
A Heuristic Method

for the Set Covering Problem

Alberto Caprara

�

, Matteo Fischetti

�

and Paolo Toth

�

�

DEIS, University of Bologna, Italy

�

DMI, University of Udine, Italy

Abstract

We present a Lagrangian-based heuristic for the well-known Set Covering Prob-

lem (SCP). The algorithm was initially designed for solving very large scale SCP

instances, involving up to 5,000 rows and 1,000,000 columns, arising from crew

scheduling in the Italian Railway Company, Ferrovie dello Stato SpA. In 1994

Ferrovie dello Stato SpA, jointly with the Italian Operational Research Society,

organized a competition, called FASTER, intended to promote the development of

algorithms capable of producing good solutions for these instances, since the clas-

sical approaches meet with considerable di�culties in tackling them. The main

characteristics of the algorithm we propose are (1) a dynamic pricing scheme for

the variables, akin to that used for solving large-scale LP's, to be coupled with

subgradient optimization and greedy algorithms, and (2) the systematic use of

column �xing to obtain improved solutions. Moreover, we propose a number of

improvements on the standard way of de�ning the step-size and the ascent di-

rection within the subgradient optimization procedure, and the scores within the

greedy algorithms. Finally, an e�ective re�ning procedure is proposed. Our code

won the �rst prize in the FASTER competition, giving the best solution value for

all the proposed instances. The algorithm was also tested on the test instances

from the literature: in 92 out of the 94 instances in our test bed we found, within

short computing time, the optimal (or the best known) solution. Moreover, among

the 18 instances for which the optimum is not known, in 6 cases our solution is

better than any other solution found by previous techniques.

The Set Covering Problem (SCP) is a main model for several important applications,

including crew scheduling, where a given set of trips has to be covered by a minimum-cost

set of pairings, a pairing being a sequence of trips that can be performed by a single crew.

A widely-used approach to crew scheduling works as follows. First, a very large number of

pairings are generated. Then an SCP is solved, having as row set the trips to be covered,

and as column set the pairings generated. In railway applications, very large scale SCP

instances typically arise, involving thousands of rows and millions of columns. The

classical methods proposed for SCP meet with considerable di�culties in tackling these

1

instances, concerning both the computing time and the quality of the solutions found.

On the other hand, obtaining high-quality solutions can result in considerable savings.

For this reason, in 1994 the Italian railway company, Ferrovie dello Stato SpA, jointly

with the Italian Operational Research Society, AIRO, decided to organize a competition

called FASTER (Ferrovie Airo Set covering TendER) among the departments of Italian

universities, possibly including foreign researchers. Some well-known researchers from

all over the world took part in the competition.

Three size classes of SCP instances were de�ned for FASTER, namely a micro size

class, with up to 600 rows and 60,000 columns, a medium size class, with up to 2,750

rows and 1,100,000 columns, and a large size class, with up to 5,500 rows and 1,100,000

columns. Each participant had to implement an algorithm, and send the corresponding

code to Ferrovie dello Stato SpA. A prize was to be assigned, for each size class, to the

code giving, for a particular instance, the best solution value within a given time limit.

The three prizes were mutually exclusive, and amounted to approximately US $ 60; 000

for the large instance, US $ 30; 000 for the medium instance, and US $ 15; 000 for the

micro instance. The time limit was 3,000 seconds on a PC 486/33 with 4 Mb RAM

for the micro instance, and 10,000 seconds on a HP 735/125 workstation with 256 Mb

RAM for the medium and large instances. Four sample instances of di�erent sizes were

distributed before the competition. The SCP packages available on the market were

tried by Ferrovie dello Stato SpA on these test instances. Of course, the instances to be

solved in the competition were not distributed in advance.

We took part in the FASTER competition as Dipartimento di Elettronica, Informatica

e Sistemistica, University of Bologna. Our code ranked �rst for all the three size-class

instances. We also obtained the best solution values on all sample instances. For the

medium and large sample instances, our solutions were strictly better than those provided

by the commercial packages available on the market. After the competition, we tested

our code on a wide set of SCP instances from the literature, with remarkably good results:

in 92 out of the 94 instances in our test bed we found, within short computing time, the

optimal (or the best known) solution. Moreover, among the 18 instances for which the

optimum is not known, in 6 cases our solution is better than any other solution found

by previous techniques.

The main characteristics of the algorithm we propose are (1) a dynamic pricing

scheme for the variables, akin to that used for solving large-scale LP's, to be coupled with

subgradient optimization and greedy algorithms, and (2) the systematic use of column

�xing to obtain improved solutions. Moreover, we propose a number of improvements on

the standard way of de�ning the step-size and the ascent direction within the subgradient

optimization procedure, and the scores within the greedy algorithms. Finally, an e�ective

2

re�ning procedure is proposed.

The paper is organized as follows. Section 1 gives an overview of the overall algorithm,

which mainly consists of three parts: a subgradient phase, a heuristic phase, and a column

�xing phase dealt with, respectively, in Sections 2, 3, and 4. Sections 5 and 6 describe

the pricing technique and the re�ning procedure. The overall method is summarized in

Section 7, and �nally extensive computational experiments are reported in Section 8.

1 General Framework

SCP can be formally de�ned as follows. Let A = (a

ij

) be a 0-1 m�nmatrix, and c = (c

j

)

be an n-dimensional integer vector. In the following we refer to the rows and columns of

A simply as rows and columns. Let M = f1; : : : ;mg and N = f1; : : : ; ng. The value c

j

(j 2 N) represents the cost of column j, and we assume without loss of generality c

j

> 0

for j 2 N . We say that a column j 2 N covers a row i 2 M if a

ij

= 1. SCP calls for

a minimum-cost subset S � N of columns, such that each row i 2 M is covered by at

least one column j 2 S. A mathematical model for SCP is

v(SCP) = min

X

j2N

c

j

x

j

(1)

subject to

X

j2N

a

ij

x

j

� 1 i 2M (2)

x

j

2 f0; 1g j 2 N (3)

where x

j

= 1 if j 2 S, x

j

= 0 otherwise. For notational convenience, for each row i 2M

let

J

i

= fj 2 N : a

ij

= 1g

be the set of columns covering row i. Analogously, for each column j 2 N let

I

j

= fi 2M : a

ij

= 1g

be the row subset covered by column j. Moreover, let q =

P

i2M

P

j2N

a

ij

denote the

number of nonzero entries of A.

SCP is NP-hard in the strong sense, and has many practical applications, see e.g.

Balas (1983). Many algorithms have been proposed in the literature for the exact solution

of the problem, see Balas and Ho (1980), Beasley (1987), Fisher and Kedia (1990),

Beasley and J�ornsten (1992), Nobili and Sassano (1992), and Balas and Carrera (1996).

These exact algorithms can solve instances with up to a few hundred rows and a few

thousand columns. When larger scale SCP instances are tackled, heuristic algorithms

3

are needed. Classical greedy algorithms are very fast in practice, but typically do not

provide high quality solutions, as reported in Balas and Ho (1980) and Balas and Carrera

(1996). The most e�ective heuristic approaches to SCP are those based on Lagrangian

relaxation with subgradient optimization, following the seminal work by Balas and Ho

(1980), and then the improvements by Beasley (1990), Fisher and Kedia (1990), Balas

and Carrera (1996), and Ceria, Nobili and Sassano (1995). Lorena and Lopes (1994)

propose an analogous approach based on surrogate relaxation. Wedelin (1995) proposes

a general heuristic algorithm for integer programs having a 0-1 constraint matrix; the

algorithm is based on Lagrangian relaxation with coordinate search, where a suitably-

de�ned approximation term is introduced. Recently, Beasley and Chu (1996) proposed

an e�ective genetic algorithm.

Our heuristic scheme is based on dual information associated with the widely-used

Lagrangian relaxation of model (1)-(3). We assume the reader is familiar with Lagrangian

relaxation theory; see, e.g., Fisher (1981) for an introduction. For every vector u 2 R

m

+

of

Lagrangian multipliers associated with the constraints (2), the Lagrangian subproblem

reads:

L(u) = min

X

j2N

c

j

(u)x

j

+

X

i2M

u

i

(4)

subject to

x

j

2 f0; 1g j 2 N (5)

where c

j

(u) = c

j

�

P

i2I

j

u

i

is the Lagrangian cost associated with column j 2 N .

