
Università degli Studi di Milano

Heuristic algorithms

(laboratory sessions)

Roberto Cordone

– Academic year 2019/20 –

2

Contents

1 The Maximum Diversity Problem 7

1.1 Definition . 7

1.2 Benchmark instances . 8

1.3 Instance representation . 9

1.4 Solution representation . 10

1.5 Consistency check . 15

1.6 The main function . 16

2 Constructive heuristics 17

2.1 General scheme . 17

2.2 The basic constructive heuristic . 18

2.2.1 Empirical evaluation . 19

2.3 Alternative constructive heuristics 24

2.4 The basic destructive heuristic . 24

2.5 Experimental comparison . 26

2.6 Roll-out heuristic . 28

3

4 Contents

Introduction

The laboratory sessions of the course on Heuristic algorithms have the aim to illus-
trate the practical aspects of the design, implementation and evaluation of heuristic
algorithms for Combinatorial Optimisation problems.

These lessons assume a basic background on C language programming and on
fundamental algorithms and data structures. The lessons, therefore, will not go
into technical details on this topics, but will just briefly recall the existence of
instructions, algorithms and data structures that allow to apply the fundamental
operations of the heuristic algorithms considered.

For the sake of simplicity, the lessons refer to a single Combinatorial Optim-
isation problem, that is the Maximum Diversity Problem (in short, MDP). This
problem has been chosen among the other treated in the course because its defini-
tion is very simple and its solutions can be represented and manipulated in a rather
simple way. On the other hand, the problem is strongly NP-complete and does not
admit any constant factor approximation guarantee. Therefore, it is rather difficult
to solve it to optimality. Finally, it presents several interesting aspects concern-
ing the effectiveness and the efficiency of the most common algorithmic procedures
(insertions, exchanges and recombinations) and not excessively related to specific
features of the problem.

Chapter 1 defines the problem and describes the data structure and the basic
procedures (implemented as C libraries) that will be used to manipulate the in-
stances and the solutions. Chapter 2 describes the implementation and evaluation
of some constructive and destructive heuristics.

5

6 Contents

Chapter 1

The Maximum Diversity
Problem

1.1 Definition

The Maximum Diversity Problem (MDP) is defined by:

• a set P of points in an abstract space (with n = |P |;

• a distance function d : P × P → N, that associates each pair of points to a
nonnegative integer distance;

• a positive integer number k ∈ N con 0 < k < |P |.

The problem consists in determining a subset x ⊂ P such that

• the sum of the pairwise distances between the points of x be maximum.

• the cardinality of x be equal to k;

max
x⊆P

f =
∑
i∈x

∑
j∈x

dij

|x| = k

Some minor remarks allow to restrict the possible data sets without affecting
the generality of the problem. To start with, in practical applications the distances
could be real numbers, but computers will always represent them with a finite
precision, so that they can be considered as rational numbers. Moreover, rational
values can always be transformed into integer ones by changing the unit of measure.
Finally, it can always be assumed that

dij = dji for all i, j ∈ P

In fact, if for all pairs of points (i, j) we replace dij and dji with their arith-
metic mean (dij + dji) /2, the value of any solution x is unchanged, since the sum∑
i∈x
∑
j∈x dij contains either both distances or none.

dii = 0 for all i ∈ P

In fact, if every solution contains exactly k points, the sum which provides the value
of the objective contains exactly k terms dij for each i ∈ x, one of which is the term

7

8 1 The Maximum Diversity Problem

dii; setting dii to zero and summing dii/ (k − 1) to each term dij the overall value
of the objective does not change; the same operation can be done on the terms dij
for i /∈ x, given that they do not occur in the objective.

dij ≥ 0 per ogni i, j ∈ P

In fact, if every solution contains k points, the value of the objective is always a
sum of k2 terms; summing a constant value d̄ to every term so as to make them
nonnegative, the objective function increases by k2d̄ for every solution, so that the
optimal solution does not change; therefore, the distances can be considered as
nonnegative integer numbers.

By contrast, in general the triangle inequality is not satisfied:

dij + djk ≥ dik per ogni i, j, k ∈ P

There are MDP instances which enjoy it and instances which do not.

1.2 Benchmark instances

The literature provides several classes of benchmark instances for the MDP. Since
most of them have a fixed size, but we aim to discuss also the dependence of the
results on size, we will generate another benchmark set, inspired by the available
ones, but with a larger range of different sizes. The main features of these instances
are:

• set P ranges from n = 100 to n = 1 000 points by steps of 100;

• the integer number k is equal to 0.1n, 0.2n, 0.3n, 0.4n;

• the values dij of the distance function (with i < j) are random integer numbers
uniformly distributed in {1, . . . , 100};

• the values for i ≥ j derive from the assumptions made in the previous section.

Overall, they are 40 instances (ten different sizes times four different values of k).

They are neither particularly significant nor realistic instances, but they are hard
enough not to be trivially solved to optimality by any method, but easy enough to
assume that the best known solution is probably close to the optimum (even if this
has not been proved) and small enough to require a reasonable processing time from
any polynomial algorithm.

The data are provided in text files. The name of each file reports the features
of the instance: file n[%n]k[%k].dat corresponds to an instance with a set P of %n
points, and a required cardinality equal %k for the solution.

