
Journal of Heuristics, 10: 89–104, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Recovering Beam Search: Enhancing the Beam
Search Approach for Combinatorial
Optimization Problems

F. DELLA CROCE,∗ M. GHIRARDI AND R. TADEI
D.A.I., Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
email: federico.dellacroce@polito.it

Submitted in November 2002 and accepted by Edmund Burke in November 2003 after 1 revision

Abstract

A hybrid heuristic method for combinatorial optimization problems is proposed that combines different classical
techniques such as tree search procedures, bounding schemes and local search. The proposed method enhances the
classic beam search approach by applying to each partial solution corresponding to a node selected by the beam,
a further test that checks whether the current partial solution is dominated by another partial solution at the same
level of the search tree. If this is the case, the latter solution becomes the new current partial solution. This step
allows to partially recover from previous wrong decisions of the beam search procedure and can be seen as a local
search step on the partial solution. We present here the application to two well known combinatorial optimization
problems: the two-machine total completion time flow shop scheduling problem and the uncapacitated p-median
location problem. In both cases the method strongly improves the performances with respect to the basic beam
search approach and is competitive with the state of the art heuristics.

Key Words: heuristics, recovering beam search, scheduling, location

1. Introduction

In this work, Recovering Beam Search (RBS), a hybrid heuristic method for combinatorial
optimization (CO) problems, is proposed. This method in an enhancement of the beam
search (BS) approach (Ow and Morton, 1988, 1989) which in turn is a well established
heuristic approach originally invented in the AI community. BS consists of a truncated
branch and bound with a breadth-first search strategy where only the most promising w

nodes at each level of the search tree are selected as nodes to branch from: w is the so-called
beam width. Obviously, the larger is the beam width the slower is the algorithm. The nodes
evaluation process at each level is the main issue of any BS procedure: typically, a two-stage
approach is applied. First, a crude evaluation ( filtering phase) is applied to select a reduced
number of nodes for the accurate evaluation. This crude evaluation is a one-shot evaluation
(typically requires constant time) and is applied to reduce the computational burden of the
procedure. Then, the selected nodes are accurately evaluated and the best w nodes, w being

∗Author to whom all correspondence should be addressed.



90 DELLA CROCE, GHIRARDI AND TADEI

the beam width, are retained for branching. Note that the crude evaluation is actually an
optional component of the BS approach. The accurate evaluation is typically performed by
means of bounding procedures for the given problem. The more time consuming are these
procedures, the more time consuming will be the overall procedure.

An error in the nodes evaluation of any BS procedure that induces the pruning of a
good node (namely a node leading to an optimal or nearly optimal solution) can never be
recovered. This is the major drawback of the BS approach: whenever all the best nodes are
pruned, the best feasible solution reached may be significantly far from the optimum. To
avoid this, the only mean available for a BS procedure is to use a sufficiently large beam
width slowing down sometimes dramatically the procedure’s efficiency.

The proposed RBS method overcomes this issue by introducing a recovering step that
searches for improved partial solutions with respect to those selected by the beam. In order
to evaluate a limited number of nodes in the search tree, the recovering step searches
only for partial solutions situated at the same level of the search tree with respect to
those selected by the beam. This step, which allows to partially recover from wrong de-
cisions, is applied in such a way to increase only slightly the CPU time required by the
procedure.

The proposed RBS method is tested here on two classic CO problems, namely the two-
machine total completion time (F2||∑ C j ) scheduling problem and the uncapacitated p-
median location problem. For both problems the method strongly outperforms the corre-
sponding BS procedure and is competitive with the state of the art neighborhood-search
based algorithms. This suggests that the RBS method may become a valid alternative to the
currently available metaheuristic approaches.

The paper proceeds as follows. In Section 2, the RBS method is outlined. In Sections
3 and 4, it is shown how the RBS approach can be applied to the F2||∑ C j problem
and the uncapacitated p-median location problem respectively. Each of these sections in-
cludes computational tests to compare the proposed method with the current state of the art
algorithms. Section 5 concludes the paper with final remarks.

2. The recovering beam search method

Classic BS procedures cannot recover from wrong decisions: if a branch leading to the
optimal solution in the search tree is pruned in the nodes evaluation process, there is no way
to reach afterwards that solution. The RBS method seeks to overcome this issue by means
of a recovering step that searches for improved partial solutions dominating those selected
by the beam.

Consider a CO problem where the objective function must be minimized. Assume that
a branching scheme and correspondingly a search tree has been devised for that problem
either by considering available branch and bound procedures or by having devised an ad
hoc exact search tree algorithm. The node evaluation process is guided here both by lower
and upper bound procedures. Each node is evaluated by means of a convex combination
of lower (LB) and upper (UB) bounds. The simplest way to do this is to consider a linear
combination, namely the weighted sum V = (1 − α)LB + αUB, where V is the evaluation
function and 0 ≤ α ≤ 1 is a parameter generally defined by experimental testing. The



RECOVERING BEAM SEARCH 91

more accurate the evaluation function at each node is, the smaller the deviation of the final
solution value from the optimal solution value will be. A correct tuning of parameter α

allows to obtain high quality results also for problems where either the LB procedure or the
UB procedure (but not both) are not too precise.

