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Combinatorial Optimization

opt f(x)
xeX

where X C 2B and B finite

We will survey a number of problem classes
® set problems
® |ogic function problems

® numerical matrix problems

graph problems
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Why a problem survey?

Reviewing several problems is useful because

® abstract ideas must be concretely applied to different algorithms for
different problems

® the same idea can have different effectiveness on different problems
® some ideas only work on problems with a specific structure

e different problems could have nonapparent relations,
which could be exploited to design algorithms

So, a good knowledge of several problems teaches how to
® apply abstract ideas to new problems

® find and exploit relations between known and new problems

Sure, the “Magical Number Seven” risk exists. . .

To control it, we will make some interludes devoted to general remarks
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Weighted set problems: Knapsack Problem (KP)

Given

® a set E of elementary objects
® a function v : E — N describing the volume of each object
® a number V € N describing the capacity of a knapsack
® a function ¢ : E — N describing the value of each object
select a subset of objects of maximum value that respects the capacity

The ground set is trivially the set of the objects: B = E

The feasible region includes all subsets of objects whose total volume
does not exceed the capacity of the knapsack

X:{ch:Zvj<v}

JEX
The objective is to maximise the total value of the chosen objects

max f (x) = Z b;

xeX -
JEX
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Set problems in metric spaces:

Maximum Diversity Problem (MDP)

Given

® a set P of points
® a function d : P x P — N providing the distance between point pairs
® anumber k € {1,..., |P|} that is the number of points to select

select a subset of k points with the maximum total pairwise distance
The ground set is the set of points: B = P

The feasible region includes all subsets of k points

X ={xCB:|x| =k}

The objective is to maximise the sum of all pairwise distances between
the selected points
max f (x) = djj
maxf(x)= > d
(ig):ijex
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Interlude 1: the objective function

The objective function associates integer values to feasible subsets
f:X—>N

Computing the objective function can be complex (even exhaustive)

We have seen two simple cases

® the KP has an additive objective function which
sums values of an auxiliary function defined on the ground set

¢ B — N induces f(x):Zgbj:X%N
jex
® the MDP has a quadratic objective function
Both are defined not only on X, but on the whole of 28 (is this useful?)

Both are easy to compute, but the additive functions f (x) are also fast
to recompute if subset x changes slightly: it is enough to

® sum ¢; for each element j added to x
® subtract ¢; for each element j removed from x

For quadratic functions, this seems more complex (we will talk about it)
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Partitioning set problems: Bin Packing Problem (BPP)

Given

® a set E of elementary objects

® a function v : E — N describing the volume of each object

® a set C of containers

® a number V € N that is the volume of the containers
divide the objects into the minimum number of containers respecting the
capacity

The ground set B = E x C includes all (object,container) pairs

The feasible region includes all partitions of the objects among the
containers not exceeding the capacity of any container

X{ng:xmBelveeE, > w<Vvce C}
(e,c)exnBe
with Be = {(i,j) € B:i=e}and B = {(i,j) e B:j=c}
The objective is to minimise the number of containers used

)r:r;i)rgf(x):HcEC:xﬂBc;ﬁ@H
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x'={(a,1),(b,1),(c,2),(d,2),(e,2),(f,3),
(g.4),(h,5),(i,5)} € X
f(x)=5
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F(x") =4
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Partitioning set problems:

Parallel Machine Scheduling Problem (PMSP)

Given
® aset T of tasks
® a function d : T — N describing the time length of each task
® a3 set M of machines

divide the tasks among the machines with the minimum completion time
The ground set B = T x M includes all (task,machine) pairs

The feasible region includes all partitions of tasks among machines
(the order of the tasks is irrelevant!)

