Heuristic Algorithms Master's Degree in Computer Science/Mathematics

Roberto Cordone DI - Università degli Studi di Milano

Lesson 18: *VND* and *DLS* [Milano, A.A. 2024/25](#page-0-0)

Extending the local search without worsening

Instead of repeating the local search, extend it beyond the local optimum To avoid worsening solutions, the selection step must be modified

$$
\tilde{x} := \arg\min_{x' \in N(x)} f(x')
$$

and two main strategies allow to do that

- the *Variable Neighbourhood Descent* (*VND*) changes the neighbourhood N
	- it guarantees an evolution with no cycles (the objective improves)
	- it terminates when all neighbourhoods have been exploited
- the Dynamic Local Search (DLS) changes the objective function f $(\tilde{x}$ is better than x for the new objective, possibly worse for the old)
	- it can be trapped in loops (the new objective changes over time)
	- it can proceed indefinitely

Variable Neighbourhood Descent (VND)

The Variable Neighbourhood Descent of Hansen and Mladenović (1997) exploits the fact that a solution is locally optimal for a specific neighbourhood

• a local optimum can be improved using a different neighbourhood

Given a family of neighbourhoods $N_1, \ldots, N_{s_{tot}}$

 \bigcap set $s := 1$

- 2 apply a *steepest descent* exchange heuristic and find a local optimum \bar{x} with respect to N_s
- **3** flag all neighbourhoods for which \bar{x} is locally optimal and update s
- \bullet if \overline{x} is a local optimum for all N_s , terminate; otherwise, go back to point 2

Algorithm VariableNeighbourhoodDescent $(I, x^{(0)})$ $\text{flag}_s := \textsf{false} \,\,\forall k;$ $\bar{x} := x^{(0)}$; $x^* := x^{(0)}$; $s := 1$; While $\exists s : \text{flag}_s = \text{false}$ do \bar{x} := SteepestDescent(\bar{x} , s); { possibly truncated } $\text{flag}_s := \text{true};$ If $f(\bar{x}) < f(x^*)$ then $x^* := \bar{x}$; $\text{flag}_{s'} := \text{false} \ \forall s' \neq s$; $s := Update(s)$; EndWhile; $Return (x^*, f (x^*));$ **KORKARYKERKE PROGRAM** Using many neighbourhoods means that some might be

- rather large
- slow to explore

In order to increase the efficiency of the method one can

- adopt a first-best strategy in the larger neighbourhoods
- terminate the Steepest Descent before reaching a local optimum (possibly even after a single step)

Larger neighbourhoods aim to move out of the basins of attraction of smaller neighbourhoods

There is of course a strict relation between VND and VNS (in fact, they were proposed in the same paper)

The fundamental differences are that in the VND

- at each step the current solution is the best known one
- the neighbourhoods are explored, instead of being used to extract random solutions

They are never huge

• the neighbourhoods do not necessarily form a hierarchy

The update of s is not always an increment

• when a local optimum for each N_s has been reached, terminate

VND is deterministic and would not find anything else

Neighbourhood update strategies for the VND

There are two main classes of VND methods

- methods with heterogeneous neighbourhoods
	- exploit the potential of topologically different neighbourhoods (e.g., exchange vertices instead of edges)

Consequently, s periodically scans the values from 1 to s_{tot} (possibly randomly permuting the sequence at each repetition)

- methods with hierarchical neighbourhoods ($N_1 \subset \ldots \subset N_{s_{tot}}$)
	- fully exploit the small and fast neighbourhoods
	- resort to the large and slow ones only to get out of local optima (usually terminating SteepestDescent prematurely)

Consequently, the update of s works as in the VNS

- when no improvements can be found in N_s , increase s
- when improvements can be found in N_s , decrease s back to 1

Terminate when the current solution is a local optimum for all N_s

- in the heterogeneous case, terminate when all fail
- in the hierarchical case, terminate when the largest fails

Example: the CMSTP

This instance of CMSTP has $n = 9$ vertices, uniform weights $(w_v = 1)$, capacity $W = 5$ and the reported costs (the missing edges have $c_e \gg 3$)

Consider neighbourhood N_{S_1} (single-edge swaps) for the first solution:

- no edge in the right branch can be deleted because the left branch has zero residual capacity and a direct connection to the root would increase the cost
- deleting any edge in the left branch increases the total cost The solution is a local optimum for N_{S_1}

Neighbourhood $N_{\mathcal{T}_1}$ (single-vertex transfers) has an improving solution, obtained moving vertex 5 from the left branch t[o th](#page-5-0)[e right one](#page-0-0),

Dynamic Local Search (DLS)

The Dynamic Local Search is also known as Guided Local Search

Its approach is complementary to VND

- it keeps the starting neighbourhood
- it modifies the objective function

It is often used when the objective is useless because it has wide *plateaus*

The basic idea is to

- define a penalty function $w: X \to \mathbb{N}$
- build an auxiliary function $\tilde{f}(f(x), w(x))$ which combines the objective function f with the penalty w
- apply a steepest descent exchange heuristic to optimise \tilde{f}
- at each iteration update the penalty w based on the results

The penalty is adaptive in order to move away from recent local optima but this introduces the risk of cycling

General scheme of the DLS

Algorithm DynamicLocalSearch $(I, x^{(0)})$ $w :=$ StartingPenalty(1); $\bar{x} := x^{(0)}$; $x^* := x^{(0)}$; While $Stop() = false$ do $(\bar{x}, x_f) :=$ SteepestDescent (\bar{x}, f, w) ; { possibly truncated } If $f(x_f) < f(x^*)$ then $x^* := x_f$; $w := UpdatePenalty(w, \bar{x}, x^*)$; EndWhile; $Return (x^*, f (x^*));$

