Heuristic Algorithms Master's Degree in Computer Science/Mathematics

Roberto Cordone DI - Università degli Studi di Milano

Lesson 21: Recombination metaheuristics: SS and P[R](#page-0-0) [Milano, A.A. 2024/25](#page-0-0)

Recombination heuristics

Constructive and exchange heuristics manage one solution at a time (except for the Ant System)

Recombination heuristics manage several solutions in parallel

- start from a set (population) of solutions (individuals) obtained somehow
- recombine the individuals generating a new population

Their original aspect is the use of operations working on several solutions, but they often include features of other approaches (sometimes renamed)

Some are nearly or fully deterministic

- Scatter Search
- Path Relinking

others are strongly randomised (often based on biological metaphors)

- genetic algorithms
- memetic algorithms
- evolution strategies

Of course the effectiveness of a method does not depend on the metaphor

 $\mathbf{E} = \mathbf{A} \in \mathbf{E} \times \mathbf{A} \in \mathbf{B} \times \mathbf{A} \oplus \mathbf{B} \times \mathbf{A} \oplus \mathbf{A}$

General scheme

The basic idea is that

- good solutions share components with the global optimum
- different solutions can share different components
- combining different solutions, it is possible to merge optimal components more easily than building them step by step

The typical scheme of recombination heuristics is

- build a starting population of solutions
- as long as a suitable termination condition does not hold
- at each iteration (generation) update the population
	- extract single individuals and apply exchange operations to them
	- extract subsets of individuals (usually, pairs) and apply recombination operations to them
	- collect the individuals thus generated and choose whether to accept or not each of them and how many copies into the new population

 Ω

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

Scatter Search

Scatter Search (SS), proposed by Glover (1977), proceeds as follows

- **1** generate a starting population of solutions
- **2** improve all of them with an exchange procedure
- **6** build a *reference set* $R = B \cup D$ where
	- \bullet subset B includes the best known solutions
	- subset D includes the "farthest" solutions (from B and each other) (this requires a distance definition, e.g. the Hamming distance)
- \bullet for each pair of solutions $(x, y) \in B \times (B \cup D)$
	- "recombine" x and y , generating z
	- improve z obtaining z' with an exchange procedure
	- if $z' \notin B$ and B contains a worse solution, replace it with z' (we want no duplicates in the reference set)
	- if $z' \notin D$ and D includes a closer solution, replace it with z' (we want no duplicates in the reference set)
- Θ terminate when R is unchanged

The rationale is that

- the recombinations in $B \times B$ intensify the search
- the recombinations in $B \times D$ diversify the s[ear](#page-2-0)[ch](#page-0-0)

General scheme of the Scatter Search approach

```
Algorithm ScatterSearch(I, P, n_B, n_D)
B := \emptyset; D := \emptyset;
Repeat
  Stop = trueFor each x \in P do
      z := SteepestDescent(I, x); If f(z) < f(x^*) then x^* := z;
      y_B := \arg \max_{y \in B} f(y); y_D := \arg \min_{y \in D} d(y, B \cup D \setminus \{y\});
      If z \notin B and (|B| < n_B or f(z) < f(y_B)) then
         \{B \text{ keeps the } n_B \text{ best unique solutions }\}B := B \cup \{z\}; Stop := false; If |B| > n_B then B := B \setminus \{y_B\};
      Elself z \notin D and (|D| < n_D or d (z, B \cup D \setminus \{y_D\}) > d(y_D, B \cup D \setminus \{y_D\}) then
         \{ D \text{ keeps the } n_D \text{ most diverse unique solutions } \}D := D \cup \{z\}; Stop := false; If |D| > n_D then D := D \setminus \{y_D\};
      EndIf
   EndFor
   P := \emptyset:
  For each (x, y) \in B \times (B \cup D) do { Recombine to build the new population }
      P := P \cup Recombine(x, y, l):
   EndFor
until Stop = true;Return (x^*, f(x^*));\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A}
```
Recombination procedure

The recombination procedure depends on the problem Usually, solutions x and y are manipulated as subsets \bullet include in z all the elements shared by x and y:

 $z := x \cap y$

(both solutions concur in suggesting those elements)

2 augment solution z adding elements from $x \setminus z$ or $y \setminus z$

- chosen at random or with a greedy selection criterium
- alternatively from each source or freely from the two sources

(this is similar to a restricted constructive heuristic)