X—{xCB:|xﬂBt—1Vt€ T}

The objective is to minimise the maximum sum of time lengths for each
machine

min f (x) = max E d;
xeX mEM
tmEX
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T={T1,T2, 73,T4 75 T6}
M = {M1, M2, M3}

task | T1L T2 T3 T4 T5 T6
d |80 40 20 30 15 80

wh x' = {(T1,M1),(T2, M2), (T3, M2),

M T3 (T4,M2),(T5,M1),(T6,M3)}EX
M3 f(x)=95

x" ={(T1,M1),(T2,M1),(T3, M2),
(T4,M2),(T5,M2),(T6,M3)} € X

f(x") =120
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Interlude 2: the objective function again

The objective function of the BPP and the PMSP
® is not additive

® is not trivial to compute (but not hard, as well)

Small changes in the solution have a variable impact on the objective

® equal to the time length of the moved tasks (increase or decrease)
(e.g., move T5 on M1 in x")

® zero (e.g., move T5 on M3 in x”)
® intermediate (e.g., move T2 on M2 in x"')

In fact, the impact of a change to the solution depends
® both on the modified elements

® and on the unmodified elements (contrary to Interlude 1)

The objective function is “flat”: several solutions have the same value
(this is a problem when comparing different modifications)
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Logic function problems: Max-SAT problem

Given a CNF, assign truth values to its logical variables so as to satisfy
the maximum weight subset of its logical clauses

® aset V of logical variables x; with values in B = {0, 1} (false, true)

® a literal /; is a function consisting of an affirmed or negated variable

4 (x) € {x5, %}

a logical clause is a disjunction or logical sum (OR) of literals

C,' (X) = gi,l V...V éi,ﬂ/

® a conjunctive normal form (CNF) is a conjunction or logical product
(AND) of logical clauses

CNF(x) = CLA...A Gy

® to satisfy a logical function means to make it assume value 1
® a function w provides the weights of the CNF clauses
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Logic function problems: Max-SAT problem

The ground set is the set of all simple truth assignments

B=VxB={(x,0),(x1,1),...,(xs,0),(x0, 1)}

The feasible region includes all subsets of simple assignments that are
® complete, that is include at least a literal for each variable
® consistent, that is include at most a literal for each variable
X={xCB:|xNnB,|=1VveV}

with By = {(x;,0), (>, 1)}
The objective is to maximise the total weight of the satisfied clauses

max f (x) = Z w;

xeX
i:Gi(x)=1
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® Variables
V = {X17X27X37X4}

Literals
L — {Xla )_<17 X2, )_<27X37)_<37X47)_<4}

® | ogical clauses
C1:)_(1\/X2 C7:X2
® Conjunctive normal form

CNF = ()_(1 \Y Xz)/\()_(l vV X3)/\()_(1 V )?3)/\()_(2 \Y X4)/\()_<2 V )_<4)/\X1 A Xo

Weight function (uniform):

x = {(x1,0), (x2,0), (x3,1), (xa, 1)} satisfies f (x) =5 clauses out of 7
Complementing a variable does not always change f (x) (x1 does, x4 not)
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Numerical matrix problems: Set Covering (SCP)

Given
® a binary matrix A € B™" with row set R and column set C
® column j € C covers row i € R when a; =1
® a function ¢ : C — N provides the cost of each column

Select a subset of columns covering all rows at minimum cost
The ground set is the set of columns: B = C

The feasible region includes all subsets of columns that cover all rows

X_{ng:Za,jzlv/'eR}

JEX

The objective is to minimise the total cost of the selected columns

rxnel)rgf(x) = ch

JjEX
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c[4 6 10 14 5 6]

0 1 1 1 1 0
0 0 1 1 0O
Al 1 O 0 0 1
0o 0 0 1 1 1
1 1 1 0 1 O
0 1T 1 1 1 0]°2
0 0 1 1 0 0]1 X = {61,63,65} cX
A1 1 0 0 0 1]1
00 0 1 1 1/1 f(x')=19
11 1 0 1 0]3
0 1 1 1 1 0]1
0o o0 1 1 0 0]O0 x" = 1, Cs, G X
All1 1 0 0 0 1]2 lav e e} é
00 0 1 1 1]2 f(x")=15
1 1 1 0 1 0]2

“Set Covering”: covering a set (rows) with subsets (columns)
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Interlude 3: the feasibility test

Heuristic algorithms often require to solve the following problem
Given a subset x, is x feasible or not? In short, x € X?

