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Abstract

Local search methods for combinatorial optimization make a series of steps, at each stage improving the current
solution by moving to a neighbouring solution. This is usually done by considering the neighbouring solutions one at
a time and moving to the first one which gives an improvement (a first-improving method). In this paper we consider
whether there are circumstances in which some other strategy will have better performance. In exploring this
question we begin by giving a theoretical treatment of a simple model with random objective values at each solution
point. We carry out some experiments on the Travelling Salesman Problem and the Quadratic Assignment Problem
using varying values of a spread parameter, k. The value of k corresponds to the number of improving solutions
looked at before making a move. We also make some conjectures relating the overall performance of the local search
method to the average number of solutions which are evaluated before a local minimum is reached.
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1. Introduction

Local search techniques have been very popu-
lar as a means of finding reasonable solutions to
hard combinatorial optimization problems (see
for example the chapter on local search in Pa-
padimitriou and Steiglitz, 1982). Recent interest
in this area has also been stimulated by the
increasing use of methods such as Simulated An-
nealing and Tabu Search, both of which are re-
lated to straightforward local search. There are
innumerable examples of combinatorial problems
for which local search methods have been sug-
gested as appropriate, or for which a local search
method can be used to improve a solution which
has been generated by some other heuristic
method.

Local search methods work on the assumption

that there is some neighbourhood structure de-
fined on the space of all possible solutions. We
shall write X for the set of all possible solutions.
There is also a given objective function (or cost),
clx) for x€X. It is desired to find an optimal
solution, i.e. an x* € X with c(x ") < c{(x) for all
x € X. For each x € X we define a set of neigh-
bours N(x), a subset of X. We shall assume that
the neighbourhood relation is symmetric, so that
if x is in N(y) then y is also in N(x). The
neighbourhoods define what is ‘local’ to a given
solution point. We will attempt to find an optimal
solution by making a series of local moves, and
we therefore ought to ensure that we can move
throughout X using a sequence of such moves.
This property is conveniently described by defin-
ing the neighbourhood graph which consists of a
node for each solution point with an undirected
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arc joining two nodes if and only if they are
neighbours. Then the condition that we can move
in a sequence of steps to any solution point
translates into the condition that the neighbour-
hood graph is connected.

The simplest local search technique is to move
from each point to a neighbouring point with a
smaller value of the objective function. This pro-
cess repeats until a solution is reached which is
better than any of its neighbours. This can be
thought of as a ‘local’ optimum, and with luck it
will not be much worse than the global optimum.
An obvious way to improve on this solution
method is to run the procedure a number of
times starting from different, perhaps randomly
generated, initial solutions. In this way we are
likely to generate a number of local optima and
we can then choose the best of these as our final
solution. In this paper we will assume this mode!
of local search and concentrate on the method
that is used to select a neighbour with an im-
proved objective function value. Yannakakis
(1990) refers to this as the pivot rule.

There are two basic methods which have been
commonly used to select an improving neighbour:

(a) Best-improving: We can look at all the
neighbours of a given solution and then move to
the best. This is in effect a ‘steepest descent’
method — we make the local move which pro-
duces the greatest improvement. Tovey (1985)
uses the term optimal adjacency algorithm for
this method.

(b) First-improving: We can look at the neigh-
bours one by one, taking them in a random order,
and move to the first one that we find which is an
improvement on the current solution. In effect
we are taking a random sample of the neigh-
bours, taking the sample one at a time and with-
out replacement in order to avoid looking at the
same neighbour more than once.

There is also another version of the first-im-
proving method which has been found to be
effective in practice, which we will call ordered
first-improving local search (Papadimitrioun and
Steiglitz use the term circular searching). It often
happens that all the neighbourhood sets are the
same size and that there is a natural correspond-
ence between any two neighbourhood sets. One

example of this occurs when solutions to a prob-
lem can be represented by binary strings of a
certain length, n say. In this case a natural neigh-
bourhood structure can be obtained by defining
two solutions as neighbours if they differ in ex-
actly one bit of their binary string representa-
tions. Then we can index the neighbours of each
point by letting N, (x) be the string whose i-th
component differs from x,i=1, 2,...,n.

