444
CPU OPT 2.3 GHz OPT 2.3 GHz P4 3 GHz SU 10 P-200 MHz P3 1 GHz
Time (min) 30 2.5 120 82.5 250
Runs 5 10 >5 1 1

best of five runs (column Best). For instances with 600 cus-
tomers or less, we obtained solutions that exhibit the same
CNVs as the best known CNVs, but lower CTDs. For the
larger instances, the CNVs were significantly reduced (from
2,758 to 2,745 and from 3,438 to 3,432 for the 800- and
1,000-customer instances, respectively). Note, however, that
when we obtain the best cumulative results for a given size,
we do not obtain the best results for all instance classes. On
average (see the Avg columns), the quality of the solutions
produced by our algorithm remains very good, especially for
the instances with 400 customers or more. Indeed, the aver-
age CNVs and CTDs are next to the best for the 400- and
600-customer instances, and the best for the 800- and 1,000-
customer instances. These results show that our method is

very efficient and robust at finding very good quality solu-
tions for the vrptw. It is, however, somewhat slow when
compared to other methods like that of Pisinger and Ropke
[27].

In order to verify the efficiency of the destruction oper-
ators, statistics on the performance of the operators were
gathered from the main runs. Table 9 provides two values
for each operator in each phase for the data sets involving
between 400 and 1,000 customers. The first one, nb calls, is
the total number of lns iterations in the corresponding phase
in which the given operator was called as the destruction
operator, and the second one, nb impr, is the total number
of times among these iterations that the current solution was
improved. The row Total gives the total numbers of calls

TABLE 3. Gehring and Homberger’s instances with 200 customers.

PDR

Best Avg PR (2007) GH (2001) MB (2005) LCK (2005)

R1 18.2 18.20 18.2 18.2 18.2 18.2
3615.69 3624.10 3631.226 3885.03 3618.68 3615.06

R2 4.0 4.02 4.0 4.0 4.0 4.0
2937.67 2949.28 2949.368 3032.49 2942.92 2969.90

RC1 18.0 18.00 18.0 18.1 18.0 18.0
3192.56 3211.43 3212.282 3674.91 3221.34 3255.97

RC2 4.3 4.38 4.3 4.4 4.4 4.3
2559.32 2540.23 2556.874 2671.34 2519.79 2584.18

C1 18.9 18.90 18.9 18.9 18.8 18.9
2718.77 2721.71 2721.522 2842.08 2717.21 2736.84

C2 6.0 6.00 6.0 6.0 6.0 6.0
1831.59 1831.88 1832.947 1856.99 1833.57 1833.91

CNV 694 695 694 696 694 694
CTD 168556 168786 169042 179328 168573 169958
CPU OPT 2.3 GHz OPT 2.3 GHz P4 3 GHz P-400 MHz P4 2 GHz P3 850 MHz
Time (min) 53 7.7 4 × 2.1 8 5 × 10
Runs 5 10 3 1 1
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TABLE 4. Gehring and Homberger’s instances with 400 customers.

PDR

Best Avg PR (2007) GH (2001) MB (2005) LCK (2005)

R1 36.4 36.40 36.4 36.4 36.3 36.4
8420.52 8451.44 8540.04 9478.22 8530.03 8607.97

R2 8.0 8.00 8.0 8.0 8.0 8.0
6213.48 6278.74 6241.72 6650.28 6209.94 6302.08

RC1 36.0 36.00 36.0 36.1 36.0 36.0
7940.65 8002.87 8069.30 9294.99 8066.44 8267.81

RC2 8.6 8.80 8.5 8.8 8.8 8.6
5269.09 5290.13 5335.09 5629.43 5243.06 5397.54

C1 37.6 37.62 37.6 38.0 37.9 37.9
7182.75 7199.78 7290.16 7855.82 7148.27 7223.06

C2 11.9 11.98 12.0 12.0 12.0 12.0
3874.58 3854.17 3844.69 3940.19 3840.85 3862.66

CNV 1385 1388.0 1385 1392 1389 1389
CTD 389011 390771 393210 428489 390386 396611
CPU OPT 2.3 GHz OPT 2.3 GHz P4 3 GHz P-400 MHz P4 2 GHz P3 850 MHz
Time (min) 89 15.8 4 × 7.1 17 5 × 20
Runs 5 10 3 1 1

