Preprocessing and Probing Techniques
for Mixed Integer Programming Problems

M.W.P. Savelsbergh
School of Industrial and Systems FEngineering
Georgia Institute of Technology
Atlanta, GA 30332-0205

Email: Martin.Savelsbergh@isye.gatech.edu

Abstract

In the first part of the paper, we present a framework for describing basic tech-
niques to improve the representation of a mixed integer programming problem. We
elaborate on identification of infeasibility and redundancy, improvement of bounds
and coefficients, and fixing of binary variables. In the second part of the paper, we
discuss recent extensions to these basic techniques and elaborate on the investigation
and possible uses of logical consequences.

Subject Classification: Programming, Integer
Other key words: Preprocessing, Probing

The success of branch-and-cut algorithms for combinatorial optimization problems [5, 10]
and large scale 0-1 linear programming problems [2] has lead to a renewed interest in
mixed integer programming. The key idea of the branch-and-cut approach is reformula-
tion. Problems are reformulated so as to make the difference in the objective function
values between the solutions to the linear programming relaxation and the integer pro-
gram as small as possible.

There are various ways to tighten the linear programming relaxation of an integer
program. Preprocessing and probing techniques [1, 3, 4, 6, 7] try, among others things,
to reduce the size of coeflicients in the constraint matrix and to reduce the size of bounds
on the variables. Constraint generation techniques [2, 11] try to generate strong valid
inequalities. Johnson [9] discusses a wide range of issues related to modeling and strong
linear programs for mixed integer programming.

It is well known, that there are many ways to represent a mixed integer program
by linear inequalities while guaranteeing that the underlying set of feasible solutions is
unchanged. In the first part of this paper, we present a framework for describing various
techniques that modify a given representation of a mixed integer programming problem

in such a way that the set of feasible solutions of the linear programming relaxation is
reduced, but the set of feasible solutions to the mixed integer program is not affected.
This may reduce the integrality gap, i.e., the difference between the objective function
values of the linear programming relaxation and the integer program, which is crucial in
the context of a linear programming based branch and bound algorithm. We concentrate
on identifying infeasibility and redundancy, improving bounds and coefficients, and fixing
variables.

Several other papers have been written on this subject, most notably Dietrich and
Escudero [3] and Hoffman and Padberg [6]. Dietrich and Escudero consider coefficient
reduction for 0-1 linear programming problems containing variable upper bound con-
straints and Hoffman and Padberg discuss the implementation of coefficient reduction
for 0-1 linear programming problems containing special ordered set constraints. Both
papers deal with pure 0-1 linear programming problems and in both papers the general
ideas are somewhat obscured by the specific perspective.

The purpose of this paper is twofold. First, to introduce a framework for describ-
ing preprocessing and probing techniques for mixed integer programming problems and
survey some of the well-known basic techniques. In doing so, we clearly separate the
underlying ideas from the implementation issues. Second, to present some of the, more
recently developed, techniques that are currently employed by the state-of-the-art general
purpose mixed integer optimizers.

1 Basic preprocessing and probing techniques

The underlying idea of the basic techniques to improve a given representation of a mixed
integer programming problem min{cz + hy : Az + Gy < b,z € {0,1}",y € RR™} is to
analyze each of the inequalities of the system of inequalities defining the feasible region
in turn, trying to establish whether the inequality forces the feasible region to be empty,
whether the inequality is redundant, whether the inequality can be used to improve the
bounds on the variables, whether the inequality can be strengthened by modifying its
coefficients, or whether the inequality forces some of the binary variables to either zero
or one.
We assume that the inequality currently under consideration is of the form

Sooajri— > aii+ Y. gy — Y g < b,

jeB* JEB~ jeCt JEC—
where B = BT U B~ is the set of binary variables, C' = CtUC~ is the set of both integer
and continuous variables, and a; > 0 for j € B and g; > 0 for j € (. Note that we

do not distinguish integer and continuous variables. Furthermore, we assume that the
lower and upper bounds of integer and continuous variables are denoted by /; and u;.

For the remainder of this section, let Az + Gy < b,x € {0,1}",y € RR™ be a
given representation of a mixed integer programming problem, let a'z + ¢'y < b; be
any inequality of the system, and let Az + G'y < b* denote the system of inequalities
obtained from Az + Gy < b by deleting row a'z + ¢'y < b;.

1.1 Basic preprocessing techniques

Identification of infeasibility
Consider the following mixed integer programming problem

p=min) agey— Y azmid D gy = Y. 93
JjEBt JEB- JeCH JEC—
subject to
Atz + Gly < b
[<y<u

ze€{0,1}",y € RR™.