The file adopts the AMPL format, a standard format to represent Integer Pro-
gramming problems, used by general-purpose modelling languages and solvers for
that family of problems. The format is rather self-evident (and anyway does not
concern us, given that library data.h provides a function to load the data into the
memory).

param n := 100 ;

param k := 10 ;

param D :=

[1,1] 0 [1,2] 42 [1,3] 10 [1,4] 75 [1,5] 53 ...

[2,1] 42 [2,2] 0 [2,3] 13 [2,4] 33 [2,5] 84 ...

...

1.3 Instance representation 9

1.3 Instance representation

The C library data.h provides the data structure

typedef struct data_s

{

int n; /* cardinality of the set of points P */

int k; /* cardinality of the feasible solutions x \in X */

int **d; /* distance matrix between the points */

} data_t;

that we will use to represent each given instance I of the MDP, since it consists of
three simple components: a set P , a metric d and an integer number k.

We will represent set P with the natural numbers from 1 to n = |P |, since this
set has no other specification besides the metric. We do not adopt the classical
C language convention that represents integer number sets starting from zero, in
order to keep consistent with the data available in the literature, and to possibly
use index 0 for special operations.

We will represent metric d with a square integer matrix. We could save space
exploiting the symmetry of the metric, for example by representing only the values
dij with i < j, but this would require to test at each access to dij whether i < j or
not, in order to exchange the two indices if the result of the test is negative. Since
we expect to access the data a huge number of times, we choose to represent all of
them, preferring time efficiency over space efficiency.

The distance matrix is dynamic, and will be allocated when loading the data
from a text file and deallocated at the end of the algorithm. The C library alloc.h

is already available, and provides functions to allocate integer vectors (given the
actual number of elements) and matrices (given the actual number of rows and
columns).

/* Allocate a vector of n int */

int *int_alloc (int n);

/* Allocate a matrix of (n1,n2) int */

int **int2_alloc (int n1, int n2);

To manage the instances, library data.h provides functions to load the data
from a text file (in the standard AMPL format), to deallocate the struct data t

described above and to print the instance on the screen (once again in AMPL
format).

/* Load from the AMPL file data_file the instance *pI */

void load_data (char *data_file, data_t *pI);

/* Deallocate the instance *pI */

void destroy_data (data_t *pI);

/* Print the instance *pI in AMPL format */

void print_data (data_t *pI);

As observed above, a point is just an abstract object with no associated inform-
ation, represented by an integer number ranging from 1 to P . With some excess of
zeal, we will however introduce a level of abstraction and distinguish:

10 1 The Maximum Diversity Problem

• on the one hand, the numerical index of a point, that is an int;

• on the other hand the abstract point, with all its associated information (if
any), that is a point.

For the sake of rigour, we shall use int variables to scan the indices (for example,
in the distance matrix) and point variables to scan the actual points (for example,
the elements of a solution x and of its complement P \ x, as will be described in
the following section). As long as the two concepts coincide, we will identify them
with the type definition:

typedef int point;

allowing future developments, in which a point could be associated to auxiliary
information (e. g., coordinates, text strings, etc. . .) besides its numerical index.
This approach allow more easily to modify the data structures without modifying
the algorithms already implemented.

The disadvantage is that, in order to switch between points and indices, we must
use the functions:

/* Get the index of point i in instance *pI */

int get_index (point i, data_t *pI);

/* Get the point of index id in instance *pI */

point get_point (int id, data_t *pI);

If the data structure will need to be modified, these functions will take care of the
corresponding type conversions, but currently they just return in output the same
value received in input. This is an inefficiency, that can be controlled by adopting
suitable technological solutions, such as inline functions or macros to implement the
conversion.

1.4 Solution representation

The solutions of the MDP are subsets of the ground set, as for any other Combin-
atorial Optimisation problem. There are two main ways to represent a subset:

1. with an incidence vector, which associates each i ∈ P to a boolean value

xi =

{
true when i ∈ x
false when i ∈ P \ x

2. with a list of elements, which allows to scan only the elements of the solution
i ∈ x

The choice between the two representations depends on the type of operations
that the algorithm needs to perform: the inclusion test of a point in the solution is
efficient in the first representation (O (1)), inefficient in the second one (O (n)); the
opposite holds for the operation of scanning only the elements of the solution, or the
elements out of it. The algorithms we want to implement mainly use operations on
lists, both the internal and external points. For example, each step of a constructive
algorithm scans the set ∆+

A (x), that in the MDP is the complement of the solution,
P \ x, whereas the computation of the value of a solution, f (x), requires to scan

1.4 Solution representation 11

its elements. However, we will adopt both representations to keep as flexible as
possible. We will also represent the complementary set of the solution, P \ x as
another list, because many algorithms require to scan its points. If one of the two
representations is not actually used, we can decide to remove it a posteriori. The
C library solution.h provides the struct

typedef struct solution_s

{

int f; /* solution value */

bool *in_x; /* incidence vector: in_x[i] = true if i \in x,

in_x[i] = false if i \notin x */

/* Lists of points in solution x and in the complement P \setminus x */

int head_x; /* sentinel of the list of points in x */

int head_notx; /* sentinel of the list of points in P \setminus x */

int *next; /* next element for each point i in either list */

int *prev; /* previous element for each point i in either list */

int card_x; /* cardinality of the solution */

} solution_t;

The value f of the solution is saved in member f and kept up to date, so that
it can be accessed in constant time O (1), instead of recomputed every time. Its
recomputation, in fact, would require O

(
n2
)

time if done scanning the incidence

vector, O
(
k2
)

time if done scanning list x.