and improvements over all datasets, while the last row indi-
cates the percentage of times that each operator improves the
current solution when called. From these results, we observe
that the behavior of each operator is similar from one instance
size to another and that the percentage of improved solutions
found is smaller in the tdr phase. Most important, we see
that while some operators are more efficient than others, none
is of second importance.

To conclude this section, we present another table to com-
pare the effort spent by the algorithm in both phases. For
each data set with 400 to 1,000 customers and for each phase,
Table 10 specifies the average number of lns iterations (nb
itr) performed (recall that 800 iterations in the tdr phase

was set by a parameter), the computational time (in minutes)
spent in this phase, and the average time per iteration (time
per it). It also reports the average number of instances per data
set (each containing 60 instances) for which the vnr phase
was stopped because the lower bound mlb on the number of
vehicles was reached. From these results, we observe that the
average number of iterations executed in the vnr phase is
relatively low. This is due to the large number of times (more
than 2/3 of the times) that this phase was stopped because the
lower bound mlb was reached. In fact, for most instances, the
vnr phase is not very time consuming but, for others where it
is difficult to reduce the number of vehicles used, it can take
up to 50% of the total computational time. For the different

TABLE 5. Gehring and Homberger’s instances with 600 customers.

PDR

Best Avg PR (2007) GH (2001) MB (2005) LCK (2005)

R1 54.5 54.50 54.5 54.5 54.5 54.8
18252.13 18359.92 18888.52 21864.47 18358.68 18698.37

R2 11.0 11.00 11.0 11.0 11.0 11.2
12808.59 12974.58 12619.26 13656.15 12703.52 12989.35

RC1 55.0 55.00 55.0 55.0 55.0 55.2
16266.14 16376.34 16594.94 19114.02 16418.63 16643.27

RC2 11.7 11.94 11.6 11.9 12.1 11.8
10990.85 10926.01 10777.12 11670.29 10677.46 10868.94

C1 57.4 57.40 57.5 57.7 57.8 57.7
14106.03 14134.81 14065.89 14817.25 14003.09 14166.80

C2 17.5 17.60 17.5 17.8 17.8 17.9
7632.37 7646.82 7801.296 7889.96 7455.83 7582.61

CNV 2071 2074.4 2071 2079 2082 2086
CTD 800561 804184 807470 890121 796172 809493
CPU OPT 2.3 GHz OPT 2.3 GHz P4 3 GHz P-400 MHz P4 2 GHz P3 850 MHz
Time (min) 105 18.3 4 × 12.9 40 5 × 30
Runs 5 5 3 1 1

198 NETWORKS—2009—DOI 10.1002/net



TABLE 6. Gehring and Homberger’s instances with 800 customers.

PDR

Best Avg PR (2007) GH (2001) MB (2005) LCK (2005)

R1 72.8 72.80 72.8 72.8 72.8 72.8
31797.42 31949.31 32316.79 34653.88 31918.47 32290.48

R2 15.0 15.00 15.0 15.0 15.0 15.0
20651.81 20845.50 20353.51 21672.85 20295.28 20765.88

RC1 72.0 72.00 73.0 72.3 73.0 72.3
33170.01 33756.19 29478.3 40532.35 30731.07 37075.19

RC2 15.8 16.12 15.7 16.1 15.8 15.8
16852.38 16927.65 16761.95 17941.23 16729.18 17202.08

C1 75.4 75.54 75.6 76.1 76.2 76.2
25093.38 25097.40 25193.13 26936.68 25132.27 25612.47

C2 23.5 23.60 23.7 23.7 23.7 24.0
11569.39 11578.86 11725.46 11847.92 11352.29 11393.80

CNV 2745 2750.6 2758 2760 2765 2761
CTD 1391344 1401549 1358291 1535849 1361586 1443399
CPU OPT 2.3 GHz OPT 2.3 GHz P4 3 GHz P-400 MHz P4 2 GHz P3 850 MHz
Time (min) 129 22.7 4 × 30.1 145 5 × 40
Runs 5 5 3 1 1