While the LB is computed exclusively for evaluation purposes, the UB in each node
represents also a feasible solution. One way to exploit this feature is to apply Lagrangean
relaxation to derive the LB and generate the UB, namely a feasible solution, directly from the
Lagrangean solution as shown in Beasley (1993). This is what occurs for the two applications
presented in this paper. In both cases, with this approach, for each node of the search tree, the
Lagrangean bound is the best bound obtained by exploring several values of the Lagrangean
multipliers which determines several different Lagrangean solutions and correspondingly
several distinct feasible solutions that constitute, in a sense, a node neighborhood: the best
among these solutions represents the node upper bound.

Note that Lagrangean relaxation is not a unique option for the computation of the LB
and not always a feasible solution can be immediately derived from the LB solution. We
do not tackle this issue in this paper, but we refer to Della Croce and T’kindt (2002), where
non Lagrangean bounds were successfully applied to solve a single machine scheduling
problem with an RBS method. In that case the LB corresponded to the optimal solution
(computable in polynomial time) of the preemptive version of the considered problem and
the UB was derived by heuristically modifying the LB solution.

In the BS approach of Ow and Morton (1988), prior to the accurate nodes evaluation,
a crude evaluation representing the filtering phase is applied. In the RBS method, the
filtering phase works as follows. Problem dependent dominance conditions, denoted as
valid dominance conditions, when available, are applied together with so-called pseudo
dominance conditions, holding in a heuristic context only. Whenever a valid dominance
condition or a pseudo dominance condition applies for a given node, that node is pruned.
Examples of valid and pseudo dominance conditions are given in the following section for
the F2|| ∑ C j problem.

In the RBS method (like in the classic BS approach), the beam width is constant and is
kept generally fairly low (≤10) in order to minimize the overall procedure CPU time.

The main feature of the proposed method is the so-called Recovering Phase that is applied
at each search tree level. Let S = {σk , k = 1, . . . , l ≤ w} be the vector of current partial
solutions at a given level. These solutions are considered one at a time. The recovering
phase checks, typically by means of interchange operators applied to the current partial
solution x , whether solution x is dominated by another partial solution y sharing the same
search tree level. If so, x is discarded. Further, if y does not belong to set S, then it becomes
a new current partial solution. If y already belongs to S, then there is room for another
partial solution to be examined by means of the recovering step and then retained so as to
maintain, when possible, exactly w nodes.

Indeed, this step often allows to recover from previous wrong decisions of the procedure.
Note that, in the recovering step, a partial solution may be only substituted by another
partial solution sharing the same search tree level: this guarantees that the total number of
explored nodes is polynomial provided that the search tree depth is polynomial. Note also
that the dominance of a partial solution vs another partial solution may be also considered in



92 DELLA CROCE, GHIRARDI AND TADEI

a heuristic fashion by means of pseudo dominance conditions: this issue will be discussed
in detail in the section devoted to the uncapacitated p-median problem.

Consider a minimization problem with search tree depth equal to u. The main steps of
the RBS method are as follows.

RBS method (beam width = w, search tree depth = u)

1. Initialization:

l = search tree level = 0;
σ1 = best current partial solution = root node (typically no variable has been fixed,
namely σ1 = {});
S = vector of current partial solutions = {σ1};
x = incumbent best solution value = +∞.

2. FOR (k = 1, k ≤ min{|S|, w}, k++)

• Branch σk generating the corresponding children.
• Filtering phase: prune all child nodes that are dominated by means of valid or pseudo

dominance conditions

3. Empty set S: S = {}.
4. FOR each remaining child node:

• Compute LB and UB. IF UB < x , THEN x = UB.
• Compute the evaluation function V = (1 − α)L B + αUB with 0 ≤ α ≤ 1.

5. Sort the set T of remaining children nodes in non-decreasing order of their evaluation
function: let σk be the k-th best node.

6. Set k = 1.
WHILE (|S| < w) AND (k ≤ |T |), DO

• Recovering step: search for a partial solution σ̄k that dominates σk (and shares with σk

the same search tree level) by means of interchange operators. IF σ̄k is found, THEN
set σk = σ̄k . IF σk �∈ S, THEN S = S

⋃ {σk}, ELSE prune σk .
• k = k + 1.

7. l = l + 1. IF l < u GO TO 2, ELSE STOP: x is the final solution value.

3. Applying the RBS method to the F2|| ∑C j problem

The F2|| ∑ C j problem can be stated as follows. A set of n jobs is available at time 0 to be
processed by two machines. Every job consists of two operations where the first one must
be processed on machine 1 and the second one on machine 2. The second operation cannot
begin before the first operation completes. Preemption on either machine is not allowed.
The objective is to minimize the sum of completion times. It is well known (Conway,
Maxwell, and Miller, 1967) that the search for the optimal solution can be restricted to the
set of permutation schedules, namely schedules in which every machine has the same job
sequence. Let pk, j and Ck, j be the processing and completion times of job j on machine k



RECOVERING BEAM SEARCH 93

respectively where j ranges from 1 to n and k is 1 or 2. The problem can be formulated as
follows.

min
n∑

j=1

C2, j

subject to

C1, j ≥ p1, j ∀ j (1)

C2, j ≥ C1, j + p2, j ∀ j (2)

C1,i − p1,i ≥ C1, j ∨ C1, j − p1, j ≥ C1,i ∀i, j i �= j (3)

C2,i − p2,i ≥ C2, j ∨ C2, j − p2, j ≥ C2,i ∀i, j i �= j (4)

where (1) does not allow the processing of any job on machine 1 before time 0, (2) forbids
for each job the start of the operation on the second machine before the completion of the
operation on the first one, (3) and (4) indicate that the two machines can process one job at
a time.