If z > b;, then obviously the feasible region is empty. Unfortunately, the above mixed
integer programming problem is as hard to solve as the original problem, but it should
be clear that any lower bound on z suffices (z > zrp > b;). The simplest, but also
weakest, lower bound is obtained by completely discarding the system A'z + Gy < b'.
In that case, we can conclude that the problem is infeasible if

— Za;—l— Zg;l]‘— Zg;u]'>bi.

jEB— jec+ jeEC—

Identification of redundancy
Consider the following mixed integer programming problem

p=max } o durg— 3 @it Y gyi— D 95U

JjEBT JEB~ Jject JEC—
subject to
Atz + Gly < b
[<y<u

ze€{0,1}",y € RR™.

If z < b;, then obviously the inequality a‘z + g'y < b; is redundant. Of course, the above
mixed integer programming problem is as hard to solve as the original problem, but it
should be clear that any upper bound on z suffices (z < zyp < b;). The simplest, but also
weakest, upper bound is obtained by completely discarding the system A’z + Gy < b'.
In that case, we can conclude that the inequality is redundant if

Z a;—l— Z géuj— Z !J;lj < b;.

jeB+ jec+ jeEC—

Improving bounds
Consider a variable y., k € CT and the following integer programming problem

Z=min Y dizi— Y e+ Y giyi— Y g5yj
jeEBT JjEB— jeC+\{k} jeC—
subject to
Ala + Gy < bt
[<y<u
ze€{0,1}",y € RR™.

Clearly, yx < (b; — z)/g.. Therefore, the upper bound uy on variable yz, k € C* can
be improved if (b; — 21)/¢; < ug. When we discard the system A'z + G'y < b', we can
conclude that the upper bound on variable y;, & € C'T can be improved if

(bit Do ai= D gilit D gui)lg <w
jeB- JECH\{k} jec—
Next, consider a variable y;, k£ € C'~ and the following integer programming problem
21 = min Z aéw]‘ - Z “§$J‘+ Z gﬁ@h‘ - Z gﬁ'@/j
jeBt jEB~ ject jeEC—\{k}
subject to
I<y<u
z€{0,1}",y € RR™.

Obviously, yx > (21 — b;)/gi. Therefore, the lower bound [on a variable yx, k € C~
can be improved if (25 — b;)/g, > lx. When we discard the system A'z + G'y < b, we
can conclude that the lower bound on variable g, k& € '~ can be improved if

(= > ai+ D> gili— > giu;—b)/gi >l

jEB~ ject J€C\{k}

1.2 Basic probing techniques

Probing techniques are based on the investigation of logical consequences, i.e., tenta-
tively setting a binary variable zj to either 0 or 1 and exploring the consequences. In
the framework presented above, this amounts to adding the constraint zy = 0 or zp = 1
to the set of constraints and applying the basic preprocessing techniques to this extended
formulation. Obviously, the findings have to be interpreted differently.

Fizing variables
Consider a binary variable 2,k € B* and the following extended mixed integer pro-
gramming problem

sommin 3 diey - X dngt Y dln- X sl
JjEBt JEB- JeCH JEC—
subject to
Atz + Gly < b
=1
[<y<u

ze€{0,1}",y € RR™.

In case z; > b;, then obviously the feasible region of this extended formulation is empty.
Therefore, z; # 1 in any feasible solution of the original formulation and zj can be fixed
to 0. When we discard the system A’z + G*y < b*, we can fix the variable z to 0 if

ap— D ai+ D gili— D] giui > b
jEB~ ject jeEC—

Next, consider a binary variable z;, &k € B~ and the following extended mixed integer
programming problem

ZL = min Z a;x; — Z a;r; + Z 9595 — Z 9;Yj
jEBT JEB™ ject JECT
subject to

Atz + Gly < b

[<y<u
ze€{0,1}",y € RR™.

If 2z, > b;, then obviously the feasible region of this extended formulation is empty.
Therefore, z; # 0 in any feasible solution of the original formulation and zj can be fixed
to 1. When we discard the system A’z + G*y < b*, we can fix the variable x to 1 if

- 2wt Y gli— Y gy > b

J€B\{k} ject JECT

Improving coefficients
Consider a binary variable 2,k € B* and the following extended mixed integer pro-
gramming problem

Be=max) agei— Y dgpit > giyi— Y 95
JjEBt JEB- JeCH JEC—
subject to
Atz + Gly < b
xp =0
[<y<u

ze€{0,1}",y € RR™.