Clearly, an optimal solution to (4)-(5) is given by x

j

(u) = 1 if c

j

(u) < 0, x

j

(u) = 0

if c

j

(u) > 0, and x

j

(u) 2 f0; 1g when c

j

(u) = 0. The Lagrangian dual problem asso-

ciated with (4)-(5) consists of �nding a Lagrangian multiplier vector u

�

2 R

m

+

which

maximizes the lower bound L(u). As (4)-(5) has the integrality property, any optimal

solution u

�

to the dual of the Linear Programming (LP) relaxation of SCP, namely prob-

lem max

n

P

i2M

u

i

:

P

i2I

j

u

i

� c

j

(j 2 N); u

i

� 0 (i 2M)

o

, is also an optimal solution

to the Lagrangian problem; see Fisher (1981). On the other hand, computing an opti-

mal multiplier vector by solving an LP is typically time-consuming for very large scale

instances. A commonly used approach for �nding near-optimal multiplier vectors within

a short computing time, uses the subgradient vector s(u) 2 R

m

, associated with a given

u, de�ned by:

s

i

(u) = 1 �

X

j2J

i

x

j

(u); i 2M: (6)

The approach generates a sequence u

0

; u

1

; : : : of nonnegative Lagrangian multiplier vec-

tors, where u

0

is de�ned arbitrarily. As to the de�nition of u

k

, k � 1, a possible choice

4

(Held and Karp, 1971) consists of using the following simple updating formula:

u

k+1

i

= max

(

u

k

i

+ �

UB � L(u

k

)

jjs(u

k

)jj

2

s

i

(u

k

); 0

)

for i 2M; (7)

where UB is an upper bound on v(SCP), and � > 0 is a given step size parameter.

For near-optimal Lagrangian multipliers u

i

, the Lagrangian cost c

j

(u) gives reliable

information on the overall utility of selecting column j. Based on this property, we use

Lagrangian (rather than original) costs to compute, for each j 2 N , a score �

j

ranking

the columns according to their likelihood to be selected in an optimal solution. These

scores are given on input to a simple heuristic procedure, that �nds in a greedy way a

hopefully good SCP solution. Computational experience shows that almost equivalent

near-optimal Lagrangian multipliers can produce SCP solutions of substantially di�erent

quality. In addition, no strict correlation exists between the lower bound value L(u) and

the quality of the SCP solution found. Therefore it is worthwhile applying the heuristic

procedure for several near-optimal Lagrangian multiplier vectors.

Our approach consists of three main phases, described in detail in Sections 2 to 4.

The �rst one is referred to as the subgradient phase. It is aimed at quickly �nding a

near-optimal Lagrangian multiplier vector, by means of an aggressive policy. The second

one is the heuristic phase, in which a sequence of near-optimal Lagrangian vectors is

determined and, for each vector, the associated scores are given on input to the heuristic

procedure to possibly update the incumbent best SCP solution. In the third phase,

called column �xing, we select a subset of columns having an estimated high probability

of being in an optimal solution, and �x to 1 the corresponding variables. In this way

we obtain an SCP instance with a reduced number of columns and rows, on which

the three-phase procedure is iterated. According to our experience, column �xing is

of fundamental importance to obtain high quality SCP solutions. The overall 3-phase

heuristic is outlined next.

procedure 3-PHASE(x

�

);

begin

repeat

1. SUBGRADIENT PHASE:

�nd a near-optimal multiplier vector u

�

;

2. HEURISTIC PHASE:

starting from u

�

, generate a sequence of near-optimal multiplier vectors, and

for each of them compute a heuristic solution to SCP (the best incumbent

solution x

�

being updated each time a better solution is found);

3. COLUMN FIXING:

5

select a subset of \good" columns and �x to 1 the corresponding variables

until x

�

cannot be improved

end.

The repeat-until loop terminates whenever either all the rows are covered by the �xed

columns, or, as almost always occurs, the sum of the costs of the �xed columns plus a

lower bound on the cost of the residual problem is not less than the value of x

�

.

When very large instances are tackled, the computing time spent on the �rst two

phases becomes very large. We overcome this di�culty by de�ning a core problem,

obtained from the original problem by keeping only a subset of the variables (columns),

the remaining ones being �xed to 0. The choice of the columns in the core problem

is often very critical, since an optimal solution typically contains some columns that,

although individually worse than others, must be selected in order to produce an overall

good solution. Hence we decided not to \freeze" the core problem. Instead, we use a

variable pricing scheme to update the core problem iteratively (see Section 5), in a vein

similar to that used for solving large size LP's.

After each application of procedure 3-PHASE, a re�ning procedure is used (see Section

6), which in some cases produces improved solutions.

In the following, M will denote the set of the rows that are not covered by the

currently �xed columns, and N the set of the columns covering at least one row in M .

2 Subgradient Phase

As already mentioned, this phase is intended to quickly produce a near-optimal La-

grangian multiplier vector. We use the updating formula (7).

The starting vector u

0

is de�ned in one of two di�erent ways. In the �rst application

of procedure 3-PHASE, u

0

is de�ned in a greedy way as follows:

u

0

i

= min

j2J

i

c

j

jI

j

j

; i 2M: (8)

As to the other applications of procedure 3-PHASE, we start from the best multiplier

vector (i.e., the one producing the best lower bound for the subproblem de�ned by the

rows in M), say u

�

, computed before the last column �xing, and obtain the starting

multiplier vector u

0

through random perturbation of u

�

. To be more speci�c, we �rst

remove from u

�

all the entries associated with the rows covered by the columns �xed

in the last iteration, and de�ne u

0

i

= (1 + �

i

)u

�

i

for the remaining rows i, where �

i

is a

uniformly random value in the range [�0:1; 0:1]. The perturbation lets the subgradient

6

phase converge to a di�erent multiplier vector, hence it allows the subsequent heuristic

phase to produce di�erent, and hopefully better, SCP solutions.

The upper bound UB is set to the value of the best SCP solution found. As for its

initial value, it is computed by applying the greedy heuristic in Section 3, by considering

u = 0 (i.e., the original costs instead of the Lagrangian costs).

Parameter � controls the step-size along the subgradient direction s(u

k

). The classical

Held-Karp approach halves parameter � if for p consecutive iterations no lower bound

improvement occurs. In order to obtain a faster convergence, we have implemented

the following alternative strategy. We start with � = 0:1. Every p = 20 subgradient

iterations we compare the best and worst lower bounds computed on the last p iterations.

If these two values di�er by more than 1%, the current value of � is halved. If, on the

other hand, the two values are within 0.1% from each other, we multiply the current value

of � by 1.5. This last choice is motivated by the observation that either the current u

k

is

almost optimal (in which case we are not interested, in this phase, in obtaining a slightly

better multiplier vector), or the small lower bound di�erence is due to an excessively small

step-size (that we contrast by increasing �). According to our computational experience,

this strategy leads to a faster convergence to near optimal multipliers, compared with

the classical approach. Figure 1 compares the behavior of the two strategies applied

to the instance RAIL516 described in Section 8.1 (both strategies use the improved

subgradient direction discussed in the sequel). The classical approach halves �, for the

�rst time, at iteration 181, although in the previous iterations the lower bound growth

is far from regular. On the other hand, choosing a smaller initial value for � produces

even worse results, in that the asymptotic convergence value is much worse. The new

approach, however, recognizes a high variation of the lower bound in the early iterations,

and reduces the step size. Our approach, which increases the value of � under certain

conditions, guarantees an overall robust procedure.

