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Extensions of the basic constructive scheme

The basic scheme of constructive algorithms can be enhanced using

1 a more effective construction graph
• add more than one element to the current subset x
• add elements to x , but also remove elements from x

2 a more sophisticated selection criterium, such as
• a regret-based function that estimates potential future losses

associated with element i
• a look-ahead function that estimates the final value of the objective

obtained adding i to x
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Extensions of the construction graph
The constructive algorithm adds one element at a time to the solution

It is possible to generalize this scheme with algorithms that at each step

1 add more than one element: the selection criterium φA (B+, x)
identifies a subset B+ ⊆ B \ x to add, instead of a single element i

2 add elements, but also remove a smaller number of elements:
the selection criterium φA (B

+,B−, x) identifies a subset B+ ⊆ B \ x
to add and a subset B− ⊆ x to remove, with |B+| > |B−|

These algorithms build an acyclic construction graph on the search space,
so that they never revisit any subset

The fundamental problem is to define a family ∆+
A (x) of subset pairs

such that optimising the selection criterium is a polynomial problem

min
(B+,B−)∈∆+

A (x)
φA

(
B+,B−, x

)
that is

• subsets efficiently optimisable (minimum paths,. . . )

• subsets of limited size (e. g., |B+| = 2 and |B−| = 1)
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The Steiner Tree Problem (STP)

Given an undirected graph G = (V ,E ), a cost function c : E → N
on the edges and a subset of special vertices U ⊂ V ,
find a tree connecting at minimum cost all special vertices
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The minimum tree spanning the special vertices is not necessarily optimal
(and it might not even exist)
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The Distance Heuristic (DH) for the STP

A basic constructive algorithm could adopt the same search spaces as

• Kruskal’s algorithm: the set of all forests

• Prim’s algorithm: the set of all trees including a (special) vertex

but adding one edge at a time

• returns solutions with redundant edges, therefore expensive

• has a hard time distinguishing useful and redundant edges

The Distance Heuristic adopts as search space F
the collection of all trees including a given special vertex v1 (as in Prim)

It iteratively adds a path B+ between x and a special vertex
instead of a single edge, so that

• x remains a tree

• x spans a new special vertex

• the minimum cost path can be computed efficiently at each step

It terminates when all special vertices are connected
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Example

• start with a single special vertex a: x := ∅ (degenerate tree)

• add the closest special vertex (b) through path (a, e, d , b):
x = {(a, e) , (e, d) , (d , b)}

• add the closest special vertex (g) through path (g , h, d):
x = {(a, e) , (e, d) , (d , b) , (g , h) , (h, d)}

• all special vertices are in the solution: terminate

6 / 43



Example

• start with a single special vertex a: x := ∅ (degenerate tree)

• add the closest special vertex (b) through path (a, e, d , b):
x = {(a, e) , (e, d) , (d , b)}

• add the closest special vertex (g) through path (g , h, d):
x = {(a, e) , (e, d) , (d , b) , (g , h) , (h, d)}

• all special vertices are in the solution: terminate

7 / 43



Example

• start with a single special vertex a: x := ∅ (degenerate tree)
• add the closest special vertex (b) through path (a, e, d , b):

x = {(a, e) , (e, d) , (d , b)}
• add the closest special vertex (g) through path (g , h, d):

x = {(a, e) , (e, d) , (d , b) , (g , h) , (h, d)}
• all special vertices are in the solution: terminate

(this time, the solution is optimal)

The Distance Heuristic algorithm is 2-approximated

It is equivalent to computing a minimum spanning tree on a graph with
• vertices reduced to the special vertices
• edges corresponding to the minimum paths
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Counterexample to optimality
Consider a complete graph G = (V ,E) with U = V \ {1} and cost

cuv =

{
(1 + ϵ)M for u or v = 1

2M for u, v ∈ U

(M is just used to obtain integer costs for any ϵ)

The DH returns a star spanning the special vertices: fDH = (n − 2) · 2M

The optimal solution is a spanning star centred in 1: f ∗ = (n − 1) · (1 + ϵ)M

The approximation ratio is ρDH =
fDH

f ∗
=

n − 2

n − 1
· 2

1 + ϵ
< 2

and converges to 2 as n increases and ϵ decreases
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Insertion algorithms for the TSP

Several heuristic algorithms for the TSP define the search space FA as
the set of all circuits of the graph including a given node; a circuit

• cannot be obtained from another one by adding a single arc

• can be obtained adding two arcs (i , k), (k , j) and removing one (i , j)

1 Start with a zero-cost self-loop on node 1: x (0) = {(1, 1)}
It is not very different from an empty set

2 Select a node k to be added and an arc (i , j) to be removed

3 If the circuit does not visit all nodes, go back to point 2;
otherwise terminate

Such a scheme never visits again the same solution and
builds a feasible solution in n − 1 steps (each step adds a new node)
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Insertion algorithms for the TSP
The selection criterium φA (B

