
Università degli Studi di Milano

Heuristic algorithms

(laboratory sessions)

Roberto Cordone

– Academic year 2020/21 –

2

Contents

6 Recombination metaheuristics 5

6.1 Introduction . 5

6.2 Path Relinking . 6

6.2.1 Time complexity estimation 11

6.2.2 Empirical evaluation . 11

6.2.3 Parameter tuning . 12

6.3 Scatter Search . 15

6.3.1 Time complexity estimation 19

6.3.2 Empirical evaluation . 20

6.3.3 Parameter tuning . 21

6.4 Comparison with PR and random restart 21

3

4 Contents

Chapter 6

Recombination
metaheuristics

6.1 Introduction

In this chapter we consider a couple of recombination metaheuristics for the Max-
imum Diversity Problem (MDP), namely a Path Relinking (PR) and a Scatter
Search (SS) approach. Recombination-based approaches do not have a common
basic scheme, and they very frequently use randomization or memory. Therefore,
the distinction between heuristics and metaheuristics is much less easy to draw than
for constructive and exchange approaches. In general, however, they manipulate a
reference set of solutions extracting from it suitable subsets and combining the ele-
ments of such subsets to generate new solutions. The aim is to retrieve promising
portions from different solutions and integrate them in a better way, instead of la-
bouriously modifying the bad portions of a single solution while keeping the good
ones.

Since PR and SS algorithms are mainly deterministic methods based on the
idea of exploiting as much as possible the information provided by the data, the ini-
tial population usually consists of locally optimal solutions generated by a previous
exchange heuristic or metaheuristic. In order to make both methods virtually unlim-
ited, we need a mechanism to generate new solutions even when the recombination
mechanism fails to do so. For the sake of simplicity, we generate random solutions
and improve each of them to local optimality, as we have done in Chapter 4, to
restart the steepest ascent heuristic. In order to understand whether the perform-
ance of the two approaches depends on the recombination mechanism or not, we
will compare them with the simple steepest ascent heuristic with random restart
without applying any recombination procedure. In order to allow a fair compar-
ison among these very different approaches, we will impose a limit on the total
computational time as a termination condition.

The neighbourhood used in all three approaches will be the usual single-swap
neighbourhood NS1

, explored with the first-best strategy. We will discuss later in
detail how the mechanism to generate new solutions is integrated in the schemes
of PR and SS. These will be, therefore, more complicated than the ones reported
in the theoretical lessons, which assumed the approaches to terminate as soon as
the recombination operations fail to update the reference set. We will consider first
PR and then SS, contrary to the theoretical lessons, because the former is simpler
and this will allow to introduce more gradually different concepts and algorithmic
components.

5

6 6 Recombination metaheuristics

The command line arguments of the main procedure allow the user to choose
which of the three metaheuristics to apply and the associated parameters:

� for the PR metaheuristic, option -pr, followed by three parameters: the total
time τmax, the cardinality of the reference set |R|, and the seed of the pseu-
dorandom number generator;

� for the SS metaheuristic, option -ss, followed by four parameters: the total
time τmax, the cardinality of the best set |B| and of the diverse set |D|, and
the seed of the pseudorandom number generator;

� for the random restart metaheuristic, option -rr, followed by two parameters:
the total time τmax and the seed of the pseudorandom number generator.

The structure of the main function is therefore the usual one, with the exception
that no starting solution is generated, because the population is initialized inside
the two recombination procedures.

parse_command_line(argc,argv,data_file,algo,&tauMax,&seed,&nb,&nd);

load_data(data_file,&I);

create_solution(I.n,&x);

start = clock();

if (strcmp(algo,"-ss") == 0)

scatter_search(&I,&x,"-fb",tauMax,nb,nd,&seed);

else if (strcmp(algo,"-pr") == 0)

path_relinking(&I,&x,"-fb",tauMax,nb,&seed);

else if (strcmp(algo,"-rr") == 0)

random_restart(&I,&x,"-fb",tauMax,&seed);

end = clock();

tempo = (double) (end - start) / CLOCKS_PER_SEC;

printf("%s ",data_file);

printf("%10.6f ",tempo);

print_sorted_solution(&x,I.n);

printf("\n");

destroy_solution(&x);

destroy_data(&I);

6.2 Path Relinking

The Path Relinking metaheuristic manages a reference set, that is composed of the
best known solutions. We will denote it as B (instead of R) to stress the similarities
with the design of the Scatter Search approach. The basic scheme of PR extracts
pair of solutions from B and applies an auxiliary exchange procedure to move from
the first to the second solution of each pair. Then, it identifies the best solution
along each path thus determined and improves it with an exchange procedure.
Usually, for the sake of simplicity, the exchange procedure used for both purposes is
the same used to generate the solutions of the reference set. The only difference is
that, when drawing the relinking path, the objective is to minimize the Hamming
distance from the final solution, and only secondarily to optimize the objective of

6.2 Path Relinking 7

the problem. The locally optimal solution found for each pair is checked to decide
whether it is worth inserting in the reference set. The process terminates when all
solutions generated in this way are rejected, and the reference set is not updated.