Note: since the distance matrix is symmetric and integer, f (x) is certainly an
even number, as it is the sum of pairs of equal terms. It is a common convention
to report in f half of the overall sum. We shall discuss this point again later.

The boolean vector in x represents the incidence vector. The boolean type,
with its two values false and true is declared in the library defs.h.

typedef enum _bool bool;

enum _bool {false = 0, true = 1};

and dynamic vectors of booleans can be allocated thanks to the already cited library
alloc.h, that provides function

/* Allocate a vector of n bool */

bool *bool_alloc (int n);

The two lists that represent the solution x and its complement P \x are doubly-
linked circular lists with sentinel, so that every fundamental operation (insertion,
extraction, etc. . .) can be performed in constant time, at the cost of a larger
memory occupation. Briefly, such lists can be scanned in both directions and are
never physically empty, because they always contain the fictitious element known
as sentinel (by convention, an empty list is a list containing only the sentinel). This
removes the need for different ways to operate on different parts of the list (the
beginning, inner positions or the end).

We will adopt the implementation of the two lists with vectors and indices,
instead of the implementation with pointers and dynamically allocated structures,

12 1 The Maximum Diversity Problem

because all possible points are defined once for all at the beginning of the algorithm,
and only their positions change dynamically during the execution. Moreover, since
the two lists do not intersect (they are complementary), we will exploit the same
vectors and indices next and prev for the two lists; only the heads head x and
head notx will be different. The sentinel of list x has index 0, the sentinel of list
P \ x has index card N+1. Only the intermediate values correspond to regular
indices. The following example shows how the solution x = {1, 3, 7} of an instance
with point set P = {1, 2, 3, 4, 5, 6, 7} will be represented:

f 46

1 2 3 4 5 6 7

in_x [1 0 1 0 0 0 1]

head_x 0

head_notx 8

0 1 2 3 4 5 6 7 8

next [1 3 4 7 5 6 8 0 2]

prev [7 0 8 1 2 4 5 3 6]

card_x 3

The cardinality of the solution |x| (card x) should be fixed to k, but reporting
it explicitly allows the structure to represent also general subsets of P , and in
particular partial solutions of cardinality < k. In fact, the set of all partial solutions
is the search space FA for all the constructive algorithms considered in the following.

In order to avoid programming technicalities, we will hide many implementa-
tion details using library functions to access the data. This also allows, if necessary,
to modify the low-level implementation without affecting already implemented al-
gorithms. It can, however, imply some time inefficiencies, because it requires func-
tion calls instead of the simple direct access to data structures. Such inefficiencies
can be easily overcome by using macros (or inline definitions in C++), so we
accept them, but we do not describe how to do that to avoid technicalities.

The C library solution.h provides some functions to manage solutions:

/* Create an empty solution for a problem of size n */

void create_solution (int n, solution_t *px);

/* Deallocate the solution *px */

void destroy_solution (solution_t *px);

/* Turn a solution into the empty set for a problem of size n */

void clean_solution (int n, solution_t *px);

/* Copy solution *px_orig into solution *px_dest */

void copy_solution (solution_t *px_orig, solution_t *px_dest);

/* Print by increasing indices solution *px for a problem of size n */

void print_sorted_solution (solution_t* px, int n);

The creation of an empty solution corresponds to the typical initial step of
a constructive heuristic, that starts from the empty subset. The deallocation is
performed at the end of the algorithms. Cleaning a solution allows to restart an

1.4 Solution representation 13

algorithm without deallocating and reallocating the memory. The copy function is
useful to update the best known solution when the current one improves it. The
print function is useful to analyse the results: it reports on the screen on a single
row the name of the data file, the value of the objective and the list of points in
solution x.

Another block of functions allow to access the solution x and its complement
P \ x, avoiding any explicit reference to their concrete implementation. List x can
be scanned with the following library functions:

/* Return the first and the last point of solution *px */

point first_point_in (solution_t *px);

point last_point_in (solution_t *px);

/* Return the point following and preceding i in solution *px */

point next_point (point i, solution_t *px);

point prev_point (point i, solution_t *px);

/* Indicate whether i is a regular point or a sentinel */

bool end_point_list (point i, solution_t *px);

In order to scan the complementary list P \ x, the functions to access the first
and last point change, because the sentinel has a different index:

/* Return the first and the last point of the complement of solution *px */

point first_point_out (solution_t *px);

point last_point_out (solution_t *px);

but the functions that return the next and the previous point and the function that
indicates whether the point is regular or the sentinel remain the same for both lists,
because they share the same vectors and follow the same rules.

For example, given two points:

point i, j;

in order to scan solution x from the first to the last point, one can perform the loop

for (i = first_point_in(&x); !end_point_list(i,&x); i = next_point(i,&x))

and to scan the complement P \ x from the first to the last point, one can perform
the loop

for (j = last_point_out(&x); !end_point_list(j,&x); j = prev_point(j,&x))

The main manipulations of a solution in a constructive algorithm is the addition
of a point, that requires to move it from the complementary list to the solution
list, while at the same time updating the incidence vector and the value of the
objective. It is adviseable to define a specific function for this basic operation,
to make it as efficient as possible and to guarantee the consistency of the data
structures. Functions operating on a single list would not make much sense for the
overall problem and could easily introduce inconsistencies in the representation of
the solution.