- **3** if necessary, add external elements from $B \setminus (x \cup y)$
- **4** if subset z is unfeasible, apply an auxiliary exchange heuristic to make it feasible (repair procedure)

 $\mathbf{E} = \mathbf{A} \mathbf{E} \mathbf{b} + \mathbf{A} \mathbf{E} \mathbf{b} + \mathbf{A} \mathbf{B} \mathbf{b} + \mathbf{A} \mathbf{b}$

Examples

MDP

- start with $z := x \cap y$
- augment z with $k |z|$ random or greedy points from $x \setminus z$ or $y \setminus z$
- no repair procedure is required

Max-SAT

- start with $z := x \cap y$
- augment z with $n |z|$ random or greedy truth assignments from $x \setminus z$ or $y \setminus z$
- no repair procedure is required

Examples

KP

- start with $z := x \cap y$
- augment z with random or greedy elements from $x \setminus z$ or $y \setminus z$ respecting the capacity
- no repair procedure is required
- the solution could be augmented with elements from $B \setminus (x \cup y)$

SCP

- start with $z := x \cap y$
- augment z with random or greedy columns from $x \setminus z$ or $y \setminus z$ (avoiding the redundant ones)
- remove the redundant columns with a destructive phase

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A}$

Path Relinking

Path Relinking (PR), proposed by Glover (1989), is generally used as a final intensification procedure more than as a stand-alone method

Given a neighbourhood N and an exchange heuristic based on it

- collect in a reference set R the best solutions generated by the auxiliary heuristic (elite solutions)
- for each pair of solutions x and y in R
	- build a path γ_{xy} from x to y in the search space of neighbourhood N applying to $z^{(0)} = x$ the auxiliary exchange heuristic, but choosing at each step the solution closest to the destination y

$$
z^{(k+1)} := \arg\min_{z \in N(z^{(k)})} d(z, y)
$$

where d is a suitable metric function on the solutions In case of equal distance, optimise the objective function f • find the best solution z_{xy}^* along the path (and improve it)

$$
z^*_{xy} := \arg\min_{k \in \{1, \ldots, |\gamma_{xy}|-1\}} f(z^{(k)})
$$

• if $z_{xy}^* \notin R$ $z_{xy}^* \notin R$ and is better than the worst in R[,](#page-7-0) [add it to](#page-0-0) R

General scheme of the Path Relinking approach

Algorithm PathRelinking(I, P, n_R) Repeat $R := \emptyset$: For each $x \in P$ do $z :=$ SteepestDescent(*I*, *x*); If $f(z) < f(x^*)$ then $x^* := z$; $y_R := \arg\max_{y \in R} f(y);$ If $z \notin R$ and $(|R| < n_R$ or $f(z) < f(y_R)$) then $\{ R \text{ keeps the } n \text{ and } n \}$ best unique solutions $\}$ $R := R \cup \{z\}$; Stop := false; If $|R| > n_R$ then $R := R \setminus \{y_R\}$; EndIf EndFor $P := \emptyset$: For each $x \in R$ and $y \in R \setminus \{x\}$ do { Recombine to build the new population } $z := x; z^* := x;$ While $z \neq y$ do $\{$ Build a path from x to y $\}$ $Z := \arg\min_{z' \in N(z)} d(z', y); z := \arg\min_{z' \in Z} f(z');$ If $f(z) < f(z^*)$ then $z^* := z$ EndWhile; If $z^* \notin P$ then $P := P \cup \{z^*\};$ EndFor until $Stop = true;$ $Return (x^*, f(x^*));$

10 / 1

 Ω

Relinking paths

The paths explored in this way

- intensify the search, because they connect good solutions
- diversify the search, because they follow different paths with respect to the exchange heuristic (especially if the extremes are far away)

• since the distance of $z^{(k)}$ from y is decreasing, one can explore

- worsening solutions without the risk of cyclic behaviours
- unfeasible subsets without the risk of not getting back to feasibility (they do not improve directly, but open the way to improvements)

Given two solutions x and y , Path Relinking has several variants:

- forward path relinking: build a path from the worse to the better one
- backward path relinking: build a path from the better to the worse one
- back-and-forward path relinking: build both paths
- mixed path relinking: build a path with alternative steps from each extreme (updating the destination)
- truncated path relinking: build only the first steps of the path (if the good solutions are experimentally close to each other)
- external path relinking: build a path from one moving away from the other (if the good solutions are experimentally far from each other)