
A LOCAL SEARCH TEMPLATE

R. J. M. Vaessens,1% E. H. L. Aarts1,2$} and J. K. Lenstra1,3}
1Department of Mathematics and Computing Science, Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands

3CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

(Received May 1996; in revised form October 1997)

Scope and PurposeÐMany problems in combinatorial optimization are NP-hard which implies that it is
generally believed that no algorithms exist that solve each instance of such a problem to optimality
using a running time that can be bounded by a polynomial in the instance size. As a consequence,
much e�ort has been devoted to the design and analysis of algorithms that can ®nd high quality
approximative solutions in reasonable, i.e. polynomial, running times. Many of these algorithms apply
some kind of neighborhood search and over the years a great variety of such local search algorithms
have been proposed, applying di�erent kinds of search strategies often inspired by optimization
processes observed in nature. The purpose of this paper is to capture within a single template the
common features of the best-known local search algorithms. The template is also used for the purpose
of indicating directions for novel algorithmic ideas in the area of local search.

AbstractÐA template is presented that captures a vast majority of the local search algorithms proposed
in the literature, including iterative improvement, simulated annealing, threshold accepting, tabu search
and genetic algorithms. The template leads to a classi®cation of existing local search algorithms and
o�ers the possibility to ®t in new types of local search approaches. # 1998 Published by Elsevier
Science Ltd. All rights reserved

Key words: Local search, iterative improvement, simulated annealing, threshold accepting, tabu search,
genetic algorithms

1. INTRODUCTION

Local search is a generally applicable approach that can be used to ®nd approximate solutions
to hard optimization problems. The basic idea is to start from an initial solution and to search
for successive improvements by examining neighboring solutions. Local search approaches date
back to the late 1950s, when Bock [3] and Croes [4] developed their link exchange procedures
for the traveling salesman problem. Ever since, a large variety of local search algorithms has
been proposed, each aiming at di�erent remedies to the risk of getting stuck in poor local
optima.

At present, there is a proliferation of local search algorithms or, as they are often called,
metaheuristics [15]. Since all of these methods apply some kind of neighborhood search
technique, we will simply call them local search algorithms, following the early textbook
treatment by Papadimitriou and Steiglitz [16], the survey by Yannakakis [21] and the book
edited by Aarts and Lenstra [2].

In all their di�erent guises, local search algorithms seem to be based on a few basic ideas
only. We present a local search template that has been designed to capture most of the variants

Computers Ops Res. Vol. 25, No. 11, pp. 969±979, 1998
1998 Published by Elsevier Science Ltd. All rights reserved

Printed in Great Britain
0305-0548/98 $19.00+0.00PII: S0305-0548(97)00093-2

%Rob Vaessens received his M.Sc. from the Eindhoven University of Technology and his Ph.D. from the Eindhoven
University of Technology. His technical interests are Job Scheduling: Complexity and Local Search. He is currently
employed as revenue management analyst for the Royal Dutch Airlines KLM in Amstelveen, The Netherlands.

}Emile H. L. Aarts is a Senior Scientist at the Philips Research Laboratories in Eindhoven, The Netherlands. He also
holds an appointment as a Professor of Computer Science at the Eindhoven University of Technology. He holds an
M.Sc. degree in physics from the University of Nijmegen, The Netherlands, and a Ph.D. degree from the University
of Groningen, The Netherlands. His research ®eld is combinatorial optimization in planning and design.

}Jan Karel Lenstra is Professor of Optimization at Eindhoven University of Technology. His research interests are in
combinatorial Optimization, in particular routing, scheduling, complexity, and approximation algorithms. He is Past
Chairman of the Mathematical Programming Society and Editor-in-Chief of Mathematics of Operations Research.

$To whom all correspondence should be addressed.

969

proposed in the literature. The aim of the template is to provide a classi®cation of the various
existing local search algorithms. Furthermore, it should also be su�ciently general to capture
new approaches to local search and thereby to suggest novel variants.

The organization of the paper is as follows. Section 2 introduces some basic de®nitions.
Section 3 discusses some complexity issues. Section 4 considers deterministic iterative
improvement algorithms. Section 5 presents our local search template and Section 6 shows for a
number of well-known local search algorithms how they ®t into this template. Section 7
mentions some lesser known or new algorithms that ®t into our template. Section 8, ®nally,
presents some conclusions and suggestions for future research.