/* Add point i to solution *px */

void add_point (point i, solution_t *px, data_t *pI);

/* Delete point i from solution *px */

void delete_point (point i, solution_t *px, data_t *pI);

14 1 The Maximum Diversity Problem

These functions must keep all components of the data structure consistent and up
to date 1. Function add point:

1. adds to the objective function the sum of all distances of the newly added
point from the previous ones (but not the reverse distances because f reports
only half of the objective); this operation requires the distance matrix;

2. increases by one the cardinality card x;

3. finds the index id of point i and sets the corresponding value of in x to true;

4. extracts point i from list P \ x;

5. adds point i to list x.

Considering the previous example, adding point 4 to the solution yields the following
data structure:

f 90

1 2 3 4 5 6 7

in_x [1 0 1 1 0 0 1]

head_x 0

head_notx 8

0 1 2 3 4 5 6 7 8

next [1 3 5 7 0 6 8 4 2]

prev [4 0 8 1 7 2 5 3 6]

card_x 4

The library also provides a function to remove a point from the solution, moving
it from the solution list to the complementary list, and correspondingly updating
the incidence vector and the value of the objective.

/* Delete point i from solution *px */

void delete_point (point i, solution_t *px, data_t *pI);

This function:

1. subtracts from the objective function the sum of all distances of the newly
removed point from the remaining ones; this operation requires the distance
matrix;

2. decreases by one the cardinality card x;

3. finds the index id of point i and sets the corresponding value of in x to
false;

4. extracts point i from list x;

5. adds point i to list P \ x.

Removing point 1 from the solution previously augmented yields the following data
structure:

1It would be worth discussing whether these functions should require point i or index id. I
guess the former is more likely in general, but the current implementation makes it indifferent.

1.5 Consistency check 15

f 72

1 2 3 4 5 6 7

in_x [0 0 1 1 0 0 1]

head_x 0

head_notx 8

0 1 2 3 4 5 6 7 8

next [3 8 5 7 0 6 1 4 2]

prev [4 6 8 0 7 2 5 3 1]

card_x 3

All these operations require constant time, except for the update of the objective
function, which requires O (|x|) time for the addition and O (n− |x|) time for the
removal. This will be useful to implement destructive algorithms.

1.5 Consistency check

Notice that the use of a double representation for the solution implies a compu-
tational overhead and an additional effort to keep the two representations up to
date. This choice should be justified by a better efficiency gained somewhere else.
Moreover, this choice allows the risk to lose the consistency between different ele-
ments of the two representations. Such a risk is limited by the use of clearly defined
functions to manipulate the solutions, but it is anyway impossible to remove com-
pletely. In our case, the data structure solution t includes five potentially incon-
sistent components: objective value, cardinality, incidence vector, solution list and
complementary list. The manipulation functions should guarantee the consistency
between the five components. Even assuming that they are consistent at the be-
ginning, every subsequent modification (for example, the introduction of new fields
in the solution to allow other operations or to perform the same operations more
quickly) could introduce inconsistencies, and therefore errors.

When implementing a heuristic algorithm, it is therefore a very good practice
to write and maintain a function to check the internal consistency of the data
structures. This function usually assumes one of the components as valid a priori,
and recomputes the other ones, checking whether their current values are correct or
not. The choice of the valid component is arbitrary, provided that it is sufficient to
derive all of the other ones. In general, one uses the simplest component, that it that
which is less likely to be incorrect. In our case, the available check function starts
from the incidence vector, and derives from it the objective value, the cardinality
and the two lists.

/* Check the internal consistency of solution *px based on instance *pI,

starting from the incidence vector */

bool check_solution (solution_t *px, data_t *pI);

If the function finds an inconsistency, it return the value false, and the user can
decide whether to terminate the execution to correct the code. Of course, the check
function is used only during the implementation of the algorithm, and does not
appear in its final version.

16 1 The Maximum Diversity Problem

1.6 The main function

The main function in all the algorithms presented in the following chapters manages
the parsing of the command line (that is, the interpretation of the parameters of
each algorithm), the loading of the data, the allocation and deallocation of the
data and the solution, the execution of the algorithm, the determination of the
computational time and the print of the result on the screen. Its general structure
can be described as follows.

parse_command_line(argc,argv,data_file,¶m);

load_data(data_file,&I);

create_solution(I.n,&x);

start = clock();

...

end = clock();

CPUtime = (double) (end - start) / CLOCKS_PER_SEC;

printf("%s ",data_file);

printf("%10.6lf ",CPUtime);

print_sorted_solution(&x);

printf("\n");

destroy_solution(&x);

destroy_data(&I);

where data file stands for the name of the text file reporting the instance and
param is a specific structure for each family of algorithms tested, that collects the
parameters that identify a single algorithm. I is the instance of the problem and x

the solution obtained. The starting time, ending time and overall duration of the
computation are start, end and CPUtime. Finally, the dots (...) represent the
actual call of the algorithm considered. The print of the results occurs on a single
line of the screen, so that several calls to the algorithm can be collected in a script.
This allows to run the algorithm on several benchmark instances, or with several
different parameters, appending the results in a single file, one row for each run.

