
Heuristic Algorithms
Master’s Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule: Thursday 14.30 - 16.30 in classroom 503

Friday 14.30 - 16.30 in classroom 503

Office hours: on appointment

E-mail: roberto.cordone@unimi.it

Web page: https://homes.di.unimi.it/cordone/courses/2024-ae/2024-ae.html

Ariel site: https://myariel.unimi.it/course/view.php?id=4466

Lesson 21: Recombination metaheuristics: SS and PR Milano, A.A. 2024/25
1 / 1

https://homes.di.unimi.it/cordone/courses/2024-ae/2024-ae.html
https://myariel.unimi.it/course/view.php?id=4466

Recombination heuristics

Constructive and exchange heuristics manage one solution at a time
(except for the Ant System)

Recombination heuristics manage several solutions in parallel

• start from a set (population) of solutions (individuals) obtained somehow

• recombine the individuals generating a new population

Their original aspect is the use of operations working on several solutions,
but they often include features of other approaches (sometimes renamed)

Some are nearly or fully deterministic

• Scatter Search

• Path Relinking

others are strongly randomised (often based on biological metaphors)

• genetic algorithms

• memetic algorithms

• evolution strategies

Of course the effectiveness of a method does not depend on the metaphor

2 / 1

General scheme

The basic idea is that

• good solutions share components with the global optimum

• different solutions can share different components

• combining different solutions, it is possible to merge optimal
components more easily than building them step by step

The typical scheme of recombination heuristics is

• build a starting population of solutions

• as long as a suitable termination condition does not hold

• at each iteration (generation) update the population
• extract single individuals and apply exchange operations to them
• extract subsets of individuals (usually, pairs) and

apply recombination operations to them
• collect the individuals thus generated and

choose whether to accept or not each of them and how many copies
into the new population

3 / 1

Scatter Search
Scatter Search (SS), proposed by Glover (1977), proceeds as follows

1 generate a starting population of solutions

2 improve all of them with an exchange procedure

3 build a reference set R = B ∪ D where
• subset B includes the best known solutions
• subset D includes the “farthest” solutions (from B and each other)

(this requires a distance definition, e.g. the Hamming distance)

4 for each pair of solutions (x , y) ∈ B × (B ∪ D)
• “recombine” x and y , generating z
• improve z obtaining z ′ with an exchange procedure
• if z ′ /∈ B and B contains a worse solution, replace it with z ′

(we want no duplicates in the reference set)
• if z ′ /∈ D and D includes a closer solution, replace it with z ′

(we want no duplicates in the reference set)

5 terminate when R is unchanged

The rationale is that

• the recombinations in B × B intensify the search

• the recombinations in B × D diversify the search

4 / 1

General scheme of the Scatter Search approach

Algorithm ScatterSearch(I ,P, nB , nD)

B := ∅;D := ∅;
Repeat

Stop = true;

For each x ∈ P do

z := SteepestDescent(I , x); If f (z) < f (x∗) then x∗ := z;

yB := arg max
y∈B

f (y); yD := arg min
y∈D

d (y ,B ∪ D \ {y});

If z /∈ B and (|B| < nB or f (z) < f (yB)) then

{ B keeps the nB best unique solutions }
B := B ∪ {z}; Stop := false; If |B| > nB then B := B \ {yB};

ElseIf z /∈ D and (|D| < nD or d (z,B ∪ D \ {yD}) > d (yD ,B ∪ D \ {yD})) then

{ D keeps the nD most diverse unique solutions }
D := D ∪ {z}; Stop := false; If |D| > nD then D := D \ {yD};

EndIf

EndFor

P := ∅;
For each (x, y) ∈ B × (B ∪ D) do { Recombine to build the new population }

P := P∪ Recombine(x, y , I);

EndFor

until Stop = true;

Return (x∗, f (x∗));

5 / 1

Recombination procedure

The recombination procedure depends on the problem

Usually, solutions x and y are manipulated as subsets

1 include in z all the elements shared by x and y :

z := x ∩ y

(both solutions concur in suggesting those elements)