For any problem in which neighbours can be
indexed in a consistent way, we can define or-
dered first-improving local search as first-impro-
ving local search in which neighbours are consid-
ered in their natural order and the sequence is
continued from where it left off after a move is
made. Thus for example if, in looking at neigh-
bours of x, the first one found which is better is
y = Nj,(x), say, then the first neighbour of y to
be looked at is N;(y), and then N, ,(y), and this
is continued, if no improvement is found, until
N,(y) is reached at which point we start again
from N,(y) going on till N,(y), when we can
deduce that we have found a local optimum.

The main aim of this paper is to explore the
difference between first-improving and best-im-
proving local search, but the paper may be of
interest for other reasons. First our analysis and
experimental results suggest that the average
number of different solutions looked at in a sin-
gle run of a local search method may be an
effective predictor of the performance of local
search — if this conjecture is correct it will be
helpful in deciding between two alternative
neighbourhood structures for a given problem.

It is not straightforward to obtain conclusive
results from experiments on local search methods
for combinatorial optimization: there are often a
bewildering variety of factors which may have an
influence, and there are real difficulties in assess-
ing how the choice of best method may be af-
fected by the amount of computing time avail-
able, and how much preliminary ‘tuning’ of pa-
rameters is proper. In this paper we are consider-
ing a very straightforward issue and this will make
it easier to address some of these difficulties. The
approach we have used in our computational
work may be of interest to others working in this
field, as indicating one possible way to deal with
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the difficulties of presentation and analysis of
results.

In this paper we begin by discussing some
idealised models of the local search method to
guide us in understanding the different types of
behaviour that are observed in using different
local search methods. We consider both a ran-
dom model and also a model with structure. Then
we report the results of an experimental study of
different local search methods for the Travelling
Salesman Problem and the Quadratic Assignment
Problem. Finally we analyse the expected number
of solutions evaluated before a local minimum is
reached and explore how this varies with problem
size.

2. Random values

In this section we consider a problem in which
the values of each solution are assigned ran-
domly, being drawn from some probability distri-
bution. Then it becomes possible, at least in
principle, to carry out some analysis to find the
expected value of the local optimum which is
reached starting from a given point and knowing
the structure of the neighbourhood graph. In
these circumstances, for reasons which we will
discuss below, we would expect best-improving
local search to do better than first-improving
local search.

We begin with a result in which we assume
that X is an infinite set of solutions. In doing this
we depart from the usual assumptions for a com-
binatorial optimization problem, but nevertheless
the result is of interest.

Theorem 1. Suppose that each solution has the
same number, N, of neighbours, the neighbour-
hood graph is an infinite tree, and that the values
assigned to solutions are independent identically
distributed random variables. For a given starting
point, x, let Vg(x) be the expected value of the
(locally optimal) solution reached using best-im-
proving local search, and let Vi(x) be the expected
value of the solution reached using first-improving
local search. Then Vg(x) < Vi(x).

Proof. We will prove this result, not by directly
comparing the values of the best solution found
under the two strategies, but by looking at the
number of different solutions that are evaluated.
Since the solution values are i.i.d. random vari-
ables the final result, which is the best solution
evaluated, is a random variable with a distribu-
tion which only depends on the total number of
solutions evaluated. We will show that the num-
ber of solutions evaluated is greater under best-
improving local search.

First consider first-improving local search. It is
easy to see that the local search will stop if
evaluations 2 up to N + 1 are all worse than the
first evaluation, or if at any stage after this a
sequence of N — 1 successive evaluations are per-
formed without finding an improving solution. In
these circumstances we will have completely eval-
uated a neighbourhood of the current best solu-
tion.