According to our computational experience, in many cases a large number of columns

happen to have a Lagrangian cost c

j

(u) very close to zero. In particular, this occurs for

large scale instances with costs c

j

belonging to a small range, after a few subgradient

iterations. For example, for instance RAIL516 more than 1000 Lagrangian costs with

jc

j

(u)j < 0:001 arise, on average, after each subgradient iteration. In this situation, the

Lagrangian problem has a huge number of almost optimal solutions, each obtained by

choosing a di�erent subset of the almost zero Lagrangian cost columns. As a result,

a huge number of subgradients s(u

k

) to be used in (7) exist. It is known that the

steepest ascent direction is given by the minimum-norm convex combination of the above

active subgradients. However, the exact determination of this combination is very time

consuming, as it requires the solution of a quadratic problem. On the other hand, a

7

0

20

40

60

80

100

120

140

160

180

200

Lower Bound

0 100 200 300 400 500 600 700 800
Iteration

New

Classical

Figure 1: Comparison between the classical and new updating strategies for the step-size

parameter � on instance RAIL516.

random choice of the subgradient direction may produce very slow convergence due to

zig-zagging phenomena. We overcome this drawback by heuristically selecting a small-

norm subgradient direction, computed as follows. We �rst de�ne a column subset S =

fj 2 N : c

j

(u) � 0:001g. This set corresponds to a partial solution covering a row

subset I(S) =

S

j2S

I

j

. Starting with S, we obtain a \prime" (i.e., minimal) partial

cover by iteratively removing from S a redundant column, i.e., a column j 2 S such that

I(S n fjg) = I(S). To be more speci�c, let R � S be the set of the redundant columns

of the initial S. We sort the columns in R according to decreasing costs c

j

(u). Then,

for each j 2 R, in the given order, we set S = S n fjg if I(S) = I(S n fjg). Finally, we

de�ne x

j

(u) = 1 for j 2 S, x

j

(u) = 0 for j 2 N n S, and compute the reduced norm

\subgradient" s(u) by means of (6) (notice that s(u) is no longer guaranteed to be a

subgradient). This phase requires O(n log n) time for column sorting, plus O(q) time

for the remaining computation. Computational results show that this choice leads to a

faster convergence of the subgradient procedure. As an example, Figure 2 compares the

behavior of the classical and new de�nitions of the subgradient directions to be used in

(7), when applied to instance RAIL516 (both strategies use the improved updating rule

for the step-size parameter �, as described previously).

The subgradient phase ends as soon as we estimate the procedure converged to a near-

optimal Lagrangian vector. This occurs when the lower bound improvement obtained

in the last 300 subgradient iterations is smaller than 1.0, and, in percentage, below

0.1%. Our computational experience showed that the number of iterations needed to

8

0

20

40

60

80

100

120

140

160

180

200

Lower Bound

0 100 200 300 400 500 600 700 800
Iteration

New

Classical

Figure 2: Comparison between the classical and new de�nitions of the subgradient di-

rections on instance RAIL516.

reach convergence grows linearly with m. In any case, no more than 10m iterations are

allowed (this limit was never reached in our computational experiments).

Each iteration of the subgradient phase requires (a) computing the Lagrangian costs

associated with the current multiplier vector, which is done in O(q) time; (b) computing

the reduced norm \subgradient", in O(n log n+ q) time; and (c) updating the multiplier

vector, in O(m) time. Since the maximum number of subgradient iterations allowed is

O(m), the overall time complexity of this phase is O(m(n log n+ q)).

3 Heuristic Phase

Let u

�

be the best Lagrangian vector found during the subgradient phase. Starting

with u

�

we generate a sequence of Lagrangian vectors u

k

in an attempt to \explore" a

neighborhood of near-optimal multipliers. To this end, we update the multipliers as in

the subgradient phase, but we do not reduce the subgradient norm, so as to allow for

a change in a larger number of components of u

k

. The heuristic phase ends after 250

iterations.

For each u

k

, we apply the following greedy heuristic procedure to produce a \good"

SCP solution S.

9

procedure GREEDY(u

k

,S);

begin

1. Initialize M

�

:=M to be the set of the currently uncovered rows,

and S := ; to be the set of the currently selected columns;

repeat

2. compute the score �

j

:= SCORE(j; u

k

;M

�

) for each j 2 N n S,

and let j

�

2 N n S be a column with minimum score;

3. S := S [fj

�

g; M

�

:=M

�

n I

j

�

until M

�

= ;

end.

The key step of the procedure is Step 2, in which the column scores �

j

are de�ned

through function SCORE(j; u

k

;M

�

). Several rules have been proposed in the literature

(see Balas and Ho, 1980, and Balas and Carrera, 1996) which de�ne �

j

as a function of

c

j

and �

j

= jI

j

\M

�

j (e.g., �

j

= c

j

, or �

j

= c

j

=�

j

). According to our computational

experience, these rules produce good results when c

j

is replaced by

j

= c

j

�

X

i2I

j

\M

�

u

k

i

;

since this term takes into account the dual information associated with the still uncovered

rows M

�

. The use of

j

instead of c

j

in a greedy-type heuristic was �rst proposed by

Fisher and Kedia (1990).

We have also considered the following new rules, giving priority to columns having

low cost

j

and covering a large number �

j

of uncovered rows.

Rule a) �

j

=

j

=�

j

if

j

> 0, �

j

=

j

�

j

if

j

< 0.

Rule b) �

j

=

j

� ��

j

(where � > 0 is a given parameter).

In all cases we set �

j

=1 whenever �

j

= 0.

An extensive computational analysis showed that Rule a) outperforms Rule b) (tested

with � = 0:1, � = 0:01, and � = 0:001) and all other rules, when our heuristic scheme

is applied. Indeed, we ran di�erent versions of our code in which, for each given u

k

,

GREEDY(u

k

; S) is applied by considering di�erent rules for the de�nition of the scores.

For all the instances we tried, the version using only Rule a) produced the same result

as the one in which each call of GREEDY is replaced by a series of calls, one for each of

the above-mentioned rules, and the best solution is chosen (the latter scheme required

of course considerably more computing time). The same does not hold, however, when

any rule alternative to a) is used. In view of this behavior, we decided to only use Rule

a) within our �nal algorithm.

10

Observe that the values

j

and �

j

need not be computed from scratch at each repeat-

until iteration, as they can easily be updated before Step 3, by the following additional

step:

2'. for each i 2 I

j

�

\M

�

do

for each j 2 J

i

do let

j

:=

j

+ u

i

and �

j

:= �

j

� 1;

In this way, the overall time complexity for the de�nition and the updating of

j

and �

j

is O(q) if an appropriate data structure is used (see Section 8), whereas the time required

for each execution of Step 2 is O(n). Therefore procedure GREEDY requires O(rn + q)

time, where r � m is the cardinality of the solution found.

For the instances in our test bed (see Section 8) the term rn is typically much larger

than q. To decrease the average computing time required by Step 2 we use the following

approach. We determine the set B � N nS containing the minfm; jN nSjg columns with

smallest scores, and set � to the current value of the smallest score of a column not in B.

Whereas in Step 2' the values of

j

and �

j

are updated for all columns j 2 N nS, in Step

2, as long as �

j

�

� � , the computation of �

j

and the search for j

�

are performed only

among the columns in B. When �

j

�

> � , we re-de�ne B and � as above and iterate. Each

de�nition of B and � requires O(n) time by using median-�nding techniques, whereas

each computation of �

j

, j 2 B, and j

�

requires O(jBj) time.

The solution S returned by GREEDY may contain redundant columns. This happens

because the columns selected in a certain iteration to cover some uncovered rows, can lead

a previously-selected column to become redundant. Removing the redundant columns

in an optimal way leads to an SCP, de�ned by the redundant column set, say, R and

by the set containing the rows covered only by the redundant columns. This problem

can be solved either exactly through an enumerative algorithm for small values of jRj,

or heuristically. We use the following mixed approach. When jRj > 10, we remove

from S the column j

�

2 R with maximum cost c

j

�

, update R, and repeat. As soon

as jRj � 10, we use a simple enumeration scheme to remove, in an optimal way, the

redundant columns left.

4 Column Fixing

Although typically very close to the optimum, the heuristic solution available at the end

of the heuristic phase can often be improved by �xing in the solution a convenient set

of columns, and re-applying the whole procedure to the resulting subproblem. To our

knowledge, only the heuristic of Ceria, Nobili and Sassano (1995) makes use of variable

�xing.

11

Name Size Best Time Col-Fix No Col-Fix

RAIL582 582� 55; 515 211 575.6

�

211 213

RAIL507 507� 63; 009 174 634.8

�

176 180

RAIL2586 2; 586� 920; 683 947 486.1

�

952 989

RAIL4872 4; 872� 968; 672 1534 854.4

�

1550 1606

Table 1: Results of procedure 3-PHASE with and without column �xing {

�

Time in PC

486/33 CPU seconds {

�

Time in HP 735/125 CPU seconds.