Therefore, this scheme has an intrinsic termination condition. In order to pro-
long it indefinitely, if the candidate solutions generated by the relinking paths are
less than a given number, new ones are generated at random and improved by
steepest ascent. The same process is applied (with no candidate obtained by re-
combination) to generate the starting reference set. Then, these candidate solutions
are tested for insertion in the reference set. This is not the only possible approach:
many others are used in the literature, but this one has the advantage of being
simple. An important distinction is between the static update, which collects the
new solutions in a pool and tests them for insertion in the reference set at the end of
the recombination phase, and the dynamic update, which immediately tests the new
solutions. The former approach has the advantage of a simpler implementation and
of exploiting all the generated solutions, whereas the latter can remove a solution
from the reference set before using it for recombination. On the other hand, the
latter approach is more aggressive, as it immediately exploits the new solutions,
possibly leading to good results earlier. We will adopt the static update for the
sake of simplicity.

The resulting scheme is the following:

Algorithm PathRelinking(I, τmax, nB)

B := ∅;P := ∅;
While Time() ≤ τmax do

{ Build or integrate the candidate population }
While |P | < nB do

x := RandomSolution(I);

x := SteepestAscent(x);

If x /∈ P then P := P ∪ {x};
EndWhile

{ Test the candidate solutions for insertion in the reference set }
For each x ∈ P do

If x /∈ B then B := UpdateBestSet(B, x);

EndFor

{ Recombine the solutions in the reference set into candidate ones }
P := ∅;
For each (x, y) ∈ B ×B do

Γx,y := FindRelinkingPath(x, y, I);

z := arg max
w∈Γxy\{x,y}

f (w);

z := SteepestAscent(z);

If z /∈ P then P := P ∪ {z};
EndFor

EndWhile

x∗ := arg max
x∈B

f (x);

Return (x∗, f (x∗));

Function Time() returns the time elapsed from the beginning of the algorithm,
in order to enforce the termination condition. In C, this is done with function

8 6 Recombination metaheuristics

clock(), that returns the number of time units1 elapsed since the beginning of the
execution. For the sake of simplicity, we will call this function only in the outer
loop. If performing a single iteration is slow, due to the size and features of the
instance, to the size of the reference set or any other factor, the time limit will be
actually violated. This should be avoided checking the time also inside the inner
loops. Of course, too frequent checks negatively affect the overall computational
time.

The first inner loop builds a population of candidate solutions by generating ran-
dom solutions and improving them with steepest ascent. For the sake of simplicity,
the number of candidates is set large enough to fill the reference set (nB), though
in general it could be larger. Duplicate candidates are not accepted, because they
would not provide any advantage in the following operations. There is therefore
a risk that this loop could not terminate, if many identical locally optimal solu-
tions are obtained. This is rather unlikely, however, with a sufficiently diversifying
generation mechanism, such as a random extraction. Notice that in the following
iterations of the outer loop, the random candidates will be used only to integrate
the solutions generated by recombination when the latter are too few, and that the
candidates derived from recombination could be more numerous than nB , in which
case this loop will simply be skipped. Additional parameters could be introduced
to tune all these aspects.

The second inner loop tests each candidate solution to check whether it deserves
to be included in the reference set B. This is done with a suitable procedure that, in
the positive case, adds the solution to update the subset. At the end, the population
is cleared, because all its useful elements have been added to the reference set.

The third inner loop considers each pair of solutions (x, y) from B, draws a re-
linking path from x to y and finds the best solution z on this path (excluding the two
extremes). This is then improved by steepest ascent and saved in the population P .
The exchange procedure will, as usual, exploit the single-swap neighbourhood, but
it will use the global-best strategy when drawing the relinking path, and the first-
best strategy when improving the solution. The reason is that the neighourhood
used to move between candidate solutions is severely limited by the requirement to
strictly reduce the Hamming distance from the final solution, so that a more care-
ful exploration of the neighbourhood seems preferable. When all pairs of reference
solutions have been considered, the algorithm starts a new iteration.

