
Heuristic Algorithms
Master’s Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule: Thursday 14.30 - 16.30 in classroom 503

Friday 14.30 - 16.30 in classroom 503

Office hours: on appointment

E-mail: roberto.cordone@unimi.it

Web page: https://homes.di.unimi.it/cordone/courses/2024-ae/2024-ae.html

Ariel site: https://myariel.unimi.it/course/view.php?id=4466

Lesson 5: Empirical performance evaluation (1) Milano, A.A. 2024/25
1 / 19

https://homes.di.unimi.it/cordone/courses/2024-ae/2024-ae.html
https://myariel.unimi.it/course/view.php?id=4466

Evaluation of a heuristic algorithm

The performance of a heuristic algorithm can be investigated by

• theoretical analysis (a priori): proving a theoretical guarantee on the
computational cost or the quality, always or with a given frequency

• experimental analysis (a posteriori): measuring the empirical
performance of the algorithm on a sample of benchmark instances

The theoretical analysis is complicated by the fact that

• the steps of the algorithm have a complex effect on the solution
though usually not on the computational cost

• average case and randomisation require a statistical treatment

The theoretical analysis can be unsatisfactory in practice
when its conclusions are based on unrepresentative assumptions

• an infrequent worst case (very hard and very rare instances)

• an unrealistic probability distribution of the instances

This lesson is partly based on slides provided with the book “Stochastic Local Search” by H. H.

Hoos and T. Stützle, (Morgan Kaufmann, 2004) - see www.sls-book.net for further information.

2 / 19

Experimental analysis

The experimental approach is very common in science

• mathematics is an exception, based on the formal approach

• algorithmics is an exception within the exception

Therefore, it is easy to forget the basics of the experimental approach

1 start from observation

2 formulate a model (work hypothesis)

3 repeat the following steps

a design computational experiments to validate the model
b perform the experiments and collect their results
c analyse the results with quantitative methods
d revise the model based on the results

until a satisfactory model is obtained

What is a “model” in the study of algorithms?

3 / 19

Purposes of the analysis

The experimental analysis investigates

• in physics the laws that rule the behaviour of phenomena

• in algorithmics the laws that rule the behaviour of algorithms

The experimental analysis of algorithms aims to

1 obtain compact indices of efficiency and effectiveness of an algorithm

2 compare the indices of different algorithms to rank them

3 describe the relation between the performance indices
and parametric values of the instances (size n, etc. . .)

4 suggest improvements to the algorithms

4 / 19

Benchmark
As not all instances can be tested, a benchmark sample must be defined

A meaningful sample must represent different

• sizes, in particular for the analysis of the computational cost

• structural features (for graphs: density, degree, diameter, . . .)
• types

• of application: logistics, telecommunications, production, . . .
• of generation: realistic, artificial, transformations of other problems
• of probabilistic distribution: uniform, normal, exponential, . . .

Looking for an “equiprobable” benchmark sample is meaningless because

• the instance sets are infinite

• infinite sets do not admit equiprobability (it’s a big statistic question)

On the contrary, we can
• define finite classes of instances that are

• sufficiently hard to be instructive
• sufficiently frequent in applications to be of interest
• quick enough to solve to provide sufficient data for inferences

• extract benchmark samples from these classes

5 / 19

Reproducibility

The scientific method requires reproducible and controllable results

• concerning the instances, one must use
• publicly available instances
• new instances made available to the community

• concerning the algorithm, one must specify
• all implementation details
• the programming language
• the compiler

• concerning the environment, one must specify
• the machine used
• the operating system
• the available memory
• . . .

Reproducing results obtained by others is anyway extremely difficult

6 / 19

Comparing heuristic algorithms

A heuristic algorithm is better than another one when it simultaneously

1 obtains better results

2 requires a smaller time

Slow algorithms with good results and fast algorithms with bad results
cannot be compared in a meaningful way

It can be justified to neglect the computational time when

• considering a single algorithm with no comparison

• comparing algorithms that perform the same operations
(e. g., variants obtained modifying a numerical parameter)

• comparing algorithms that mostly perform the same operations
with few different ones that take a negligible fraction of the time
(e. g., different initialisations or perturbations)

7 / 19

A statistical model of algorithm performance

We model the execution of algorithm A as a random experiment

• the whole set of instances I is the sample space

• the benchmark subset of instances Ī ⊂ I is the sample

• the computational time TA (I) is a random variable

• the relative difference δA (I) is a random variable

We describe the performance of A with the statistical properties
of the random variables TA (I) and δA (I)

8 / 19

Analysis of the computational time (RTD diagram)
The Run Time Distribution (RTD) diagram is the plot of the
distribution function of TA (I) on Ī

FTA
(t) = Pr [TA (I) ≤ t] for each t ∈ R

Since TA (I) strongly depends on the size n (I),
meaningful RTD diagrams usually refer to benchmarks Īn with fixed n
(and possibly other fixed parameters suggested by the worst-case analysis)

If all influential parameters are identified and fixed, the RTD diagram
degenerates into a step function (all instances require the same time)

9 / 19

The Run Time Distribution (RTD) diagram

The Run Time Distribution (RTD) diagram is

• monotone nondecreasing: more instances are solved in longer times

• stepwise and right-continuous: the graph steps up at each T (I)