This problem is known to be NP-Hard in the strong sense (Garey, Johnson, and Sethi,
1979). In van de Velde (1990), a Lagrangean relaxation on constraints (2) was proposed.
Among the heuristics available for this problem, the best performing ones are a purely
descent neighborhood search (NS) procedure proposed in Della Croce, Narayan, and Tadei
(1996), that applies a somewhat extended neighborhood and an Ant Colony Optimization
(ACO) algorithm proposed in T’kindt et al. (2002), that was actually designed for a multi-
objective generalization of the F2|| ∑ C j problem. The ACO algorithm works better than
the NS procedure at the expense, though, of a much larger CPU time
requirement.

In order to apply the RBS approach, it is necessary to specify its main components,
namely: branching scheme, lower bound, upper bound and recovering step. Also, optional
components such as filtering phase and dominance conditions must be considered. At a
later stage, during the experimental design, the value of parameter α will be determined on
the basis of computational testing that will examine also the behaviour of the method for
different values of the beam width.

The branching scheme is the typical n-ary branching: the sequence is constructed by
adding one job at a time starting from position 1 and the search tree is such that a node at
level k indicates which is the job placed in position k.

As far as lower and upper bounds, filtering phase and recovering step are concerned, a
more detailed analysis is necessary.

3.1. Lower and upper bounds

The Lagrangean bound L Bv proposed by van de Velde (1990) was applied as lower bound.
To get L Bv , consider adding the following redundant constraints to the original formulation



94 DELLA CROCE, GHIRARDI AND TADEI

of the problem

the schedule must be of permutation type (5)

C2, j ≥ p2, j + min
1≤k≤n

p1,k ∀ j (6)

and relaxing constraints (2) by a nonnegative vector of multipliers λ = (λ1, . . . , λn). The
resulting Lagrangean problem

L(λ) = min
n∑

j=1

[λ j (C1, j + p2, j ) + (1 − λ j )C2, j ]

subject to (1), (3), (4), (5) and (6)

can be reformulated as a linear ordering problem that is polynomially solvable if we impose
λ j = c ∀ j with 0 ≤ c ≤ 1, by sequencing the jobs in non-decreasing order of cp1, j +
(1 − c)p2, j . Note that constraints (5) and (6) are redundant for the original problem but not
for the Lagrangean problem, hence they may increase the value L(λ).

Given the optimal solution L(c) of the Lagrangean problem, L Bv is obtained by testing
21 different values of c = x/20 with x = 0, . . . , 20 for the restricted Lagrangean dual
problem max{L(c) : 0 ≤ c ≤ 1} and returning the largest value. This bound is further
improved by iteratively perturbing each Lagrangean multiplier λ j in a manner that does not
affect the optimal sequence of the primal problem. We refer to van de Velde (1990) for a
detailed description of this refinement. Here we note that apart from a preprocessing phase
to be applied at the root node (with complexity O(n2)) this bound can be implemented in
O(n) time.

The upper bound is derived by computing the solution values of all the different sequences
obtained in the Lagrangean solution for different values of c. The best solution value
constitutes the node upper bound.

3.2. Filtering phase

The filtering phase, whenever applicable, tries to reduce the children nodes generated by a
given branch of the search tree. In this phase valid and pseudo dominance conditions for
the given problem are applied.

To introduce a pseudo dominance condition for the F2|| ∑ C j problem, consider the
following

Lemma 1. If p1,i ≤ p1, j and p2,i ≤ p2, j (break ties arbitrarily), job i will always precede
job j in any Lagrangean sequence derived to compute L Bv (though not necessarily in an
optimal solution of the original problem).

Proof: If p1,i ≤ p1, j and p2,i ≤ p2, j , then cp1,i + (1 − c)p2,i ≤ cp1, j + (1 − c)p2, j .

Conway, Maxwell, and Miller (1967) erroneously claimed that there is an optimal solu-
tion in which job i precedes job j if p1,i ≤ p1, j and p2,i ≤ p2, j . This claim was shown to be
faulty by counterexample by Szwarc (1983). However, this claim is somewhat heuristically



RECOVERING BEAM SEARCH 95

valid in the sense that, for any instance, in most cases, whenever p1,i ≤ p1, j and p2,i ≤ p2, j ,
then i precedes j in an optimal sequence. Based on the above consideration the following
pseudo dominance condition is derived.

Condition 1. Given a branch σ of the search tree, corresponding to a partial schedule
of jobs, and two unscheduled jobs i and j, if p1,i ≤ p1, j and p2,i ≤ p2, j (break ties
arbitrarily), then branch σ j is pseudo-dominated by branch σ i and is therefore pruned by
the filter.