If z; < b;, then obviously the inequality a'z + ¢'y < b; is redundant in this extended
formulation. Consequently, under the assumption that z; = 0, the set of feasible solu-
tions is not affected if b; and a}C are reduced by 6 = b; — z;. Furthermore, also under
the assumption that x; = 1, the set of feasible solutions is not affected if b; and a}; are
reduced by § = b; — 2. To see this, rewrite the inequality a'z 4 ¢'y < b; as

Do = Y aEit Y gyi— Y gy S bi— =

JEBT\{k} JEB~ ject jec-

Soodiej— 0 dait+ Y glyi— Y gy < (bi—8)—(ap—8) b€ RRy =
JEBT\{k} JEB~ ject jec-

Do agwi (e =0k = 3 aei+ D gyi— D gy Sbhi—6 € RRy.
jeBH\{k} JEB~ ject jec—

Therefore, ar and b; can be decreased by b; — z; without changing the set of feasible
solutions. When we discard the system A'z + G*y < b*, we can decrease ay and b; if

D ai+ D gui— D gl <bi

JEBH\{k} ject JECT

Next, consider a binary variable z;, &k € B~ and the following extended mixed integer
programming problem

— T b o) (99
ZL = max Z a;ry — Z a;r; + Z 9;Y5 — Z 9;Yj
jEBT JEB™ ject JECT
subject to

Atz + Gly < b

ze€{0,1}",y € RR™.

If z; < b;, then obviously the inequality a‘z + ¢'y < b; is redundant in this extended for-
mulation. Consequently, under the assumption that x; = 1, the set of feasible solutions
is not affected if a}C is decreased by 6 = b; — z;. Furthermore, also under the assumption
that z = 0, the set of feasible solutions is not affected if a}; is decreased by 6 = b; — zg.

Therefore, ay can be decreased by b;—z, without changing the set of feasible solutions.
When we discard the system A‘z + Gy < b°, we can decrease ay, if

Z aé—a};—l— Zg;Uj— Z g;lj<bi.

jeB+ jec+ jeEC—

Observe that if the simplest bounds are used, i.e., the system Az + Gy < b' is discarded,
only variables appearing in the constraint under consideration can be fixed and only
coeflicients of variables appearing in the constraint under consideration can be modified.

1.3 Implementation

The basic preprocessing and probing techniques can be implemented very
Define

i i i i
Liax = Y a5+ D gy — Y g3l
jeB+ jec+ jeEC—
and

Lfnin:_ Z a;—l_ Z g;l]_ Z g;ujv

jEB— jec+ jeEC—

efficiently.

i.e., the maximum and minimum value of the summation on left-hand-side of the inequal-
ity under consideration. It is not hard to see that the basic preprocessing and probing

techniques require the following tests

e identification of infeasibility:

Li > b,

min

identification of redundancy:
Livax < b;

max

e improvement of bounds:
(bi = (Liin — 9316/ 9k < we yi, k€ CY

((Lnin + gkur) = by /i > b ye, k€ C™

fixing of variables:
Lfmn-l-a};>bi xk,kEB"'UB_
e improvement of coefficients:

Li —a};<bi xk,kEB"'UB_

max

Obviously, all these tests can be performed in constant time once the values L, and

Linin have been computed. As a consequence, the application of the basic preprocessing
and probing techniques to all the inequalities of the system Az + G'y < b requires O(n)
time, where n is the total number of nonzero’s in the system.

This concludes our discussion of the basic techniques to improve a given representation of
a mixed integer programming problem. We end this section with some observations. We
have assumed, without explicitly stating it, that we are always examining an inequality.
The techniques have to be modified slightly in case of an equality. The techniques
have been presented as simple and efficiently solvable approximations of mixed integer
programming problems. The simplicity and computational efficiency is a consequence of
restricting attention to information in a single inequality, i.e., discarding the information
contained in the system Az + Gy < b'.

2 Advanced preprocessing and probing techniques

2.1 Special substructures

As observed in the previous section, the computational efficiency is a consequence of
restricting attention to information in a single constraint. However, there is a trade
off between efficiency and effectivity; more effective, but computationally less efficient,
techniques are obtained when information from more than one inequality is used.

Dietrich and Escudero [3] and Hoffman and Padberg [6] investigate the trade off
between efficiency and effectivity for special substructures, consisting of more than one
constraint, that often appear in 0-1 linear programming problems.

Dietrich and Escudero [3] analyze coefficient improvement for the following special
substructure

Z{aij + Z akxk} <b
Jed kel

g < z5 vk € I]‘

Tk, 25 € {07 1}7

i.e., they incorporate variable upper bound constraints z; < z; in the analysis. Unfor-
tunately, no computational results are reported.

Hoffman and Padberg [6] analyse identification of infeasibility and redundancy as
well as coefficient improvement for the following substructure

Z Z a;prir < b

JET kES;

ijkgl VjeJd
kES,

zjr € {0, 1},

i.e., they incorporate non-overlapping clique constraints Zkesj 25 <1 (also called spe-
cial ordered set constraints) in their analysis. Computational results show an increase

in effectiveness at a moderate decrease in efficiency.