Clearly, the choice of the columns to be �xed is of crucial importance. After extensive

computational testing, we decided to implement the following simple criteria. Let u

�

be

the best multiplier vector found during the subgradient and heuristic phases, and de�ne

Q = fj 2 N : c

j

(u

�

) < �0:001g. We �rst �x each column j 2 Q for which there

is a row i covered only by j among the columns in Q, i.e., J

i

\ Q = fjg. Then, we

apply the heuristic procedure GREEDY(u

�

; S) described in Section 3, and �x the �rst

maxfbm=200c ; 1g columns therein chosen.

Table 1 reports computational results for the 4 large scale instances from the FASTER

test bed, described in more detail in Section 8.1. In the table, \Name" is the name of

the instance, \Size" its size (in the format m � n), and \Best" is the best solution

value known. For each instance, we �rst ran procedure 3-PHASE yielding the solution

value reported in column \Col-Fix", and then ran, for the same amount of time (column

\Time"), the same procedure with no column �xing, yielding the solution value reported

in column \No Col-Fix". The times in the table refer to the �nal version of our algorithm,

which uses the pricing procedure described in the next section. The table clearly shows

the e�ectiveness of column �xing, especially for the very large scale instances RAIL2586

and RAIL4872.

5 Pricing

In order to reduce the computing time spent by the overall algorithm, in all phases

we work on a small subset of columns, de�ning the current core problem. This is of

fundamental importance when large-scale instances are tackled, and gives substantial

improvements even for medium-size instances. The approach is in the spirit of the well-

known partial pricing technique for solving large-scale LP's. To our knowledge, however,

this approach was never used in combination with Lagrangian relaxation for SCP. An

example of the combined use of Lagrangian relaxation and column generation for crew

scheduling can be found in Carraresi and Gallo (1986).

Our core problem is updated dynamically, by using the dual information associated

12

with the current Lagrangian multiplier vector u

k

. To be speci�c, at the very beginning of

the overall algorithm we de�ne a \tentative" core by taking the �rst 5 columns covering

each row. Afterwards, we work on the current core for, say, T consecutive subgradient

iterations, after which we re-de�ne the core problem as follows. We compute the La-

grangian cost c

j

(u

k

), j 2 N , associated with the current u

k

, and de�ne the column set

of the new core as C = C

1

[C

2

, where C

1

= fj 2 N : c

j

(u

k

) < 0:1g, and C

2

contains the

5 smallest Lagrangian cost columns covering each row; if jC

1

j > 5m, we keep in C

1

only

the 5m smallest Lagrangian cost columns.

Notice that a valid lower bound for the overall problem is only available after the

pricing step. The pricing phase requires O(q) time, since the computation of the 5m

lowest Lagrangian cost columns in C

1

can be done in O(n) time by using median-�nding

techniques. As we work with a core problem containing O(m) columns, the time com-

plexity of each iteration of our subgradient procedure is O(m logm+ p), while the time

required by procedure GREEDY becomes O(rm + p), where p � q is the maximum

number of nonzero entries of the SCP matrix for the core problem.

The pricing frequency is governed by parameter T . In our implementation we initially

set T = 10. After each pricing, we compute � = (LB

k

(C

0

)� LB

k

(N))=UB, where UB

is the best SCP solution value available, LB

k

(N) =

P

i2M

u

k

i

+

P

j2N

minfc

j

(u

k

); 0g

is the \true" lower bound value available after pricing, and LB

k

(C

0

) =

P

i2M

u

k

i

+

P

j2C

0
minfc

j

(u

k

); 0g is its counterpart with respect to C

0

, the column set of the core

problem before pricing. If � is small, we decrease the pricing frequency by increasing

T . If on the other hand � is large, i.e., the core problem is far from being settled, we

reduce T . More precisely, we update T = 10 � T if � � 10

�6

; T = 5 � T if � � 0:02;

T = 2 � T if � � 0:2; and T = 10 otherwise. In any case, the value T is not allowed to

exceed minf1000;m=3g.

According to our experience, for large scale instances the use of pricing cuts the

overall computing time by more than one order of magnitude.

6 Re�ning Procedure

The solution available at the end of procedure 3-PHASE is typically close to the optimum,

but in some cases it can be improved. For this purpose, we have de�ned a simple scheme

for re�ning a given SCP solution. The scheme assigns a score to the chosen columns,

�xes to 1 the variables associated with the best scored columns, and re-optimizes the

resulting subproblem.

Let x

�

de�ne the best SCP solution computed by procedure 3-PHASE, and let u

�

be

the Lagrangian vector corresponding to the best lower bound computed for the overall

13

problem (that with no �xed column). The gap between the associated lower and upper

bound values is given by

GAP =

X

j2S

c

j

�

0

@

X

i2M

u

�

i

+

X

j2N :c

j

(u

�

)<0

c

j

(u

�

)

1

A

=

X

j2S

0

@

c

j

(u

�

) +

X

i2I

j

u

�

i

1

A

�

X

i2M

u

�

i

�

X

j2N :c

j

(u

�

)<0

c

j

(u

�

)

=

X

j2S:c

j

(u

�

)>0

c

j

(u

�

) +

X

j2NnS:c

j

(u

�

)<0

jc

j

(u

�

)j +

X

i2M

u

�

i

(jS \ J

i

j � 1) ;

where S = fj 2 N : x

�

j

= 1g. Accordingly, for each column j with x

�

j

= 1 we compute

an estimate �

j

of the contribution of j to the overall gap, namely

�

j

= maxfc

j

(u

�

); 0g +

X

i2I

j

u

�

i

jS \ J

i

j � 1

jS \ J

i

j

: (9)

The second term in (9) is obtained by uniformly splitting, for each row i, the gap contri-

bution u

�

i

(jS \ J

i

j � 1) among all the columns l 2 J

i

with x

�

l

= 1. Notice that this score

cannot be computed \on line" in a greedy heuristic like procedure GREEDY.

In our view, columns with small �

j

are likely to be part of an optimal solution.

Accordingly, we de�ne the ordered column set fj 2 N : x

�

j

= 1g = fj

1

; : : : ; j

p

g, where

�

j

1

� �

j

2

� : : : � �

j

p

, and �nd the �rst j

�

2 fj

1

; : : : ; j

p

g such that

j

S

j

�

j=j

1

I

j

j

m

� �; (10)

where the parameter � 2 [0; 1] controls the percentage number of rows removed after

�xing. We then �x columns j

1

; : : : ; j

�

, and re-optimize the resulting subproblem through

procedure 3-PHASE.

7 The Overall Method

The above procedures are applied iteratively until a given time-limit is exceeded, or a

su�cient precision is obtained, according to the following scheme:

14

Value 1550 1549 1547 1546 1544 1543 1542 1541 1540 1538 1537 1536 1535 1534

Time 733.7 866.1 866.3 866.6 868.6 881.6 882.4 937.8 1024.0 1150.0 1150.9 1187.8 4326.0 4556.1

Table 2: Incumbent solution value updating for instance RAIL4872 { Times in HP

735/125 CPU seconds { The �rst entry refers to the �rst application of procedure 3-

PHASE.

Algorithm CFT;

begin

1. Initialize z

OPT

:= +1, u

�

:= 0, and F := ;, where z

OPT

is the value of the best

available SCP solution, u

�

is the best multiplier vector for the original SCP instance,

and F is the set of columns �xed by the re�ning procedure;

repeat

2. de�ne the SCP subinstance I

F

derived from �xing x

j

:= 1 for all j 2 F ;

3. apply procedure 3-PHASE(x; u) to I

F

;

4. comment: obtain the SCP solution x

�

associated with the partial solution x;

for each j 2 N do

if j 2 F then x

�

j

:= 1

else x

�

j

:= x

j

;

5. comment: update the best SCP solution;

if

P

j2N

c

j

x

�

j

< z

OPT

then begin

z

OPT

:=

P

j2N

c

j

x

�

j

;

x

OPT

:= x

�

end

6. comment: de�ne the new value for the threshold �;

if

P

j2N

c

j

x

�

j

= z

OPT

or F = ; then � := �

MIN

else � := � � �;

7. comment: update the set F of columns �xed;

for each j 2 fk 2 N : x

�

k

= 1g do compute �

j

as de�ned in (9);

sort the set fj 2 N : x

�

j

= 1g according to nondecreasing values �

j

and let

fj

1

; : : : ; j

p

g be the corresponding sorted set;

de�ne j

�

as in (10), and let F := fj

1

; : : : ; j

�

g

until z

OPT

� � � L(u

�

) or a time limit is exceeded

end.