2. PRELIMINARIES

An optimization problem is either a maximization or a minimization problem speci®ed by a
class of problem instances. Without loss of generality we restrict ourselves to minimization
problems. An instance is de®ned by the implicit speci®cation of a pair (S, f), where the solution
space S is the set of all (feasible) solutions and the cost function f is a mapping f:S4R. The
optimal cost fopt of an instance is de®ned by fopt=min{f(s)vs$S} and the set of optimal
solutions is denoted by Sopt={s$Svf(s) = fopt}. The objective is to ®nd some solution
sopt$Sopt.

A neighborhood function N is a mapping N:S4P(S), which speci®es for each s$S a subset
N(s) of S of neighbors of s. A solution s$S is called a local minimum with respect to N if
f(s)Rf(t) for all t$N(s). Furthermore, to distinguish between local minima and elements of
Sopt, we call the latter ones global minima. A neighborhood function N is called exact if every
local minimum with respect to N is also a global minimum.

In some applications of local search algorithms to optimization problems the search is not
done directly in the solution space S, but in a search space, in which solutions are represented
in one way or another.

For problems with very few feasible solutions or for which it is not even known whether
feasible solutions exist, the search space may also contain infeasible solutions in addition to
feasible ones. In this case, the cost function f should be extended in such a way that the a
solution of minimum cost corresponds to a feasible solution. The same is true if one wants to
include partial solutions in the search space.

Another possibility is that some solutions are represented by more than one element in the
search space. This occurs very often in applications of genetic algorithms, which are discussed in
Section 6.3. Here, solutions are represented by strings over a ®nite alphabet, and several such
strings may represent the same solution.

However, since each problem described by a non-trivial representation can be seen as an
optimization problem of its own, we consider in the remainder of this paper only problems of
the form introduced at the beginning of this section.

3. THE COMPLEXITY OF LOCAL SEARCH

Complexity analyses have reveiled a marked di�erence between the empirical and theoretical
performance of local search.

3.1. Empirical results

Over the years the empirical performance of local search has been extensively studied for a
large variety of problems. A general conclusion is that local search provides a robust approach
to obtain good solutions to problems of a realistic size within low order polynomial running
times [2, 15]. This conclusion has been reached in studies for problems of a theoretical as well as
practical origin. For instance, for the traveling salesman and job shop scheduling problems,
local search algorithms have been shown to be the best approximation algorithms from an
empirical point of view and it appears that for large problem instances, the di�erence with other
existing algorithms becomes even more pronounced [10, 19]. For many practical problems, for
instance in the areas of VLSI design, distribution planning and production control, local search
leads to high-quality solutions in a reasonable amount of time. In addition, its ease of use and

R. J. M. Vaessens et al.970

¯exibility make it a valuable industrial problem solving tool, especially when compared to more
classical constructive heuristics that are often tailored to speci®c problems and may require
major modi®cations when minor changes in the problem setting occur.

3.2. Theoretical results

Studies of the theoretical performance have exhibited the limitations of local search, at least
from a worst-case point of view. The literature presents a number of bad examples, for which
the following results hold [17, 20].

. Minimum exact neighborhoods may be of exponential size.

. It may take an exponential number of steps to ®nd a local optimum.

. Final solutions may deviate arbitrarily far from the optimum in cost.

Johnson et al. [11] addressed the question how easy it is to ®nd a local optimum. They
introduced several notions. A local search problem L is given by a set of instances, each of
which is de®ned by a ®nite set of solutions, a cost function and a neighborhood function. This
problem belongs to the complexity class PLS of ``polynomial-time local search'' problems, if
polynomial-time algorithms exist, only depending on L, for producing an arbitrary solution, for
computing the cost of a given solution and for determining for a given solution a neighbor that
has lower cost (or reporting that no such neighbor exists). The problem now is to ®nd a local
minimum for any given instance. Informally speaking, PLS de®nes the class of local search
problems for which local optimality can be veri®ed in polynomial time. The class PLS is
situated between the search problem variants of P and NP. However, it has been shown that a
problem in PLS cannot be NP-hard, unless NP=co-NP [11].

Furthermore, the concept of a PLS-reduction has been introduced, which shows some
resemblance to the classical concept of polynomial-time reductions [6]. A problem in PLS is
PLS-complete if any problem in PLS is PLS-reducible to it. The PLS-complete problems are
the hardest ones in PLS and if one of them can be shown to be solvable in polynomial time,
then all the others can.

Since its introduction, the class PLS has received considerable attention and many local
search problems have been proven PLS-complete. It is even conjectured that PLS-completeness
is the normal behavior of local search variants of NP-hard problems and that more than half of
the problems mentioned in Garey and Johnson's [6] NP-completeness catalogue have PLS-
complete variants.

