Exercises on ILP formulations

1. Given the following set S of integer solutions:
$S=\{(0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,0,1),(0,0,1,1)\}$ and the two polyhedron:
$P_{1}=\left\{x \in \mathfrak{R}^{4}: 0 \leq x \leq 1,83 x_{1}+61 x_{2}+49 x_{3}+20 x_{4} \leq 100\right\}$
$P_{2}=\left\{x \in \mathfrak{R}^{4}: 0 \leq x \leq 1,4 x_{1}+3 x_{2}+2 x_{3}+x_{4} \leq 4\right\}$
a) verify that both P1 and P2 are formulations for S;
b) establish which of the two formulations is the best one.

Solution:

Since both polyhedra contain as integer solutions all and only the points in S, they are both formulations of S. The formulation P_{2} is better than P_{1} because $P_{2} \subset P_{1}$ since multiplying by 25 both the members of the inequality characterizing P_{2} we obtain the inequality $100 x_{1}+75 x_{2}+50 x_{3}+25 x_{4} \leq 100$ that has the same right hand side of P_{1} but all the coefficients of the variables are smaller: this way we can see that e.g. point ($1, \frac{17}{61}, 0,0$) satisfies P_{1} but not P_{2}.
2. Consider a transport problem with m possible sources (plants) and n destinations (customers). In many applications, the problem of determining which of the possible origins must work arises, since opening a source i generates a startup fixed cost F_{i}. Are also known costs $c_{i j}$ to transport a single product from the source i to the destination j and the demand d_{j} of customer j. The aim is to determine the opening strategy of the plants and the transport plan with minimum total cost.
Let us introduce the variables $x_{i j} \geq 0$ to represent the quantity transported from origin i to destination j and the binary variables y_{i} such that:

$$
y_{i}=\left\{\begin{array}{l}
1 \text { if plant } i \text { is active } \\
0 \text { otherwise }
\end{array}\right.
$$

The problem can be modeled as P_{1} :

$$
\begin{align*}
& \min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}+\sum_{i=1}^{m} F_{i} y_{i} \\
& \sum_{i=1}^{m} x_{i j}=d_{j} \text { for } j=1, . ., n \tag{3.1}\\
& \sum_{j=1}^{n} x_{i j} \leq D y_{i} \text { for } i=1, . ., m \tag{3.2}\\
& x_{i j} \geq 0 \text { for } i=1, \ldots, m, \text { for } j=1, \ldots, n \\
& y_{i} \in\{0,1\} \text { for } i=1, . ., m
\end{align*}
$$

with $D=\sum_{j=1}^{n} d_{j}$.
Another possible formulation is P_{2} that differs from P_{1} only in constraints (3.2) that are replaced with the following $m n$ constraints:

$$
x_{i j} \leq d_{j} y_{i} \quad \text { for } j=1, \ldots, n(3.3)
$$

State and prove which of the two formulations is better.

Solution:

The formulation P_{2} is better than the previous one, P_{1} because if a vector (x, y) satisfies the constraints (3.3), adding both members of (3.3) for $j=1, \ldots, n$, it is (x, y) satisfying also (3.2). Therefore $P_{2} \subseteq P_{1}$. To prove that $P_{2} \subseteq P_{1}$, it is necessary to show a point of P_{1} that does not belong to P_{2}. Suppose for simplicity that m divides n, i.e. $n=k m$ with $k \geq 2$ and integer. Then, a solution in which each source serves all the demand of k subsequent destinations, that is

$$
x_{i j}=\left\{\begin{array}{l}
d_{j} \text { for } j=k(i-1)+1, \ldots, k(i-1)+k \\
0 \quad \text { otherwise }
\end{array} \text {, for } i=1, \ldots, m\right.
$$

and $y_{i}=\frac{1}{D} \sum_{j=k(i-1)+1}^{k(i-1)+k} d_{j}$ for $i=1, \ldots, m$, satisfies constraints (3.2) but not constraints (3.3): thus, such solution belongs to P_{1} but not P_{2}.