A careful choice of parameters �

MIN

, � and � is very important for the re�ning procedure

to be e�ective. In our implementation, we set �

MIN

= 0:3, � = 1:1, and � = 1:0.

15

As an illustration of the e�ectiveness of the re�ning procedure, in Table 2 we report

the updating of the incumbent solution value for instance RAIL4872, along with the

associated computing times. The �rst entry refers to the �rst application of procedure

3-PHASE.

8 Computational Results

Algorithm CFT was implemented in ANSI FORTRAN 77. We store the whole SCP

matrix columnwise, in sparse form, by using the vectors IA (of length n+ 1) and A (of

length q), so as to have I

j

= fA

IA

j

; A

IA

j

+1

; : : : ; A

IA

j+1

�1

g for j = 1; : : : ; n. We do not

store the whole SCP matrix rowwise, while we store the matrix for the core problem both

rowwise and columnwise, in sparse form. Unlike most existing algorithms for SCP, we do

not perform any pre-processing on the initial data in order to remove dominated columns

and rows. This is motivated by several reasons. First of all, pre-processing is very time

consuming for large scale instances. Furthermore, thanks to the pricing procedure the

running time of algorithm CFT does not change substantially if dominated rows and

columns are also present. Finally, the score we use in procedure GREEDY and in the

column-�xing phase prevents the choice of dominated columns.

8.1 Instances from the FASTER Competition

Algorithm CFT was �rst tested on the sample instances distributed by Ferrovie dello

Stato SpA within the FASTER competition. Table 3 reports the corresponding results,

where the entries have the following meaning:

Name is the name of the instance;

Size is the size of the instance in the format m�n, where (�) stands for micro, (m) for

medium, and (l) for large;

Dens is the percentage number of entries equal to 1 in the SCP constraint matrix, i.e.,

q=mn (for the FASTER instances, jI

j

j � 12 for each column j);

Range is the cost range in the format min-max;

LB is the lower bound on the optimal solution value computed by solving the LP relax-

ation of SCP, and rounding up the corresponding value;

Bologna reports the solution value found by algorithm CFT and the computing time

spent up to the point where this solution is found for the �rst time;

16

Bologna Roma Best Industry

Name Size Dens Range LB Sol Time Sol Sol

RAIL582 582� 55; 515 (�) 1.2% 1-2 210 211 570.0

�

211 211

RAIL507 507� 63; 009 (�) 1.2% 1-2 173 175

�

817.0

�

174 174

RAIL2586 2; 586� 920; 683 (m) 0.4% 1-2 937 948

+

1183.2

�

951 952

RAIL4872 4; 872� 968; 672 (l) 0.2% 1-2 1509 1534 4556.1

�

1534 1538

Table 3: Results on FASTER sample instances {

�

Time in PC 486/33 CPU seconds {

�

Time in HP 735/125 CPU seconds {

�

174 with an ad hoc tuning {

+

947 with an ad

hoc tuning.

Roma reports the solution value found by the algorithm of the Dipartimento di Infor-

matica e Sistemistica, University of Roma \La Sapienza";

Best Industry is the best solution value found by the SCP packages available on the

market, as reported in Ceria, Nobili and Sassano (1995).

The group named Roma consisted of S. Ceria, P. Nobili and A. Sassano. They

used a Lagrangian heuristic, based on the initial de�nition of a core problem which is

not updated dynamically, and on a primal-dual subgradient technique combined with

column �xing, see Ceria, Nobili and Sassano (1995). The computing time of Roma is

within 1,000 CPU seconds on an IBM RS/6000 375 (i.e., about 15,000 seconds on a

PC/486 33) for the micro instances, and within 10,000 CPU seconds (i.e., about 5,000

seconds on a HP 735/125) on the same machine for the medium and large instances (the

authors do not report the computing time spent up to the point where the best solution

is found for the �rst time).

The results for the competition are reported in Table 4, where the entries have the

following meaning:

Name, Size, Dens and Range are as in Table 3;

LB is the rounded-up lower bound on the optimal solution value computed by algorithm

CFT;

An reports the solution value found by the algorithm of the Istituto di Informatica,

University of Ancona (A. Brunori, E. Faggioli and F. Pezzella);

Bo reports the solution value found by algorithm CFT;

Bo2 reports the solution value found by the algorithm of the Dipartimento di Matema-

tica, University of Bologna (J. Beasley and A. Mingozzi);

17

Name Size Dens Range LB An Bo Bo2 Fi Rm Tn

RAIL516

�

516� 47; 311 (�) 1.3% 1-2 182 188 182 � 216 �

+

�

RAIL2536

�

2; 536� 1; 081; 841 (m) 0.4% 1-2 685 745 691 765 922 692 709

RAIL4284

�

4; 284� 1; 092; 610 (l) 0.2% 1-2 1051 1175 1065 1156 � 1070 1117

Table 4: Results on FASTER competition instances {

�

Time limit: 3,000 seconds on a

PC 486/33 {

�

Time limit: 10,000 seconds on a HP 735/125 {

+

in Ceria, Nobili and

Sassano, 1995, value 182 is reported.

Fi reports the solution value found by the algorithm of the Istituto di Matematica,

University of Firenze (M. Antelmi Dazio, F. Carmusciano, A. Casavola and D. De

Luca Cardillo);

Rm reports the solution value found by the algorithm of the Dipartimento di Informa-

tica e Sistemistica, University of Roma \La Sapienza" (S. Ceria, P. Nobili and A.

Sassano);

Tn reports the solution value found by the algorithm of the Istituto di Matematica,

University of Trento (R. Battiti and G. Tecchiolli).

We report the results of all the groups whose code was successfully run by the Ferrovie

dello Stato yielding feasible SCP solutions, according to the �nal report of the FASTER

Jury. The entries with `�' mean that the group did not partecipate in the competition

for the given instance.

Algorithm CFT provided the best solution for all the instances. It is worth men-

tioning that for the medium and large instances, after a few hundred CPU seconds our

solution was better than all the other �nal solutions, with the exception of those ob-

tained by Roma. Moreover, when 1/6 of the time limit had elapsed, we had already

obtained solution values, namely 182 for RAIL516, 691 for RAIL2536, and 1069 for

RAIL4284, that were better than all the other �nal solution values. Our best solutions

for instances RAIL2536 and RAIL4284 were found after about 1; 200 and 8; 000 CPU

seconds, respectively.

8.2 Instances from the Literature

In order to analyze the e�ectiveness and robustness of algorithm CFT, we considered

the SCP instances from the literature. We imposed a time limit of 5; 000 CPU seconds

on a DECstation 5000/240. As we will see, in most cases algorithm CFT is able to �nd

an optimal solution, although it does not provide a proof of optimality.