4. DETERMINISTIC ITERATIVE IMPROVEMENT

The basic local search algorithm is the so-called deterministic iterative improvement
algorithm. We assume that an instance of an optimization problem and a neighborhood
function are given. The deterministic iterative improvement algorithm starts with an initial
solution and then continually searches its neighborhood for a solution of better quality. If such
a neighbor is found, it replaces the current solution. The algorithm terminates as soon as the
current solution has no neighbors of better quality, at which point a local optimum is found.

The pseudo-Pascal procedure given in Fig. 1 represents the basic part of the deterministic
iterative improvement algorithm. Here, the procedure GENERATE NEIGHBOR deterministically
generates a solution t from the neighborhood N(s) of the current solution s, such that every
t$N(s) is generated only once as a neighbor of s. The procedure DETERMINISTIC ITERATIVE
IMPROVEMENT returns a solution s that is locally optimal with respect to the neighborhood
function N.

The deterministic iterative improvement algorithm terminates at the ®rst local optimum that
is found and, in general, the quality of such a local optimum may be arbitrarily bad. To
improve the quality one can consider applying the following ideas.

. Generating several or all neighbors of the current solution instead of just one neighbor in
each iteration. If all neighbors are generated and a best one is accepted, one obtains a steepest
descent or best improvement algorithm.

. Repeatedly starting iterative improvement runs from di�erent (e.g. randomly chosen) initial
solutions. This is often referred to as multistart iterative improvement [2].

A local search template 971

. Using more intricate functions to determine a new solution from the current solution and
its neighbor, for instance, accepting solutions of quality worse than that of the current solution.
The well-known simulated annealing, threshold accepting and tabu search algorithms fall into this
category.

. Replacing the single current solution by a population of current solutions. This is the basic
idea of genetic algorithms.

. Alternating between two or more neighborhood functions. Such a multilevel algorithm has
been proposed by Martin et al. [14].

Based on one or more of the above ideas, a considerable number of algorithms has been
proposed in the literature. In Section 5 we present a generic local search template that captures
most of these ideas.

5. A LOCAL SEARCH TEMPLATE

Our local search template generalizes the iterative improvement algorithm of Section 4 in the
following ways.

(1) The search may proceed at several levels, each with its own speci®cations. Here, the
notion of levels primarily refers to the subsequent use of di�erent search strategies and
neighborhoods.

(2) The single current solution is replaced by a population of current solutions.
(3) The neighborhood function associated with a single solution is replaced by a

neighborhood function associated with a cluster of solutions.
More formally, each level l has a population size pl and a cluster size cl, with pl, cl $N. A

population at level l is a pl -tuple P$Spl of solutions that represents the current state of the
search at level l. We will talk about point-based local search if, at the ®rst level, p1=1 and about
population-based local search otherwise. A cluster at level l is a cl-tuple C$Scl of solutions, such
that with each cluster a neighborhood is associated. That is, there is a hyper-neighborhood
function Nl : Scl4P(S) which, for each cluster C, de®nes a set Nl (C) of neighboring solutions.
In case cl=1, this function reduces to the standard neighborhood function of Section 2.

The local search template consists of two components. It ®rst calls the procedure
INITIALIZE, which generates an initial population P$Sp1 ; this procedure usually depends on
the problem type under consideration. Then, the recursive procedure LOCAL SEARCH is called
with level 1 and population P as its parameters. LOCAL SEARCH works as follows.

At level l, the procedure takes a population P$Spl as input and uses the hyper-neighborhood
function Nl to produce a new population P$Spl as output. This is done in two nested loops, i.e.
an outer loop of generations and an inner loop of iterations.

The generation loop creates a number of generations of populations until a stopping
condition is satis®ed. In each generation, the procedure GENERATE CLUSTERS assembles from
the current population P a ®nite multiset C of clusters C $ Pcl . Hence, each of the cl
components C1, . . . , Ccl of C is a solution from P.

For each cluster C$C, the iteration loop applies a number of iterations until a stopping
criterion is satis®ed. Each iteration starts with a call of the procedure GENERATE NEIGHBORS,
which selects a ®nite multiset Q $ (Nl �C ��pl�1 . Hence, each of the pl+1 components of Q is a

Fig. 1. The procedure DETERMINISTIC ITERATIVE IMPROVEMENT.

R. J. M. Vaessens et al.972

hyper-neighbor of C; note that Q$Spl�1 . The procedure LOCAL SEARCH is then called
recursively, with level l+ 1 and population Q as its parameters. The result is a modi®ed
population Q$Spl�1 . After this, the procedure REDUCE NEIGHBORS reduces the union of the
original cluster C and the new population Q into a new cluster C$Scl , which then serves as
input for the next iteration.