Notice that the steepest descent heuristic

- optimises a combination \tilde{f} of f and w
- returns two solutions:

1 a final solution \bar{x} , locally optimal with respect to \tilde{f} , to update w

2 a solution x_f , that is the best it has found with respect to f

Variants

The penalty can be applied (for example)

• additively to the elements of the solution:

$$
\tilde{f}(x) = f(x) + \sum_{i \in x} w_i
$$

• multiplicatively to components of the objective $f(x) = \sum$ $\sum_j \phi_j(x)$:

$$
\tilde{f}\left(x\right)=\sum_{j}w_{j}\,\phi_{j}\left(x\right)
$$

The penalty can be updated

- at each single neighbourhood exploration
- when a local optimum for \tilde{f} is reached
- when the best known solution x^* is unchanged for a long time

The penalty can be modified with

- random updates: "noisy" perturbation of the costs
- memory-based updates, favouring the most frequent elements (intensification) or the less frequent ones (d[ive](#page-8-0)r[sification\)](#page-0-0)

Example: DLS for the MCP

Given a undirected graph, find a maximum cardinality clique

- the exchange heuristic is a *VND* using the neighbourhoods
	- \bm{D} \mathcal{N}_{A_1} (vertex addition): the solution always improves, but the neighbourhood is very small and often empty
	- \bullet \mathcal{N}_{S_1} (exchange of an internal vertex with an external one): the neighbourhood is larger, but forms a *plateau* (uniform objective)
- the objective provides no useful direction in either neighbourhood
- associate to each vertex i a penalty w_i initially equal to zero
- the exchange heuristic minimises the total penalty (within the neighbourhood!)
- update the penalty
	- **D** when the exploration of N_{S_1} terminates: the penalty of the current clique vertices increases by 1
	- 2 after a given number of explorations: all the nonzero penalties decrease by 1

The rationale of the method consists in aiming to

- expel the internal vertices (diversification)
- in particular, the oldest internal vertices (memory) (memory) (memory)

Example: DLS for the MCP

Start from $x^{(0)} = \{B,C,D\}$, with $w = [\, 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \,]$

 \bullet w({B, C, E}) = w({A, B, D}) = 2, but {A, B, D} wins lexicographically: $x^{(1)} = \{A, B, D\}$ with $w = [\,1 \ 2 \ 1 \ 2 \ 0 \ 0 \ 0 \ 0 \ 0 \,]$ $\mathbf{2} \hspace{0.5mm} \mathbf{x}^{(2)} = \{ B, C, D \}$ with $w = \left[\, 1 \, 3 \, 2 \, 3 \, 0 \, 0 \, 0 \, 0 \, 0 \, \right]$ is the only neighbour \bullet w({B, C, E}) = 5 < 7 = w({A, B, D}): $x^{(3)} = \{B,C,E\}$ with $w = [\,1 \ 4 \ 3 \ 3 \ 1 \ 0 \ 0 \ 0 \ 0 \,]$ Φ w({C, E, F}) = 4 < 10 = w({B, C, D}): $x^{(4)} = \{\textsf{\textit{C}},\textsf{\textit{E}},\textsf{\textit{F}}\}$ with $w = [\,1$ 4 4 3 2 1 0 0 0 $]\,$ \bullet w({E, F, G}) = 3 < 11 = w({B, C, E}): $x^{(5)} = \{E, F, G\}$ with $w = [\,1 \ 4 \ 4 \ 3 \ 3 \ 2 \ 1 \ 0 \ 0 \,]$ \bullet w({F, G, H}) = w({F, G, I}) = 3 < 9 = w({C, E, F}): $x^{(6)} = \{F, G, H\}$ with $w = [1 4 4 3 3 3 2 1 0]$

Now the neighbourhood N_{A_1} N_{A_1} is not empty: $x^{(7)} = \{F, \mathcal{G}, \mathcal{H}, \mathcal{G}\}$ Ω

Example: DLS for the MAX-SAT

Given m logical disjunctions depending on n logical variables, find a truth assignment satisfying the maximum number of clauses

- $\bullet\,$ neighbourhood $\textit{N}_{F_{1}}\ (1\text{-flip})$ is generated complementing a variable
- \bullet associate to each logical clause a penalty w_j initially equal to 1 (each component is a satisfied formula)
- the exchange heuristic maximizes the weight of satisfied clauses thus modifying their number with the multiplicative penalty
- the penalty is updated
	- **1** increasing the weight of unsatisfied clauses to favour them

 $w_i := \alpha_{\text{us}} w_i$ for each $j \in U(x)$ (with $\alpha_{\text{us}} > 1$)

when a local optimum is reached

2 reducing the penalty towards 1

 $w_j := (1 - \rho) w_j + \rho \cdot 1$ for each $j \in C$ (with $\rho \in (0, 1)$)

with a certain probability or after a certain number of updates

The rationale of the method consists in aiming to

- satisfy the currently unsatisfied clauses (diversification)
- in particular, those which have been unsatisfied for longer time and more recently (memory)

The parameters tune intensification and diversification

- small values of α_{us} and ρ preserve the current penalty (intensification)
- large values of α_{us} push away from the current solution (diversification)
- large values of ρ lead push towards the local optimum of the current attraction basin (a different kind of intensification)