18

Be LL BaCa BeCh CFT

Name Size Dens Range Opt Sol Time Sol Time Sol Time

�

Sol Time Sol Time

4.1 200� 1;000 2% 1-100 429 429 11.0 429 0.5 429 0.8 429 294.8 429 2.3

4.2 200� 1;000 2% 1-100 512 512 11.1 512 0.4 512 1.2 512 9.0 512 1.1

4.3 200� 1;000 2% 1-100 516 516 6.8 516 0.3 516 1.0 516 16.4 516 2.1

4.4 200� 1;000 2% 1-100 494 495 12.2 495 1.2 494 1.7 494 142.0 494 9.8

4.5 200� 1;000 2% 1-100 512 512 7.0 512 0.3 512 0.5 512 44.1 512 2.1

4.6 200� 1;000 2% 1-100 560 561 15.8 560 1.4 560 7.5 560 16.1 560 19.3

4.7 200� 1;000 2% 1-100 430 430 9.2 430 0.5 430 1.0 430 138.6 430 2.7

4.8 200� 1;000 2% 1-100 492 493 11.5 493 1.4 492 6.4 492 818.7 492 22.2

4.9 200� 1;000 2% 1-100 641 641 20.6 641 1.5 641 9.2 641 136.1 641 1.8

4.10 200� 1;000 2% 1-100 514 514 11.9 514 0.3 514 1.1 514 13.5 514 1.8

5.1 200� 2;000 2% 1-100 253 255 17.4 253 1.5 254 11.1 253 42.1 253 3.3

5.2 200� 2;000 2% 1-100 302 304 20.9 302 1.8 307 20.1 302 1332.6 302 2.3

5.3 200� 2;000 2% 1-100 226 226 10.1 226 0.3 226 1.0 228 11.0 226 2.1

5.4 200� 2;000 2% 1-100 242 242 11.5 242 1.5 243 11.4 242 10.1 242 1.9

5.5 200� 2;000 2% 1-100 211 211 7.2 211 0.2 211 2.1 211 14.9 211 1.2

5.6 200� 2;000 2% 1-100 213 213 11.3 213 0.4 213 1.3 213 29.9 213 0.9

5.7 200� 2;000 2% 1-100 293 294 18.1 293 1.5 293 7.5 293 194.9 293 15.0

5.8 200� 2;000 2% 1-100 288 288 20.7 288 1.6 288 4.3 288 3733.3 288 1.6

5.9 200� 2;000 2% 1-100 279 279 15.7 279 0.8 279 1.5 279 13.5 279 2.6

5.10 200� 2;000 2% 1-100 265 265 9.8 265 0.2 265 1.1 265 19.2 265 1.3

6.1 200� 1;000 5% 1-100 138 141 16.8 138 1.7 140 9.2 138 46.1 138 22.6

6.2 200� 1;000 5% 1-100 146 146 14.5 149 1.9 147 9.2 146 210.5 146 17.8

6.3 200� 1;000 5% 1-100 145 145 15.0 145 1.6 145 11.5 145 11.8 145 2.3

6.4 200� 1;000 5% 1-100 131 131 10.3 131 1.2 131 8.3 131 4.8 131 1.8

6.5 200� 1;000 5% 1-100 161 162 13.3 161 2.1 163 10.4 161 12.1 161 2.2

A.1 300� 3;000 2% 1-100 253 255 36.0 254 2.7 258 39.0 253 222.4 253 82.0

A.2 300� 3;000 2% 1-100 252 256 44.2 255 2.9 254 40.9 252 327.9 252 116.2

A.3 300� 3;000 2% 1-100 232 234 28.1 234 2.6 237 28.6 232 127.0 232 249.9

A.4 300� 3;000 2% 1-100 234 235 33.5 234 2.4 235 36.3 234 45.5 234 4.7

A.5 300� 3;000 2% 1-100 236 237 19.0 238 2.2 236 26.2 236 23.7 236 80.0

B.1 300� 3;000 5% 1-100 69 70 28.4 70 3.0 69 29.0 69 20.0 69 4.0

B.2 300� 3;000 5% 1-100 76 77 40.8 76 4.0 76 29.0 76 11.6 76 6.1

B.3 300� 3;000 5% 1-100 80 80 25.4 81 4.4 81 35.1 80 709.7 80 18.0

B.4 300� 3;000 5% 1-100 79 80 37.0 81 4.3 79 29.0 79 29.9 79 6.3

B.5 300� 3;000 5% 1-100 72 72 26.0 72 4.1 72 32.6 72 5.3 72 3.3

C.1 400� 4;000 2% 1-100 227 230 42.4 227 4.0 230 116.2 227 187.9 227 74.0

C.2 400� 4;000 2% 1-100 219 223 66.0 222 4.1 220 56.1 219 40.7 219 64.2

C.3 400� 4;000 2% 1-100 243 251 75.1 251 4.9 248 61.7 243 541.3 243 70.2

C.4 400� 4;000 2% 1-100 219 224 63.4 224 5.4 224 68.1 219 144.6 219 61.6

C.5 400� 4;000 2% 1-100 215 217 39.9 216 4.1 217 64.6 215 80.6 215 60.3

D.1 400� 4;000 5% 1-100 60 61 40.9 60 4.8 61 36.6 60 13.8 60 23.1

D.2 400� 4;000 5% 1-100 66 68 52.7 68 3.5 67 46.6 66 198.6 66 22.0

D.3 400� 4;000 5% 1-100 72 75 55.8 75 5.8 74 47.2 72 785.3 72 22.6

D.4 400� 4;000 5% 1-100 62 64 36.5 63 4.8 63 39.8 62 73.5 62 8.3

D.5 400� 4;000 5% 1-100 61 62 36.7 62 4.5 61 36.2 61 79.8 61 10.3

Table 5: Results on the test instances from Beasley's OR-Library { Times are given in

DECstation 5000/240 CPU seconds {

�

Overall time for the execution of the heuristic

algorithm.

19

Be BaCa CNS BeCh CFT

Name Size Dens Range Best LB Sol Time Sol Time

�

Sol Time

�

Sol Time Sol Time

E.1 500� 5;000 10% 1-100 29 29 29 72.6 29 55.3 � � 29 38.2 29 26.0

E.2 500� 5;000 10% 1-100 30 28 32 92.7 32 76.0 � � 30 14647.7 30 408.0

E.3 500� 5;000 10% 1-100 27 27 28 92.7 28 80.9 � � 27 28360.2 27 94.2

E.4 500� 5;000 10% 1-100 28 28 30 100.3 29 77.5 � � 28 539.9 28 26.3

E.5 500� 5;000 10% 1-100 28 28 28 80.8 28 61.6 � � 28 35.0 28 36.6

F.1 500� 5;000 20% 1-100 14 14 15 43.9 14 67.5 � � 14 76.4 14 33.2

F.2 500� 5;000 20% 1-100 15 15 16 102.6 15 88.6 � � 15 78.1 15 31.2

F.3 500� 5;000 20% 1-100 14 14 15 124.7 15 76.5 � � 14 266.8 14 248.5

F.4 500� 5;000 20% 1-100 14 14 15 118.2 15 74.8 � � 14 209.7 14 31.0

F.5 500� 5;000 20% 1-100 13 13 14 129.3 14 62.2 � � 13 13192.6 13 201.1

G.1 1; 000� 10;000 2% 1-100 176 165 184 287.8 183 325.6 176 4905.5 176 30200.0 176 147.0

G.2 1; 000� 10;000 2% 1-100 154 147 163 204.9 161 370.1 155 4905.5 155 360.5 154 783.4

G.3 1; 000� 10;000 2% 1-100 166 153 174 318.2 175 378.6 167 4905.5 166 7841.6 166 978.0

G.4 1; 000� 10;000 2% 1-100 168 154 176 292.0 176 332.2 170 4905.5 168 25304.7 168 378.5

G.5 1; 000� 10;000 2% 1-100 168 153 175 277.5 172 262.6 169 4905.5 168 549.3 168 237.2

H.1 1; 000� 10;000 5% 1-100 63 52 68 317.7 68 488.4 64 4905.5 64 1682.1 63 1451.1

H.2 1; 000� 10;000 5% 1-100 63 52 66 293.9 67 380.7 64 4905.5 64 530.3 63 887.0

H.3 1; 000� 10;000 5% 1-100 59 48 65 325.1 63 443.1 60 4905.5 59 1803.5 59 1560.3

H.4 1; 000� 10;000 5% 1-100 58 47 63 333.5 62 354.7 59 4905.5 58 27241.8 58 237.6

H.5 1; 000� 10;000 5% 1-100 55 46 60 303.0 58 321.3 55 4905.5 55 449.6 55 155.4

Table 6: Results on the test instances from Beasley's OR-Library { Times are given in

DECstation 5000/240 CPU seconds {

�

Overall time for the execution of the heuristic

algorithm {

�

Time limit.

Tables 5 and 6 give the results for the instances from Beasley's OR Library (see

Beasley, 1990). Since 1990, all the proposed algorithms for SCP have been mainly tested

on these instances. We compare algorithm CFT with the genetic algorithm BeCh by

Beasley and Chu (1996) yielding the best published solution values on all these instances.