Now consider best-improving local search. In
this case we do not immediately move to the best
solution we have so far found, but only after a
round of N — 1 evaluations are made (or N eval-
uations at the start). The consequence is that we
may make a sequence of N — 1 evaluations with-
out making an improvement and still not be forced
to stop. For example consider the situation shown
in Fig. 1 in which N=3 and the local search
begins at node 1 (the node numbers are shown
inside the circles). Suppose that the numbers
shown beside each node are a particular realisa-
tion of the function values. If nodes are looked at
in node order then there will be successive evalu-
ation of nodes 6 and 7 which both have function
values worse than the ‘current’ best solution which
is node 5. This cannot happen with first-impro-
ving local search in which evaluation of two suc-
cessive solutions worse than the current best solu-
tion causes the search to stop. Notice also that
best-improving local search cannot be forced to
stop after less than N — 1 unsuccessful evalua-
tions.

In this way of looking at the problem both
procedures amount to the successive evaluation
of i.i.d. random variables until some stopping rule
operates. We have shown that the stopping rule
for best-improving local search only stops when
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that for first-improving also stops, and moreover
there are situations in which first-improving stops
but best-improving does not. Thus the number of
evaluations made under best-improving local
search is (stochastically) greater than that under
first-improving local search and the theorem is
established. 0O

The model we have used here, which is an
infinite tree, will be appropriate for a large neigh-
bourhood graph in which there are no short cy-
cles (paths through the graph which return to
their starting point). Since every step is an im-
proving one the probability of a large number of
steps being taken will be small, and thus the
structure locally is all that is important. Provided
that there are no short cycles, the existence of
long cycles is unlikely to influence the behaviour
of the two algorithms and we will be able to
conclude that the best-improving algorithm will
produce a better expected final value. Neverthe-
less this theorem is rather weaker than we would
like. We conjecture that the result remains true
for any problem in which each solution has the
same number of neighbours and the neighbour-

Fig. 1. An example with N = 3.
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Fig. 2. The neighbourhood graph for Example 1.

hood graph makes no distinction between differ-
ent nodes (so in this sense all solutions are equiv-
alent).

In other words we do not believe that the tree
structure restriction is necessary for the theorem
to hold. On the other hand the restriction that
each solution has the same number of neighbours
is a necessary condition, as the following example
makes clear.

Example 1. Consider a neighbourhood graph hav-
ing the form of Fig. 2 in which local search always
starts from node 1 and in which node values are
set as one of 3, 2, 1 and 0 with probabilities of %, i—,
1 —¢ and e respectively. We suppose that the
values of L and & are chosen (large and small
respectively) so that the probability of a value 0
occurring at one of the nodes 1, 2, 3,4, 5,6, 0r 7
is small enough to be ignored but there is almost
always a 0 value amongst each of the 4 sets of L
neighbours of the nodes 4, 5, 6 and 7.

If node 1 has a value 0 then both algorithms
stay at node 1. If node 1 has value 1, then both
algorithms will move to node 2 or 3 if they
contain a 0 but otherwise stay at node 1. In either
case the eventual value will be the same for both
algorithms. If node 1 has value 2 then there is the
possibility of the two algorithms ending with dif-
ferent values, but this can only happen if one of
nodes 2 and 3 has the value 1 and the other has
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the value 0. Since ¢ is very small, the probability
of this occuring is very small.

If node 1 has value 3 then there are more
possible outcomes, including the possibility that
first-improving does better than best-improving.
There are a number of cases in which a zero
value occurs amongst nodes 2 to 7, but these
happen only with a very small probability. The
significant case occurs when one of nodes 2 and 3
has value 2 (say node 2) and the other has value
1. The best-improving algorithm will then move
to node 3 and end with a value of 1 (unless one of
nodes 6 and 7 has a value of 0 which happens
with a very small probability). With probability 3
the first-improving algorithm will do the same
and with probability it will move to node 2. In
this case it stops at node 2 if neither of nodes 3
and 4 have a value of 1 or 0. On the other hand if
it does move to one of nodes 3 and 4 then
because of the large size of k there is a very high
probability that it will end with a value of 0. Thus,
if there is a difference between the two policies,
then there is a probability of approximately
that it favours best-improving and a probability of
approximately 3 that it favours first-improving.
Consequently the first-improving algorithm will
do better overall.