If, at level l, the iteration loop has terminated for all C$C, the procedure CREATE collects the
solutions found in (usually) the ®nal iteration for each C$C into a single set PÃUS. The
procedure REDUCE POPULATION ®nally merges P and PÃ into a new current population P$Spl .

Figure 2 shows the LOCAL SEARCH TEMPLATE and Fig. 3 shows the procedure LOCAL
SEARCH, both in pseudo-Pascal. We now give a short description of the procedures and
functions used in the procedure LOCAL SEARCH.

. The Boolean function CONTINUE POPULATION GENERATION has the current level l as
input. Based on additional information from previous generations, it returns the value TRUE as
long as new generations of populations have to be generated and FALSE otherwise.

. The procedure GENERATE CLUSTERS has a level l and a population P as input and a ®nite
multiset CUScl as output. It clusters P into a collection C of cl -tuples C$Pcl , either
deterministically or probabilistically. In this way, the hyper-neighborhood function Nl can be
applied indirectly to the given population P.

. The Boolean function CONTINUE ITERATION has a level l as input. Based on additional
information from previous iterations it returns the value TRUE as long as iterations have to go
on in the iteration loop and FALSE otherwise.

. The procedure GENERATE NEIGHBORS has a level l, a multiset C of size cl and the hyper-
neighborhood function Nl as input and a multiset Q of size pl+1 as output. It generates a

Fig. 2. The LOCAL SEARCH TEMPLATE.

Fig. 3. The procedure LOCAL SEARCH

A local search template 973

multiset Q of neighbors from C using Nl . The basic part of the procedure prescribes how a
neighbor of C is to be determined, i.e. randomly or deterministically, and how many neighbors
are to be determined.

. The procedure REDUCE NEIGHBORS has a level l, a cl -tuple C and a pl+1-tuple Q as input,
and a modi®ed version of C as output. It determines how to merge the old cluster C and the
collection Q of (modi®ed) neighbors into a new cluster C.

. The procedure CREATE has a level l as input and a population PÃ as output. It puts a
population PÃ together from solutions found in (usually) the ®nal iteration for each C$C.

. The procedure REDUCE POPULATION merges P and PÃ into a new population P.
To make the recursive procedure ®nite, we need to de®ne a bottom level l*. At this level l*,

the Boolean function CONTINUE POPULATION GENERATION assumes the value FALSE. The
levels l < l* are called active levels. Obviously, for the description of a local search algorithm
only a speci®cation of the active levels is needed. We know of no algorithms that use more than
two active levels.

Section 6 shows how most local search algorithms proposed in the literature ®t into our
template.

6. INSTANTIATIONS OF THE LOCAL SEARCH TEMPLATE

The local search template captures most types of local search algorithms proposed in the
literature. This is shown by the speci®cation of the bottom level l* and, for each active level, by
an instantiation of the procedures GENERATE CLUSTERS, REDUCE NEIGHBORS, CREATE and
REDUCE POPULATION. The other procedures are usually less characteristic of an algorithm;
they are instantiated only if they constitute a relevant part of the algorithm.

In handling the various local search algorithms we distinguish between point-based and
population-based local search and between local search with exactly one and more than one
active level.

6.1. Single-level point-based local search

Among point-based local search algorithms with one active level, ®rst the classes of threshold
and tabu search algorithms are discussed. Next, variable-depth search is discussed.
6.1.1. Threshold algorithms and tabu search. Both threshold and tabu search algorithms are

characterized by the fact that only one generation is created. Hence, they are determined by the
iteration loop of the procedure LOCAL SEARCH. Both algorithms can be instantiated as follows.

. CONTINUE POPULATION GENERATION returns the value TRUE for the ®rst generation and
FALSE for each subsequent generation. In this way only one generation is created.

. GENERATE CLUSTERS sets C=C equal to P, hence the multi-set C contains only one
cluster. Furthermore, both C and P are 1-tuples, that is, each of them contains one solution
only.

. CREATE sets PÃ equal to the current cluster C.

. REDUCE POPULATION sets the new population P equal to PÃ.
We now consider threshold and tabu search algorithms separately.
Threshold algorithms constitute a class of algorithms that contains iterative improvement,

simulated annealing [1, 12] and threshold accepting [5]. They are characterized by the following
instantiations.

. GENERATE NEIGHBORS generates only one neighbor in Q using the neighborhood function
N1. In most cases a neighbor is generated randomly; sometimes this is done deterministically.

