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Effectiveness of a heuristic algorithm

A heuristic algorithm is useful if it is

1 efficient: it “costs” much less than an exact algorithm

2 effective: it “frequently” returns a solution “close to” an exact one

Let us now discuss the effectiveness of heuristic algorithms:

• closeness of the solution obtained to an optimal one

• frequency of hitting optimal or nearly optimal solutions

These features can be combined into a

• frequency distribution of solutions more or less close to the optimum

The effectiveness of a heuristic algorithm can be investigated with a

• theoretical analysis (a priori), proving that the algorithm finds always
or with a given frequency solutions with a given guarantee of quality

• experimental analysis (a posteriori), measuring the performance of
the algorithm on sampled benchmark instances to show that a
guarantee of quality is respected in practice
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Indices of effectiveness

The effectiveness of a heuristic optimisation algorithm A is measured by
the difference between the heuristic value fA (I ) and the optimum f ∗ (I )

• absolute difference:

δ̃A (I ) = |fA (I )− f ∗ (I )| ≥ 0

rarely used, and only when the objective is a pure number

• relative difference:

δA (I ) =
|fA (I )− f ∗ (I )|

f ∗ (I )
≥ 0

frequent in experimental analysis (usually as a percent ratio)

• approximation ratio:

ρA (I ) = max

[
fA (I )

f ∗ (I )
,
f ∗ (I )

fA (I )

]
≥ 1

frequent in theoretical analysis: the first form is used for
minimisation problems, the second one for maximisation problems
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Theoretical analysis (in the worst case)

To obtain a compact measure, independent from I , find the worst case
(as for efficiency, that is complexity)

The difference between fA (I ) and f ∗ (I ) is in general unlimited,
but for some algorithms it is limited:

• absolute approximation:

∃α̃A ∈ N : δ̃A (I ) ≤ α̃A for each I ∈ I

A (rare) example is Vizing’s algorithm for Edge Coloring (α̃A = 1)

• relative approximation:

∃αA ∈ R+ : ρA (I ) ≤ αA for each I ∈ I

Factor αA (α̃A) is the relative (absolute) approximation guarantee

For other algorithms, the guarantee depends on the instance size

ρA (I ) ≤ αA (n) for each I ∈ In, n ∈ N

Effectiveness can be independent from size (contrary to efficiency)
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How to achieve an approximation guarantee?
For a minimisation problem, the aim is to prove that

∃αA ∈ R : fA (I ) ≤ αAf
∗ (I ) for each I ∈ I

1 find a way to build an underestimate LB (I )

LB (I ) ≤ f ∗ (I ) I ∈ I

2 find a way to build an overestimate UB (I ),
related to LB (I ) by a coefficient αA

UB (I ) = αA LB (I ) I ∈ I

3 find an algorithm A whose solution is not worse than UB (I )

fA (I ) ≤ UB (I ) I ∈ I

Then fA (I ) ≤ UB (I ) = αALB (I ) ≤ αAf
∗ (I ), for each I ∈ I

fA (I ) ≤ αAf
∗ (I ) for each I ∈ I
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A 2-approximated algorithm for the VCP

Given a undirected graph G = (V ,E ) find the minimum cardinality
vertex subset such that each edge of graph is incident to it

A matching is a set of nonadjacent edges

Maximal matching is a matching such that any other edge of the graph is
adjacent to one of its edges (it cannot be enlarged)

Matching algorithm:

1 Build a maximal matching M ⊆ E scanning the edges of E and
including in M those not adjacent to M

(now every edge of E \M is adjacent to an edge of M)

2 The set of extreme vertices of the matching edges is a VCP solution

xA :=
⋃

(u,v)∈M

{u, v}

and it can be improved removing the redundant vertices
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Example

|M| = 1

|M| = 2 fA = 2 · |M| = 6 (and G is redundant)

The optimum is f ∗ = 5
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Proof

The matching algorithm is 2-approximated

1 The cardinality of matching M is an underestimate LB (I )
• the cardinality of an optimal covering for any subset of edges E ′ ⊆ E

does not exceed that of an optimal covering for E

|x∗
E ′ | ≤ |x∗

E |

(it costs more to cover all edges than only the matching)
• the optimal covering of a matching M has cardinality |M|

(each edge of the matching requires exactly one different vertex)

2 Including both the extremes of each edge of the matching yields
• an overestimate (it covers both the matching and the adjacent edges)
• of value UB (I ) = 2LB (I ) (two different vertices for each edge)

3 The matching algorithm returns solutions of value fA (I ) ≤ UB (I )
(possibly removing redundant vertices)

This implies fA (I ) ≤ 2f ∗ (I ) for each I ∈ I, that is αA = 2
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. . . and the bound is tight!

Since αA relates UB (I ) and LB (I ), fA (I ) and f ∗ (I ) could be closer

Actually, for many instances ρA (I ) is much better than αA

Are there instances Ī for which fA
(
Ī
)
= αAf

∗ (Ī)? How are they like?