sizes, the time spent in this phase varies between 11% and
22% of the overall time. This can be a bit surprising given the
very good results that was obtained for the CNVs. Finally, we
note also that, as expected, the average computational time
per iteration increases with the size of the instances and that
this average time is quite similar in both phases.

5.4. Sensitivity Analysis

Tests were made to verify the behaviour of our algorithm
with regards to variations of certain parameter values. For
each instance size from 400 to 1000 customers, a subset
sub-(size) of instances was selected to cover a variety of
instance types. The subset sub-400 consists of the following
instances: R1_4_9, R2_4_1, RC1_4_4, RC2_4_2, RC2_4_5,

RC2_4_6, C1_4_7, C1_4_8, C2_4_2, and C2_4_3. For the
other sizes, the susbets contain the corresponding instances
(R1_6_9, R2_6_1, …).

The sensitivity analysis was performed for each parameter
in Table 1, where one parameter value was changed at once.
The test results can be found in Tables 11–16. As in Section
5.3, five runs were performed for each instance and, for each
subset, two values are reported, namely, the mean number
of vehicles used and the mean total distance. CNV and CTD
values are given as well and correspond to the sums over
all the subsets. For comparison purposes, the last column
provides the values of the best published solutions. Finally,
the last row of each table gives the average computation time
(in minutes) for solving an instance.

TABLE 7. Gehring and Homberger’s instances with 1000 customers.

PDR

Best Avg PR (2007) GH (2001) MB (2005) LCK (2005)

R1 91.9 91.90 92.2 91.9 92.1 92.0
49702.32 50168.00 50751.25 58069.61 49281.48 51847.22

R2 19.0 19.00 19.0 19.0 19.0 19.0
30495.26 30730.35 29780.82 31873.62 29860.32 30441.05

RC1 90.0 90.00 90.0 90.1 90.0 90.0
45574.11 45924.74 46752.15 50950.14 45396.41 46118.08

RC2 18.5 18.82 18.3 18.5 18.7 18.5
25470.33 25464.40 25090.88 27175.98 25063.51 25390.40

C1 94.3 94.50 94.6 95.4 95.1 95.1
41783.27 41913.42 41877.00 43392.59 41569.67 42403.21

C2 29.5 29.56 29.7 29.7 29.7 29.6
16657.06 16817.76 16840.37 17572.72 16639.54 17164.51

CNV 3432 3437.8 3438 3446 3446 3442
CTD 2096823 2110187 2110925 2290367 2078110 2133645
CPU OPT 2.3 GHz OPT 2.3 GHz P4 3 GHz P-400 MHz P4 2 GHz P3 850 MHz
Time (min) 162 26.6 4 × 30.1 600 5 × 50
Runs 5 5 3 1 1
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TABLE 8. New best solution values.