We have carried out some numerical tests to
verify this reasoning. Using a simulation we can
show that, for this example, with ¢ = 35 and L =
60 the first-improving algorithm achieves an ex-
pected value of about 0.92, while the best-impro-
ving algorithm achieves an expected value of
about 0.93.

It is important to realise that the result of
Theorem 1 applies to a situation when just one
run of a local search procedure is used. In these
circumstances, under the assumption of random
solution values, a better resuit will be obtained by
using best-improving local search. But as we
pointed out in the introduction, it would be nor-
mal to take a number of runs from different
random starting positions. In this case the appar-
ent advantage of the best improving method will
disappear. Since there is no structure within the
problem, the quality of the final solution will
depend only on the total number of evaluations
carried out. So if some finite amount of computer

time is available, there will be no difference be-
tween the two methods — since there are fewer
evaluations required for a single run of the first
improving method there will be time for more
runs in total. In Section 4, below, we will return
to the issue of how to compare two different
methods in circumstances where there is only a
finite amount of computer time available.

3. Local search for problems with structure

It is clear that the model we have considered,
in which the values for each solution point are
i.i.d. random variables, leaves out those aspects of
the approach which make it successful in prac-
tice. If it were really the case that there was no
relation between the value of neighbouring solu-
tions, then one might as well proceed by taking
an entirely random sample from all the possible
solutions, evaluating them and then choosing the
best. There are two reasons for using local search
in practice. One reason is that it is often easier to
calculate a change in solution value obtained
when moving to a neighbour, than it would be to
calculate the solution value starting from scratch.
Consequently local search offers a potential time
saving over a random sampling method. The sec-
ond and more important reason is that local
search can exploit the fact that neighbouring so-
lutions have similar values.

It is often misleading to think of neighbour-
hood graphs as having a planar structure, but a
model with these properties does make it clear
how local search can be effective when the solu-
tion values are well-structured. Consider a model
in which the solutions can be described by their
position (x, y), with x and y integers, and where
we take (x,, y,) and (x,, y,) as neighbours if

'xl"x2|+|Y1_)’2| =1.

Suppose that the value of solution (x, y) is
| x| + | y |. We call this the inverted pyramid model.
Then each step of a local search procedure will
reduce one of | x| and | y | and the procedure will
rapidly reach the optimum x =y = 0.

Now consider the behaviour of the first-impro-
ving and best-improving methods for this model.
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Once underway the best-improving method will
consider three neighbours at each step, whereas
first-improving will consider at most two neigh-
bours (except when one of x and y is 0). Thus
the first-improving method will reach the opti-
mum more quickly.

As another example of a structured problem
consider a pattern matching problem in which the
solution is defined by a string (x|, x,,..., x,) of
(’s and 1’s and the objective function is Y(x, —
a;)?, where the values (a,, a,,...,a,) constitute
the pattern which we wish to match. We take two
solutions as neighbours if they differ at only one
position in the string. Here again the first-impro-
ving method will reach the optimum much faster
than the best-improving method. The reason for
this is that if there is an improving move, say
changing the string element at position m, then
the same improving move is still available after
some other move has been made. There is thus
no point in expending computational time look-
ing at a number of possible improvements to find
the best: this ‘best’ move will still be available to
us later on in the search procedure even if we do
not take it now. Something similar is also happen-
ing in the inverted pyramid model.

This gives one reason why we might expect the
first-improving method to be superior in real
problems — it may move more quickly to a local
optimum. A second reason is that it may be less
likely to become stuck in a relatively poor local
optimum. To understand this type of behaviour
consider 2 model in which there is a mixture
between an inverted pyramid structure and a
random element. Suppose for example that the
solution value at (x, y) is | x|+ |y|+e,, where
€,, is a random variable taking the value —3 with
a small probability, and otherwise being 0. Thus
we have an inverted pyramid of | x|+ |y| with
the occasional dent in it. In Fig. 3 we illustrate
this behaviour at the point (10, 10) assuming that
£10,10 1S €qual to —3.