Given a branch σ of the search tree, let C1(σ ) and C2(σ ) be the completion times of the
last job ∈ σ . Also, for any job j ∈ σ , let C1, j (σ ) and C2, j (σ ) denote its completion times
on the first and second machine respectively. The following known (Della Croce, Ghirardi,
and Tadei, 2002; Della Croce, Narayan, and Tadei, 1996) valid dominance conditions are
also applied in the filtering phase.

Condition 2. Given a branch σ, if there exists an unscheduled job i such that p1,i ≤ p2,i

and for each unscheduled job j we have p1,i ≤ p1, j and p2,i ≤ p2, j , then job i is placed
first among all the unscheduled jobs, namely only branch σ i is generated.

Condition 3. Given a branch σ and two unscheduled jobs i, j, if p1,i ≤ p1, j , p2,i ≥ p2, j

and max{C1(σ ) + p1,i , C2(σ )} + p2,i ≤ max{C1(σ ) + p1, j , C2(σ )} + p2, j , then σ j is
dominated by σ i and is therefore pruned by the filter.

3.3. Recovering step

Consider the following known (Della Croce, Ghirardi, and Tadei, 2002) valid dominance
condition which is a generalization of the dynamic programming dominance criterion. Let
q be the number of jobs not yet scheduled.

Condition 4. Every branch σ such that there exists a permutation σ ′ of the jobs ∈ σ,

σ �= σ ′ that satisfies the following conditions

∑

j∈σ

C2, j (σ
′) ≤

∑

j∈σ

C2, j (σ ) and q[C2(σ ′) − C2(σ )] ≤
∑

j∈σ

C2, j (σ ) −
∑

j∈σ

C2, j (σ
′),

can be pruned (break ties arbitrarily).

Condition 4 could be applied to any permutation of σ in the recovering step, but this
would lead to consider an exponential number of cases. Assume j to be the last job of σ .
Here we consider all permutations σ ′ reachable from σ by applying to each scheduled job
i ∈ σ, i �= j the following swap and insert operators (Della Croce, 1995) involving job j :

• SWAP: swap jobs i and j .
• EBSR: (Extraction and Backward Shifted Re-insertion): Extract job j and re-insert it

backward just before job i .



96 DELLA CROCE, GHIRARDI AND TADEI

• EFSR: (Extraction and Forward Shifted Re-insertion): Extract job i and re-insert it
immediately after job j .

If there exists more than one permutation σ ′ dominating σ , the one with the lowest total
completion time is retained. As O(n) permutations are considered, this condition can be
implemented in O(n2) time. Whenever a permutation σ ′ that dominates σ already belongs
to S, a further candidate node is considered. This case, however, occurs quite rarely and
preliminary computational testing shows that, in practice, it is sufficient to limit to 2w the
total number of nodes to be considered in the recovering step, where w is the constant beam
width.

The following Property establishes the computational complexity of the RBS method for
the F2|| ∑ C j problem.

Property 1. The computational complexity of the RBS method for the F2|| ∑ C j problem
is O(n3).

Proof: The preprocessing phase for computing L Bv requires O(n2) time and is applied
only once at the root node. For all the other nodes the complexity of the lower bounding
procedure and correspondingly of the upper bounding procedure is O(n). No more than
O(n2) nodes are generated (and hence evaluated) as there are n levels in the search tree and
each node generates at most O(n) children. Hence the overall complexity of the bounding
procedures is O(n3). All conditions in the filtering phase require at most O(n) time with
respect to O(n2) generated nodes to be possibly pruned. Finally, the O(n2) recovering step
is applied at most O(2w · n) times (w being the constant beam width) leading to an overall
O(n3) complexity of the RBS method.

3.4. Computational results

We present the results of computational experiments conducted to test the quality of the RBS
method for the F2|| ∑ C j problem. This method is compared with the strictly descent NS
procedure of Della Croce, Narayan, and Tadei (1996) and the ACO procedure of T’kindt
et al. (2002). All procedures were implemented in C++ language and tested on a PC
P4/1000. The code of the ACO procedure was kindly provided by the authors.

For the RBS method several values of beam width w are considered. For w = 1, two
further versions of the proposed method, namely a version without the recovering step and
another without the filtering Condition 1, are also considered. For w = 3, a version without
the recovering step is also considered. The jobs processing times on both machines are drawn
at random from the uniform distribution U (1, 100) and tested on problems with 100 and
500 jobs. For each problem size 20 different instances were generated. Concerning the best
value of parameter α, preliminary computational experiments showed that the procedure
obtained best results with α = 0.1.

Tables 1 and 2 compare the performance of the procedures on problems with 100 and
500 jobs, respectively. The deviation of the heuristic procedures is derived with respect to
the LB proposed in Della Croce, Narayan, and Tadei (1996), as the optimum is available



RECOVERING BEAM SEARCH 97

Table 1. Computational results on F2|| ∑ C j instances with 100 jobs.

