Chapter 2

Set cover and its application to
shortest superstring

Understanding the area of approximation algorithms involves identifying cornerstone problems:
problems whose study leads to discovering techniques that become general principles in the area,
and problems that are general enough that other problems can be reduced to them. Problems such
as matching, maximum flow, shortest path and minimum spanning tree are cornerstone problems
in the design of exact algorithms. In approximation algorithms, the picture is less clear at present.
Even so, problems such as minimum set cover and minimum Steiner tree can already be said to
occupy this position.

In this chapter, we will first analyse a natural greedy algorithm for the minimum set cover
problem. We will then show an unexpected use of set cover to solve the minimum superstring
problem. An algorithm with a much better approximation guarantee will be presented in Chapter
7 for the latter problem; the point here is to illustrate the wide applicability of the set cover problem.

Minimum set cover

Problem 2.1 (Minimum set cover) Given a universe U of n elements and a collection of
subsets of U, Sy, ...5, with non-negative costs specified, the minimum set cover problem asks for
a minimum cost collection of sets whose union is U.

Perhaps the first algorithm that comes to mind for this problem is one based on the greedy
strategy of iteratively picking the most cost-effective set and removing the covered elements, until
all elements are covered. Let C' be the set of elements already covered at the beginning of an

iteration. During this iteration, define the cost-effectiveness of a set S to be the average cost at
cost(S)
[SnC|.
which it is covered. Equivalently, when a set S is picked, we can think of its cost being distributed

equally among the new elements covered, to set their prices.

which it covers new elements, i.e., Define the price of an element to be the average cost at

11

12 SET COVER AND ITS APPLICATION TO SHORTEST SUPERSTRING

Algorithm 2.2 (Greedy set cover algorithm)
1. C+0
2. while C' # U do

Find the most cost-effective set in the current iteration, say S.
cost(S)
|SnC| ’
Pick .S, and for each e € S — C, price(e) « .

Let o = i.e., the cost-effectiveness of 5.

3. Output the picked sets.

Number the elements of U in the order in which they were covered by the algorithm, resolving
ties arbitrarily. Let eq,...¢e, be this numbering.

OPT

Lemma 2.3 For each k € {1,...,n}, price(eg) < TRiT

Proof : In any iteration, the left over sets of the optimal solution can cover the remaining
elements at a cost of at most OPT. Therefore, there must be a set having cost-effectiveness at most

OPT
¢l . e
Since e was covered by the most cost-effective set in this iteration, it follows that

. In the iteration in which element e; was covered, C contained at least n — k + 1 elements.

OPT< OPT
IC] ~n—k+1

price(ey) <

From Lemma 2.3, we immediately obtain:

Theorem 2.4 The greedy algorithm is an H, factor approximation algorithm for the minimum set
cover problem, where H, =14+ 14 ...+ 1

e

Proof : Since the cost of each set picked is distributed among the new elements covered, the
total cost of the set cover picked is equal to Y j_, price(ex). By Lemma 2.3, this is at most

(1_|_%_|_..._|_%)-OPT, a
Example 2.5 Following is a tight example:

1+e

1/n 1U(n-1) 1
The greedy algorithm outputs the cover consisting of the n singleton sets, since in each iteration
some singleton is the most cost-effective set. So, the algorithm outputs a cover of cost

11
—+

n n-—-1

+.---41=H,.

On the other hand, the optimal cover has a cost of 1 4 €. a

13

Surprisingly enough, the obvious algorithm given above is essentially the best one can hope for
for the minimum set cover problem: it is known that an approximation guarantee better than Inn
is not possible, assuming P # NP.

In Chapter 1 we pointed out that finding a good lower bound on OPT is a basic starting point
in the design of an approximation algorithm for a minimization problem. At this point, the reader
may be wondering whether there is any truth to this claim. We will show in Chapter 12 that the
correct way to view the greedy set cover algorithm is in the setting of LP-duality theory — this
will not only provide the lower bound on which this algorithm is based, but will also help obtain
algorithms for several generalizations of this problem.

Exercise 2.6 The mazimum coverage problem is the following: Given a universe U of n elements,
with non-negative weights specified, a collection of subsets of U, 51, ...,.5], and an integer k, pick k
sets 8o as to maximize the weight of elements covered. Show that the obvious algorithm, of greedily
picking the best set in each iteration until k sets are picked, achieves an approximation factor of

(-(0-p" > (=),

Solving shortest superstring via set cover

Let us motivate the shortest superstring problem. The human DNA can be viewed as a very
long string over a four letter alphabet. Scientists are attempting to decipher this string. Since it
is very long, several overlapping short segments of this string are first sequenced. Of course, the
locations of these segments on the original DNA are not known. It is hypothesised that the shortest
string which contains these segments as substrings is a good approximation to the original DNA
string.

Problem 2.7 (Shortest superstring) Given a finite alphabet ¥, and a set of n strings,
S ={s1,...,8,} C X% find a shortest string s that contains each s; as a substring. Without loss
of generality, we may assume that no string s; is a substring of another string s;, j # 1.

This problem is NP-hard. Perhaps the first algorithm that comes to mind for finding a short
superstring is the following greedy algorithm. Define the overlap of two strings s,t € 3* as the
maximum length of a suffix of s that is also a prefix of {. The algorithm maintains a set of strings
T: initially T = S. At each step, the algorithm selects from T two strings that have maximum
overlap and replaces them with the string obtained by overlapping them as much as possible. After
n — 1 steps, T" will contain a single string. Clearly, this string contains each s; as a substring.
This algorithm is conjectured to have an approximation factor of 2. To see that the approximation
factor of this algorithm is no better than 2, consider an input consisting of 3 strings: ab®, b*c, and
b*t1. If the first two strings are selected in the first iteration, the greedy algorithm produces the
string ab®cb® ', This is almost twice as long as the shortest superstring, ab®*!e.

We will obtain a 2- H,, factor approximation algorithm by a reduction to the minimum set cover
problem. The set cover instance, denoted by §, is constructed as follows. For s;,5; € S and k > 0,
if the last & symbols of s; are the same as the first & symbols of s;, let o;;; be the string obtained
by overlapping these k positions of s; and s;. Let I contain the strings o;;; for all valid choices of
7,7, k. The set cover instance § consists of S as the universal set. The specified subsets of 5 are:
for each string 7 € S U I, define set(n) = {s| s € 9, s is a substring of 7}. The cost of this set is