. REDUCE NEIGHBORS determines whether the solution Q1, which is the unique component
of Q, satis®es f(Q1)ÿ f(C1) < t for a certain threshold value tr0, where C1 denotes the ®rst
(and only) component of C. If this is the case, Q1 replaces the current solution C1; otherwise, C1

remains unchanged. Depending on the nature of the thresholds, one distinguishes between
several types of threshold algorithms. Iterative improvement and threshold accepting both use
deterministic thresholds, in contrast to simulated annealing, which uses probabilistic thresholds.
The class of iterative improvement algorithms includes the deterministic iterative improvement
algorithm introduced in Section 4 as a special case.

R. J. M. Vaessens et al.974

. CONTINUE ITERATION returns the value TRUE as long as the best solution found so far is
not of a prescribed quality, or as long as a prescribed number of iterations has not yet been
reached. Otherwise it returns the value FALSE.

Tabu search [7] combines the deterministic iterative improvement algorithm with a possibility
to accept cost increasing solutions. In this way the search is directed away from local minima,
such that other parts of the search space can be explored. This is done by keeping up a ®nite
list of solutions that are not acceptable in the next few iterations. This list is called the tabu list.
However, a solution on the tabu list may be accepted if its quality is in some sense good

enough, in which case it is said to attain a certain aspiration level. Tabu search algorithms are
characterized by the following instantiations.

. GENERATE NEIGHBORS selects deterministically all neighbors of the current solution C1

with respect to N1 by inspecting these in a prespeci®ed order.

. REDUCE NEIGHBORS determines among all solutions in Q that are not on the tabu list, and
all solutions in Q that are on the tabu list but attain a certain aspiration level, a solution Qj$C1

of minimum cost. C1 is then replaced by Qj.

. CONTINUE ITERATION returns the value TRUE as long as the best solution found so far is
not of a prescribed quality, or as long as a prescribed number of iterations has not yet been
reached. Furthermore, when the tabu list contains all neighbors of C1 and none of these attains
the aspiration level, the function CONTINUE ITERATION returns the value FALSE.

When the tabu list contains all neighbors of a current cluster C1 and none of these attains the
aspiration level, it is impossible to determine a neighbor of C1. Some variants of tabu search
solve this problem by letting the function CONTINUE ITERATION return the value FALSE.
Other variants modify the tabu list in such a way that neighbors of the current cluster are

removed from the tabu list. In this way neighbors of C1 become available again.

In other variants, the procedure GENERATE NEIGHBORS selects only one neighbor per
iteration and the function REDUCE NEIGHBORS accepts this neighbor when it is not on the tabu
list or attains the aspiration level, and rejects it otherwise. But in that case the tabu list has to

be signi®cantly larger, so as to avoid that the procedure accepts a solution with a cost larger
than the current solution too often, but this in turn would require unacceptably large amounts
of memory space and computation time.
6.1.2. Variable-depth search algorithms. In contrast to the above algorithms, a variable-depth

search algorithm creates several generations. In each generation a ®nite sequence of iterations is

generated, in each of which a neighbor of the previous solution is computed. In principle, each
neighbor chosen is a minimum cost neighbor of the previous solution. However, in this
approach the risk of cycling is large. To avoid cycling, a sort of tabu list is introduced, which
prevents the search from generating a solution that has occurred in the sequence before. Before
starting the ®rst iteration in a generation the tabu list is emptied and the solution contained in
the single cluster is chosen from the solutions that occurred in the previous generation.

There are two main variants to choose the solution that a new generation is started with. In
the ®rst variant a solution with smallest cost is chosen among those generated in the previous
generation, but it is not allowed to choose the solution that this previous solution was started
with. In the second variant the ®rst solution is chosen among those generated in the previous
generation that has smaller cost than the solution that the iteration loop was started with,

provided that such a solution has been found. Otherwise, an arbitrary solution obtained in the
previous generation is chosen.

The instantiations for variable-depth search are as follows.

. GENERATE CLUSTERS sets C=(C) equal to (P). Both C and P contain one solution only.

. GENERATE NEIGHBORS selects all neighbors of the current solution deterministically by
inspecting these in a prespeci®ed order.

. REDUCE NEIGHBORS determines among all solutions in Q not on the tabu list a solution
Qj$C1 of minimum cost. C1 is then replaced by Qj.

. CREATE sets PÃ equal to the current C = (C1), where C1 is a solution found in the last
iteration loop that is di�erent from the solution with which the iteration loop started. We
mention the following possibilities for choosing C1, each of which also leads to a di�erent
choice for CONTINUE ITERATION.