Avg. % dev. Max. % dev. CPU (s)
Algorithm from LB from LB avg

RBS (w = 1) 1.01 1.53 0.01

RBS (w = 1, no rec) 1.84 2.79 0.01

RBS (w = 1, no cond 1) 1.11 1.57 0.01

RBS (w = 3) 0.99 1.53 0.02

RBS (w = 3, no rec) 1.70 2.41 0.01

RBS (w = 5) 0.92 1.41 0.04

RBS (w = 10) 0.92 1.39 0.07

NS 1.55 2.14 0.27

ACO 1.07 1.40 7.00

Table 2. Computational results on F2|| ∑ C j instances with 500 jobs.

Avg. % dev. Max. % dev. CPU (s)
Algorithm from LB from LB avg

RBS (w = 1) 0.47 0.84 5.37

RBS (w = 1, no rec) 0.79 1.03 5.02

RBS (w = 1, no cond 1) 0.49 0.93 6.74

RBS (w = 3) 0.45 0.83 15.29

RBS (w = 3, no rec) 0.76 0.98 12.10

RBS (w = 5) 0.44 0.82 23.12

RBS (w = 10) 0.44 0.82 60.79

NS 1.09 1.36 51.20

ACO 0.54 0.76 732.44

only for problems with up to 30 jobs. The results indicate that the RBS method is superior
on the average to the other procedures already for w = 1 and that the recovering step is
essential for its high quality performances increasing only slightly the required CPU time.
Note that the results here somewhat contradict those presented in T’kindt et al. (2002) (the
ACO procedure appeared there to outperform the RBS method) where, however, an earlier
version of the RBS method with w = 1 was considered. The presence of the filtering
Condition 1 helps both in reducing the CPU time and further improving the performance
quality.

The CPU time in the RBS procedure increases (as expected) almost linearly with the
beam width. We note in the larger instances (n = 500) that the RBS procedure with beam
width w = 1 is approximately 10 times faster than NS and more than 100 times faster than
ACO and shows already an inferior average deviation from the bound. Widening the beam
width allows a further, though limited, reduction in the deviation from the LB.



98 DELLA CROCE, GHIRARDI AND TADEI

4. Applying the RBS method to the uncapacitated p-median location problem

In the uncapacitated p-median location problem it is required to locate p facilities (medians)
on a network so as to minimize the sum of all distances from each node to its nearest facility.
It is well known (Hakimi, 1964) that there exists at least one optimal solution of the problem
where the medians belong to the nodes set. The problem is known to be NP-Hard for general
values of p (Kariv and Hakimi, 1979) and polynomially solvable for fixed p.

The p-median has been extensively studied in literature. Exact methods were proposed
in Christofides and Beasley (1982) and Hanjoul and Peeters (1985). Among the heuristic
procedures, we cite the Lagrangean heuristic algorithm of Beasley (1993) strongly based
on the work of Christofides and Beasley (1982). The current state of the art algorithm
is the Variable Decomposition Neighborhood Search procedure presented in Hansen and
Mladenović (2001) that extends the results of a previous Variable Neighborhood Search
algorithm of the same authors proposed in Hansen and Mladenović (1997).

Let N = {1, . . . , n} be the nodes set. Let xi j be a 0 − 1 variable such that xi j = 1 if
node j is allocated to node i (hence i is a median), xi j = 0 viceversa. Let di j be the cost of
allocating node j to node i . The p-median problem can be mathematically formulated as
follows

min
∑

i∈N

∑

j∈N

di j xi j

subject to

∑

i∈N

xi j = 1 ∀ j ∈ N (7)

∑

i∈N

xii = p (8)

∑

j∈N

xi j ≤ |N |xii ∀i ∈ N (9)

xi j ∈ {0, 1} ∀i, j ∈ N (10)

where (7) imposes that each node is allocated to a facility, (8) requires to have exactly
p medians and (9) imposes that nothing can be allocated to a node unless that node is a
median.

Let us consider now the main components of the RBS approach for the p-median problem.
We adopt as branching scheme the same applied in Christofides and Beasley (1982): a node i
is median (xii = 1) or non median (xii = 0). To the authors’ knowledge, no valid dominance
conditions are available for this problem. This is something one could expect as, even with
p −1 medians already fixed, it may still be undetermined for most of the non median nodes
to which median will they be allocated in an optimal solution. Hence, no filtering phase is
present. The following subsections will show how to derive lower and upper bounds and
recovering step.



RECOVERING BEAM SEARCH 99

4.1. Lower and upper bounds

The Lagrangean bound LBcb proposed in Christofides and Beasley (1982) was applied as
lower bound. To get L Bcb consider relaxing constraints (7) by a nonnegative vector of
multipliers λ = (λ1, . . . , λn). It is shown in Christofides and Beasley (1982) that ak =
dkk − λk + ∑

j∈N , j �=k min{0, dkj − λ j } is the contribution to the dual objective function of
specifying that k is a median and that the resulting Lagrangean problem

L(λ) = min
∑

i∈N

∑

j∈N

(di j − λ j )xi j +
∑

j∈N

λ j

subject to (8), (9), and (10)

is optimally solvable by setting to 1 those xii with the smallest ai (here we considered the
Lagrangean bound at the root node of the search tree: the formulation for all the other nodes
is given in Christofides and Beasley, 1982). Correspondingly, the allocation variables xi j

with i �= j are set to 1 if di j ≤ λ j and to 0 otherwise. The Lagrangean bound is then
optimized by means of a subgradient procedure accurately presented in Christofides and
Beasley (1982) to which we refer for details.