Chapter 2

Constructive heuristics

2.1 General scheme

The constructive heuristics usually apply the following simple general scheme:

Algorithm Greedy(I)

x := ∅; x∗ := ∅;
If x ∈ X then f∗ := f (x) else f∗ := +∞;

While ∆+
A (x) 6= ∅ do

i := arg min
i∈∆+

A(x)
ϕA (i, x);

x := x ∪ {i};
If x ∈ X and f (x) < f∗ then x∗ := x; f∗ := f (x);

Return (x∗, f∗);

Let us adapt this scheme to the specific case of the MDP. First, the only feasible
subset visited by the algorithm is the last one. This allows to remove any reference
to x∗ and f∗ and simply return (x, f) at the end of the algorithm. Second, the
extremely simple structure of the feasible solutions (the only constraint is the fixed
cardinality) suggests to define the search space as the set of the partial solutions,
that is of the subsets with at most k points.

FA = {x ⊆ P : |x| ≤ k}

This implies that the set ∆+
A (x) of all possible extensions for a given partial solution

x coincides with the complement of the latter (except in the last step, when it is
empty):

∆+
A (x) =

{
P \ x for |x| < k

∅ for |x| = k

Moreover, as the MDP is a maximisation problem, it is more natural to consider
also the selection criterium as a function to maximise.

17

18 2 Constructive heuristics

This transforms the general scheme as follows:

Algorithm GreedyMDP(I)

x := ∅;
While |x| < k do

i := arg max
i∈P\x

ϕA (i, x);

x := x ∪ {i};
Return (x, f);

This scheme can be easily implemented with the available functions, plus one
that maximises the selection criterium:

void greedy (data_t *pI, solution_t *px)

{

point i;

while (get_card(px) < pI->k)

{

i = best_point_to_add(px,pI);

add_point(i,px,pI);

}

}

The instruction x := ∅ should correspond to create solution(pI->n,px), but
we prefer to move it out of the algorithm, in the main function, under the form
create solution(I.n,&x) and to pass the empty solution thus obtained as an
argument to function greedy. The advantage of this structure is that function
greedy now can be used not only to generate a solution from scratch, but also to
complete a possible partial solution obtained in any other way1.

Function best additional point(px,pI) must be implemented to determine
the best point i to add to solution *px based on the features of instance *pI ac-
cording to the selection criterium ϕA (i, x), which we have not yet defined. Different
definitions will give rise to different constructive algorithms.

2.2 The basic constructive heuristic

Since the objective function can be easily extended to any subset of points, the
simplest definition for the selection criterium is the value of the objective, that is

ϕA (i, x) = f (x ∪ {i}) =
∑

j∈x∪{i}

∑
k∈x∪{i}

djk

Computing it from scratch requires O
(
|x|2
)

time, but is not actually necessary,
because it is enough to update it step by step choosing the point that maximises it.
To achieve this result, one can consider the variation δf (x, i) = f (x ∪ {i})− f (x)

δf (x, i) =
∑
j∈x

dji +
∑
j∈x

dij + dii = 2
∑
j∈x

dji

1This would be useful if a preliminary reduction procedure or some manipulation of a model of
the problem could prove (or suggests heuristically) the opportunity to include a promising subset
of points.

2.2 The basic constructive heuristic 19

which can be computed in O (|x|) time. Also remind that we are updating and
optimizing f (x) /2, so that the factor 2 can be removed from the expression of
δf (x, i).

The previous remark allows to implement the operation

i := arg max
i∈P\x

f (x ∪ {i}) ;

with the simple call

i = best_additional_point(px,pI);

of the following function

// Find the best point to add to solution *px based on the instance *pI

point best_additional_point (solution_t *px, data_t *pI)

{

point i, i_max;

int d, d_max;

d_max = -1;

i_max = NO_POINT;

for (i = first_point_out(px); !end_point_list(i,px); i = next_point(i,px))

{

d = dist_from_x(i,px,pI);

if (d > d_max)

{

i_max = i;

d_max = d;

}

}

return i_max;

}

which computes for each point i of list P \x the variation of the objective function,
δf (i, x) /2 =

∑
j∈x dij , obtained adding i to solution x, that is the total distance of

i from the points of x. This value is computed by function dist from x(i,px,pI).
The function returns the point i max that yields the maximum increase. The result
is the basic constructive algorithm.

2.2.1 Empirical evaluation

The benchmark considered is rather small and too specific to allow a truly meaning-
ful analysis. However, it is sufficient to illustrate the process and to make some in-
teresting remarks. Let us run the algorithm on the whole benchmark set. The script
greedy solve.bat applies the algorithm redirecting its output from the screen to
the text file report.txt.

echo "File T_A f_A x_A" > report.txt

./main_greedy data/n0100k010.txt >> report.txt

./main_greedy data/n0100k020.txt >> report.txt

./main_greedy data/n0100k030.txt >> report.txt

...

20 2 Constructive heuristics

The first line creates a header with four elements, that are potential labels in
a table: the name of the instance file, the computational time TA required by the
algorithm, the value fA of the objective function and the list of points in the solution
xA found. This header is redirected by directive > on the text file report.txt.
Each following line applies the algorithm and redirects the output in append (with
directive >>) on the same text file, so as to obtain a very regular summary, with
the results of a single instance in each row.

File T_A f_A x_A

data/n0100k010.txt 0.000150 3308 1 33 70 31 72 ...

data/n0100k020.txt 0.000448 12120 1 72 61 12 66 ...

data/n0100k030.txt 0.000780 26115 1 96 46 4 57 ...

...

We are particularly interested in the columns reporting the computational time
TA and the result (fA (x)).