A local search template 975

(1) In the ®rst variant a solution is chosen that has smallest cost among those obtained in the
last iteration loop. In this case CONTINUE ITERATION returns the value true as long as the
number of iterations has not yet reached a speci®ed upper bound.

(2) In the second variant the ®rst solution is chosen with smaller cost than the solution that
the iteration loop was started with, provided that such a solution has been found. Otherwise, an
arbitrary solution obtained in the last iteration loop is chosen. As soon as a solution is found
that has smaller cost than the solution that the iteration loop was started with, the loop is
terminated by letting CONTINUE ITERATION return the value FALSE.

. REDUCE POPULATION simply selects the best of the two solutions in P and PÃ. Ties are
broken arbitrarily.

. In some variants CONTINUE POPULATION GENERATION returns the value TRUE as long as
the sequence of the costs of solutions in P for the subsequent generations is strictly decreasing.
Other variants use di�erent rules to stop the generation of new generations.

6.2. Multi-level point-based local search

We now discuss point-based local search algorithms with more than one active level.
Compared to single-level local search, the outstanding strength of multi-level local search is

the combined use of several neighborhoods. More speci®cally, the use of multiple levels enables
the search process the escape from a local minimum with respect to a given neighborhood by
continuing from a neighbor in a di�erent neigbourhood. Algorithms of this type are usually
composed from single-level point-based local search algorithms. For this reason we do not
detail the corresponding procedures and functions here.

Nevertheless, since algorithms of this kind seem to give good results, we brie¯y discuss one
example due to Martin et al. [14]. Their algorithm for the symmetric traveling salesman problem
uses, in our terminology, two active levels.

At level 1 they use simulated annealing. Their neighborhood is a subset of the 4-exchange
neighborhood. After selecting a single neighbor at level 1, at level 2 they determine a local
minimum with respect to a special 3-exchange neighborhood, using any single-level point-based
local search algorithm that is able to do so. Then this local minimum is compared with the
current solution at level 1 and is accepted using simulated annealing. The authors attribute the
power of their algorithm to the fact that, after making a single 4-exchange and then applying 3-
exchanges until a local optimum is reached, typically many links in the tour have been changed.

Johnson and McGeoch [10] further re®ned the algorithm of Martin et al. [14] to include the
Lin±Kernighan variable-depth search neighborhood [13] at level 2. The resulting iterated Lin±
Kernighan algorithm is probably the most e�ective existing approximation algorithm for the
symmetric traveling salesman problem. It performs extremely well for instances with hundreds
of thousands of cities.

We conclude that algorithms of this type, which use more levels in the local search template,
seem to be powerful and deserve wider attention.

6.3. Single-level population-based local search

We now discuss a class of single-level population-based local search algorithms, called genetic
algorithms. These were ®rst introduced by Holland [9] and have been well described in a
textbook by Goldberg [8].

In each generation, ®rst some clusters C of the current population P are created. To each C,
the hyper-neighborhood function N1 is applied to produce a set of new solutions. From these
new solutions and the solutions of the current population, the low cost solutions are selected to
form a new population, which then starts up a next generation. The generation loop terminates
as soon as some stopping criterion, which is usually chosen heuristically, is satis®ed. The
instantiations for the class of genetic algorithms are as follows.

. GENERATE CLUSTERS generates from the population P of size p1 a multiset C of clusters C
of size c1. In most cases the clusters are formed heuristically and in such a way that solutions
with lower cost are contained in a cluster with higher probability. Note that a solution in P can
occur in more than one cluster and even several times in the same cluster.

. REDUCE NEIGHBORS takes from the current cluster C and from Q the c1 best solutions to
form a new cluster C.

R. J. M. Vaessens et al.976

. CREATE sets PÃ equal to the union of all current clusters C$C.

. REDUCE POPULATION merges P and PÃ into a new population P. In most variants, this is
done by choosing from P and PÃ exactly p1 elements, with a preference for low-cost solutions.

The remaining procedures can be chosen as follows.
. GENERATE NEIGHBORS selects randomly a number of neighbors of the current cluster C

using the hyper-neighborhood function N1. In many implementations, this number of neighbors
also equals c1.

. CONTINUE ITERATION usually returns the value TRUE for the ®rst iteration and FALSE
otherwise. In this way, only one set of neighbors is generated for each chosen cluster, after
which the iteration loop is left. In this case, the function REDUCE NEIGHBORS can be skipped,
since there is no reason to create a new current cluster C when there is one iteration only.