Comparison is also made with faster heuristics, namely algorithms Be by Beasley (1990),

BaCa by Balas and Carrera (1996), and CNS by Ceria, Nobili and Sassano (1995),

based on Lagrangian relaxation, and algorithm LL by Lorena and Lopes (1994) based

on surrogate relaxation. Balas and Carrera give two di�erent versions of their heuristic;

we report the results of the version yielding better solution values, which on the other

hand is typically three to �ve times slower.

For each algorithm, we report the computing time spent up to the point where its

best solution is found for the �rst time, with the exception of algorithms BaCa and

CNS. Balas and Carrera give the overall computing time spent on the execution of their

heuristic procedure, while Ceria, Nobili and Sassano give the solution value obtained after

a pre�xed time limit. Furthermore, in Beasley and Chu (1996) the computational results

refer to 10 trials for each instance, each corresponding to a di�erent set of parameters

for the genetic algorithm. For each instance, we report for algorithm BeCh an estimate

of the time needed for �nding the best solution, computed as follows. Among the 10

trials, we consider the �rst one, say the k-th, in which the best solution value is found,

20

and set the time to (k � 1) �AET +AST , where AET is the average execution time for

a single trial, and AST is the average time for �nding the best solution in a trial; both

these average values are given in Beasley and Chu (1996).

Times in the tables are in DECstation 5000/240 CPU seconds, obtained by estimat-

ing the times of other machines according to the performances reported in Dongarra

(1993). This leads to some unavoidable approximation when comparing codes running

on di�erent computers.

Table 5 reports the results for instances in Classes 4, 5, 6, A, B, C, and D, for which

the optimal solution value is known (see column \Opt"). Ceria, Nobili and Sassano do

not report any result for these instances. For all the instances, both algorithms BeCh

and CFT �nd the optimum, with the exception of instance 5.3, for which BeCh �nds

a solution of value 228, while CFT �nds an optimal solution of value 226. Algorithms

Be, LL and BaCa give solution values which are on average slightly worse. The average

computing time is about 2 seconds for algorithm LL, 25 seconds for Be, BaCa and CFT,

and 250 seconds for BeCh. Therefore algoritm CFT is much faster than BeCh, while its

speed is comparable to that of Be and BaCa. As to LL, it is by far the fastest algorithm,

although the computing times reported in Lorena and Lopes (1994) do not include the

time for the initial reduction. In 18 cases, however, this algorithm is not capable of

�nding the optimal solution.

Table 6 reports the results for larger instances (Classes E, F, G, and H) for which the

optimal solution value was not known. In order to check the quality of the heuristic solu-

tions, we tried to solve these instances by using the CPLEX 3.0 mixed integer optimizer

on a DECstation 5000/240 with 32 Mbytes of core memory and 128 Mbytes of virtual

memory. On each instance, we �rst ran CPLEX giving as initial upper bound the value

of the best solution known. We set the time limit to 600,000 seconds, deactivated the

node limit, and used the depth-�rst node selection. Column \Best" reports the value of

the best solution found by CPLEX within the time limit (possibly, CPLEX did not im-

prove the solution given on input). If optimality was proven, the same value is reported

in column \LB". Otherwise, in order to improve the lower bound value, we ran again

CPLEX with best-�rst node selection, reporting in column \LB" the best lower bound

found in the two trials. Due to the di�culty of these instances, CPLEX always ran out of

memory when best-�rst node selection was used. Timing is not reported for the CPLEX

runs, which were made only for the purpose of producing an optimal solution or a tight

lower bound. Anyway, the CPLEX runs took much longer than those of the heuristic

algorithms. In particular, for the instances for which optimality was proven, the time

required by CPLEX is about 1,000 times larger than that of algorithm CFT.

Lorena and Lopes do not report results for the instances in Table 6, while Ceria,

21

0

100

200

300

400

500

600

700

800

900

Time

4 5 6
A B C D E F G H Class

Be 3

3

3 3

3
3

3

3

3

3

3

3

LL

+

+ +
+ +

+ + +

BaCa 2

2

2

2

2

2

2

2

2

2

2

2

BeCh

�

�

�

�

�

�

�

�

CFT

4

4

4

4

4

4

4

4

4

4

4

4

Figure 3: Comparison between the average computing times required by algorithms Be,

LL, BaCa, BeCh and CFT on each instance class in Beasley's OR-Library { Times are

given in DECstation 5000/240 CPU seconds.

Nobili and Sassano report results only for the instances in Classes G and H. For all these

instances, algorithm BeCh yields the best solution known in the literature. Algorithm

CFT always �nds solutions that are at least as good as those of BeCh, yielding a better

solution for instances G.2, H.1 and H.2. Algorithm CNS gives solutions which are on

average slightly worse than those of BeCh and CFT, but better than those of Be and

BaCa. The average computing time is about 200 seconds for algorithms Be and BaCa,

400 seconds for CFT, and 7500 seconds for BeCh. No fair comparison with the computing

times of algorithm CNS can be made.

Figures 3 and 4 report an overall comparison of algorithms Be, LL, BaCa, BeCh and

CFT on each instance class from Beasley's OR-Library. The lines between the points

in these �gures have no meaning, and are only given for the sake of readibility. The

�rst �gure gives the average computing time on each class, showing that algorithm CFT

requires on average the same computing time as Be and BaCa, with the exception of

Classes A, G and H. In this �gure, we reported the computing time of BeCh up to Class

D, since for the bigger classes the algorithm is at least one order of magnitude slower than

the others. The second �gure reports the average percentage gap between the solution

found and the best one known, which is always found by algorithm CFT. This �gure

shows that, on these instances, the quality of the solutions found by algorithms Be, LL

and BaCa considerably decreases when the size of the instances increases.

We also tested algorithm CFT on the SCP instances arising from crew scheduling

22

0

1

2

3

4

5

6

7

8

9

% Error

4 5 6
A B C D E F G H Class

Be 3

3

3

3

3

3

3

3

3

3

3

3

LL

+

+

+

+

+

+

+

+

BaCa 2

2

2

2

2

2

2

2

2

2

2

2

BeCh

�

�

�

� � � � � � �

�

�

CFT

4

4 4 4 4 4 4 4 4 4 4 4

Figure 4: Comparison between the average percentage errors with respect to the best

solution known for algorithms Be, LL, BaCa, BeCh and CFT on each instance class in

Beasley's OR-Library.

in some airline companies, mentioned in Wedelin (1995), with the exception of instance

SASD9imp1, for which we could not get the same data as reported in Wedelin (1995).

In these instances, each column (pairing) has a cost taking into account several factors,

and is expressed by very large numbers (with up to 7 digits). This is a substantial dif-

ference with respect to the previously-mentioned railway instances, where each column

cost is either 1 or 2, and to the instances from the OR Library, where costs are always

in f1; : : : ; 100g. We compare algorithm CFT with algorithm Wed proposed by Wedelin

(1995). For all instances but the last one, an optimal solution was found by CPLEX,

and the corresponding values are reported in column \Opt" in Table 7. For instance

SASD9imp2, this column reports the rounded-up solution value of the LP relaxation.

Wedelin reports the computing time for the overall execution of his algorithm, but not

that for �nding the best solution for the �rst time; therefore a comparison of the com-

puting times is not easy. The solution values are similar for all instances: for instances

A320coc and SASD9imp2 Wed provides a slightly better solution, whereas the converse

happened for instance SASjump. No computational result for Beasley's OR-Library test

instances is reported in Wedelin (1995).

Finally, table 8 gives results for the real-world instances mentioned in Balas and

Carrera (1996). These instances arise from crew scheduling applications, either in airline

(Class `AA') or bus (Class `BUS') companies. For these instances, an optimal solution

was found by Balas and Carrera's branch-and-bound algorithm, requiring, on average,

23

Wed CFT

Name Size Dens Range Opt Sol Time

�

Sol Time

B727scratch 29� 157 8.2% 1,600-11,850 94,400 94,400 4.7 94,400 0.3

ALITALIA 118� 1; 165 3.1% 2,200-2,110,900 27,258,300 27,258,300 37.2 27,258,300 6.2

A320 199� 6; 931 2.3% 1,600-2,111,450 12,620,100 12,620,100 216.9 12,620,100 79.5

A320coc 235� 18;753 1.9% 1,900-1,812,000 14,495,500 14,495,500 1023.7 14,495,600 577.8

SASjump 742� 10;370 0.6% 4,720-55,849 7,338,844 7,340,777 806.8 7,339,537 396.3

SASD9imp2 1;366� 25;032 0.3% 3,860-35,200 5,261,088

�

5,262,190 1579.7 5,263,640 2082.1

Table 7: Results on the airline instances from Wedelin { Times are given in DECstation

5000/240 CPU seconds {

�

LP lower bound {

�

Overall time for the execution of the

heuristic algorithm.