Computational time analysis

Figure 2.1 reports the RTD diagram for the whole benchmark. It is a good example
of a “scientific-looking”, but insignificant diagram, because the benchmark includes
instances of different size, the computational time strongly depends on the size, and
the diagram actually describes the specific benchmark more than a property of the
algorithm, or the problem in general. The parametric RTD diagrams for fixed size
(see Figure 2.2) account for this aspect, but each one refers to only four instances,
so they are also nearly meaningless. The fact that they are more and more spaced
as the size increases suggests a more than linear dependence of the time on the size.

Figure 2.1: RTD diagram for the greedy algorithm on the benchmark

The correct tool to describe the dependence of the computational time TA on
the instance size P is the scaling diagram (see Figure 2.3). The first remark is that
TA is rather low, even for large instances (n = 1 000), and often nearly “zero” for
n = 100. For a fixed value of P , they appear distributed on a rather large “fan”. An
interesting question is whether this distribution is due to an important secondary
feature of the instances or to wide random variations of the computational time over
different instances. A useful hint is provided by the distribution of the points on
the scaling diagram, that are rather clearly clustered in four profiles, corresponding
to the different values of parameter k. The theoretical analysis confirms that k
plays a significant role. In fact, the general scheme implies k iterations, each of
which searches for the best additional point scanning the n − |x| external points
and computing in O (|x|) time the distance of each point from the current solution.
The other operations are clearly faster, even if adding the new point to the solution

2.2 The basic constructive heuristic 21

Figure 2.2: Parametric RTD diagrams for the greedy algorithm on the benchmark

takes O (|x|) time to update the objective function value. Overall, the complexity
is

TA (n, k) =

k∑
i=1

O (n− i)O (i) = O
(
nk2

)
Since in the benchmark k = αn, with α ∈ {0.1, 0.2, 0.3, 0.4}, the theoretical estimate
amounts to TA ∈ O

(
n3
)
.

Figure 2.3: Scaling diagram for the greedy algorithm on the benchmark

Let us verify whether it is correct by drawing the scaling diagram in a logarithmic
scale:

TA = βnα ⇔ log TA = α log n+ log β

Indeed, the graph seems to be remarkably linear. The linear interpolation sug-
gests that α ≈ 2.771 and β ≈ 10−9. The value of β depends on constant multiplying
factors, among which the technical parameters of the specific computer employed.
The value of α suggests that the algorithm is actually less than cubic. This could be
due to actual overestimates in the theoretical analysis (not likely in this case, given
its rather simple structure) or to the fact that the instances considered are not large
enough to exhibit a full dominance of the main complexity factor. In the present
case, there is a number of quadratic terms that indeed could still measurably affect
the computational time (the update of the objective function, and possibly of the
best additional point).

Solution quality analysis In order to evaluate the quality of the results, it is
adviseable to compute the gap (relative difference) with respect to the optimum,

22 2 Constructive heuristics

Figure 2.4: Scaling diagram in logarithmic scales for the greedy algorithm on the
benchmark

so that the values obtained from different instances could be compared in a more
reasonable way. However, the optimum is not known, due to the hardness of the
problem, and the gap should be replaced by an estimate. Two estimates are pos-
sible2:

LB − fA (x)

LB
≤ δA (x) =

f∗ − fA (x)

f∗
≤ UB − fA (x)

UB

In the case of the MDP, the best known upper bounds are of rather scarse quality,
whereas the lower bounds seem to be closer to the optimum. The first estimate
is therefore probably tighter, even if unfortunately they do not provide a quality
guarantee (the real gap is larger).

Table 2.1 reports the results of the basic greedy algorithm. None of the instances
is solved to the optimum. Is this a good or a bad result? Of course, the answer
would depend on a comparison with alternative algorithms, but in general it does
not seem to be a strikingly good outcome. In order to understand what is going
on, we can watch the step-by-step behaviour of the algorithm, in order to check
whether it makes some obviously ineffective operation, or we can watch its solutions,
in order to check whether they have something strange. The following rows show
the solutions of the first instances:

"File T_A f_A x_A"

data\n0100k010.txt 0.000000 3308 1 6 21 22 31...

data\n0100k020.txt 0.000000 12120 1 2 12 13 15...

data\n0100k030.txt 0.000000 26115 1 4 7 16 17...

data\n0100k040.txt 0.000000 44037 1 2 4 7 12...

data\n0200k020.txt 0.001000 13139 1 3 4 5 35...

data\n0200k040.txt 0.002000 48040 1 13 14 22 23...

data\n0200k060.txt 0.003000 102535 1 5 9 10 11...

...

We immediately notice an interesting phenomen: all solutions include point 1.
This is certainly strange, given that the different instances of the benchmark have
a similar structure, but have been generated independently. It is strange enough to
suggest revising the behaviour of the algorithm, possibly step by step. The answer
is trivial when performing this revision: in the first iteration of the main loop, which
selects the first point of the solution, the selection criterium assigns the same value,
equal to zero, to all points. This is because each point i ∈ P yields a solution
x(1) = {i} whose value is f ({i}) = 0, as the sum of the reciprocal distances is

2Their expressions are different from those discussed in the theoretical lessons, because the
problem is a maximisation one, but the basic idea is exactly the same.