. CONTINUE POPULATION GENERATION gives the value TRUE for instance as long as a
certain upper bound on the number of generations has not been exceeded, or as long as the
population contains di�erent solutions.

6.4. Multi-level population-based local search

Few examples of population-based local search algorithms with more than one active level are
known. Here we discuss the so-called genetic local search approach [18], which is a variant of
the class of genetic algorithms. The only di�erence is that there is now a second active level, in
which a point-based hyper-neighborhood function N2 :S4P(S) is used.

After the computation of a tuple Q of neighbors at the ®rst level, a local minimum is
computed for each solution Qj at the second level, using the neighborhood function N2. After
that, back at level 1 the function REDUCE NEIGHBORS is applied to the current Q, which now
contains local minima with respect to the neighborhood function N2. The instantiations for the
second level are as follows.

. CONTINUE POPULATION GENERATION gives the value TRUE for the ®rst generation and
FALSE for the subsequent generations. In this way, only one generation is created.

. GENERATE CLUSTERS creates for each solution Pi $ P a cluster C = (Pi).

. CREATE sets PÃ equal to the set that, for each cluster, contains a local minimum obtained in
the iteration loop for the corresponding cluster.

. REDUCE POPULATION sets the new population P equal to PÃ.
CONTINUE ITERATION, REDUCE NEIGHBORS and GENERATE NEIGHBORS are the same as

the ones speci®ed for the deterministic iterative improvement algorithm.

7. OPEN SPOTS IN THE LOCAL SEARCH TEMPLATE

When looking at the template one can try to ®nd types of local search algorithms that have
not been proposed before, or that have no widespread application. In this section we mention
some of these algorithms, and show how they ®t into our template. We ®rst deal with single-
level point-based algorithms and then with single-level population-based algorithms. We do not
consider multi-level algorithms, since these are composed of single-level ones. However, multi-
level algorithms are important, as they may have an impressive performance.

7.1. Single-level point-based local search

In almost all known single-level point-based algorithms also the number of clusters equals
one. In this case it often happens that several neighbors of a current solution are promising
while only one neighbor is allowed to be chosen. One would like to postpone the decision of
choosing the neighbor for a while until after a few iterations it becomes clear which of the
neighbors is most promising. This idea ®ts in our template in the following way.

At the beginning of a generation several clusters are generated, each containing a copy of the
solution in the current one-element population P. Then for each cluster an iteration loop is
started. When this loop terminates depends on how reduce neighbors is chosen. Reasonable
points for terminating the iteration loop are when a local optimum has been found or when a
given number of iterations has been executed. When for each cluster its corresponding iteration
loop is terminated, a solution must be selected to become the new solution in P. It is reasonable

A local search template 977

to select the best solution that resulted from the various iteration loops in the last generation.
Next, a new generation is started up.

7.2. Single-level population-based local search

Below we give some ideas for single-level population-based local search algorithms. A
distinction is made between algorithms with cluster size 1, cluster size 2 and cluster size larger
than 2.

When the cluster size is 1, only ordinary neighborhoods can be used. Since we have a
population-based algorithm, it is reasonable to let the number of clusters be larger than 1. The
idea of the following algorithm is that several parallel runs of a point-based algorithm are
interrupted now and then and that the runs with the worse results are stopped de®nitely. The
remaining runs are continued in such a way that one run may proceed in several directions. It is
therefore necessary that the point-based algorithm uses some type of randomization. This idea
®ts into our template in the following way.

At the beginning of a generation several clusters are generated, each containing a copy from
one of the solutions in the current population P. Then for each cluster an iteration loop is
started, using a point-based algorithm. When this loop terminates after the execution of a given
number of iterations, a population PÃ is formed from the ®nal or from intermediate solutions
obtained in the previous iterations. The populations P and PÃ are then merged into a new
population P, using a selection criterion like those used in genetic algorithms.

All present genetic algorithms use hyper-neighborhoods that are based on clusters of size 2.
Furthermore, in a given generation, for each cluster there is exactly one iteration in which the
hyper-neighborhood is applied. One can think of algorithms that use more than one iteration
for the same cluster in a given generation. The execution of iterations in one generation can be
stopped after a certain number of iterations. One can also use another stop criterion. Therefore,
we de®ne a cluster to be locally optimal with respect to a hyper-neighborhood N if it has no
neighbor in N that has lower cost than the solutions of this cluster. Now, one can stop the
execution of iterations as soon as the current cluster is locally optimal. This idea ®ts into our
template in an obvious way.