It is not hard to see that in these circum-
stances the best-improving method leads to the
solution becoming stuck in one of the false local
minima more often than the use of the first-im-
proving method. For example, using the data of
the figure, starting at the point (11, 10) we are

1
20 /i\21

T T T -

9 10 1 X

Fig. 3. Solution values on a grid.

bound to move to (10, 10) using the best-impro-
ving method, but we have a probability of only &
of doing so using the first-improving method from
this starting point. The consequence is that in this
case the use of the first-improving method will
lead to a better final solution value than the use
of the best-improving method.

It may be interesting to note that in this situa-
tion even better performance is obtained by tak-
ing a worst-improving method. This is defined as
a method which selects the worst solution from
the set of necighbours of the current solution
which improve on the current solution. This is a
kind of ‘shallowest descent’ policy which can be
expected to take a long time to reach a good
solution, but minimizes the chance of falling into
a local optimum too early.

4. The experiments

There are obviously many pivot rules which
are intermediate between best-improving and
first-improving. It is convenient to define a single
spread parameter k (which is a positive integer)
in order to parameterise a whole class of improv-
ing policies. We make a single improving step by
considering neighbours of the current solution
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one at a time without replacement until we have
found k improving neighbours (or until we have
considered all the neighbours of the current solu-
tion), and then we move to the best of these.
Using this definition, a value of k& equal to 1 gives
rise to the first-improving method.

Our experiments have been carried out on the
Travelling Salesman Problem (TSP) and on the
Quadratic Asignment Problem (QAP). These are
both intensively studied combinatorial optimiza-
tion problems, which makes them a natural choice
for our purposes. For the TSP we consider a
100-city problem, with a Euclidean distance ma-
trix. For the QAP we consider a 20 location
problem. We have also carried out experiments,
which we do not include here, on a number of
50-city TSPs and also some 30 location QAPs.
We would have preferred to use larger problems,
but if we had done so it would not have been
possible to carry out such comprehensive experi-
ments.

We begin by testing different values of the
spread parameter & using a 2-Opt edge exchange
neighbourhood. This is the simplest neighbour-
hood which has been found to be effective for the
symmetric TSP. We generated a problem with
100 city locations drawn at random from a square.
Starting solutions were generated at random. This

is the approach that has been usually followed
when using multiple local search, though Wong
and Morris (1989) argue for a more systematic
selection of starting points. In Fig. 4 scatter plots
are given for 50 runs with spread parameter k = 1
(first improving), and for 50 runs with k= 16.
These show the length of the final tour reached
and the number of different tours which were
evaluated along the way. This latter quantity is
the dominant term in the total computation re-
quirement and we have chosen to use it as a
surrogate for computation time, since this will
make it easier to compare our results with those
of other researchers.

As can be seen from the scatter plots using
k=1 is much faster, but the use of a larger
spread parameter leads, on average, to slightly
better solutions. Nevertheless, for any fixed
amount of computing time we could make a far
greater number of runs with k=1 than with
k = 16 and this might well lead to a better solu-
tion being found. In this sense the data we have
so far looked at does not make it clear which is
the better value for k.

In order to address this question we suppose
that there is only time for a fixed number of
evaluations, and ask what is the expectation of
the best value achieved over a succession of runs

1900 -
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Fig. 4. Scatter plots for k =1 and k& = 16.
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from different starting points which total to no
more than this number of evaluations? This is the
quantity which we need to estimate as a function
of the allowed number of evaluations. In order to
do this we propose to make a relatively large
number of runs and then consider the results we
would have obtained (in terms of the best solu-
tion so far at different stages) if these runs had
occured in a different order. In this way we will
make the best use of all the experimental data we
_obtain. In fact we will consider up to 2000 runs
from different random starting points and then
estimate the figure we want by taking the average
of the best-so-far results from 200 different ran-
dom reorderings of these runs. There are neater
ways to make this estimate in the case that all
runs are of the same, or nearly the same, length
(see for example Johnson et al., 1989). In our
experiments, however, the number of evaluations
in a single run varied considerably depending on
the starting point, as can be seen from Fig. 4.
The results obtained are shown in Fig. 5. Since
changing the value of k& has the effect of chang-
ing the number of evaluations in each run, we
needed fewer runs with higher values of k. For
every problem instance and parameter setting we