As far as the upper bound UB is concerned, for each Lagrangean solution derived by
the subgradient procedure the corresponding feasible solution (obtained by assigning each
node to its nearest median) was computed and the best feasible solution value was retained
as node UB.

4.2. Recovering step

Consider a partial solution σ with respect to the adopted branching scheme. This partial
solution consists of some variables xii set to 1 (node i is median) or 0 (node i is non median).
No dominance results of the type of Condition 4 are available for this problem. However it
is possible to derive a pseudo dominance condition as follows.

Given σ and the related assignment of some variables xii , consider the assignment π

of the remaining variables in the corresponding UB solution such that σπ is a complete
assignment of the xii variables (i = 1, . . . , n). This is, in a sense, the heuristically best
assignment we can have for the variables in π starting with σ as partial solution. Suppose
there exists another assignment σ ′ of the variables in σ (with the same amount of xii

variables set to 1) such that the complete assignment σ ′π induces a feasible solution whose
value is lower than the previous UB value: then, we say that σ ′ pseudo dominates σ .

The recovering step is applied by searching for a pseudo dominating reassignment σ ′ of
the variables in σ by means of a swap in the values of the last variable z set in σ and any
of the variables of σ having opposite value with respect to z.

With respect to the computational complexity, note that, as each node can generate at
most two children and there are n levels in the search tree, the number of generated nodes
is O(n). We do not provide, however, the overall complexity of the RBS method for the
p-median problem as the lower bounding procedure complexity cannot be accurately stated
(nor was it indicated in Christofides and Beasley, 1982) due to the presence of the subgradient
procedure.



100 DELLA CROCE, GHIRARDI AND TADEI

4.3. Computational results

The RBS method for the p-median problem was implemented in C++ language and tested
on a PC P4/1000. The method applies the Lagrangean heuristic procedure of Beasley (1993)
as preprocessing phase in order to reduce the problem size. We checked whether it could
be worthy to apply also the reduction tests of Avella and Sforza (1999), but we did not find
any significant improvement.

Our implementation of the procedure of Beasley (1993) differs from the original only
in the settings of the step length parameter f for the subgradient optimization procedure.
The initialization value was f = 2 as in the original version, whilst the stopping value was
set to f = 0.0000005 instead of f = 0.005. These were the best settings we derived in a
preliminary computational testing for the reduction procedure at the root node. For all the
other nodes the starting value of step length parameter was f = 0.000002 and the stopping
value was f = 0.000001.

The branching was performed alternatively (according to the ratio p
n−p ) on the node

corresponding to variable xii having the p-th or p + 1-th smallest ai value in the LB
procedure, namely the last xii variable set to 1 or the first set to 0.

Concerning the best value of parameterα, preliminary computational experiments showed
that the procedure obtained best results with α = 0 (hence, only the contribution of the LB
was considered in this case).

Table 3. Computational results on p-median ORLIB test problems.

CPU (s) CPU (s)
RBS RBS CPU (s) RBS CPU (s) RBS

RBS (w = 1) RBS (w = 3) RBS (w = 1) RBS (w = 3)
n p OPT (w = 1) (no rec) (w = 3) (no rec) (w = 1) (no rec) (w = 3) (no rec)

100 10 4093 4093 4093 4093 4093 <1 <1 <1 <1

100 10 4250 4250 4250 4250 4250 <1 <1 <1 <1

200 5 7824 7824 7824 7824 7824 2 2 4 3

300 5 7696 7696 7702 7696 7702 7 6 18 8

300 10 6634 6634 6640 6634 6634 7 7 23 9

400 5 8162 8163 8238 8162 8167 13 12 34 18

400 10 6999 7010 7083 6999 7083 15 14 39 20

500 10 8579 8579 8715 8579 8715 76 73 194 107

500 100 2961 2961 2991 2961 2985 167 162 303 279

600 5 9917 9917 9950 9917 9950 33 30 77 51

600 10 8307 8310 8317 8307 8317 31 38 78 57

700 5 10086 10086 10086 10086 10086 59 52 115 88

700 10 9297 9301 9301 9297 9297 68 63 144 91

800 5 10400 10400 10434 10400 10434 141 121 352 190

800 10 9934 9934 10157 9934 10049 170 148 414 293

900 5 11060 11060 11220 11060 11161 325 304 853 451

900 10 9423 9423 9437 9423 9429 201 192 595 355



RECOVERING BEAM SEARCH 101

The method was first tested on 40 ORLIB problems from Beasley (1985): see
URL www.mscmga.ic.ac.uk/info.html. For these problems all optimal solutions are
available.

Table 3 shows the behaviour of the RBS method with and without the recovering step. For
23 of the above 40 problems, the reduction procedure of Beasley (1993) was already able to
derive a complete assignment of the xii variables and correspondingly the optimal solution
was immediately available. These problems are not shown in the Table. For the remaining
17 problems, the improvement of the RBS method with respect to the corresponding BS
method with no recovering step is impressive. When the recovering step is present, 13
problems are solved to optimality with w = 1 and all are optimally solved with w = 3.
Without the recovering step, the quality of the solution degrades dramatically (only 4 out
of 17 solved to optimality for w = 1 and 6 out of 17 for w = 3).