It is a decision problem

The feasibility test requires to compute from the solution and test
® a single number: the total volume (KP), the cardinality (MDP)

® a single set of numbers: values assigned to each variable
(Max-SAT), number of machines for each task (PMSP)

® several sets of numbers: number of containers for each object and
total volume of each container (BPP)

The time required can be different if the test is performed
® from scratch on a generic subset x

® on a subset x’ obtained slightly modifying a feasible solution x

Some modifications can be forbidden a priori to avoid infeasibility
(insertions and removals for MDP, PMSP, Max-SAT),
while others require an a posteriori test (exchanges)
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Numerical matrix problems: Set Packing

Given
® a binary matrix A € B™" with row set R and column set C
® columns j’ e j” € C conflict with each other when ajy = aj» =1
® a function ¢ : C — N provides the value of each column

Select a subset of nonconflicting columns of maximum value
The ground set is the set of columns: B = C

The feasible region includes all subsets of nonconflicting columns

X_{ng:Za,jglv/'eR}

JEX

The objective is to maximise the total value of the selected columns

max f (x) = Zoj

xeX 5
JEX
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0 0 0 1 1 1
11 1 0 0 0
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“Set Packing”: packing disjoint subsets (columns) of a set (rows)
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Numerical matrix problems: Set Partitioning (SPP)

Given

® a binary matrix A € B™" with a set of rows R and a set of
columns C

® a function ¢ : C — N that provides the cost of each column

select a minimum cost subset of nonconflicting columns covering all rows
The ground set is the set of columns: B = C

The feasible region includes all subsets of columns that cover all rows and
are not conflicting

X_{XQB:ZaU—IVieR}

JjEX

The objective is to minimise the total cost of the selected columns
min f (x) = c;
minf (x) = > _¢
JEX
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“Set Partitioning”: partition a set (rows) into subsets (columns)
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Graph problems: Travelling Salesman Problem ( TSP)

Given
® a directed graph G = (N, A)
® 3 function ¢ : A — N that provides the cost of each arc

select a circuit visiting all the nodes of the graph at minimum cost
The ground set is the arc set: B = A

The feasible region includes the circuits that visit all nodes in the graph
(Hamiltonian circuits)

How to determine whether a subset is a feasible solution?
And a modification of a feasible solution?
Can we rule out some modifications?
The objective is to minimise the total cost of the selected arcs

min f (x) = ch

xeX -
JEX
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X = {(4.5).(5.8).(8.7).(7.4).
A\ X, (1:2).(23).(.6). (6.1)] ¢ X
L f(x") = 106
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Interlude 4: the search for feasible solutions

Heuristic algorithms often require to solve the following problem
Find a feasible solution x € X

It is a search problem

The search for a feasible solution is trivial or easy for some problems:

® some sets are always feasible, such as x = () (KP, Set Packing)
or x = B (feasible instances of SCP)

® random subsets satisfying a constraint, such as |x| = k (MDP)

® random subsets satisfying consistency constraints,
such as assigning one task to each machine (PMSP),
one value to each logic variable (Max-SAT), etc. ..
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Interlude 4: the search for feasible solutions

But it is hard for other problems:

® in the BPP the problem is easy if the number of containers is large
(e. g., one container for each object)

® in the SPP no polynomial algorithm is known to solve the problem

® in the TSP the problem is easy for dense graphs (e. g., complete)

One can apply a relaxation, i. e. enlarge the feasible region from X to X’
® the objective f must be extended from X to X’ (see Interlude 1)
® but often X’ \ X includes better solutions (... how about that?)
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Graph problems: Vertex Cover (VCP)

Given an undirected graph G = (V/, E), select a subset of vertices of
minimum cardinality such that each edge of the graph is incident to it

The ground set is the vertex set: B =V

The feasible region includes all vertex subsets such that all the edges of
the graph are incident to them

X{XCV:xm(i,j)#QV(/.,j)eE}

The objective is to minimise the number of selected vertices

min f(x) = |x]|
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Example

A B C
x'={B,D,E,F,G} € X
K sy fF(x)=5
H
A B C
X" ={A C,H} ¢ X
D F G

fF(x")=3
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Graph problems: Maximum Clique Problem

Given
® an undirected graph G = (V/, E)
® a function w: V — N that provides the weight of each vertex

select the subset of pairwise adjacent vertices of maximum weight
The ground set is the vertex set: B =V