2.2 The basic constructive heuristic 23

I fA f∗ δA
n100k10 3308 3561 7.10%
n100k20 12120 12541 3.36%
n100k30 26115 26642 1.98%
n100k40 44037 45445 3.10%
n200k20 13139 13489 2.59%
n200k40 48040 48866 1.69%
n200k60 102535 103266 0.71%
n200k80 175407 177263 1.05%
n300k30 27891 29208 4.51%
n300k60 104130 106272 2.02%
n300k90 225757 227346 0.70%
n300k120 388035 391901 0.99%
n400k40 49333 50593 2.49%
n400k80 180929 184820 2.11%
n400k120 394012 397695 0.93%
n400k160 681948 689552 1.10%
n500k50 75918 77937 2.59%
n500k100 279418 285776 2.22%
n500k150 610721 616986 1.02%
n500k200 1062600 1072953 0.96%
n600k10 107626 110064 2.22%
n600k20 400101 407113 1.72%
n600k30 876249 885531 1.05%
n600k40 1521578 1532111 0.69%
n700k20 144837 148024 2.15%
n700k40 544500 550806 1.14%
n700k60 1185633 1197512 0.99%
n700k80 2063246 2078232 0.72%
n800k30 186327 190962 2.43%
n800k60 704682 713263 1.20%
n800k90 1549915 1558378 0.54%
n800k120 2690094 2707534 0.64%
n900k40 235297 240114 2.01%
n900k80 886151 899843 1.52%
n900k120 1948726 1959910 0.57%
n900k160 3393602 3413499 0.58%
n1000k50 288336 293587 1.79%
n1000k100 1091266 1102515 1.02%
n1000k150 2389100 2407636 0.77%
n1000k200 4190140 4207633 0.42%

Table 2.1: Results of the basic greedy algorithm

24 2 Constructive heuristics

necessarily zero. Something is clearly wrong in the selection criterium ϕ, at least
at the first step.

2.3 Alternative constructive heuristics

In order to solve the intrinsic defect of the basic constructive heuristic, we can try
to modify something in its design, going back to the basics: the construction graph
and the selection criterium. Let us consider three possible proposals:

1. farthest-pair heuristic: keep the same selection criterium, but modify the
construction graph at the first level (where it is defective), skipping directly
from the empty set to pairs of points, instead of singletons; in other words,
start with the two reciprocally farthest points, then go back to adding a single
point at a time:

ϕ (B, x) =

{
max
i,j∈P

dij when x = ∅

f (x ∪ {i}) when x 6= ∅

The asymptotic worst-case complexity increases fromO
(
nk2

)
toO

(
nk2 + n2

)
,

due to the search for the pair of farthest points, but its order does not change
unless k is very small.

2. farthest-point heuristic: adopt a special selection criterium for the first point
i(1): for example, it could be the point farthest away from the other ones:

ϕ (i, x) =


∑
j∈P

dij when x = ∅

f (x ∪ {i}) when x 6= ∅

The asymptotic worst-case complexity increases fromO
(
nk2

)
toO

(
nk2 + n2

)
,

due to the computation of the total distance from each point to all the other
points; however, its order does not change unless k is very small.

3. try-all heuristic: use the first point as a parameter and run the algorithm P
different times, changing the first point at each repetition. This algorithm
strictly dominates the other three, because it includes them: one of the runs
certainly makes the same starting choices (point 1, or one of the two farthest
points and therefore also the other, or the point at maximum total distance
from the other ones), and consequently proceeds in the same way, hitting
the same final result. It is however also much more expensive, becase its
asymptotic worst-case complexity grows to O

(
n2k2

)
.

The scaling diagrams for the three new algorithms are given in Figure 2.5 in
a logarithmic scale, that shows how the last heuristic clearly has a larger slope
than the other ones, whereas these have more or less the same. This diagram
also describes a basic destructive heuristic that we are going to implement before
proceeding with an experimental comparison of all the algorithms.

2.4 The basic destructive heuristic

A destructive heuristic starts from the overall ground set P and iteratively removes
one element at a time, according to a suitable selection criterium, so as to remain
inside a suitable search space, until a final solution is found.

2.4 The basic destructive heuristic 25

Figure 2.5: Scaling diagram for the four greedy algorithms variants (and the stingy
one) on the benchmark

If we adopt the objective function as a selection criterium, we can adapt the
general scheme of the destructive heuristic to the MDP as follows, based on remarks
similar to those made for the basic constructive one:

Algorithm StingyMDP(I)

x := P ;

While |x| > k do

i := arg max
i∈x

f (x \ {i});

x := x \ {i};
Return (x, f);

Notice that maximising f (x \ {i}) corresponds, through computations similar
to the ones seen for greedy constructive heuristics, but with a reversed sign, to
minimise the (absolute value of the) variation of the objective function δf (x, i) =
f (x)− f (x \ {i})

δf (x, i) =
∑
j∈x

dji +
∑
j∈x

dij + dii = 2
∑
j∈x

dji

which means that the point to be deleted is the one with the maximum total distance
from the current subset x.

The first iteration of this algorithm is not problematic as it is for the constructive
algorithm: in general, in fact, the removal of different points yields sets with a
different value of the objective.

The computational time is predictably larger, because the number of iterations
is n − k, and each iteration requires to check the total distance of |x| points from
other |x − 1| points, with |x| decreasing from n to k + 1. This is approximately
O
(
n3
)
, that is of the same order as nk2, but with larger multiplying factors. In

fact, the scaling diagram of Figure 2.5 confirms this prediction.

The quality of the results is experimentally better than that of the greedy al-
gorithms (with the obvious exception of the one that tries all starting points). This
is rather surprising, because stingy algorithms often tend to perform worse than the
greedy ones, due to the larger number of iterations in which they risk to take bad
choices.