R1 R2 RC1 RC2 C1 C2

# Veh Dist Veh Dist Veh Dist Veh Dist Veh Dist Veh Dist

200 customers
1 — — 4 4483.16 18 3602.80 6 3099.53 — — — —
2 18 4040.60 4 3621.20 18 3249.50 5 2825.24 — — — —
3 — — — — 18 3008.76 4 2603.83 18 2707.35 — —
4 18 3059.22 — — — — — — 18 2643.97 6 1703.43
5 18 4107.86 4 3366.79 18 3385.88 4 2911.46 — — — —
6 18 3583.14 4 2913.03 18 3324.80 — — — — — —
7 18 3150.11 — — 18 3189.32 4 2526.18 — — — —
8 18 2952.65 — — 18 3083.93 4 2293.35 — — — —
9 18 3760.58 4 3092.53 — — — — — — — —
10 18 3302.72 — — 18 3008.53 — — — — — —
400 customers
1 — — 8 9213.68 36 8630.94 11 6688.31 — — — —
2 36 8955.50 8 7641.67 36 7958.67 — — 36 7687.38 — —
3 36 7841.52 — — 36 7562.60 8 4958.74 36 7060.73 11 4109.88
4 36 7318.62 8 4297.20 36 7332.59 — — — — 11 3865.45
5 36 9242.43 — — 36 8249.63 9 5923.95 — — — —
6 36 8383.67 — — 36 8223.12 8 5863.56 — — — —
7 36 7656.94 — — 36 8001.12 8 5466.70 39 7417.92 — —
8 36 7293.69 — — 36 7836.29 8 4848.87 37 7363.51 — —
9 36 8750.84 — — 36 7811.55 — — 36 7061.21 12 3865.65
10 36 8125.03 — — 36 7668.77 8 4311.59 36 6860.63 11 4115.46
600 customers
1 — — 11 18291.18 55 17317.13 — — — — — —
2 54 19147.38 — — 55 16123.40 — — 56 14163.31 17 8380.49
3 54 17216.16 — — 55 15358.13 — — 56 13781.19 17 7595.43
4 54 15947.03 — — — — — — — — — —
5 54 20017.80 — — 55 16934.45 12 12168.79 — — — —
6 54 18237.76 — — 55 16842.27 — — — — 18 7472.24
7 54 16796.63 — — 55 16450.42 — — 58 14851.65 18 7512.33
8 — — — — 55 16164.82 — — 56 14541.53 17 7778.30
9 54 19015.51 — — — — — — 56 13718.23 — —
10 54 18204.18 — — 55 15936.81 — — 56 13669.88 — —
800 customers
1 — — 15 28392.87 72 35102.79 19 20520.49 — — — —
2 72 33190.68 — — 72 33361.67 — — 74 25528.55 23 12332.37
3 72 29943.87 — — 72 30608.16 — — 72 24366.83 23 11438.72
4 — — — — 72 28363.65 — — — — — —
5 72 34247.99 — — 72 34481.02 16 18917.65 — — — —
6 72 31728.99 — — 72 34849.96 15 18600.22 — — — —
7 72 29399.21 — — 72 33102.75 — — 77 26639.13 24 11380.54
8 72 28191.89 — — 72 33188.75 — — 74 25370.02 — —
9 72 33074.30 — — 72 33350.51 — — 72 24698.05 23 12301.63
10 — — — — 72 31766.56 — — 72 24324.76 23 11163.89
1,000 customers
1 100 53904.23 — — — — — — — — — —
2 91 50701.78 — — — — — — — — — —
3 91 46169.17 — — 90 43390.58 — — — — — —
4 — — — — — — — — — — — —
5 91 54032.44 — — 90 46631.89 — — — — — —
6 — — — — — — — — — — — —
7 91 45729.79 — — — — — — 98 42824.09 — —
8 — — — — 90 45406.46 — — 93 42499.59 — —
9 — — — — 90 45149.72 — — 90 41318.12 29 16751.82
10 — — — — 90 44947.71 — — 90 40586.60 — —
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TABLE 9. Use of different operators.