The procedures required by this phase of the implementation are in part avail-
able in the library solutionpool, that manages the allocation and deallocation
of solution pools (create solutionpool and destroy solutionpool), the search
for a given solution in a pool (is in solutionpool), the append of a new solu-
tion at the end of a pool with residual room (add solution to pool), the inser-
tion of a new solution in a pool of solutions sorted by increasing objective values
(update best set), and the removal of all solutions from a pool (clean solutionpool).
The generation of a random solution, that was already implemented in Chapter 3,
is provided in library randomsolution.

The practical implementation creates at the beginning and destroys in the end
a current solution x and two pools of solutions B and P, representing the reference
set and the population of candidate solutions. Two pools are required by the static
update, that first builds all candidates and then tests them for insertion in the
reference set. Pool B has maximum size nb; it is sorted by nondecreasing values
of the objective, and solutions are added to it in the second loop by procedure

1Typically, they are milliseconds or microseconds, depending on the machine. QUESTO VA
ANTICIPATO NEL COMMENTO AL MAIN DEL PRIMO CAPITOLO, DATO CHE SI USA
ANCHE LI’, LASCIANDO QUI SOLO UN RICHIAMO.

6.2 Path Relinking 9

update best set. Pool P is unsorted, solutions are added at the end of the available
space in the first and the third loop; its size is nb*(nb-1), because the first loop
stops when it reaches nb solutions and the third loop considers all pairs of solutions
of B, though the actual number will probably be much smaller. At the end of the
second loop, pool P is cleaned: that is simpler and more efficient than deallocating
and reallocating it, exactly as it is preferable to clean the auxiliary solution x after
its use2. The only procedure that is used and declared, but not yet implemented, is
find relinking solution, that determines the relinking path and returns its best
solution (excluding the two extremes x and y). This is then improved by steepest
ascent and included among the candidate ones, if it is not a duplicate.

start = clock();

create_solution(pI->n,&x);

create_solutionpool(nb,&B);

create_solutionpool(nb*(nb-1),&P);

while (((double)clock() - start) / CLOCKS_PER_SEC < tauMax)

{

/* Build or integrate the candidate population */

while (P.card < nb)

{

clean_solution(&x,pI->n);

generate_random_solution(pI,&x,pseed);

steepest_ascent(pI,&x,visit_strategy,&iter);

if (!is_in_solutionpool(&x,pI->n,&P)) add_solution_to_pool(&x,pI->n,&P);

}

/* Test the candidate solutions for insertion in the reference set */

for (s = 1; s <= P.card; s++)

update_best_set(P.S[s],pI->n,&B);

clean_solutionpool(&P);

/* Recombine the solutions in the reference set into candidate ones */

for (s = 1; s <= B.card; s++)

for (s2 = 1; s2 <= B.card; s2++)

if (s != s2)

{

clean_solution(&x,pI->n);

find_relinking_solution(B.S[s],B.S[s2],pI,"-gb",&x);

steepest_ascent(pI,&x,visit_strategy,&iter);

if (!is_in_solutionpool(&x,pI->n,&P)) add_solution_to_pool(&x,pI->n,&P);

}

}

if (B.card > 0) copy_solution(B.S[1],px);

destroy_solution(&x);

destroy_solutionpool(&B);

destroy_solutionpool(&P);

The implementation of function find relinking solution builds upon the
steepest ascent procedure. There are two main differences:

2An interesting point to discuss on the management of solutions pools is whether to add copies
of the new solutions, as it is done at present, or move them physically into the pool. I have not
pondered this point enough to take a clear decision.

10 6 Recombination metaheuristics

1. the procedure minimizes first the Hamming distance from the final solution
y, then the objective function (in case of ties);

2. the procedure terminates when solution y is reached.

The special features of the MDP, in particular its only constraint fixing the cardin-
ality of the solution, implies that:

1. the only way to reduce the Hamming distance of the current solution z from
y (always exactly by 2) is to swap a point in z \ y with a point in y \ z;

2. it is possible to focus on the moves that reduce the Hamming distance and
avoid all other moves of NS1

;

3. there are |z \ y| · |y \ z| such moves, that is a positive number, as long as z 6= y:
the best of these moves will be performed.