The feasible region includes all subsets of pairwise adjacent vertices

X={xCV:(i,j)eEViexVjex\{i}}

The objective is to maximise the weight of the selected vertices

maxf(x):ZWj

xeX -
JEX

30/1



Example

Uniform weights: w; = 1 for each i € V

A B c
X':{B,C,F,G}GX
D F G n_
o f(x)=4
A B C
x”:{A,D,E}GX
D F G

f(x") =3
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Graph problems: Maximum Independent Set Problem

Given
® an undirected graph G = (V/, E)
® a function w: V — N that provides the weight of each vertex

select the subset of pairwise nonadjacent vertices of maximum weight
The ground set is the vertex set: B =V

The feasible region includes the subsets of pairwise nonadjacent vertices

X={xCB:(i,j)¢ EViexVjex\{i}}

The objective is to maximise the weight of the selected vertices

maxf(x):ZWj

xeX -
JEX
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Example

D,E} e X

3

{A,

x

f(X”)
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Interlude 5: the relations between problems (1)

Each instance of the MCP is equivalent to an instance of the MISP
@ start from the MCP instance, that is graph G = (V, E)
® build the complementary graph G = (V,(V x V) \ E)
® find an optimal solution of the MISP on G

O the corresponding vertices give an optimal solution of the MCP on G
(a heuristic MISP solution gives a heuristic MCP solution)

The process can be applied also in_the opposite direction
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Interlude 5: the relations between problems (2)

The VCP and the SCP are also related, but in a different way; each
instance of the VCP can be transformed into an instance of the SCP:

each edge i corresponds to a row of the covering matrix A
each vertex j corresponds to a column of A
if edge i touches vertex j, set aj; = 1; otherwise a;; =0

an optimal solution of the SCP gives an optimal solution of the VCP
(a heuristic SCP solution gives a heuristic VCP solution)

A B C D E F G H
(AA’D) |1 0 0 1 0 0 0 o0

(ALE) |1 0o o0 0 1 0 0 O

4 By C BC o 1 1 0o 0o 0o 0 o0
(B,F)y |]o 1 0 0 0 1 0 O

(B,G) |o 1 0 0o 0 0 1 0

F G (C,F)Jo o 1 0 0 1 0 0

(¢,)|o o 1 0o 0 0 1 0

H (bD,Ey|o o o 1 1 0 0 O
(D,Hy|o o o 1 0 0 0 1

(F,G)|o o o o 0 1 1 O

(F,H)|o o o o0 0 1 0 1

It is not simple to do the reverse
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Interlude 5: the relations between problems (3)

The BPP and the PMSP are equivalent, but in a more sophisticated way:

® the tasks correspond to the objects
® the machines correspond to the containers, but
® BPP: minimise the number of containers, given the capacity
® PMSP: given the number of machines, minimise the completion time

Start from a BPP instance
@ make an assumption on the optimal number of containers (e.g., 3)
@® build the corresponding PMSP instance

©® compute the optimal completion time (e.g., 95)
® if it exceeds the capacity (e.g., 80), increase the assumption (4 or 5)

® if it does not, decrease the assumption (2 or 1)
(using heuristic PMSP solutions leads to a heuristic BPP solution)

The reverse process is possible

The two problems are equivalent,
but each one must be solved
several times
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Graph problems: Capacitated Min. Spanning Tree Problem

Given
® an undirected graph G = (V, E) with a root vertex r € V
® a function ¢ : E — N that provides the cost of each edge
® a function w : V — N that provides the weight of each vertex
® a number W € N that is the subtree appended to the root (branch)

select a spanning tree of minimum cost such that each branch respects
the capacity

The ground set is the edge set: B = E

The feasible region includes all spanning trees such that the weight of the
vertices spanned by each branch does not exceed W

The feasibility test requires to visit the subgraph

The objective is to minimise the total cost of the selected edges

rxnel)rgf(x) = ch

JEX
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r=1

It is easy to evaluate the objective, less easy the feasibility
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Cost of the main operations

The objective function is
® fast to evaluate: sum the edge costs
® fast to update: sum the added costs and subtract the removed ones

but it is easy to obtain subtrees that span vertices in a nonoptimal way

The feasibility test is
® not very fast to perform:

® visit to check for connection and acyclicity
® visit to compute the total weight of each subtree