The method was then tested on larger instances taken from TSPLIB (Reinelt, 1991: see
URL www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95) and tackled by the
state of the art procedure of Hansen and Mladenović (2001). As the CPU times become
important (due to the subgradient procedure for the LB computation), only the FL1400 and
the FL3034 instances were considered here.

For all p-median instances derived from the FL1400 instance, Table 4 compares the
solution of the RBS method for w = 1 and 3 with the best among the solutions obtained by

Table 4. Computational results on p-median FL1400 TSPLIB test problems.

RBS RBS CPU (s) CPU (s)
p VNSbest (w = 1) (w = 3) LB RBS (w = 1) RBS (w = 3)

10 (101249.47) 101249.54 101249.54 101249.54 287 287

20 (57857.55) 57857.94 57857.94 57857.94 954 954

30 44086.53 44013.48 44013.48 44000.74 1174 2170

40 35005.82 35002.52 35002.52 34994.09 2059 4609

50 (29089.78) 29090.22 29090.22 29090.22 1213 2258

60 25166.15 25161.12 25161.12 25161.12 2294 6223

70 (22125.53) 22126.02 22126.02 22126.02 2041 3830

80 19877.88 19870.84 19870.84 19869.66 2461 5268

90 (17987.94) 17988.59 17988.59 17988.59 1755 3130

100 16551.20 16552.38 16552.38 16544.06 3026 7479

150 12032.65 12053.36 12052.00 12016.86 4057 8476

200 9360.01 9383.28 9378.31 9338.71 5559 9327

250 7742.70 7782.01 7759.43 7703.28 8038 12512

300 6624.52 6649.30 6637.47 6584.05 9295 19520

350 5727.02 5752.76 5741.12 5695.53 6533 10215

400 5020.50 5053.04 5026.76 5006.05 7885 12399

450 4487.73 4469.53 4469.53 4455.08 9108 22793

500 4049.03 4075.75 4066.16 4015.87 14881 23301



102 DELLA CROCE, GHIRARDI AND TADEI

different versions of the VNS approach presented in Hansen and Mladenović (2001). This
latter solution value is denoted by VNSbest. The Lagrangean LB computed at the root node
is also provided.

The RBS method shows to be competitive with the state of the art VNS approach of
Hansen and Mladenović (2001) though requiring a significantly larger CPU time: 5 (out of
18) improved solutions were found with respect to the results in Hansen and Mladenović
(2001). For some instances the results of Hansen and Mladenović (2001) are slightly in-
ferior to the entries of the lower bound; this is possibly due to minimal rounding errors in
the conversion from the TSPLIB data: these values are given within round brackets. The

Table 5. Computational results on p-median FL3034 TSPLIB test problems.

RBS CPU (s)
p VNSbest (w = 1) LB RBS (w = 1)

10 1213082.12 1213082.03 1213081.98 6320

20 841349.12 841498.71 840431.65 13308

30 680540.06 679094.01 676509.44 15054

40 573407.44 571960.22 571863.97 13183

50 507655.19 507693.28 507363.51 15689

60 462232.94 461087.24 460710.62 18451

70 428062.66 426596.16 425950.17 21456

80 397990.28 397618.68 397296.73 25743

90 373846.97 373248.07 373205.74 23278

100 353255.22 352828.99 352450.16 26917

150 281772.09 281647.18 281048.47 37665

200 238622.98 238822.03 238244.66 35063

250 209343.34 209414.74 209147.66 39211

300 187807.06 187823.72 187633.99 36658

350 171009.30 170964.32 170895.85 34964

400 157079.67 157108.85 157017.42 33881

450 145448.98 145435.97 145346.07 48718

500 135467.97 135486.07 135419.08 37875

550 126867.38 126864.97 126817.52 41891

600 119107.99 119072.99 119048.69 47388

650 112090.28 112035.98 112005.79 49370

700 105893.39 105860.08 105790.29 80698

750 100362.55 100399.05 100300.94 79929

800 95445.06 95458.07 95348.20 70658

850 91023.87 91046.53 90934.41 91101

900 87041.84 87040.28 86918.61 95899

950 83310.19 83366.64 83197.03 97380

1000 79900.52 79926.72 79759.51 106928



RECOVERING BEAM SEARCH 103

maximum percentage deviation from the LB is always under 1.25%. The only drawback in
this case is the CPU time that grows up for these instances significantly (several hours in
the worst case).

Table 5 provides the same entries of Table 4 for all p-median instances derived from the
FL3034 instance, except that only beam width w = 1 is considered for the RBS method (as
the CPU time becomes important). The RBS method shows to be even more competitive in
this case: 15 (out of 28) improved solutions were found with respect to the results in Hansen
and Mladenović (2001) and the maximum percentage deviation from the LB is always under
0.39%. The major drawback remains however the CPU time that grows up dramatically
(approx. 30 hours in the worst case).