Since the size of this neighbourhood and the number of moves is probably much
smaller than for a typical single-swap, we will adopt the global-best visit strategy
for the relinking path identification. An experimental comparison with the first-best
strategy should be performed, but we will not do it for lack of time.

create_solution(pI->n,&z);

copy_solution(px,&z);

clean_solution(pz,pI->n);

do

{

explore_neighbourhood_for_relinking(&z,py,pI,visit_strategy,&p_in,&p_out,&delta_f);

if (p_in != NO_POINT)

{

swap_points(p_in,p_out,&z,pI);

if (z.f > pz->f) copy_solution(&z,pz);

}

} while (p_in != NO_POINT);

The neighbourhood is explored in procedure explore neighbourhood for relinking

exactly as in the steepest ascent heuristic, with two limitations to guarantee that
the solutions explored are closer to the final one than the current solution: the de-
leted point p in must not belong to the final solution y, and the added point p out

must belong to the final solution y. This is similar to what happens in Tabu Search,
but much simpler, as it is just a straightforward reduction of the neighbourhood.
Notice that, if k < n/2, it would be more efficient to scan p out in py and check
that it is not in px.

*pdelta_f = INT_MIN;

*pp_in = *pp_out = NO_POINT;

for (p_in = first_point_in(px); !end_point_list(p_in,px); p_in = next_point(p_in,px))

if (!py->in_x[get_index(p_in,pI)])

for (p_out = first_point_out(px); !end_point_list(p_out,px); p_out = next_point(p_out,px))

if (py->in_x[get_index(p_out,pI)])

{

delta_f = evaluate_exchange(p_in,p_out,px,pI);

if (delta_f > *pdelta_f)

6.2 Path Relinking 11

{

*pdelta_f = delta_f;

*pp_in = p_in;

*pp_out = p_out;

}

}

6.2.1 Time complexity estimation

An a priori estimation of time complexity of the PR metaheuristic is quite com-
plex, as it consists of procedures of a very different nature, that include conditions
whose occurrence is usually unpredictable. Moreover, in our experiments the com-
putational time is fixed by the user. However, the analysis can suggest the relative
weight of the different components of the algorithm, and consequently on which
procedures and parameters to focus in order to improve it.

The first inner loop, in which random candidates are generated and improved,
is particularly hard to characterize: we know from Chapter 3 that random solu-
tions are usually reduced to a locally optimal one in a number of neighbourhood
explorations tmax that increases more than linearly with size. Of course, each ex-
ploration takes O (k(n− k)) time. The main problem is that this loop ends when
the population P includes at least nB solutions, which can take zero time (if the
relinking paths are enough to fill it) or a potentially infinite time (if the random
initializations repeat over and over again the same locally optimal solutions). A
very rough estimate can be O (nBtmaxk(n− k)) time.

The second inner loop tests all candidate solutions for insertion in B. In the
worst case, the candidates could be nB(nB − 1); each one could require to scan all
the reference solutions point by point (if all candidates and all reference solutions
have the same value, an extremely unlikely case); finally, each candidate could be
copied into the pool: overall, that would be O

(
n3
Bk + n2

Bn
)

time. In practice,
the candidate solutions are usually nB and most of them are tested against some
reference solutions using only the objective value (a single reference solution will be
enough to reject bad candidates), so the time could be as low as O (nB).

The third inner loop draws a relinking path for nB (nB − 1) pairs of refer-
ence solutions. Each path takes at most k neighbourhood explorations and each
exploration takes O (k(n− k)) time, as usual (probably with smaller multiply-
ing coefficients, due to the limitation of the neighbourhood). Then, the best
solution along the path is improved by steepest ascent. Overall, this should be
O
(
n2
B

(
k2(n− k) + tmaxk(n− k)

))
time, where tmax is probably smaller than for

a random initialization. This is probably the most expensive component of the
algorithm, though the first one could also be relevant. A profiler could confirm or
disprove it empirically, but its use exceeds the scope of the present discussion3.

6.2.2 Empirical evaluation

We can now evaluate the performance of the PR metaheuristic. We will experi-
ment with typical values for the number of reference solutions nB , ranging from
5 to 20. Smaller values would not be enough to generate enough new solution by
recombination, whereas larger values would take too much time to systematically
test all pairs and would also probably generate many duplicate or bad quality loc-
ally optimal solutions. Another possible experiment could be to compare the effect
of using the global-best or the first-best strategy in the two exchange procedures

3Next year, may be.

12 6 Recombination metaheuristics

that, respectively, improve the recombined and the random solutions or build the
relinking paths. For the sake of briefness, we will not perform this analysis.