»

% sbove best solution
w

made sufficient runs to generate 10 million solu-
tion evaluations. In each case the graph gives the
average of results obtained on 10 different ran-
domly generated instances of the problem at
hand. The same problem instances were solved
for each of three values of the spread parameter
k. For each problem instance we record the best
solution ever found (which is unlikely to be opti-
mal for this size of problem). Then we look at the
best solution found so far as a function of the
number of evaluations for each of 200 different
random reorderings of the data from individual
runs of the local improvement method. These
figures are then averaged for a given problem
instance and recorded in terms of the percentage
above the best solution found. The graphs show
an average result from all 10 problem instances.
It is clear from Fig. 5 that, for this type of TSP,
using the first-improving method is in general the
best choice. We have carried out an extensive set
of experiments with 50-city TSPs, for non-
Euclidean as well as Euclidean distances. For
these problems we also tried using the Or-opt
move to define a neighbourhood - this takes a
segment of 1, 2 or 3 cities from one position in
the tour, and inserts them into a different place,

2
1 A k=1
o —

0 1 2

Number of evaluations (millions)

Fig. 5. Solution quality for TSP with 100 locations.
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possibly reversed in sequence (see Golden and
Stewart, 1985). All these experiments support the
conclusion that first-improving is the method of
choice. This is in agreement with the intuition we
gained from considering the models of Section 3,
given that we are concerned with both solution
time and solution quality.

We also carried out experiments on the
Quadratic Assignment Problem (QAP). In this
case we generated both cost and flow matrices
using uniformly distributed random numbers. Lo-
cal search techniques have been found to be
quite effective for QAP using a neighbourhood
which simply swaps the assignment of two facili-
ties between locations. It has been observed that
a best-improving search is more effective than
first-improving for QAP. This observation is com-
plicated, however, by the fact that a complete
search of the entire neighbourhood can be car-
ried out more efficiently using the results from a
complete search carried out on the previous step
(see Burkard and Rendl, 1984). For this reason,
the best-improving method, which requires a
complete search of each neighbourhood, can ob-
tain a time advantage over the first-improving
method. In the experiments reported here this

2.6 1

factor is ignored, and, as before, we just consider
the total number of solutions evaluated.

Fig. 6 shows the results obtained for randomly
generated 20-location QAPs, using the same ap-
proach as for the TSP problems (so that we
consider 10 different problem instances and 200
different random reorderings of the local search
results for each problem instance). As before the
first-improving method appears to be best, but
best-improving search is now seen to be competi-
tive for problems in which a large amount of
computation time is available. There is no a
priori reason to suppose that the best choice of
pivot rule should be insensitive to the amount of
computing time available to solve a problem. We
might expect the lines giving performance for
different spread parameters to cross-over, with
larger values of k£ beginning to dominate for very
long computation times. We observed no evi-
dence for this in practice for any of the TSP
problems we looked at.

5. Predicting local search performance

It is natural to ask what are the characteristics
of the problem, and in particular the characteris-

% above best solution

06 -

Number of evaluations (millions)
Fig. 6. Solution quality for QAP with 20 locations.
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tics of the neighbourhood structure, which may
cause one method to be better than another. One
way to approach this question is to look at the
structure of the neighbourhood graph. For exam-
ple, it would be natural to expect local search
techniques to work better on neighbourhood
graphs with a relatively small diameter, or at least
a small mean distance between nodes. A conve-
nient proxy measure for this group of characteris-
tics of the graph might be the second smallest
eigenvalue of the difference Laplacian matrix (see
Mohar, 1991). An alternative characteristic of the
neighbourhood graph which has been suggested
as relevant (Evans, 1987) is the size of the largest
independent set of nodes (i.e. a set of nodes none
of which are adjacent). This number gives a bound
on the largest number of local optima which are
possible.