Route portion Proximity

vnr tdr vnr tdr

Instance nb nb nb nb nb nb nb nb
size calls impr calls impr calls impr calls impr

400 9,479 2,367 56,962 13,532 14,191 4,231 73,094 17,747
600 8,298 2,114 56,347 13,885 13,814 4,600 77,922 19,300
800 13,651 3,522 52,284 13,651 21,481 8,241 81,312 22,361
1000 13,552 4,563 56,197 16,683 23,851 9,277 79,056 23,851
Total 43,056 12,566 221,790 57,751 71,166 26,349 311,384 83,259
% 29.2 26.0 37.0 26.7

Longest detour Time

vnr tdr vnr tdr

Instance nb nb nb nb nb nb nb nb
size calls impr calls impr calls impr calls impr

400 12,388 3,761 52,751 10,697 11,100 3,501 57,193 12,438
600 9,694 3,341 47,047 8,251 11,233 4,307 58,684 12,388
800 15,012 5,616 45,587 7,764 15,609 6,492 60,817 14,031
1000 14,949 6,197 42,044 8,084 15,937 7,156 62,703 16,463
Total 52,043 18,915 187,429 34,796 53,879 21,456 239,397 55,320
% 36.3 18.6 39.8 23.1

The results reported in Tables 11–16 are discussed in the
following paragraphs, where the emphasis is put on the CNV
and CTD values, as well on the computational times. Indeed,
in most cases, the results for the different subsets are very
consistent with the cumulative values.

5.4.1. Number of Customers Removed (Table 11). The
results indicate that using larger neighborhoods yields better
solutions, but takes longer computational times. Removing
100 customers is however sufficient to obtain the same CNV
as that of the best published solutions and requires much less
computational time than the case where 120 cutomers are
removed.

TABLE 10. Statistics on the two phases.

vnr tdr

Instance nb tot Time tot Time
size it time per it mlb reached nb itr time per it

400 158 9 0.06 40.2 800 81 0.10
600 144 13 0.09 44.8 800 92 0.11
800 214 26 0.12 38.8 800 103 0.13
1000 221 35 0.16 39.6 800 127 0.16

5.4.2. Maximum number of columns in memory pool
(Table 12). To a certain extent, keeping more columns in
the memory pool helps computing better solutions. It how-
ever requires longer computational times to manage a larger
number of columns. Notice that keeping no columns at all in
memory yields very bad quality solutions.

5.4.3. Number of Tabu Search Iterations per Column
Generation Iteration in the VNR Phase (Table 13). On
average, allowing more tabu search iterations per column
generation iteration in the vnr phase helps reducing the
number of vehicles used. However, with 1.3|N | tabu search
iterations, it was not possible to find 1421 vehicles among the
best solutions as it was the case with 1.0|N | iterations. This
is due to the heuristic nature of the method. It should be noted
that increasing the value of this parameter slowly increases
computational times, because the number of lns iterations
performed in the vnr phase accounts for ∼11–17% of the
total number of lns iterations (see Table 10).

5.4.4. Number of Tabu Search Iterations per Initial Solu-
tion in the TDR Phase (Table 14). As expected, increas-
ing the value of this parameter reduces the total distance.
On the other hand, it increases computational times rather
rapidly.

5.4.5. Maximum Number of VNR Iterations to Find a
Feasible Solution (Table 15). Increasing the value of this
parameter can only improve the solution quality in terms of

TABLE 11. Sensitivity analysis on the number of customers removed.

80 100 120

Best Avg Best Avg Best Avg Best pub

sub-400 20.8 20.90 20.7 20.88 20.7 20.86 20.6
6551.27 6582.42 6587.39 6572.04 6574.22 6549.16 6651.14

sub-600 30.7 30.94 30.4 30.64 30.4 30.66 30.4
13414.03 13332.73 13557.75 13462.11 13475.26 13413.95 13412.17

sub-800 40.6 40.94 40.5 40.86 40.5 40.74 40.6
22536.34 22492.23 22379.96 22363.30 22305.19 22342.87 22398.83

sub-1000 50.6 51.04 50.5 50.80 50.5 50.72 50.5
34446.49 34391.39 34261.47 34378.06 34147.35 34202.54 33694.66

CNV 1, 427 1438.2 1, 421 1, 431.8 1, 421 1429.8 1, 421
CTD 769, 481 767, 987 767, 866 767, 755 765, 020 765, 085 761568
Time (min) 88 143 218
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TABLE 12. Sensitivity analysis on the maximum number of columns in memory pool.