The only other parameter is the total time. From the previous chapters we know
that for the largest instances of the benchmark 1 000 neighbourhood explorations
correspond to about 4 seconds and that a randomly generated solution requires
around 30 neighbourhood explorations. Each generation of the PR framework re-
quires to improve about n2

B solutions, some of which are fully random, whereas
most derive from the relinking paths. A very rough computation suggests that a
generation could take about 202 · 30/1 000 · 4 = 48 seconds. This is quite long with
respect to the time used in the previous chapters, though it is probably an overes-
timate, because the solutions derived from the relinking paths are probably quicker
to optimize. As a compromise, we will set the time to tmax = 30 seconds.

Notice that if the time limit is tested only at the beginning of each generation,
it could expire before the generation has ended, but the algorithm would terminate
only later, violating the limit. This happens also for the random restart approach,
because the steepest ascent procedure runs to completion before testing the time
limit. To avoid these violations, the condition should be tested more often; possibly,
a truncated version of steepest ascent should be designed. However, for the sake
of simplicity we will skip this step. Our experiments, in fact, show times ranging
from 30 to 30.9 seconds: a more precise termination would be desirable, but is not
strictly required for our rough analysis.

6.2.3 Parameter tuning

We now compare the effect on the quality of the solution of four different sizes of the
reference set, namely nB = 5, 10, 15 and 20. Table 6.1 reports the resulting average
gaps over the whole benchmark. For comparison purposes, the table also reports
the average gap obtained by the random restart approach. The best performing
configurations set nB = 15 and nB = 20.

PR RR
nB 5 10 15 20
Gap 0.26% 0.20% 0.12% 0.12% 0.10%

Table 6.1: Average gaps with respect to the best known result of the PR metaheur-
istic with different cardinalities of the reference set (nB) and of the random restart
algorithm (RR)

Figure 6.1 reports the SQD diagram of the four configurations, confirming the
relations suggested by the average gap (possibly with a prevalence of nB = 15 on
nB = 20, since the latter looks more or less dominated by random restart, whereas
the former does not).

The corresponding boxplots are reported in Figure 6.2, and approximately sug-
gest the same conclusions.

Finally, applying Wilcoxon’s test to compare the PR algorithm with nB = 15
with the other tunings we obtain the following results:

1. nB = 15 versus nB = 5

W+ = 569, W- = 134, N = 37, p <= 0.001062

2. nB = 15 versus nB = 10

6.2 Path Relinking 13

Figure 6.1: Solution Quality Distribution diagrams for the PR metaheuristic with
different cardinalities of the reference set (nB) and of the random restart algorithm
(RR)

Figure 6.2: Boxplot diagrams for the PR metaheuristic with different cardinalities
of the reference set (nB) and of the random restart algorithm (RR)

14 6 Recombination metaheuristics

W+ = 206, W- = 119, N = 25, p <= 0.2473

3. nB = 15 versus nB = 20

W+ = 144, W- = 109, N = 22, p <= 0.581

which suggests that only the first comparison is significant, whereas the other ones
could easily be the result of a random sampling. So, the results are inconclusive.

Comparison with random restart

The comparison between the PR metaheuristic and the steepest ascent with purely
random restart allows to estimate the contribution of recombination to the per-
formance. In fact, the PR metaheuristic adopts the same method to initialize the
population and to integrate it when recombination is not enough to fill the required
minimum number of solutions. From the tables and pictures presented above, all
configurations of the PR algorithm appear to be worse than random restart: even
the best one has an average gap of 0.12% versus 0.10%, and a SQD diagram that
is dominated in most of the range, though not for all values.

Wilcoxon’s test however yields the following results:

1. RR versus nB = 5

W+ = 411, W- = 184, N = 34, p <= 0.05337

2. RR versus nB = 10

W+ = 301, W- = 294, N = 34, p <= 0.9591

3. RR versus nB = 15

W+ = 247, W- = 314, N = 33, p <= 0.5554

4. RR versus nB = 20

W+ = 185, W- = 221, N = 28, p <= 0.6903

While we could expect some tests to be inconclusive, it is rather surprising to
find out that all of them are. Analyzing the detailed results, one can remark that
random restart seems to perform better on smaller instances and worse on larger
ones. Now, our application of Wilcoxon’s test considers the absolute differences,
whereas the SQD considers the relative differences, or percent gaps. The former
favours the algorithm that is better on large instances (PR), whereas the latter
favours the algorithm that is better on small instances (RR). This could perhaps
explain the results. Anyway, the most correct interpretation is probably to suspend
any judgment.