In our view, however, the relationship between
the neighbourhood structure and the objective
function f is most important. This issue has been
considered by other authors. Sorkin (1991) has an
interesting discussion on the influence of what he
calls the ‘energy landscape’ on the performance
of simulated annealing. He argues that energy
landscapes which are self-similar, or fractal, are
those on which annealing will perform well. An
alternative approach is to consider measures of
the correlation between the values of neighbour-
ing solutions (see for example Manderick et al.,
1991).

In this section we will consider the average
number of steps taken by a local search algorithm
(or the average number of solutions considered).
We will argue that these quantities give a mea-
sure of how effective local search will be for a
particular problem and neighbourhood structure.

We begin by returning to the analysis of the
problem with random assignments of values. In
this case it is possible to carry out some calcula-
tions without knowing the distribution from which
the values are drawn. First we need a straightfor-
ward lemma.

Lemma. Suppose that the solution values are drawn
from a continuous distribution. If n > 1 solutions
have already been evaluated then the probability
that the next solution evaluated is the best so far is
1/(n+ 1.

Proof. The proof relies on the observation that
each of the s! different rank orderings that are
possible between a sequence of s i.i.d. continuous
random variables are equally likely. The assump-
tion on the continuous distribution is necessary to
ensure that there is zero probability of two values
being the same. Suppose that we evaluate » dif-
ferent solutions and record their rank order.
Then, given this rank ordering between the previ-
ously evaluated solutions there are n + 1 equally
likely rank orderings including the (n + 1)st solu-
tion, corresponding to the n + 1 positions in the
rank order in which this solution can be inserted.
Only one of these rank orderings has the last
solution evaluated as the best, and so this occurs
with probability 1/(n + 1) as required. O

Using this result it is possible to calculate the
expected number of evaluations for the setup of
Theorem 1 using the first-improving algorithm.
We write E(n, h) for the expected number of
further evaluations, given that we have made a
number n so far and that the A most recent
evaluations have not improved the current best
solution, then E(n, h) satisfies the recurrence
relations below. First we define K(n, k) to be the
number of unevaluated neighbours that the cur-
rent best solution had when it was first evaluated.
Notice that in an infinite solution tree with each
node having N neighbours, there will be N un-
evaluated neighbours of the first point looked at,
but once a move has been made then there are
only ever N —1 unevaluated neighbours. Thus
K(n, h)=N—1 unless n=~h + 1, in which case
K(n, h)=N.

Now we can write down the recurrence rela-
tions as follows:

E(n+1,0)+nE(n+1,h+1)
n+1

for h<K(n,h),n=1,2,..., and
E(n, K(n, h)) =0.
The expected total number of solution evalua-
tions is given by 1 + E(1, 0).

Though the complete set of recurrence rela-
tions are hard to solve exactly, they can be evalu-

ated numerically for different values of N and
this has been done in Table 1. It can be seen that

E(n,hy=1+

b
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Table 1
Expected number of evaluations with random solution values
and different neighbourhood sizes

N Expected number Ratio M/N
of evaluations, M
5 8.70 1.74
10 17.32 1.73
50 88.25 1.76
100 177.26 1.77
1000 1780.17 1.78

the expected number of evaluations, M, is about
1.8 times the value of N for larger values of N.
The neighbourhood graph considered here has
no circuits, it is not hard to see that the expected
number of evaluations with random function val-
ues on a real neighbourhood graph will be smaller
(since even if solutions which have been looked at
before are re-evaluated, the algorithm will not
move to one of these solutions and this will
reduce the effective neighbourhood size). The
most closely related theoretical result in the liter-
ature is given by Tovey (1985) who shows that
when the neighbourhood graph is given by a
hypercube, the number of steps taken by a local
search method is always less than (3/2)eN, re-
gardless of the pivot rule used.