5. Conclusions

In this work a new heuristic method for solving CO problems has been proposed. The method
is an enhancement of the Beam Search approach and allows to recover from previous wrong
decisions of a classic beam search algorithm. The method has been succesfully applied to
two classic CO problem showing to be competitive with the state of the art heuristics
available for those problems. The method seems fairly general-purpose and applicable to a
wide range of CO problems.

Several issues are worthy to be pursued in future research.
In both applications lower and upper bounds were computed by means of Lagrangean

relaxation but it is shown in Della Croce and T’kindt (2002) that even combinatorial bounds
can be applied with high quality performances provided that the upper bound is derived as
best of a set of feasible solutions that constitute a neighborhood of the considered node in the
search tree. The investigation of the behaviour of the method on other CO problems should
verify the validity of this consideration. It would be also interesting to see the behavior
of the RBS approach when dealing with problems where it is not easy to get feasible
solutions.

In the p-median section, it is shown that the recovering step is based on a pseudo dom-
inance condition applied to the current partial solution. This constitutes a fairly general
approach that can be applied for the recovering step to all those problems whose structure
does not induce valid dominance conditions of the type presented in the F2|| ∑ C j section
(we point out, however, that exact recovering steps should be applied if available: indeed,
preliminary tests, not presented in the paper, indicate that for the F2|| ∑ C j problem a re-
covering based on pseudo dominance conditions works much worse). It should be worthy to
test other CO problems requiring a recovering step based on pseudo dominance conditions
only.

Both applications presented here are based on lower bounds whose value deviates, in
general, only slightly from the optimal solution value (besides, in the p-median problem,
such bound is responsible of the important CPU times on the instances taken from the
TSPLIB). It would be interesting to see the performances of the RBS approach on problems
where good bounds are not available to see whether it can be succesfully applicable to any
CO problem or if it works well on a restricted class only.



104 DELLA CROCE, GHIRARDI AND TADEI

References

Avella, P. and A. Sforza. (1999). “Logical Reduction Tests for the p-Median Problem.” Annals of Operations
Research 86, 105–115.

Beasley, J.E. (1993). “Lagrangean Heuristics for Location Problems.” European Journal of Operational Research
65, 383–399.

Christofides, N. and J.E. Beasley. (1982). “A Tree Search Algorithm for the p-Median Problem.” European Journal
of Operational Research 10, 196–204.

Conway, R.W., W.L. Maxwell, and L.W. Miller. (1967). Theory of Scheduling. Reading, MA: Addison-Wesley.
Della Croce, F. (1995). “Generalized Pairwise Interchanges and Machine Scheduling.” European Journal of

Operational Research 83, 310–319.
Della Croce, F., M. Ghirardi, and R. Tadei. (2002). “An Improved Branch and Bound Algorithm for the Two

Machine Total Completion Time Flow Shop Problem.” European Journal of Operational Research 139, 293–
301.

Della Croce, F., V. Narayan, and R. Tadei. (1996). “The Two Machine Total Completion Time Flow Shop Problem.”
European Journal of Operational Research 90, 227–237.

Della Croce, F. and V. T’kindt. (2002). “A Recovering Beam Search Procedure for the Single Machine Dynamic
Total Completion Time Scheduling Problem.” Journal of the Operational Research Society 53, 1275–1280.

Garey, M.R., D.S. Johnson, and R. Sethi. (1979). “The Complexity of Flowshop and Jobshop Scheduling.” Mathe-
matics of Operations Research 1, 117–129.

Hakimi, S.L. (1964). “Optimum Locations of Switching Centers and the Absolute Centers and Medians of a
Graph.” Operations Research 12, 450–459.

Hanjoul, P. and D. Peeters. (1985). “A Comparison of Two Dual-Based Procedures for Solving the p-Median
Problem.” European Journal of Operational Research 20, 387–396.

Hansen, P. and N. Mladenović. (1997). “Variable Neighborhood Search for the p-Median.” Location Science 5,
207–226.

Hansen, P. and N. Mladenović. (2001). “Variable Neighborhood Decomposition Search.” Journal of Heuristics
7(4), 335–350.

Kariv, O. and S.L. Hakimi. (1979). “An Algorithmic Approach to Network Location Problems; Part 2. The p-
Medians.” SIAM Journal on Applied Mathematics 37, 539–560.

Ow, P.S. and T.E. Morton. (1988). “Filtered Beam Search in Scheduling.” International Journal of Production
Research 26, 297–307.

Ow, P.S. and T.E. Morton. (1989). “The Single Machine Early-Tardy Problem.” Management Science 35, 177–191.
Reinelt, G. (1991). “A Traveling Salesman Problem Library.” ORSA Journal on Computing 3, 376–384.
Szwarc, W. (1983). “The Flow-Shop Problem with Mean Completion Time Criterion.” IIE Transactions 15,

172–176.
T’kindt, V., N. Monmarché, D. Laugt, and F. Tercinet. (2002). “An Ant Colony Optimization Algorithm to Solve a

2-Machine Bicriteria Flowshop Scheduling Problem.” European Journal of Operational Research 142, 250–257.
van de Velde, S.L. (1990). “Minimizing the Sum of Job Completion Times in the Two-Machine Flow-Shop by

Lagrangean Relaxation.” Annals of Operations Research 26, 257–268.