0 20,000 50,000 100,000

Best Avg Best Avg Best Avg Best Avg Best pub

sub-400 21.0 21.10 20.8 20.92 20.7 20.88 20.7 20.72 20.6
6636.47 6691.53 6583.66 6592.47 6587.39 6572.04 6566.48 6598.17 6651.14

sub-600 31.0 31.06 30.8 30.94 30.4 30.64 30.5 30.72 30.4
13334.99 13514.01 13318.26 13379.34 13557.75 13462.11 13407.66 13351.09 13412.17

sub-800 41.0 41.32 40.6 40.98 40.5 40.86 40.6 40.90 40.6
22693.96 22691.46 22665.14 22568.92 22379.96 22363.30 22295.38 22299.63 22398.83

sub-1000 51.0 51.36 50.8 50.98 50.5 50.80 50.6 50.82 50.5
34828.89 34902.62 34332.58 34615.52 34261.47 34378.06 34032.07 34237.34 33694.66

CNV 1, 440 1448.4 1, 430 1438.2 1, 421 1431.8 1, 424 1431.6 1, 421
CTD 774, 943 777, 996 768, 996 771, 563 767, 866 767, 755 763, 016 764, 862 761, 568
Time (min) 75 117 143 170

TABLE 13. Sensitivity analysis on the number of tabu search iterations per column generation iteration in the vnr phase.

0.7|N | 1.0|N | 1.3|N |

Best Avg Best Avg Best Avg Best pub

sub-400 20.9 20.94 20.7 20.88 20.8 20.90 20.6
6510.76 6539.91 6587.39 6572.05 6544.16 6550.11 6651.14

sub-600 30.6 30.84 30.4 30.64 30.4 30.70 30.4
13329.61 13325.91 13557.75 13462.11 13494.42 13404.53 13412.17

sub-800 40.6 40.96 40.5 40.86 40.5 40.74 40.6
22324.69 22289.15 22379.96 22363.30 22295.51 22386.59 22398.83

sub-1000 50.6 50.90 50.5 50.80 50.6 50.80 50.5
34313.08 34347.92 34261.47 34378.06 34234.19 34341.86 33694.66

CNV 1, 427 1436.4 1, 421 1431.8 1, 423 1431.4 1, 421
CTD 764, 781 765, 029 767, 866 767, 755 765, 683 766, 831 761, 568
Time (min) 134 143 150

the number of vehicle used. With 800 iterations, we even
succeeded to obtain 1,420 vehicles which is better than the
best results reported in the literature. Note also that increasing
the value of this parameter slowly increases computational
times, because the vnr phase is often stopped when the lower
bound mlb on the number of vehicles is reached.

5.4.6. Number of Iterations in the TDR Phase (Table 16).
Increasing the value of this parameter cannot deteriorate the
solution quality. In fact, it helps reducing the total distance as
shown by the results. Computational times however increase
rather rapidly with the number of iterations in the tdr
phase.

TABLE 14. Sensitivity analysis on the number of tabu search iterations per initial solution in the tdr phase.

3 5 10

Best Avg Best Avg Best Avg Best pub

sub-400 20.7 20.88 20.7 20.88 20.7 20.88 20.6
6603.70 6594.60 6587.39 6572.05 6598.67 6582.22 6651.14

sub-600 30.4 30.64 30.4 30.64 30.4 30.64 30.4
13579.14 13494.57 13557.75 13462.11 13548.48 13462.88 13412.17

sub-800 40.5 40.86 40.5 40.86 40.5 40.86 40.6
22531.60 22513.82 22379.96 22363.30 22306.04 22333.11 22398.83

sub-1000 50.5 50.80 50.5 50.80 50.5 50.80 50.5
34303.16 34450.05 34261.47 34378.06 34109.92 34282.22 33694.66

CNV 1, 421 1431.8 1, 421 1, 431.8 1, 421 1431.8 1, 421
CTD 770, 176 770, 530 767, 866 767, 755 765, 631 766, 604 761, 568
Time (min) 120 143 184
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TABLE 15. Sensitivity analysis on the maximum number of vnr iterations to find a feasible solution.