In practice, when function values are not ran-
dom, the expected number of evaluations in a

single run of a local search algorithm is much
greater. The better behaved the function values,
the more likely it is that the local search will take
many steps before getting stuck in a local opti-
mum. This will involve more evaluations in a
single run; but, since this corresponds to better
behaviour of the solution surface, the end result
will be better, if many local search runs are
carried out using in total a fixed amount of com-
putation time. This is a rather different perspec-
tive than has been taken by other researchers in
this area who have often seen it as preferable to
have a small number of evaluations in a single
run of a local search method. The way the figures
work out in practice is illustrated by our experi-
ments with a 50-city TSP. In this case the average
number of evaluations per run for a Euclidean
problem is 4.3N; whereas for a non-Euclidean
problem, with less good solution surface be-
haviour but the same neighbourhood structure,
the average number of evaluations is 4.1N.

We conjecture that the average number of
evaluations per run, using a first-improving local
search, can be used as a measure of the effective-
ness of local search for a particular problem and
neighbourhood structure. In particular in choos-
ing between two neighbourhood structures which
have the same neighbourhood size, we should
prefer the neighbourhood which gives the greater
number of evaluations per run.
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Fig. 7. Average number of evaluations in a single run for TSP.
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Fig. 8. Average number of evaluations in a single run for QAP.

It is also of interest to see how the number of
evaluations per run increases as a function of the
problem size. It is convenient to look at this as a
function of the neighbourhood size N. Figs. 7 and
8 show how the number of evaluations changes as
a function of problem size (rather than N) for
both Euclidean TSP using the 2-opt neighbour-
hood and QAP using the swap neighbourhood.
These results are averages from 100 different
runs (using 5 different problems) at each problem
size. In both cases fitted curves are shown which
correspond to functions of the form aN? for
constants « and S. For TSP the number of evalu-
ations is approximately 2.2(N'1), and for QAP
the number of evaluations is approximately
0.68(N'4). It is also possible to look at the num-
ber of moves made in a local search run: for TSP
this is approximately 1.5(N °%%) and for QAP it is
approximately 0.68(N 7).

Kern (1989) considers the use of the 2-opt
neighbourhood for a Euclidean TSP in which
points are placed according to a uniform distribu-
tion in the square. He shows that the expected
number of evaluations in a single run is at most
O(n'®) where n is the number of cities (i.e.
O(N®)). There is thus a substantial difference
between the empirical results we have observed
and the best available theoretical bounds.

6. Conclusions

Our main result is that first-improving local
search is superior to the other pivot rules we
tried. This conclusion may not be surprising. It is
in line with the intuitive reasoning given in Sec-
tion 3. Moreover it is consistent with the experi-
ence of researchers who have looked at pivot
rules for the simplex method (which can also be
viewed as a local search procedure). It may be
argued that for combinatorial optimization prob-
lems where local search is the method of choice,
it is normally implemented in a more complex
way, for example generating neighbours selec-
tively in order to increase the chance of finding
an improvement. It seems, however, that local
search procedures are sufficiently important to
make it worthwhile to fill in some of the gaps that
may have been left, as it were, at the foundations.

We should point out that care is needed in
reaching solid conclusions from experiments of
the type we have made. There is almost no end to
the computational experiments that one might
wish to carry out in order to reach a firm recom-
mendation on the best way to carry out local
search. It is not surprising that most investigators
have been more concerned to simply pursue the
goal of the fastest code for the largest problem.
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The most obvious shortcomings in our experi-
mental work are that we have considered only
small size problems and that we have not used
the most effective neighbourhood structures for
TSP (which are probably 3-Opt and that due to
Lin and Kernighan, 1973).

We have also argued that recording the aver-
age number of evaluations in a single run of a
local search method (or alternatively, the number
of steps taken) will be useful in predicting the
likely performance of local search on a particular
problem class and with a particular neighbour-
hood structure. It may be thought counter-intui-
tive that we should prefer a neighbourhood struc-
tures in which a single local search run involves a
greater amount of computation. More experimen-
tal work is needed to check whether the power of
N relationships that we have observed also hold
for larger problems.
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