2 augment solution z adding elements from x \ z or y \ z
• chosen at random or with a greedy selection criterium
• alternatively from each source or freely from the two sources

(this is similar to a restricted constructive heuristic)

3 if necessary, add external elements from B \ (x ∪ y)

4 if subset z is unfeasible, apply an auxiliary exchange heuristic
to make it feasible (repair procedure)

6 / 1

Examples

MDP

• start with z := x ∩ y

• augment z with k − |z | random or greedy points from x \ z or y \ z
• no repair procedure is required

Max-SAT

• start with z := x ∩ y

• augment z with n − |z | random or greedy truth assignments
from x \ z or y \ z

• no repair procedure is required

7 / 1

Examples

KP

• start with z := x ∩ y

• augment z with random or greedy elements from x \ z or y \ z
respecting the capacity

• no repair procedure is required

• the solution could be augmented with elements from B \ (x ∪ y)

SCP

• start with z := x ∩ y

• augment z with random or greedy columns from x \ z or y \ z
(avoiding the redundant ones)

• remove the redundant columns with a destructive phase

8 / 1

Path Relinking

Path Relinking (PR), proposed by Glover (1989), is generally used as a
final intensification procedure more than as a stand-alone method

Given a neighbourhood N and an exchange heuristic based on it

• collect in a reference set R the best solutions generated by the
auxiliary heuristic (elite solutions)

• for each pair of solutions x and y in R
• build a path γxy from x to y in the search space of neighbourhood N

applying to z (0) = x the auxiliary exchange heuristic,
but choosing at each step the solution closest to the destination y

z (k+1) := arg min
z∈N(z(k))

d (z , y)

where d is a suitable metric function on the solutions
In case of equal distance, optimise the objective function f

• find the best solution z∗xy along the path (and improve it)

z∗xy := arg min
k∈{1,...,|γxy |−1}

f (z (k))

• if z∗xy /∈ R and is better than the worst in R, add it to R

9 / 1

General scheme of the Path Relinking approach
Algorithm PathRelinking(I ,P, nR)

Repeat

R := ∅;
For each x ∈ P do

z := SteepestDescent(I , x); If f (z) < f (x∗) then x∗ := z;

yR := arg max
y∈R

f (y);

If z /∈ R and (|R| < nR or f (z) < f (yR)) then

{ R keeps the nR best unique solutions }
R := R ∪ {z}; Stop := false; If |R| > nR then R := R \ {yR};

EndIf

EndFor

P := ∅;
For each x ∈ R and y ∈ R \ {x} do { Recombine to build the new population }

z := x ; z∗ := x ;

While z ̸= y do { Build a path from x to y }
Z := arg min

z′∈N(z)
d
(
z′, y

)
; z := arg min

z′∈Z
f
(
z′
)
;

If f (z) < f (z∗) then z∗ := z

EndWhile;

If z∗ /∈ P then P := P ∪ {z∗};
EndFor

until Stop = true;

Return (x∗, f (x∗));
10 / 1

Relinking paths

The paths explored in this way

• intensify the search, because they connect good solutions

• diversify the search, because they follow different paths with respect
to the exchange heuristic (especially if the extremes are far away)

• since the distance of z (k) from y is decreasing, one can explore
• worsening solutions without the risk of cyclic behaviours
• unfeasible subsets without the risk of not getting back to feasibility

(they do not improve directly, but open the way to improvements)

11 / 1

Variants

Given two solutions x and y , Path Relinking has several variants:

• forward path relinking: build a path from the worse to the better one

• backward path relinking: build a path from the better to the worse
one

• back-and-forward path relinking: build both paths

• mixed path relinking: build a path with alternative steps from each
extreme (updating the destination)

• truncated path relinking: build only the first steps of the path
(if the good solutions are experimentally close to each other)

• external path relinking: build a path from one moving away from the
other (if the good solutions are experimentally far from each other)

12 / 1