Another interesting insight can be obtained by plotting the values of the solu-
tions met along the relinking paths: we can see that typically the objective is good

6.3 Scatter Search 15

(that is, large) in the two extreme solutions and decreases in the intermediate ones.
Therefore, the best solution is usually the first or the last along the path, that is a
neighbour of the given locally optimal solutions4: the subsequent exchange heuristic
is unlikely to find better solutions. This means that the improvement is mainly due
to the random generation step, and therefore increasing the time dedicated to this
step by removing the recombination mechanism is actually profitable. In the largest
instances, however, this is not always the case: the recombination mechanism starts
yielding new solutions, whose quality is better than that of the random ones. These
are however just speculations, working hypothesis for further studies, that should
be verified checking the actual behaviour of the algorithm on some instances.

6.3 Scatter Search

The Scatter Search metaheuristic also manages a reference set R, that is however
composed of two subsets: B includes the best known solutions, D includes the most
diverse solutions. The basic scheme extracts pairs of solutions, one from B and
one from B ∪D, and combines them with a suitable procedure. Then, it improves
the new solution by an exchange procedure and checks whether the locally optimal
solution thus obtained is worth inserting in B (first) or in D (then). The process
terminates when all solutions generated in this way are rejected, and the reference
set is not updated. This scheme has an intrinsic termination condition, at least
if the recombination procedure is deterministic. In fact, applying it to the same
set of reference solutions, it generates the same locally optimal solutions. If the
recombination mechanism is randomized, different solutions could be obtained in
different iterations, but the process is very intensifying, so that, even if it is profitable
at first, in the long term it is likely to lead to repeated solutions and stagnation.

In order to implement a potentially unlimited algorithm with a user-defined time
limit, we exploit the same mechanism used for PR in the previous section, that is
also the same mechanism used to generate the starting population: new solutions
are produced by generating random solutions and improving them with steepest
ascent. Then, all solutions of the new population are tested for insertion in the
reference set, first in B and then in D. For the sake of simplicity, we will adopt
once again a static update mechanism.

The resulting scheme is the following.

4A possible idea could be to abandon the standard scheme of PR and improve an intermediate
solution, instead of the best one along the relinking path.

16 6 Recombination metaheuristics

Algorithm ScatterSearch(I, τmax, nB , nD)

B := ∅;D := ∅;P := ∅;
While Time() ≤ τmax do

{ Build or integrate the candidate population }
While |P | < nB + nD do

x := RandomSolution(I);

x := SteepestAscent(x);

If x /∈ P then P := P ∪ {x};
EndWhile

{ Test the candidate solutions for insertion in the reference set }
For each x ∈ P do

If x /∈ B then B := UpdateBestSet(B, x);

If x /∈ B ∪D then D := UpdateDiverseSet(D,x,B);

EndFor

{ Recombine the solutions in the reference set into candidate ones }
For each (x, y) ∈ B × (B ∪D) do

P := P∪ Recombine(x, y, I);

EndFor

EndWhile

x∗ := arg max
x∈B

f (x);

Return (x∗, f (x∗));

Notice the strong structural similarity with the scheme of PR. The first inner
loop builds a population of candidate solutions by generating random solutions
and improving them with steepest ascent. For the sake of simplicity, the number
of candidates is set large enough to fill the reference set (nB + nD). As in PR,
duplicate candidates are not accepted, because they would provide no advantage,
and a (very limited) risk of not terminating the loop exists.

The second inner loop tests each candidate solution to check whether it deserves
to be included in either of the two subsets B and D. This is done with suitable
procedures that, in the positive case, also add the solution to update the subset.
These procedures return true or false to indicate whether the candidate solution
has been accepted or not. A solution added to B is not tested on D. Since the
definition of “diverse” solution refers to both subsets, the update of the diverse set
requires set B, or at least information on the Hamming distance of each current
solution y ∈ D from B ∪ D \ {y}. At the end, the population P is cleaned, as in
PR.

The third inner loop considers each pair of solutions (x, y) from B × (B ∪D)
and recombines them to produce a solution z that is saved in pool P . Now the
algorithm goes back to the random generation, in case the recombined solutions are
not enough to provide the sufficient number of solutions to update the reference set.

The implementation can exploit many of the procedures already discussed: those
provided in library solutionpool to manages solution pools, and the generation of
random solutions. Of course, we need an additional pool D. As mentioned above,
the update of the diverse set requires information on the Hamming distance: the
two vectors Hmin and Htot provide, respectively, the minimum and total distance
of each reference solution from the other ones. We use both the minimum and total
distance to better discriminate between solutions: in fact, the Hamming distance

6.3 Scatter Search 17

is an integer value between 1 and k, and therefore it could easily assume identical
values for several solutions. The update procedure should take care to keep these
vectors sorted in the same way as the solutions in D.