® not very fast to update:
® show that the removed edges break the loops introduced by the

added ones
® recompute the weights of the subtrees

This also holds when the graph is complete

What if we described the problem in terms of vertex subsets?
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An alternative description

Define a set of branches T (as the containers in the BPP)

One for each vertex in V' \ {r}: some can be empty

The ground set is the set of the (vertex,branch) pairs: B=V x T

The feasible region includes all partitions of the vertices into connected
subsets (visit, trivial on complete graphs) of weight < W (as in the BPP)

X—{ch:mBV| 1VveV\{r}, Y W,-<WweT....}

(i.j)eBt
with B, ={(i,j)e B:i=v}, Bt={(i,j) e B:j=1t}

The objective is to minimise the sum of the costs of the branches
spanning each subset of vertices and appending it to the root

It is a combination of minimum spanning tree problems
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Example

The previously considered solutions now have a different representation

'={(2,T1),(3,T1),(6. T1),(4,T2),

6 7 8 ; (
2 A\"'X‘ 5 (5,73),(7,73),(8,T3)} € X
N f(x') = 95

e = {(271),(3,7T1).(6,T1).(4T2),
2 A\"'X‘ (5,T2),(7,7T2),(8,T2)} ¢ X
S\ f(x") =87

The feasibility test only requires to sum the weights,
computing the objective requires to solve a MST problem
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Cost of the main operations

The objective function is
® slow to evaluate: compute a MST for each subset
® slow to update: recompute the MST for each modified subset
but the subtrees are optimal by construction
If the graph is complete, the feasibility test is
® fast to perform:
® sum the weights of the vertices for each subtree

® fast to update:
® sum the added weights and subtract the removed ones

Advantages and disadvantages switched places
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Graph problems: Vehicle Routing Problem (VRP)

Given
® a directed graph G = (N, A) with a depot node d € N
® 3 function ¢ : A — N that provides the cost of each arc
® a function w : N — N that provides the weight of each node
® a number W € N that is the capacity of each circuit
select a set of circuits of minimum cost such that each one visits the
depot and respects the capacity
The ground set could be
® thearcset: B=A
® the set of all (node,circuit) pairs: B =N x C
The feasible region could include
® all arc subsets that cover all nodes with circuits visiting the depot
and whose weight does not exceed W (again the visit of a graph)
® all partitions of the nodes into subsets of weight non larger than W
and admitting a spanning circuit (N'P-hard problem!)

The objective is to minimise the total cost of the selected arcs
min f (x) = G
xeX ( ) Z /
JEx
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Uniform weight (w; = 1 for each i € N) and capacity: W =4
The solutions could be described as

® arc subsets
X ::{(d,2),(2,3),(3,6),(6,d),(d,4),
(4,5),(5,8),(8,7),(7, d)} e X

® node partitions
x = {(2, C1),(3,C1),(6,C1),(4,C2),
(5,C2),(7,C2),(8,C2)} € X

f(x) =137
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Interlude 6: combining alternative representations

The CMSTP and the VRP share an interesting complication:
different definitions of the ground set B are possible and natural

® the description as a set of edges/arcs
looks preferable to manage the objective

® the description as a set of pairs (vertex,tree)/(node/circuit) looks
better to generate optimal solutions and to deal with feasibility
Which description should be adopted?
® the one that makes easier the most frequent operations

® both, if they are used much more frequently than updated, so that
the burden of keeping them up-to-date and consistent is acceptable
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Homework

Answer all the fundamental questions on all the considered problems
@ Objective function:
a) What is the cost of computing f (x) given x?
b) Is f (x) additive, quadratic, etc...?
a) What is the cost of computing f (x')
given f (x) and a “small” transformation x — x'?
c) Is f(x) “flat"?
@ Feasibility:
a) What is the cost of testing whether subset x is a feasible solution?
b) What is the cost of testing whether subset x’ is a feasible solution
given a feasible solution x and a “small” transformation x — x'?
c) Are some transformations intrinsically feasible (or unfeasible)?
d) Is it easy to find a feasible solution?
Is there a subset that is always feasible?
© Relations between problems:
a) Are there trasformations from/to the problem to/from other ones?
O Ground sets:
a) Are there alternative definitions of the ground set?
b) What are their relative advantages and disadvantages?
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