2.2 Logical implications

The basic preprocessing and probing techniques can be used effectively to derive logical

implications between variables.

First, consider a binary variable zy,, k1 € B and a continuous variable y;, £ € C

and the following extended integer programming problems

2’211 = min Z aéle_ Z aélxj+ Z g;‘l@/j _ Z g;‘l@/j

jeBT JEB~ 7eCH\{k}
subject to
Az + Gy < b8

rp =1
[<y<u
z€{0,1}",y € RR",

and

i2 i, 2, i2,, . _
zkl_maxg a;z; g ajx]+§ 95°Y;

jeEBT jEB— ject
subject to
Ay 4 Gy < b2
=1

Tk,

[<y<u

ze€{0,1}",y € RR™.

10

jeEC—

2.

J€C\{k}

97Y;

Clearly, yr < (b; — 2211)/921 and yp > (Z}fl - bi2)/g?, i.e., an analysis of the extended
system of inequalities may reveal that when x5, = 1, the upper and lower bound on
the variable y; may be improved. In case the improved bounds fix the variable yg,
ie., [y = up = vi, we have established the logical implication x5, = 1 = y; = vg.
Analogously, it may be possible to establish a logical implication z;, = 0 = yi = vg.

Second, consider two binary variables z,, k; € B and xg,, ks € B and the following
extended formulation

z=min) djey— Y aEit Y gy - Y. 95
jEBT JEB™ ject JEC—
subject to

Atz + Gly < b

rp =1
T, =1
[<y<u

ze€{0,1}",y € RR™.

If z > b;, then obviously the feasible region of this extended formulation is empty. In
that case, the following logical implications have been identified

Tk, :1:>$k2 =0,
Tp, = 1= x4, = 0.
Similarly, the following logical implications can be identified

rp, = 0= 2, =0,

$k1:0:>$k221,
$k1:1:>$k221,
$k2:0:>$k1:0,
$k220:>$k1:1,
$k221:>$k1:1.

11

Implementation

The identification of logical implications proceeds in two phases. Suppose, without loss
of generality, that we want to identify logical implications associated with z;, = 1. In
the first phase, the system Az 4+ Gy < b is reduced by eliminating variable zy , i.e.,
substituting zy, = 1 throughout. In the second phase, each of the inequalities of the
reduced system is analysed in turn, using the basic preprocessing and probing techniques
to modify bounds and to fix variables, to establish whether any variables can be fixed.
If so, logical implications have been identified.

Logical implications can be used to strengthen various functions embedded in mixed
integer optimizers, such as probing, knapsack cover generation, flow cover generation,
and primal heuristics.

2.2.1 Enhanced probing techniques

The basic probing techniques tentatively set a binary variable to one of its bounds and
explore the logical consequences. Suppose, without loss of generality, that a variable z
is tentatively set to its upper bound. If there already exist logical implications associated
with variable zj being fixed at its upper bound, they can be effectuated during the search
for other logical consequences. Observe that the effectuation of one logical implication
may trigger effectuation of various other logical implications.

Note that the system Az 4+ G'y < b is no longer completely discarded, since existing
logical implications may have been established during the analysis of inequalities other
than the one currently under consideration. Therefore, fixing variables and improving
coeflicients of variables is no longer restricted to variables appearing in the constraint
under consideration. See for an example of this phenomenon the example below.

Implementation
Suppose, without loss of generality, that we probe with variable zj, set to its upper bound.
In the first phase, the system Az 4+ Gy < b is reduced by eliminating all the variables
that are known to be fixed when the system Az 4+ Gy < b is extended with the equality
xr = 1, i.e., all the logical implications that become active when zj is tentatively fixed
at 1 are effectuated. In the second phase, each of the inequalities of the reduced system
is analysed in turn, using the basic preprocessing techniques to identify infeasibility and
redundancy. If infeasibility is detected, the variable on which we probe can be fixed
permanently; if redundancy is detected, the coefficient of the variable on which we probe
can be improved in the inequality currently under consideration.

The set of variables that are fixed when the system Az + Gy < b is extended with
the equality 2 = 1 can be determined efficiently using the logical implications. Conse-

12

quently, the reduced system can de determined efficiently.