The study of these instances is useful to

• evaluate whether they are rare or frequent

• introduce ad hoc modifications to improve the algorithm

In the literature the typical expression “and the bound is tight” introduces
the description of instances exhibiting the worst case

If all worst cases are patched, the approximation guarantee improves
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The TSP under the triangle inequality

Consider the TSP with the additional (rather common) assumptions that

• graph G = (N,A) is complete

• cost c is nonnegative, symmetric and satisfies the triangle inequality

cij = cji ≥ 0 ∀i , j ∈ N and cij + cjk ≥ cik ∀i , j , k ∈ N

Double-tree algorithm

1 Consider the complete undirected graph corresponding to G

2 Build a minimum cost spanning tree T ∗ = (N,X ∗)

3 Make a pre-order visit of T ∗ and build two lists of arcs:

a x ′ lists the arcs used both by the visit and the backtracking:
this is a circuit visiting each node, possibly several times

b x lists the arcs linking the nodes in pre-order ending with the first:
this is a circuit visiting each node exactly once
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Example

1) Complete graph G (arcs omitted) 2. Minimum spanning tree T ∗

3.a) x ′ = (A,C ,F ,H,F , I ,F ,C ,D,G , 3.b) x = (A,C ,F ,H, I ,D,G , L,E ,B,A)

L,G ,E ,G ,D,B,D,C ,A)
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Proof

The double-tree algorithm is 2-approximated

1 the cost of the minimum spanning tree is an underestimate LB (I )
• deleting an arc from a Hamiltonian circuit yields a Hamiltonian path

that is cheaper
• a Hamiltonian path is a spanning tree (usually not of minimum cost)

2 the cost of circuit x ′ is
• an overestimate UB (I ) (it is a nonminimum Hamiltonian circuit)
• equal to 2LB (I ) (two arcs correspond to each edge)

3 the cost of circuit x is fA (I ) ≤ UB (I )
(a single direct arc replacing a sequence decreases the cost)

This implies that fA (I ) ≤ 2f ∗ (I ) for each I ∈ I, that is αA = 2

Notice: x ′ is used in the approximation proof, but needs not be computed
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Inapproximability
For an inapproximable problem, approximated algorithms would be exact

Consider this family of TSP instances on complete graphs:

• cij = 0 for (i , j) ∈ A0

• cij = 1 for (i , j) ∈ (N × N) \ A0 (the triangle inequality is violated!)

The optimum of any such instance Ī is:{
f ∗

(
Ī
)
= 0 if A0 contains a Hamiltonian circuit

f ∗
(
Ī
)
≥ 1 otherwise

(in the latter case, the optimal solution contains at least an arc /∈ A0)

Assume that a polynomial algorithm A provide a guarantee αA

f ∗ (I ) ≤ fA (I ) ≤ αAf
∗ (I ) ∀I ∈ I

Then f ∗
(
Ī
)
= 0 ⇔ fA

(
Ī
)
= 0

Whenever the subgraph G (N,A0) has a Hamiltonian circuit, A finds it,
solving an NP-complete problem in polynomial time (P = NP)

(unlikely)
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Approximation schemes

For hard problems

• exact algorithms provide the best approximation guarantee (αA = 1),
but require exponential time TA

• approximated algorithms provide a worse guarantee (αA > 1),
but could require polynomial time TA

Some problems admit a family of algorithms providing a whole range of
compromises between efficiency ed effectiveness

• better and better approximation guarantees: αA1 > . . . > αAr

• worse and worse computational complexities: TA1 < . . . < TAr

Approximation scheme is a parametric algorithm Aα allowing to choose α

(Example: the KP)
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Beyond the worst case

As usual, the worst-case approach is rough:
some algorithms often have a good performance, though sometimes bad

The alternative approaches are similar to the ones used for complexity

• parametrisation: prove an approximation guarantee that depends on
other parameters of the instances besides the size n

• average-case: assume a probability distribution on the instances and
evaluate the expected value of the approximation factor
(the algorithm could have a bad performance only on rare instances)

but there is at least another approach

• randomisation: the operations of the algorithm depend not only on
the instance, but also on pseudorandom numbers, so that
the solution becomes a random variable which can be investigated

(the time complexity could also be random, but usually is not)
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Randomised approximation algorithms

For a randomised algorithm A, fA (I , ω) and ρA (I , ω) are random
variables depending on the pseudorandom number seed ω

A randomised approximation algorithm has an approximation ratio whose
expected value is limited by a constant

E [ρA (I , ω)] ≤ αA for each I ∈ I

Max-SAT problem: given a CNF, find a truth assignment to the logical
variables that satisfy a maximum weight subset of formulae

Purely random algorithm:

Assign to each variable xj (j = 1, . . . , n)

• value False with probability 1/2

• value True with probability 1/2

What is the expected value of the solution?
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Randomised approximation for the MAX-SAT
Let δi (x) be 1 if solution x satisfies clause i , 0 otherwise

The objective f (x) = fA (I , ω) is the total weight of the satisfied clauses
and its expected value is

E [fA (I , ω)] = E

[∑
i∈C

δi (x)wi

]
=

∑
i∈C

(wi · Pr [δi (x) = 1])

Let ki be the number of literals of formula i ∈ C and kmin = min
i∈C

ki

Pr [δi (x) = 1] = 1−
(
1

2

)ki

≥ 1−
(
1

2

)kmin

for each i ∈ C

⇒ E [fA (I , ω)] ≥
∑
i∈C

wi ·

[
1−

(
1

2

)kmin
]
=

[
1−

(
1

2

)kmin
]∑

i∈C

wi

and since
∑
i∈C

wi ≥ f ∗ (I ) for each I ∈ I one obtains

E [fA (I , ω)]

f ∗ (I )
≥

[
1−

(
1

2

)kmin
]
≥ 1

2
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