• equal to zero for t < 0: no instance is solved in negative time

• equal to 1 for t ≥ max
I∈Ī

T (I): all are solved within the longest time

For large benchmark samples, the plot looks continuous, but it is not!
(as in the previous page)

10 / 19

Building the RTD diagram

In order to build the diagram

1 run the algorithm on each instance I ∈ Ī
2 build the set TA

(
Ī
)
=

{
TA (I) : I ∈ Ī

}
3 sort TA

(
Ī
)
by nondecreasing values: t1 ≤ . . . ≤ t|Ī|

4 plot points

(
tj ,

j

|Ī|

)
for j = 1, . . . , |Ī| (for equal tj , the highest j)

and the horizontal segments (close on the left, open on the right)

11 / 19

Analysis of the computational time (scaling diagram)
The scaling diagram describes the dependence of T (I) on the size n (I)
• generate a sequence of values of n and a sample Īn for each value
• apply the algorithm to each I ∈ Īn for all n

• sketch all points (n (I) ,T (I)) or the mean points

n,

∑
I∈Īn

T (I)∣∣Īn∣∣

• assume an interpolating function (as discussed later)
• estimate the numerical parameters of the interpolating function

This analysis provides an empirical average-case complexity
• with well-determined multiplying factors (instead of c1 and c2)
• not larger than the worst-case one (it includes also easy instances)

12 / 19

Interpolation of the scaling diagram

The correct family of interpolating functions can be suggested

• by a theoretical analysis

• by graphical manipulations

Linear interpolation is usually the right tool

The scaling diagram turns into a straight line when

• an exponential algorithm is represented on a semilogarithmic scale
(the logarithm is applied only to the time axis)

log2 T (n) = αn + β ⇔ T (n) = 2β (2α)n

• a polynomial algorithm is represented on a logarithmic scale
(the logarithm is applied to both axes)

log2 T (n) = α log2 n + β ⇔ T (n) = 2βnα

13 / 19

Estimates of δA (I)
The computation of δA (I) requires to know the optimum f ∗ (I)

δA (I) =
|fA (I)− f ∗ (I)|

f ∗ (I)

What if the optimum is unknown?

Replace it with an underestimate LB (I) and/or an overestimate UB (I)

LB (I) ≤ f ∗ (I) ≤ UB (I) ⇒ 1

LB (I)
≥ 1

f ∗ (I)
≥ 1

UB (I)
⇒

⇒ fA (I)

LB (I)
− 1 ≥ fA (I)

f ∗ (I)
− 1 ≥ fA (I)

UB (I)
− 1

fA (I)

f ∗ (I)
−1 =

δA (I) (minimisation) ⇒ fA (I)− UB (I)

UB (I)
≤ δA (I) ≤

fA (I)− LB (I)

LB (I)

−δA (I) (maximisation) ⇒ UB (I)− fA (I)

UB (I)
≤ δA (I) ≤

LB (I)− fA (I)

LB (I)

and therefore

|fA (I)− UB (I)|
UB (I)

≤ δA (I) ≤
|fA (I)− LB (I)|

LB (I)

This range turns all diagrams on δA into region estimates
14 / 19

Analysis of the quality of the solution (SQD) diagram
The Solution Quality Distribution (SQD) diagram is the plot of the
distribution function of δA (I) on Ī

FδA (α) = Pr [δA (I) ≤ α] for each α ∈ R

15 / 19

Solution Quality Distribution (SQD) diagram
For any algorithm, the distribution function of δA (I)
• monotone nondecreasing: more instances are solved with worse gaps
• stepwise and right-continuous: the graph steps up at each δ (I)
• equal to zero for α < 0: no instance is solved with negative gap
• equal to 1 for α ≥ max

I∈Ī
δ (I): all are solved within the largest gap

If A is an
• exact algorithm, it is a stepwise function, equal to 1 for all α ≥ 0
• ᾱ-approximated algorithm, it is a function equal to 1 for large α

16 / 19

Building the SQD diagram
In order to build the diagram

1 run the algorithm on each instance I ∈ Ī
2 build the set ∆A

(
Ī
)
=

{
δA (I) : I ∈ Ī

}
3 sort ∆A

(
Ī
)
by nondecreasing values: δ1 ≤ . . . ≤ δ|Ī|

4 plot points

(
δj ,

j

|Ī|

)
for j = 1, . . . , |Ī| (for equal δj , the highest j)

and the horizontal segments (close on the left, open on the right)

17 / 19

Parametric SQD diagrams

Given the theoretical and practical problems to build a meaningful sample
often the diagram is parameterised with respect to

• a descriptive parameter of the instances (size, density, . . .)

• a parameter of the probability distribution assumed for the instances
(expected value or variance of the costs, . . .)

The conclusions are more limited, but the sample is more significant
General trends can be highlighted (what happens as size increases?)

18 / 19

Comparison between algorithms with the SQDs
How to determine whether an algorithm is better than another?

• strict dominance: it obtains better results on all instances

δA2 (I) ≤ δA1 (I) for each I ∈ I
This usually happens only in trivial cases (e.g., A2 “includes” A1)

• probabilistic dominance: the distribution function has higher values
for every value of α

FδA2
(α) ≥ FδA1

(α) for all α ∈ R

The following plot shows no dominance, but A1 is less “robust” than A2:
A1 has results more dispersed than A2 (both better and worse)

19 / 19