Example
In order to provide some insight into the effectiveness of logical implications, consider
the following mixed integer program

min 24z + 1229 + 1623 + 4y + 2y2 + 3y3

subject to
Y1+ 3y2 > 15
Y1+ 2y3 > 10
21 +y2 2 20
Y1 < 152y
Y2 < 202
ys < duas
Y1, Y2, Y3 € Ry

T1,%T2,23 € {0, 1}

Application of the basic preprocessing techniques will set the upper bounds on the contin-
uous variables to 15, 20 and 5 respectively. The logical implications that can be identified
from the resulting formulation and their derivations are listed below

Implication Derivation
r1=0= y1:0 ($120:>y1:0)
yo = 20 (901:0:>y1:0:>y2:20)
y3=5 | (11 =0=y1=0=y3 =35)
o9 =1 ($1:0:>y1:0:>y2:20:>$221)
r3 =1 (901:0:>y1:0:>y3:5:>x3:1)
9 =0= yo =0 ($220:>y2:0)
y1:15 (902:0:>y2:0:>y1:15)
r1 =1 ($2:0:>y2:0:>y1:15:>$121)
x3=0= ys =0 ($320:>y3:0)
r1 =1 ($3:0:>y3:0:>y1210:>$121)

Note that some of these logical implications would not have been identified if the upper
bounds on the continuous variables would not have been improved by the basic pre-
processing techniques. Also note that y3 = 0 = y; > 10, although, according to our
definition, not a logical implication itself, is used in the derivation of z3 =0 = 21 = 1.

13

Application of the enhanced probing techniques results in the following improved
formulation

min 24z + 1229 + 1623 + 4y + 2y2 + 3y3
subject to

4521 + y1 + 3y2 > 60

Sxa+ Y1+ 2ys > 15

1022 4+ 2y1 + y2 = 30

th < 1524

Y2 < 202,

ys < Hx3

0<y <15

0<y <20

0<ys<5H

x1,x223 € {0,1}
The value of the solution of the initial linear programming relaxation is 58.70. The value

of the solution of the improved linear programming relaxation is 79.10. The value of the
optimal solution is 79.33.

2.2.2 Clique inequalities

Logical implications can be used to derive clique inequalities, i.e., inequalities with only
binary variables of the form 3 ;g1 @ — > jcg-2; < 1 - |S7|. Clique inequalities and
their theoretical foundation are described in Johnson and Padberg [8]. The construction
of clique inequalities is based on logical implications between binary variables. Note
that the four types of logical implications between binary variables can be represented
as follows:

e, =1=z;,=0
e, =1=7;,=0
e T, =1=z;,=0

e T, =1=7,=0

14

where Ty = 1 — z, denotes the complement of z;. That is, a logical implication identifies
two variables, either original or complemented, that cannot be 1 at the same time in
any feasible solution. Construct the graph G' = (B° U B¢, E') with B° the set of original
binary variables, B° the set of complemented binary variables, and E the set of edges,
where two variables are joined by an edge if and only if the two variables cannot be 1 at
the same time in a feasible solution. Consequently, each implication defines an edge in
the graph. Furthermore, there is an edge between each variable and its complement.

It is not hard to see that every (maximal) clique C' = C° U C°, with C° C B and
(¢ C B¢, defines a valid clique-inequality

DTt) T<l

JeCe Jecs

which implies

dDoai— Y wp<1—|C

JEC? JEC”
Two important observations can be made with respect to these clique-inequalities:

o if [C°NCY =1and ke C°NCe, then 2; =0forall j € C°\ {k} and z; =1 for
all j € C°\ {k}.

e if |C°NC° > 1 the problem is infeasible.

Example
Consider the following system of inequalities
431 4+ 29 — 324 < 2
201 + 3204+ 324 <7
vy + 4wy 4+ 223 <5
3x1 + 2o+ 523 <6

X1,22,T3,24 € {0, 1}

The following implication inequalities will be identified

15

Implication Derivation
r1=1= wm=1|(nn=1=>24=1)

=0 |(z1=1=a24=1=2,=0)
($121:>$3IO)

x9=1= x3=10 ($221:>$3:0)

r3=1= 29= (z3=1=29,=0)

()

()

r3 =

T, = r3=1=>2,=0
x4 =0= 1 =20 4 =0=>2,=0

The graph G = (B° U B¢, F) for the system of inequalities is given in Figure 1 and
contains one maximal clique with cardinality greater than two: {2y, 29, 23}. This clique
defines the inequality z1 + z9 + 23 < 1.

Figure 1. Auxiliary graph

2.2.3 Implication inequalities

Logical implications define valid inequalities. These inequalities will be referred to as
implication inequalities and are given below

o 2, =1=y; =v; implies y; > I; + (v; — [;)z;.
o 2, =1=y; =v; implies y; < u; — (u; — v;)z;.
o 2, =0= y; =v; implies y; > v; — (v; — [;)z;.

o 2, =0=y; = v; implies y; < v; + (u; — v;)z;.