400 600 800

Best Avg Best Avg Best Avg Best pub

sub-400 20.7 20.90 20.7 20.88 20.6 20.82 20.6
6596.57 6566.46 6587.39 6572.04 6632.94 6585.08 6651.14

sub-600 30.6 30.72 30.4 30.64 30.4 30.62 30.4
13373.38 13410.48 13557.75 13462.11 13543.40 13458.55 13412.17

sub-800 40.5 40.90 40.5 40.86 40.5 40.80 40.6
22350.63 22318.69 22379.96 22363.30 22384.03 22439.04 22398.83

sub-1000 50.6 50.90 50.5 50.80 50.5 50.78 50.5
34218.14 34298.80 34261.47 34378.06 34295.44 34427.53 33694.66

CNV 1, 424 1434.4 1, 421 1431.8 1, 420 1430.2 1, 421
CTD 765, 387 765, 944 767, 866 767, 755 768, 558 769, 102 761, 568
Time (min) 131 143 152

TABLE 16. Sensitivity analysis on the number of iterations in the tdr phase.

400 800 1200

Best Avg Best Avg Best Avg Best pub

sub-400 20.7 20.88 20.7 20.88 20.7 20.88 20.6
6629.36 6604.31 6587.39 6572.05 6580.95 6559.11 6651.14

sub-600 30.4 30.64 30.4 30.64 30.4 30.64 30.4
13683.35 13577.36 13557.75 13462.11 13486.45 13402.23 13412.17

sub-800 40.5 40.86 40.5 40.86 40.5 40.86 40.6
22618.20 22687.86 22379.96 22363.30 22289.87 22225.88 22398.83

sub-1000 50.5 50.80 50.5 50.80 50.5 50.80 50.5
34575.54 34804.44 34261.47 34378.06 34114.23 34189.77 33694.66

CNV 1, 421 1431.8 1, 421 1431.8 1, 421 1431.8 1, 421
CTD 775, 064 776, 740 767, 866 767, 755 764, 715 763, 770 761, 568
Time (min) 100 143 185

To conclude this section, we would like to highlight the
fact that our algorithm involves close to ten parameters,
which might seem a lot to adjust carefully. However, most
of them are used to limit computational times in one way
or another. The sensitivity analysis results presented in this
section clearly show that our algorithm could have found
better solutions if we have allowed more time to solve the
instances. Hence, we had to make a compromise between
solution quality and computational time. We believe that the
parameter values used to produce the main results reported
in Subsection 5.3 offer a good trade-off between these two
criteria.

6. CONCLUSION

In this article, we proposed a new lns method for solv-
ing the vrptw. This method takes advantage of the power
of branch-and-price, the leading methodology for the exact
solution of the vrptw, to efficiently explore the neighbor-
hoods. With this methodology, we succeded to find 145 new
best solutions on the well-known 356 benchmark instances
of Solomon [30] and Gehring and Homberger [14] and to
obtain for all instance sizes the best cumulative number of
vehicles (CNVs) and cumulative total distances (CTDs) com-
pared to the results of the best know methods. Furthermore,

we demonstrated through a sensitivity analysis on the param-
eters limiting computational time that our method could
produce better solutions if additional computational time was
used. Hence, the parameter setting used for our experiments
offered a compromise between solution quality and computa-
tional time. This compromise led to acceptable computational
times which are not as fast as those of certain other leading
methods.

Combining branch-and-price and lns is a relatively new
idea that can be applied for a wide variety of vehicle and
crew scheduling problems. This paper has shown that such
a hybrid methodology can perform very well against the
leading heursitic methods for a well-studied problem.
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