+,B−, x) must choose an arc and a node;
there are (n − |x |) |x | ∈ O

(
n2
)
alternatives

• |x | possible arcs (si , si+1) to remove
• n − |x | possible nodes k to add through the arcs (si , k) and (k, si+1)

The Cheapest Insertion (CI) heuristic uses as a selection criterium

φA

(
B+,B−, x

)
= f

(
x ∪ B+ \ B−)

Objective function f (x) is additive, hence extensible to the whole of FA

Since f (x ∪ B+ \ B−) = f (x) + csi ,k + ck,si+1 − csi ,si+1

arg min
(B+,B−)

φA

(
B+,B−, x

)
= argmin

i,k
(csi ,k + ck,si+1 − csi ,si+1)

The computational cost of evaluating φA decreases from Θ (n) to Θ (1)
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Cheapest Insertion heuristic for the TSP

Algorithm Cheapest Insertion

1 start with a zero-cost self-loop on node 1: x (0) = {(1, 1)}
It is also like starting with a single node

2 select the arc (si , si+1) ∈ x and the node k /∈ Nx such that
(csi ,k + ck,si+1 − csi ,si+1) is minimum

3 if the circuit does not visit all nodes, go back to point 2;
otherwise terminate

It is not exact, but 2-approximated, under the triangle inequality
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An example

Start with a single node (as in the NN heuristic)
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An example

Create a circuit (instead of a path)

14 / 43



An example

Add at each step the node that minimally increases the circuit cost
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An example

Add at each step the node that minimally increases the circuit cost
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An example

Terminate when the circuit visits all nodes
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Cheapest Insertion heuristic for the TSP

The CI algorithm performs n − 1 steps: at each step t

• it evaluates (n − t) t node-arc pairs
• each evaluation requires constant time
• each evaluation possibly updates the best move

• it performs the best addition/removal

• it decides whether to terminate

The overall complexity is Θ
(
n3
)

It can be reduced to Θ
(
n2 log n

)
collecting in a min-heap

the insertion costs for each external node: each of the n steps

• selects the best insertion in O (n) time and performs it

• creates two new insertions and removes one for each external node,
and updates their heaps in O (n log n) time
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Nearest Insertion heuristic for the TSP

Algorithm Cheapest Insertion tends to select nodes close to circuit x :
minimizing csi ,k + ck,si+1 − csi ,si+1 implies that csi ,k and csi+1,k are small

To accelerate, one can decompose criterium φA into two phases

Algorithm Nearest Insertion (NI)

1 start with a zero-cost self-loop on node 1: x (0) = {(1, 1)}
2 Add criterium: select the node k nearest to circuit x

k = arg min
ℓ/∈Nx

(
min
si∈Nx

csi ,ℓ

)
3 Delete criterium: select the arc (si , si+1) that minimises f

(si , si+1) = arg min
(si ,si+1)∈x

(csi ,k + ck,si+1 − csi ,si+1)

4 If the circuit does not visit all nodes, go back to point 2;
otherwise terminate

It is not exact, but 2-approximated, under the triangle inequality
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An example

Start with a single vertex (as in NN and CI)
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An example

Create a circuit (as in CI)

21 / 43



An example

The circuit grows differently, always adding the closest node,
even if this increases the cost more than another node
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An example

Terminate when the circuit visits all nodes
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Nearest Insertion heuristic for the TSP

The NI algorithm performs n − 1 steps: at each step t

• it evaluates the distance of (n − t) nodes from the circuit,
each one in Θ (t) time

• it selects the node at minimum distance

• it evaluates the removal of t arcs, each one in Θ (1) time

• it performs the best addition/removal

• it decides whether to terminate

The overall complexity is Θ
(
n3
)

It can be reduced to Θ
(
n2
)
collecting in a vector for each external node

the closest internal node: each of the n − 1 steps

• selects the closest node in O (n) time

• finds the insertion point in O (n) time

• inserts the node creating a new internal node for each external node,
which possibly becomes the closest saved in the vector;
each of the O (n) updates takes O (1) time
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Farthest Insertion heuristic for the TSP
The choice of the closest node to the cycle is natural, but misleading:
since all nodes must be visited, it is preferable to service in the best way
the most problematic ones (i. e., the farthest ones)

Algorithm Farthest Insertion (FI)

1 start with a zero-cost self-loop on node 1: x (0) = {(1, 1)}
2 Add criterium: select the node k farthest from cycle x

k = argmax
ℓ/∈Nx

(
min
si∈Nx

csi ,ℓ

)
(the node that is farthest from the closest node of the cycle)

3 Delete criterium: select the arc (si , si+1) minimizing

(si , si+1) = arg min
(si ,si+1)∈x

(csi ,k + ck,si+1 − csi ,si+1)