16

Automatic disaggregation
A very important consequence of generating implication inequalities is that constraint
will automatically be disaggregated. Consider an inequality

>y <O uj)an,
jes jes
where y; € RR, for all j € S and 2, € {0,1}. An analysis of this inequality will

identify the logical implications z; = 0 = y; = 0 for all j € 5. Each of them defines an
implication inequality

y; < ujrg.

Collectively these implication inequalities provide a stronger linear approximation of the
feasible region than the original inequality.

Example

To provide a more concrete example, consider the following instance of the capacitated
facility location problem (CFLP). There are four possible locations for facilities and
three demand points. If a facility is opened in one of the four locations, it will have
a production capacity of 100 units. The costs associated with opening a facility at a
certain location are 400, 500, 300, and 150 respectively; the demand points require 80,
70, 40 units respectively.

The mixed integer program for this instance of CFLP is given by

min 40021 4+ 50029 + 300z5 + 15024 +
20y11 + 48y91 + 26y31 + 24ys +
40912 + 15y22 + 35y32 + 50y +

50y13 + 26y23 + 18y33 + 35y43

subject to

Y11 + Y21 + y31 + ya1 =80
Y12+ Y22 + ¥s2 + ya2 = 70
Y13 + Y23 + Y33 + ya3 = 40
Y11 + y12 + y13 < 1002,
Y21 + Y22 + Y23 < 10022

17

Y31 + Ys2 + Y3z < 10023

Ya1 + Ya2 + yaz < 10024

vi; € Ry z; € {0,1}.
Application of the basic preprocessing techniques will improve the upper bounds on the
continuous variables to y;; < d;, where d; indicates the demand associated with point j.
The following implication inequalities will be identified

Yij < dju;

The solution to the initial linear programming relaxation is given by y;; = 80,21 =

0.8, 420 = 70,29 = 0.7, y33 = 40,23 = 0.4 and all other variables equal to 0. Obviously,
the solution violates the three implication inequalities

yi1 < 80z,
Yoo < 70x9
Y33 < 4023

If these three implication inequalities are added to the formulation and the thus obtained
linear program is solved, the solution is integral and therefore also optimal.

Observe that the clique inequalities as well as implication inequalities are globally valid
and can thus be used effectively in a branch-and-cut approach, i.e., at every node of
the branch-and-bound tree. Furthermore, these inequalities may also strengthen various
other components of mixed integer optimizers. The variable upper bound constraints,
that have been identified as implication inequalities, and the clique constraints may
strengthen the preprocessing techniques based on special substructures (such as the
ones studied by Dietrich and Escudero [3] and Hoffman and Padberg [6]). Variable
upper bound constraints are also of crucial importance for the generation of simple and
extended generalized flow cover inequalities as done by systems such as MPSARX [11]
and MINTO [12].

2.2.4 Elimination of variables

Logical implications associated with fixing a binary variable at 1 together with logical
implications associated with fixing that variable at 0 may even reveal equalities, which
may be used to eliminate variables:

e v, =0=y; =u;and z; =1 = y; = v; imply y; = v;.
o 2, =0=vy; =l and z; =1 = y; = u; imply y; = [; + (u; — [;)z,.

o 2, =0=vy;=ujand 2, =1=y; =[; imply y; = u; — (u; — {;)z,.

18

2.3 Probing on constraints

The probing techniques exploit the fact that in any feasible solution the value of a binary
variable is either 0 or 1. Or, formulated slightly different, the probing techniques exploit
the fact that there exists a simple scheme to divide the solution space in two parts. This
observation suggests that in certain situations it is also possible to probe on constraints,
as opposed to probing on variables.

Consider a clique inequality > ;cn+ @ — > jen- 7 < 1— |N~|. The value of the left
hand side will be either —|[N~| or 1 — [N~|. If it is —|N~|, then z; = 0 for all j € Nt
and 2; =1 forall j € N=. If it is 1 — | N ™|, then either 2 = 1 for some k € N*,2;, =0
forall j € N*\{k},and z; = L forall j € N~,orz; =0 forall j € N*, z; = 0 for
some k € N7, and z; = 1for all j € N\ {k}.

Generalized variable fixing

Instead of trying to fix a single binary variable, we can try to fix all the variables in a
clique inequality > ;cn+ 75 — > ;en-2; < 1 — |N7|. Consider the following extended
integer programming problem

p=min Y agei— Yo agmit D ajyi—) 4y
jEBT JEB~ jec+ JEC—
subject to
dowi— Y ay=1-|N7|
JENT JEN—
z€{0,1}",y € RR"

If 2 > b;, then 3~ ;cn+ @ — 3 jen- 25 # 1 —|N 7| in any feasible solution, i.e., >~ cn+ 7 —
Yien-2j = —|N~"|and thus z; = 0 for all j € N* and z; = 1 for all j € N~.