The reason for this opposite outcome is not clear, but one could conjecture that,
in the special case of the MDP, choosing the first points to be included in a good
solution is actually much more misleading than choosing the firsts to be removed
from it. It is a phenomenon that would deserve a more detailed study.

26 2 Constructive heuristics

It is however to be remarked that the stingy algorithm cannot be simply con-
sidered better than the greedy one because its computational time is much longer.

2.5 Experimental comparison

Solution quality diagrams The SQD diagram is not very significant in itself,
because the benchmark considered is rather small and specific. It allows however
to compare the different algorithms. See Figure 2.6 for the comparison, which
clearly confirms the strict dominance of the last heuristic on the previous ones, the
probabilistic dominance (at least on the given benchmark) of the stingy heuristic
on the greedy ones, whereas the three greedy heuristics are more or less equivalent
(with a slight predominance of the farthest point heuristic, especially concerning
the maximum gap).

The diagram also shows a very strange phenomenon: the farthest pair heuristic
has the same diagram as the basic greedy heuristic. In fact, they not only have the
same distribution, but exactly the same results. Is this an unpredicted property of
the two algorithms? It does not seem to be necessarily so, and yet this is what can
be empirically observed.

The reason is very peculiar and depends on the specific structure of the bench-
mark. Hence, it is not instructive for the MDP in general, but for the need to
keep an open eye on the generation of the benchmark. We have extracted the dis-
tance values from {1, . . . , 100}. An instance with n points has exactly n(n − 1)/2
independent distance values, if we take into account the assumptions made in the
introductory chapter. This means that each point i is very likely to admit at least
another point j at distance dij = 100. In particular, it is very likely that point
1 admits such another point. But this implies that the farthest pair heuristic will
chose a pair including point 1. On the other hand, the basic heuristic, after choosing
point 1 will certainly proceed choosing the farthest point from it. Therefore, the
two heuristics are very likely to start with the same pair, and, being deterministic,
to proceed in the same way and obtain the same final result. This is not intrinsic
in the two algorithms, but it depends on the structure of the benchmark instances.

Figure 2.6: Solution Quality Distribution diagram for the four greedy algorithms
variants (and the stingy one) on the benchmark

Statistical indices and boxplots A more compact description of the same in-
formation can be given by the boxplots of the five heuristics, that are reported in
Figure 2.7.

2.5 Experimental comparison 27

Figure 2.7: Boxplots for the four greedy algorithms variants (and the stingy one)
on the benchmark

Statistical tests Wilcoxon’s test can be applied to pairs of algorithms to determ-
ine whether any of the two dominates significantly the other one. Since the basic
greedy heuristic and the farthest pair heuristic have exactly the same results, it
does not make sense to test them. Let us first compare the basic greedy heuristic
and the farthest point heuristic. The latter appears slightly better according to
Figure ??, in particular concerning the worst cases (4% versus 7%). Building a text
file with two columns reporting the results of the two algorithms allows to run the
SRtest.pl Perl script that performs Wilcoxon’s test. The result is:

W+ = 413, W- = 407, N = 40, p <= 0.9732

that suggests very similar ranks for the two algorithms, and a very high probability
to get such results (or more unbalanced ones) under the null hypothesis that the
two algorithms are actually equivalent: p = 97.32%. Therefore, we conclude that
the two algorithms are probably equivalent.

Considering the greedy basic heuristic and the stingy heuristic:

W+ = 30, W- = 790, N = 40, p <= 3.385e-007

the ranks of the two algorithms look very different, with negative ranks prevailing,
meaning that the second column (stingy) tends to include larger (that is, better)
values. Since the p-value is very small (3.385 · 10−7), it looks likely that the stingy
heuristic is actually better than the greedy one.

Finally, comparing the stingy heuristic with the “try all” heuristic:

W+ = 570, W- = 250, N = 40, p <= 0.03204

the latter looks better (positive ranks prevail) with a significant, but not very strong,
p-value (3.204% is only slightly lower than the classical 5% threshold).

Other constructive heuristics? The above experiments and remarks open the
way to a large variety of possible algorithms, based on more refined definitions of
the construction graph or of the selection criterium. Just to mention one, we could
take into account the fact that in the final solution each point i will relate with k−1
other points. Therefore, estimating its contribution as the distance with respect to
the |x| points currently included is certainly incorrect. An estimate of the distances

28 2 Constructive heuristics

of i from the other k − 1 − |x| points could be useful. These points are unknown,
of course, but it is likely that they are far from x and from i. Therefore, we could
consider the points with the largest current total distance from x and from i. This
still neglects the reciprocal distances between such points, but could anyway provide
a better estimate, and consequently a more effective choice. Of course, computing
that information has a computational cost, which must be minimised and weighed
with respect to the improvement in the final result.

Open questions Is there a dependence of the solution quality on n and k (see
Figure 2.8)? Is it different for different algorithms?

Figure 2.8: Scaling diagram for the quality of the greedy algorithm with respect to
the size of the instances of the benchmark

2.6 Roll-out heuristic

TO BE DONE

	The Maximum Diversity Problem
	Definition
	Benchmark instances
	Instance representation
	Solution representation
	Consistency check
	The main function

	Constructive heuristics
	General scheme
	The basic constructive heuristic
	Empirical evaluation

	Alternative constructive heuristics
	The basic destructive heuristic
	Experimental comparison
	Roll-out heuristic