4 If the circuit does not visit all nodes, go back to point 2;
otherwise terminate

It is log n-approximated under the triangle inequality, hence worse than
the previous ones in the worst-case (but often experimentally better)
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An example

Start reaching immediately the farthest node
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An example

And go on like that
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An example

But always inserting these nodes in the best possible way
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An example

The circuit grows more regularly, with much less crossings and twists
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An example

Terminate when the circuit visits all nodes
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Farthest Insertion heuristic for the TSP

The FI algorithm performs n − 1 steps: at each step t

• it evaluates the distance of (n − t) nodes from the circuit,
each one in Θ (t) time

• select the node at maximum distance

• it evaluates the removal of t arcs, each one in Θ (1) time

• it performs the best addition/removal

• it decides whether to terminate

The overall complexity is Θ
(
n3
)

It can be reduced to Θ
(
n2
)
as in the NI heuristic
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Extensions of constructive algorithms

The basic scheme of constructive algorithms can be enhanced using

1 a more effective construction graph
• add more than one element to the current subset x
• add elements to x , but also remove elements from x

2 a more sophisticated selection criterium, such as
• a regret-based function that estimates potential future losses

associated with element i
• a look-ahead function that estimates the final value of the objective

obtained adding i to x
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Regret-based constructive heuristics

Decisions taken in early steps can severely restrict the feasible choices
in later steps due to the constraints of the problem

• BPP: all objects must be put into a container, but early assignments
could make some containers unavailable for later objects

• TSP: all nodes must be visited, but early routing decisions could
make the visit of later nodes more expensive

(even impossible, if the graph is noncomplete)

• CMST: all vertices must be linked to the root through a subtree, but
early links could make some subtrees unavailable for later vertices

The selection criterium can take it into account implicitly

• BPP: the Decreasing First-Fit heuristic assigns the larger objects first

• TSP: the Farthest Insertion heuristic visits the farther nodes first

Some selection criteria aim explicitly to leave larger sets of good choices
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Regret criterium

A typical regret-based heuristic consists in

• partitioning ∆+
A (x) into disjoint classes of choices

(the assignments of each object, the edges incident in each vertex)

• compute a basic selection criterium for all choices

• compute for each class the regret, i. e. the difference between
• the second-best choice
• the average of the other choices (possibly weighted)

and the best choice in order to estimate the damage incurred
by postponing the best choice until it becomes impossible

• choose the best choice of the class for which the regret is maximum

This is effective when a single choice per class must be taken
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Example
Consider the CMSTP and ground set B = V × T ((vertex,subtree) pairs)
Let the weights be uniform (wv = 1 for all v ∈ V ) and capacity W = 2

Let the search space F include all partial solutions

The greedy algorithm puts vertex 2 in subtree 1, vertex 3 in subtree 2;
then vertex 4 in subtree 1 and finally vertex 5 in subtree 3:
c(x) = 1 + 1 + 2 + 100 = 104

The regret algorithm puts vertex 2 in subtree 1; now:

• the regret of vertex 3 is the difference c(3, 3)− c(3, 2) = 1− 1 = 0

• the regret of vertex 4 is the difference c(4, 2)− c(4, 1) = 10− 2 = 8

• the regret of vertex 5 is the difference c(5, 2)− c(5, 1) = 100− 3 = 97

The algorithm puts vertex 5 in subtree 1

Then, it proceeds putting vertices 2 and 4 in subtree 2:

c(x) = 1 + 3 + 1 + 4 = 9
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Roll-out heuristics

They are also known as single-step look-ahead constructive heuristics
and were proposed by Bertsekas and Tsitsiklis (1997)

Given a basic constructive heuristic A

• start with an empty subset: x (0) = ∅
• at each step t

• extend the subset in each feasible way: x (t−1) ∪ {i} , ∀i ∈ ∆+
A (x)

• apply the basic heuristic to each extended subset and
compute the resulting solution xA(x

(t−1) ∪ {i})
• use the value of the solution as the selection criterium to choose i (t)

φA (i , x) = f
(
xA(x

(t−1) ∪ {i})
)

• terminate when ∆+
A (x) is empty

Try every feasible move, look at the result, go back and choose the move

The result of the roll-out heuristic dominates that of the basic heuristic
(under very general conditions)