Generalized coefficient reduction
Consider a clique inequality Y cny+ 2 — Xien-2; < 1= |[N7|, with N* C BT and
N~ C B7,|N7| <1 and the following extended integer programming problem

z_maxg a;; a;T; + a;y; a;y;

jeB* JEB~ jeCt JEC—
subject to

Atz + Gy < b

19

Yoai— Y =N

JENT JEN—
ze€{0,1}",y € RR™.

If 2 < b;, then aé« may be decreased for all j € NT, aé« may be increased for all j € N,
and b; may be decreased by b; — z without changing the set of feasible solutions.

In case 3~ ;cn+ ¥ — 2 jen— o = L — [N 7|, then the inequality a'z + g'y < b; can be
rewritten as

Yoooait Yo (ag=8a— Y agri— Y (af =)i+

jEBH\N jENT jEBT\N-— JENT

> aly;— > dy; <b—6+|NT|8 §€ RRy.
ject jeC—

Therefore, also under the assumption that 3~ ;cn+ 2; — > jen-7; = 1 —|[N7|, aé« may be
decreased for all j € N T, aé« may be increased for all 7 € N7, and b; may be decreased
by b; — z without changing the set of feasible solutions.

3 Computational results

The basic preprocessing and probing techniques as well as the various applications of
logical implications described in the previous sections have been incorporated in MINTO,
a Mixed INTeger Optimizer [12]. MINTO is a software system that solves mixed integer
programs by a linear programming based branch-and-bound algorithm. Moreover, the
user can enrich the basic algorithm by providing a variety of specialized application
routines that can customize MINTO to achieve maximum efficiency for a problem class.

We want to emphasize that there are many other techniques, besides preprocessing
and probing, that modify a given representation of a mixed integer programming prob-
lem in order to reduce the set of feasible solutions of the linear programming relaxation.
Various constraint generation techniques, such as knapsack cover generation and flow
cover generation, have proven to be quite effective. In addition to the techniques aim-
ing at improving the linear programming relaxation, powerful mixed integer optimizers
should also perform reduced cost fixing, have primal heuristics, and different branching
strategies. In our computational study, we have concentrated on preprocessing and prob-
ing techniques. Qur results indicate that these techniques are quite effective in reducing
the integrality gap and the size of the branch-and-bound tree. Consequently, they should
be incorporated in any mixed integer optimizer.

20

The effectiveness of the preprocessing and probing techniques has been tested on a
set of 10 mixed integer programming problems. Table 1 shows for each of these problems
its name, the number of constraints, variables, and nonzero coefficients, and the number
of continuous, binary and integer variables.

Problem #c #v | #nz | F#c | #b | #i
egout 98 141 | 282 86 55 | 0
fixnet3 478 | 878 | 1756 | 500 | 378 | 0
fixnet4 478 | 878 | 1756 | 500 | 378 | 0
fixnet6 478 | 878 | 1756 | 500 | 378 | 0
khb05250 | 101 | 1350 | 2700 | 1326 | 24 | 0
gen 780 | 870 | 2592 | 720 | 144 | 6
att 1260 | 1112 | 4986 | 280 | 832 | 0
sample2 45 67 147 46 21 | 0
p0033 15 33 98 0 33 10
Iseu 28 89 309 0 89 | 0

Table 1: Characteristics of the test problems

Modifying the representation of a mixed integer program in MINTO involves four
phases. In the first phase, the basic preprocessing and probing techniques are applied.
Every row of the constraint matrix is anlyzed to identify infeasibility or redundancy,
to improve coeflicients and bounds, and to fix variables. If, after processing every row
in the constraint matrix, some variables have been fixed or some bounds have been
improved, the process is repeated. In the second phase, logical implications are identified
and enhanced probing techniques are applied. Every binary variable is analyzed by
temporarily fixing it at one of its bounds, effectuating all possible logical implications,
and analyzing every row in the reduced system using the basic preprocessing and probing
techniques to identify logical implications, improve coeflicients, and fix variables. If,
after processing every binary variable, some logical implications have been identified or
some variables have been fixed, the process is repeated. In the third phase, the logical
implications that have been identified are used to construct the implication graph and the
resulting implication graph is analyzed to identify clique inequalities. In the last phase,
implication and clique inequalities are generated ‘on the fly’, i.e., they are iteratively
added to the linear program in case they are violated by the current linear programming
relaxation.

Table 2 shows the value of the linear program relaxation (zzp), the value of the linear
programming relaxation after the basic preprocessing and probing techniques have been

21

applied (2} p), the value of the linear programming relaxation after the basic preprocess-
ing and probing techniques as well as the enhanced probing techniques have been applied
(23 p), the value of the linear programming relaxation after the basic preprocessing and
probing techniques and the enhanced probing techniques have been applied and the de-
rived clique and implication inequalities have been added (23), and, finally, the value

of the mixed integer program (zas7p).