Until now, no genetic algorithms have been proposed that use hyper-neighborhoods that are
based on clusters of size larger than 2. For many standard hyper-neighborhoods based on
cluster size 2, it is not di�cult to generalize them to hyper-neighborhoods based on cluster size
3 or on even larger cluster sizes. Whether these generalizations will give computational results of
the same quality as those for hyper-neighborhoods based on cluster size 2, is not clear at
present. Here again, this idea obviously ®ts in our template.

8. CONCLUSION

We have proposed a unifying template for the many di�erent types of local search algorithms
in combinatorial optimization. The main component is a recursive procedure LOCAL SEARCH.
On the basis of the depth of the recursion (one or more levels) and the size of the population
(one or more representatives), local search algorithms have been classi®ed and several variants
proposed in the literature have been shown to ®t into the classi®cation. We hope that our
template and the corresponding classi®cation may stimulate the development of new types of
local search algorithms. In this respect, multi-level local search seems to deserve special
attention, as existing algorithms of that type have led to impressive computational results.

REFERENCES

1. Aarts, E. H. L. and Korst, J. H. M. (1989) Simulated Annealing and Boltzmann Machines. Wiley, Chichester.
2. Aarts, E. H. L. and Lenstra, J. K. (eds.) (1997) Local Search in Combinatorial Optimization. Wiley, Chichester.
3. Bock, F. (1958) An algorithm for solving ``traveling-salesman'' and related network optimization problems: abstract.

Bulletin Fourteenth National Meeting of the Operations Research Society of America. p. 897.
4. Croes, G. A., A method for solving traveling salesman problems. Operations Research, 1958, 6, 791±812.
5. Dueck, G. and Scheuer, T., Threshold accepting: a general purpose optimization algorithm appearing superior to

simulated annealing. Journal of Computational Physics, 1990, 90, 161±175.
6. Garey, M. R. and Johnson, D. S. (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness.

Freeman, San Francisco, CA.
7. Glover, F., Tabu search: Part I. ORSA Journal on Computing, 1989, 1, 190±206.

R. J. M. Vaessens et al.978

8. Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading,
MA.

9. Holland, J. H. (1975) Adaptation in Natural and Arti®cial Systems. University of Michigan Press, Ann Arbor, MI.
10. Johnson, D. S. and McGeoch, L. A. (1997) The traveling salesman problem: a case study. In Local Search in

Combinatorial Optimization, eds. E. H. L. Aarts and J. K. Lenstra. Wiley, Chichester, pp. 215±310.
11. Johnson, D. S., Papadimitriou, C. H. and Yannakakis, M., How easy is local search?, Journal of Computer and

System Science, 1988, 37, 79±100.
12. Kirkpatrick, S., Gelatt, C. D., Jr. and Vecchi., M. P., Optimization by simulated annealing. Science, 1983, 220, 671±

680.
13. Lin, S. and Kernighan, B. W., An e�ective heuristic for the traveling-salesman problem. Operations Research, 1973,

21, 498±516.
14. Martin, O., Otto, S. W. and Felten, E. W., Large-step Markov chains for the traveling salesman problem. Complex

Systems, 1991, 5, 299±326.
15. Osman, I. H., and Kelly, J. P. (eds.) (1996) Metaheuristics: Theory and Applications. Kluwer, Boston, MA.
16. Papadimitriou, C. H. and Steiglitz, K. (1982) Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall,

New York.
17. Tovey, C. A. (1997) Local improvement on discrete structures. In Local Search in Combinatorial Optimization, eds.

E. H. L. Aarts and J. K. Lenstra. Wiley, Chichester, pp. 57±89.
18. Ulder, N. L. J., Aarts, E. H. L., Bandelt, H.-J., van Laarhoven, P. J. M. and Pesch, E. (1991) Genetic local search

algorithms for the traveling salesman problem. In Parallel Problem Solving from Nature. Lecture Notes in Computer
Science, Vol. 496, eds. H.-P. Schwefel and R. MaÈ nner. Springer, Berlin, pp. 109±116.

19. Vaessens, R. J. M., Aarts, E. H. L. and Lenstra, J. K., Job shop scheduling by local search. INFORMS Journal on
Computing, 1996, 8, 302±317.

20. Yannakakis, M. (1997), Computational complexity. In Local Search in Combinatorial Optimization, eds. E. H. L.
Aarts and J. K. Lenstra. Wiley, Chichester, pp. 19±55.

21. Yannakakis, M. (1990), The analysis of local search problems and their heuristics. In STACS 90: 7th Annual
Symposium on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, Vol. 415, eds. C.
Cho�rut and T. Lengauer. Springer, Berlin, pp. 298±311.

A local search template 979