The complexity remains polynomial, but is much larger:
in the worst case, Tro(A) = |B|2 TA
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Example: roll-out for the SCP

c 25 6 8 24 12

1 1 0 0 0
1 1 0 0 0

A 1 1 1 0 0
1 0 1 1 0
1 0 0 1 0
1 0 0 0 1

1 start with the empty subset: x (0) = ∅
2 for each column i , apply the constructive heuristic

starting from subset x (0) ∪ {i} = {i}
• for i = 1, obtain xA ({1}) = {1} of cost fA ({1}) = 25
• for i = 2, obtain xA ({2}) = {2, 3, 5, 4} of cost fA ({2}) = 50
• for i = 3, obtain xA ({3}) = {3, 2, 5, 4} of cost fA ({3}) = 50
• for i = 4, obtain xA ({4}) = {4, 2, 5} of cost fA ({4}) = 43
• for i = 5, obtain xA ({5}) = {5, 2, 3, 4} of cost fA ({5}) = 50

3 the best solution is the first one, therefore i (1) = 1

4 all rows are covered: the algorithm terminates
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Generalised roll-out heuristics

The scheme can be generalised

• applying several basic heuristics A[1], . . . ,A[ℓ]

• increasing the number of look-ahead steps,
i. e., using x (t−1) ∪ B+ with |B+| > 1

The result improves and the complexity worsens further

The overall scheme does not change significantly

• start from the empty subset: x (0) = ∅
• at each step t

• for each possible extension B+ ∈ ∆+
A (x

(t−1))
apply each basic algorithm A[l ] starting from x (t−1) ∪ B+

• the selection criterium is minl fA[l ](x (t−1) ∪ B+)
• use the value of the best solution as the selection criterium for i (t)

φA (i , x) = min
l=1,...,ℓ

f
(
xA(x

(t−1) ∪ {i})
)

• when ∆+
A (x) is empty, terminate
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Destructive heuristics
It is an approach exactly complementary to the constructive one

• start with the full ground set: x (0) := B
• remove an element at a time, selected

• so as to remain within the search space FA

∆+
A (x) = {i ∈ x : x \ {i} ∈ FA}

• maximizing a selection criterium φA (i , x) (usually a cost reduction)
• terminate when ∆+

A (x) = ∅ (there is no way to remain in FA)

A destructive heuristic (for a minimization problem) can be described as

Algorithm Stingy(I )

x := B; x∗ := B;

If x ∈ X then f ∗ := f (x) else f ∗ := +∞;

While ∆+
A (x) ̸= ∅ do

i := arg max
i∈∆+

A
(x)
φA (i , x);

x := x \ {i};
If x ∈ X and f (x) < f ∗ then x∗ := x ; f ∗ := f (x);

Return (x∗, f ∗);

It is optimal for the Minimum Spanning Tree Problem!
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Why are they less used?
When the solutions are much smaller than the ground set (|x | ≪ |B|)
a destructive heuristic

• requires a larger number of steps

• is more likely to make a wrong decision at an early step

• sometimes requires more time to evaluate ∆+
A (x) and φA (i , x)

When a constructive heuristic returns redundant solutions, it is useful to
append a destructive heuristic at its end as a post-processing phase

This auxiliary destructive heuristic

• starts from the solution x of the constructive heuristic, instead of B

• adopts as a search space the feasible region:

FA = X ⇒ ∆+
A (x) = {i ∈ x : x \ {i} ∈ X}

• adopts as the selection criterium the objective function:

φA (i , x) = f (x \ {i})

• terminates after very few steps
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Constructive/destructive heuristic for the SCP

c 6 8 24 12

1 0 0 0
1 0 0 0

A 1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

1 The constructive heuristic selects, in order, columns 1, 2, 4 and 3
(each one covers new rows)

2 The solution is redundant: column 2 can be removed
(the following columns also cover already covered rows)

3 The auxiliary destructive heuristic removes column 2 and provides
the optimal solution x∗ = {1, 3, 4}

(columns 1, 3 and 4 are essential to cover rows 1, 2, 5 and 6)
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Summary about constructive and destructive algorithms
Constructive and destructive algorithms

1 are intuitive

2 are simple to design, analyze and implement

3 are very efficient (low-order polynomials)

TA (n) ∈ O
(
n
(
T∆+

A
(n) + TφA

(n)
))

where
• T∆+

A
(n) is the cost to identify ∆+

A (x)

• TφA (n) is the cost to evaluate φA (i , x) for each i ∈ ∆+
A (x)

• the selection of argminφA (i , x) and update of x
(and auxiliary data structures) are dominated

4 have a strongly variable effectiveness
• on some problems they guarantee an optimal solution
• on other problems they provide an approximation guarantee
• on most problems they provide solutions of extremely variable

quality, often scarse
• on some problems they cannot even guarantee a feasible solution

It is fundamental to study the problem before the algorithm
42 / 43



When are they used?

Constructive and destructive algorithm are used

1 when they provide the optimal solution

2 when the execution time must be very short
(e.g., for on-line problems: schedulers, on-call services, . . . )

3 when the problem has a huge size or requires heavy computations
(e.g., some data are obtained by simulation)

4 as component of other algorithms, for example as
• starting phase for exchange algorithms
• basic procedure for recombination algorithms
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