Procedure recombine solutions simply recombines two solutions into a third
one in one of the several ways discussed in the theoretical lessons. In the present

18 6 Recombination metaheuristics

phase, we simply declare it without defining its content.

start = clock();

create_solutionpool(nb,&B);

create_solutionpool(nd,&D);

create_solutionpool(nb*(nb+nd),&P);

create_solution(pI->n,&x);

while (((double)clock() - start) / CLOCKS_PER_SEC < tauMax)

{

/* Build or integrate the candidate population */

while (P.card < nb + nd)

{

generate_random_solution(pI,&x,pseed);

steepest_ascent(pI,&x,visit_strategy,&iter);

if (!is_in_solutionpool(&x,pI->n,&P))

{

add_solution_to_pool(&x,pI->n,&P);

}

clean_solution(&x,pI->n);

}

/* Test the candidate solutions for insertion in the reference set */

for (s = 1; s <= P.card; s++)

{

insert = update_best_set(P.S[s],pI->n,&B);

if (!insert) insert = update_diverse_set(P.S[s],pI->n,&D);

}

/* Recombine the solutions in the reference set into candidate ones */

for (s = 1; s <= B.card; s2++)

{

for (s2 = 1; s2 <= B.card; s2++)

if (s != s2)

{

recombine_solutions(B.S[s],B.S[s2],pI,&x);

add_solution_to_pool(&x,pI->n,&P);

}

clean_solutionpool(&P);

for (s2 = 1; s2 <= D.card; s2++)

{

recombine_solutions(B.S[s],D.S[s2],pI,&x);

add_solution_to_pool(&x,pI->n,&P);

}

}

}

if (nb > 0) copy_solution(B.S[1],px);

destroy_solutionpool(&B);

destroy_solutionpool(&D);

destroy_solutionpool(&P);

The update of the diverse set is similar to the update of the best set provided in

6.3 Scatter Search 19

library solutionpool. It is however more complicated because pool D is sorted with
respect to the (minimum and total) Hamming distance from B ∪D. Therefore...

PROBLEM: THE DEFINITION OF POOL DOES NOT INCLUDE FIELDS
FOR Htot AND Hmin. USING EXTERNAL VECTORS MAKES THE CODE
MORE COMPLEX AND POSES THE QUESTION WHETHER THE FUNCTION
SHOULD BE INCLUDED OR NOT IN THE LIBRARY, PLUS THE FOLLOW-
ING ADDITIONAL PROBLEMS: WHEN ARE THE HAMMING DISTANCES
OF THE RECOMBINED SOLUTION COMPUTED? WHERE ARE THEY COM-
PARED WITH THE HAMMING DISTANCES OF THE SOLUTIONS IN D?

TO BE COMPLETED

The core of the SS metaheuristic is the recombination procedure. Usually, its
first step consists in initializing the new solution x with the intersection of the two
parent solutions x1 and x2. Then, the partial solution is augmented with elements
drawn from the two parents. This can be performed in several ways, concerning
two main aspects:

� whether the choice of the elements is random or greedy (or any semigreedy
combination): the first approach allows a given pair of parent solutions to
generate many different new solutions, the second usually generates better
solutions;

� whether the elements are chosen alternatively from the two parents or freely:
the first approach guarantees the largest possible distance from the two parent
solutions, the latter allows a larger variety (in particular, if combined with
choices at least partly random).

In the following, for the sake of simplicity, we will draw random elements altern-
atively from the two parent solutions, counting on the steepest ascent procedure
as a tool to generate good solutions (rather than on a greedy choice) and on the
recombination of good solutions as a tool to intensify the search (rather than on a
biased extraction favouring one parent). It is in general possible that the constraints
of the problem forbid to build a whole solution simply drawing random elements
from the two parents. In the case of the MDP, however, this is possible, thanks
to the very simple cardinality constraint. We have therefore simply to create an
empty solution, add to it the points that belong to both parents (for example, by
scanning one and checking which of its elements also belong to the other), put the
other points of both solutions in suitable vectors from which they can be extracted
at random, and perform the extraction as already done in several occasions in the
previous chapters.

UPDATE: FIRST, SCAN A SOLUTION AND PUT IN THE DESTINATION
THE POINTS THAT ARE ALSO IN THE OTHER SOLUTION. THEN, BUILD
VECTORS FOR THE REMAINING CANDIDATE POINTS FROM THE TWO
SOURCES. FINALLY, ALTERNATIVELY EXTRACT ONE POINT FROM EACH
OF THE TWO SOURCES, AND ADD IT TO THE RECOMBINED SOLUTION.
THERE IS MUCH IN COMMON WITH OTHER RANDOM EXTRACTIONS
USED IN THE PREVIOUS CHAPTERS.