100 CPU seconds. We also report the results of Balas and Carrera's heuristic (again the

version yielding better values). Algorithm CFT is capable of �nding an optimal solution

in all cases, within a computing time which is typically shorter (with a few exceptions)

than that required for the overall execution of algorithm BaCa.

9 Conclusions

We have proposed a new heuristic for the set covering problem, based on Lagrangian

relaxation. The algorithm uses subgradient optimization coupled with a very e�ective

pricing technique for cutting computing-time. The convergence properties of the stan-

dard subgradient procedures are improved on by taking into account the massive dual

degeneracy typically found in large scale instances from crew scheduling applications.

In particular, we propose a new way of de�ning the ascent direction and the step size,

allowing for a faster convergence to near-optimal dual solutions. We also describe and

test computationally several score-de�nition rules to be used within greedy algorithms,

exploiting the dual information available during subgradient optimization. A crucial step

of our algorithm is that of variable �xing. Extensive computational testing shows the

e�ectiveness of the �xing criteria we propose.

Although designed for solving very large scale instances coming from real-world rail-

way applications, our algorithm proved very robust: in 92 out of 94 instances of our test

bed we were able to �nd, within short computing time, the optimal (or the best known)

solution. Moreover, among the 18 instances for which the optimum is not known, in 6

cases our solution is better than any other solution found by previous techniques. We

do not know of any other commercial or academic code with comparable performance.

The proposed approach is also suitable for considering additional constraints arising in

real-world applications. We are currently developing an extension of our method which

takes into account several types of base constraints arising in railway crew scheduling

24

BaCa CFT

Name Size Dens Range Opt Sol Time

�

Sol Time

AA03 106� 8; 661 4.05% 91-3619 33,155 33,157 96.4 33,155 61.0

AA04 106� 8; 002 4.05% 91-3619 34,573 34,573 39.2 34,573 3.6

AA05 105� 7; 435 4.05% 91-3619 31,623 31,623 53.9 31,623 3.1

AA06 105� 6; 951 4.11% 91-3619 37,464 37,464 44.4 37,464 5.2

AA11 271� 4; 413 2.53% 35-2966 35,384 35,478 72.3 35,384 193.7

AA12 272� 4; 208 2.52% 35-2966 30,809 30,815 48.0 30,809 53.8

AA13 265� 4; 025 2.60% 35-2966 33,211 33,211 19.6 33,211 8.3

AA14 266� 3; 868 2.50% 35-2966 33,219 33,222 86.2 33,219 30.3

AA15 267� 3; 701 2.58% 35-2966 34,409 34,510 39.9 34,409 18.8

AA16 265� 3; 558 2.63% 35-2966 32,752 32,858 54.5 32,752 33.6

AA17 264� 3; 425 2.61% 35-2966 31,612 31,717 47.0 31,612 10.9

AA18 271� 3; 314 2.55% 35-2966 36,782 36,866 66.2 36,782 13.5

AA19 263� 3; 202 2.63% 35-2966 32,317 32,317 27.6 32,317 5.9

AA20 269� 3; 095 2.58% 35-2966 34,912 35,160 34.4 34,912 13.6

BUS1 454� 2; 241 1.89% 120-877 27,947 27,947 62.8 27,947 5.0

BUS2 681� 9; 524 0.51% 120-576 67,760 67,868 356.0 67,760 19.2

Table 8: Results on the real-world instances from Balas and Carrera { Times are given

in DECstation 5000/240 CPU seconds {

�

Overall time for the execution of the heuristic

algorithm.

problems. Preliminary computational results are promising. More generally, our frame-

work can be adapted to other 0-1 linear programs. Indeed, the main ideas of the scheme

(Lagrangian optimization coupled with pricing, the use of Lagrangian dual information

to drive a simple heuristic, variable �xing, and re�ning) can be applied in a more general

context, provided that an e�ective heuristic algorithm is available as a substitute for

procedure GREEDY.

Acknowledgements

We are grateful to Ferrovie dello Stato SpA, in particular to Pier Luigi Guida, for having

organized the FASTER competition. We also thank Egon Balas and Anders Nilsson for

providing us with the instances given in Tables 8 and 7, respectively, the anonymous

referees for their useful comments, and Stefano Nucci for his help in programming.

References

[1] Associazione Italiana di Ricerca Operativa, Ferrovie dello Stato SpA, \Metodi di

Ottimizzazione delle Risorse su Larga Scala - F.A.S.T.ER", Bando di Concorso,

March 1994.

25

[2] Associazione Italiana di Ricerca Operativa, Ferrovie dello Stato SpA, \Verbale Com-

missione Concorso FASTER", July and September 1994.

[3] E. Balas, \A Class of Location, Distribution and Scheduling Problems: Modeling

and Solution Methods", in P. Gray and L. Yuanzhang (eds.), Proceedings of the

Chinese-U.S. Symposium on Systems Analysis, J. Wiley and Sons, 1983.

[4] E. Balas and M.C. Carrera, \A Dynamic Subgradient-Based Branch and Bound

Procedure for Set Covering", Operations Research 44 (1996) 875{890.

[5] E. Balas and A. Ho, \Set Covering Algorithms Using Cutting Planes, Heuristics and

Subgradient Optimization: A Computational Study", Mathematical Programming

Study 12 (1980) 37{60.

[6] J.E. Beasley, \An Algorithm for Set Covering Problems", European Journal of Op-

erational Research 31 (1987) 85{93.

[7] J.E. Beasley, \A Lagrangian Heuristic for Set Covering Problems", Naval Research

Logistics 37 (1990) 151{164.

[8] J.E. Beasley, \OR-Library: Distributing Test Problems by Electronic Mail", Journal

of the Operational Research Society 41 (1990) 1069{1072.

[9] J.E. Beasley and P.C. Chu, \A Genetic Algorithm for the Set Covering Problem",

European Journal of Operational Research 94 (1996) 392{404.

[10] J.E. Beasley and K. J�ornsten, \Enhancing an Algorithm for Set Covering Problems",

European Journal of Operational Research 58 (1992) 293{300.

[11] P. Carraresi and G. Gallo, \Optimization Models in Mass Transit Resource Man-

agement", Ricerca Operativa 38 (1986) 121{150.

[12] S. Ceria, P. Nobili, and A. Sassano, \A Lagrangian-Based Heuristic for Large-Scale

Set Covering Problems", Technical Report R.406, 1995, IASI{CNR, Roma, to ap-

pear in Mathematical Programming.

[13] J.J. Dongarra, \Performance of Various Computers Using Standard Linear Equa-

tions Software", Technical Report No. CS-89-85, Computer Science Department,

University of Tennessee, November 1993.

[14] M.L. Fisher, \The Lagrangian Relaxation Method for Solving Integer Programming

Problems", Management Science 27 (1981) 1{18.

26

[15] M.L. Fisher and P. Kedia, \Optimal Solutions of Set Covering/Partitioning Prob-

lems Using Dual Heuristics", Management Science 36 (1990) 674{688.

[16] M. Held and R.M. Karp, \The Traveling Salesman Problem and Minimum Spanning

Trees: Part II", Mathematical Programming 1 (1971) 6{25.

[17] L.A.N. Lorena and F.B. Lopes, \A Surrogate Heuristic for Set Covering Problems",

European Journal of Operational Research 79 (1994) 138{150.

[18] P. Nobili and A. Sassano, \A Separation Routine for the Set Covering Polytope",

in E. Balas, G. Cornuejols, and R. Kannan (eds.), Integer Programming and Com-

binatorial Optimization, Proceedings of the 2nd IPCO Conference, Carnegie-Mellon

University Press, 1992.

[19] D. Wedelin, \An Algorithm for Large Scale 0-1 Integer Programming with Ap-

plication to Airline Crew Scheduling", Annals of Operational Research 57 (1995)

283{301.

27