Problem ZLP Zip ZI%P Z%P ZMIP
egout 149.588 495.565 511.875 562.112 568.100
fixnet3 40717.0 49051.5 50413.7 50414.2 51973.0
fixnet4 4257.96 6879.21 770347 770347 8936.00
fixnet6 1200.88 2527.43 3192.04 3192.53 3983.00
khb05250 | 95919464. 95919464. 95919464. 106750366. 106940226.
gen 112130. 112233. 112271. 112271. 112313.
att 125.969 149.052 149.145 149.145 160.200
sample2 247.000 247.000 247.000 290.480 375.000
p0033 2520.81 2828.33 2828.33 2838.54 3089.00
Iseu 834.682 947.957 947.957 947.957 1120.00

Table 2: Effect of preprocessing and probing techniques on LP value

Table 3 shows the number of nodes required to solve the problem to optimality when
MINTO is used without any preprocessing and probing (option -p0), when MINTO is
used with only basic preprocessing and probing (option -pl), and when MINTO is used
in its default setting, i.e., with both basic and enhanced preprocessing and probing.

Inspecting the computational results, we observe the following. First, the prepro-
cessing and probing techniques are quite effective in reducing the integrality gap and the
overall effort required to solve most of these problems. Second, activating preprocessing
and probing does not always lead to a smaller search tree. This shows, that at this mo-
ment, we do not have a clear understanding of how the different techniques embedded
in state-of-the-art mixed integer optimizers interact.

4 Conclusion

In this paper, we have given an overview of simple and advanced preprocessing and
probing techniques to improve the representation of a mixed integer program. Our
computational results have demonstrated the effectiveness of these techniques.

22

Problem | minto -p0 | minto -p1 | minto
egout 553 9 3
fixnet3 131 5 5
fixnet4 2561 2739 | 1031
fixnet6 4795 3977 | 4305
khb05250 11483 63 13
gen 11 19 15
att 6459 133 127
sample2 336 71 51
p0033 15 7 7
Iseu 297 464 464

Table 3: Effect of preprocessing and probing techniques on branch-and-bound tree

As indicated above, these techniques can be used to enhance the performance of a
mixed integer optimizer. However, in a powerful mixed integer optimizer they should be
used in conjunction with other techniques, such as knapsack cover generation, flow cover
generation, and primal heuristics.

References

[1] A.L. BREARLEY, G. MiTra, H.P. WiLLiaMs, 1975. Analysis of mathematical
programming problems prior to applying the simplex algorithm. Math. Prog. 8,
54-83.

[2] H. CrRowDER, E.L. JounsoN, M.W. PADBERG, 1983. Solving large-scale zero-one
linear programming problems. Oper. Res. 31, 803-834.

[3] B.L. DieTrIicH, L.F. EscupEro, 1990. Coefficient reduction for knapsack-like con-
straints in 0-1 program with variable upper bounds. Oper. Res. Letters 2, 9-14.

[4] M. GuiGNARD, K. SPIELBERG, 1981. Logical reduction methods in zero-one pro-
gramming. Oper. Res. 29, 49-74.

[5] K.L. Horrman, M. PaADBERG, 1985) LP-based combinatorial problem solving.
Annals of Oper. Res. J, 145-194.

[6] K.L. Horrman, M. PADBERG, 1991. Improving LP-representation of zero-one lin-
ear programs for branch-and-cut. ORSA J. Comput. 3, 121-134.

23

[7] E.L.Jonnson, M.M. KosTrREVA, U. SuHL, 1981. Solving 0-1 integer programming
problems arising from large-scale planning models. Oper. Res. 33, 803-819.

[8] E.L. Jonnson, M. PADBERG, 1982. Degree-two inequalities, clique facets and
biperfect graphs. Annals of Discrete Mathematics 16, 169-187.

[9] E.L. Jounson, 1989. Modeling and strong linear programs for mixed integer pro-
gramming. S.E. WALLACE (ed.). Algorithms and Model Formulation in Mathemat-
tcal Programming, NATQO ASI Series F'51, Heidelberg.

[10] M. PapBERG, G. RINALDI, 1991. A branch-and-cut algorithm for the resolution of
large-scale symmetric traveling salesman problems. STAM Review 33, 60-100.

[11] T. van Roy, L.A. WoLsEY, 1987. Solving mixed 0-1 programs by automatic re-
formulation. Oper. Res. 35, 45-57.

[12] G.L. NEMHAUSER, M.W.P. SaveLsBerGH, G.C. SicgisMonDI, 1994. MINTO, a
Mixed INTeger Optimizer. Oper. Res. Letters, to appear.

24