TO BE COMPLETED

6.3.1 Time complexity estimation

A time complexity estimation of the SS metaheuristic is quite complex, as it consists
of procedures of a very different nature, including tests whose outcome is usually

20 6 Recombination metaheuristics

impossible to predict a priori. The generation of the reference set, for example,
requires a random extraction in O (kn) time, where coefficient n depends on the
update of vector D. This apparently plays no role, and therefore seems damaging,
but it still strongly accelerates the steepest ascent procedure, that probably gives
a large contribution to the overall computational time: an assumption to be veri-
fied empirically. Then, it requires a steepest ascent procedure, whose complexity
has already been characterized as O (tmax(n− k)k), where tmax is the number of
neighbourhood exploration from a random solution to the local optimum in which
steepest ascent terminates, that is an unknown function of n and k. The generation
is repeated until B and D are both full, which requires at least nB +nD iterations,
but it could require many more, if the locally optimal solutions found are often
the same. This depends strongly on chance and on the landscape of the problem
(the MDP should have a sufficiently rugged landscape to generate many different
local optima, but this is just a guess). Then, nB (nB + nD − 1) pairs of solutions are
taken into account5. For each pair, the recombination procedure requires to find the
intersection and the two set differences of the parent solutions (in time O (k)) and
to add the points of the intersection and random points of the differences to build
the new solution (in time O (n) for each of the k points, once again for the update
of vector D). Each solution must be checked for insertion in the best set B in time
O (k) (in the worst case, that becomes probably quite rare after a while, because
it corresponds to improving most of the best solutions at every attempt). If this
fails, it must be checked for insertion in the diverse set B in time WHO KNOWS?
The main problem is that there is no way to predict how many times these oper-
ations will be repeated overall. Therefore, the theoretical analysis is mainly useful
to determine the relative weight of the different contributions: the steepest ascent
procedure appears to be the most computationally intensive, and this justifies the
choice to keep vector D even if it slows down some of the other procedures.

6.3.2 Empirical evaluation

We can now evaluate the performance of the SS metaheuristic. We consider refer-
ence sets of the same size used for PR. In this case, however, we have two subset, B
and D. For the sake of simplicity, we assume them to have the same size. Since the
pairs of solution to be recombined are nB(nB + nD − 1), we will experiment with
the following configurations: nB = nD = 5, nB = nD = 10 and nB = nD = 15. In
this way, the number of pairs will not be very different from the one considered by
PR.

OTHER POSSIBLE PARAMETERS: GREEDY CHOICE VERSUS RANDOM
CHOICE; FREE CHOICE VERSUS ALTERNATE CHOICE

Computational time analysis

As for PR the computational time is fixed to 30 seconds overall.

TEST WHETHER THE TIME IS VIOLATED DUE TO THE CHECK MADE
ONLY AT THE BEGINNING OF EACH ITERATION (PRESUMABLY NOT).
IF THIS HAPPENS, ADD OTHER CHECKS.

5This means that every pair of best solutions is considered twice: once in each direction. The
random choice of elements during the recombination suggests that such a repetition could be
nonredundant, but this should be verified empirically.

6.4 Comparison with PR and random restart 21

6.3.3 Parameter tuning

AVERAGE RESULTS

Figure 6.3 reports the SQD diagram of the SS metaheuristic, compared with
that of the steepest ascent heuristic applied to purely random solutions. This allows
to estimate the contribution of recombination to the overall performance. In fact,
the SS metaheuristic adopts the same method to initialize the population and to
integrate it when recombination is not enough to fill the required minimum number
of solutions

Figure 6.3: Solution Quality Distribution diagram for the SS metaheuristic com-
pared with the steepest ascent heuristic initialised with random solutions with a
time limit of 30 seconds

The boxplots reported in Figure 6.4 provide the same information: SUMMARY
OF THE PICTURE

Figure 6.4: Boxplots for the SS metaheuristic compared with the steepest ascent
heuristic initialised with random solutions with a time limit of 30 seconds

WILCOXON’S TEST

6.4 Comparison with PR and random restart

	Recombination metaheuristics
	Introduction
	Path Relinking
	Time complexity estimation
	Empirical evaluation
	Parameter tuning

	Scatter Search
	Time complexity estimation
	Empirical evaluation
	Parameter tuning

	Comparison with PR and random restart

