
Heuristic Algorithms
Master’s Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule: Thursday 14.30 - 16.30 in classroom 503

Friday 14.30 - 16.30 in classroom 503

Office hours: on appointment

E-mail: roberto.cordone@unimi.it

Web page: https://homes.di.unimi.it/cordone/courses/2024-ae/2024-ae.html

Ariel site: https://myariel.unimi.it/course/view.php?id=4466

Lesson 2: Combinatorial Optimization Milano, A.A. 2024/25
1 / 1

https://homes.di.unimi.it/cordone/courses/2024-ae/2024-ae.html
https://myariel.unimi.it/course/view.php?id=4466

Combinatorial Optimization

opt f (x)
x ∈ X

where X ⊆ 2B and B finite

We will survey a number of problem classes

• set problems

• logic function problems

• numerical matrix problems

• graph problems

2 / 1

Why a problem survey?

Reviewing several problems is useful because

• abstract ideas must be concretely applied to different algorithms for
different problems

• the same idea can have different effectiveness on different problems

• some ideas only work on problems with a specific structure

• different problems could have nonapparent relations,
which could be exploited to design algorithms

So, a good knowledge of several problems teaches how to

• apply abstract ideas to new problems

• find and exploit relations between known and new problems

Sure, the “Magical Number Seven” risk exists. . .

To control it, we will make some interludes devoted to general remarks

3 / 1

Weighted set problems: Knapsack Problem (KP)
Given

• a set E of elementary objects
• a function v : E → N describing the volume of each object
• a number V ∈ N describing the capacity of a knapsack
• a function ϕ : E → N describing the value of each object

select a subset of objects of maximum value that respects the capacity

The ground set is trivially the set of the objects: B = E

The feasible region includes all subsets of objects whose total volume
does not exceed the capacity of the knapsack

X =

{
x ⊆ B :

∑
j∈x

vj ≤ V

}

The objective is to maximise the total value of the chosen objects

max
x∈X

f (x) =
∑
j∈x

ϕj

4 / 1

Example

E a b c d e f
ϕ 7 2 4 5 4 1
v 5 3 2 3 1 1

V = 8

x ′ = {c , d , e} ∈ X x ′′ = {a, c , d} /∈ X
f (x ′) = 13 f (x ′′) = 16

5 / 1

Set problems in metric spaces:
Maximum Diversity Problem (MDP)

Given

• a set P of points

• a function d : P ×P → N providing the distance between point pairs

• a number k ∈ {1, . . . , |P|} that is the number of points to select

select a subset of k points with the maximum total pairwise distance

The ground set is the set of points: B = P

The feasible region includes all subsets of k points

X = {x ⊆ B : |x | = k}

The objective is to maximise the sum of all pairwise distances between
the selected points

max
x∈X

f (x) =
∑

(i,j):i,j∈x

dij

6 / 1

Example

k = 3

x ′ = {C ,D,E} ∈ X x ′′ = {A,C ,G} ∈ X
f (x ′) = 24 f (x ′′) = 46

7 / 1

Interlude 1: the objective function
The objective function associates integer values to feasible subsets

f : X → N

Computing the objective function can be complex (even exhaustive)

We have seen two simple cases

• the KP has an additive objective function which
sums values of an auxiliary function defined on the ground set

ϕ : B → N induces f (x) =
∑
j∈x

ϕj : X → N

• the MDP has a quadratic objective function

Both are defined not only on X , but on the whole of 2B (is this useful?)

Both are easy to compute, but the additive functions f (x) are also fast
to recompute if subset x changes slightly: it is enough to

• sum ϕj for each element j added to x

• subtract ϕj for each element j removed from x

For quadratic functions, this seems more complex (we will talk about it)
8 / 1

Partitioning set problems: Bin Packing Problem (BPP)
Given

• a set E of elementary objects
• a function v : E → N describing the volume of each object
• a set C of containers
• a number V ∈ N that is the volume of the containers

divide the objects into the minimum number of containers respecting the
capacity

The ground set B = E × C includes all (object,container) pairs

The feasible region includes all partitions of the objects among the
containers not exceeding the capacity of any container

X =

{
x ⊆ B : |x ∩ Be | = 1 ∀e ∈ E ,

∑
(e,c)∈x∩Bc

ve ≤ V ∀c ∈ C

}
with Be = {(i , j) ∈ B : i = e} and Bc = {(i , j) ∈ B : j = c}
The objective is to minimise the number of containers used

min
x∈X

f (x) = | {c ∈ C : x ∩ Bc ̸= ∅} |

9 / 1

Example

x ′ =
{
(a, 1) , (b, 1) , (c , 2) , (d , 2) , (e, 2) , (f , 3) ,

(g , 4) , (h, 5) , (i , 5)
}
∈ X

f (x ′) = 5

x ′′ =
{
(a, 1) , (b, 1) , (c , 2) , (d , 2) , (e, 2) , (f , 3) ,

(g , 4) , (h, 1) , (i , 4)
}
/∈ X

f (x ′′) = 4

10 / 1

Partitioning set problems:
Parallel Machine Scheduling Problem (PMSP)

Given
• a set T of tasks
• a function d : T → N describing the time length of each task
• a set M of machines

divide the tasks among the machines with the minimum completion time

The ground set B = T ×M includes all (task,machine) pairs

The feasible region includes all partitions of tasks among machines
(the order of the tasks is irrelevant!)

X =

{
x ⊆ B : |x ∩ Bt | = 1 ∀t ∈ T

}

The objective is to minimise the maximum sum of time lengths for each
machine

min
x∈X

f (x) = max
m∈M

∑
t:(t,m)∈x

dt

11 / 1

Example

T = {T1,T2,T3,T4,T5,T6}

M = {M1,M2,M3}

task T1 T2 T3 T4 T5 T6
d 80 40 20 30 15 80

x ′ =
{
(T1,M1) , (T2,M2) , (T3,M2) ,

(T4,M2) , (T5,M1) , (T6,M3)
}
∈ X

f (x ′) = 95

x ′′ =
{
(T1,M1) , (T2,M1) , (T3,M2) ,

(T4,M2) , (T5,M2) , (T6,M3)
}
∈ X

f (x ′′) = 120

12 / 1

Interlude 2: the objective function again

The objective function of the BPP and the PMSP

• is not additive

• is not trivial to compute (but not hard, as well)

Small changes in the solution have a variable impact on the objective

• equal to the time length of the moved tasks (increase or decrease)
(e.g., move T5 on M1 in x ′′)

• zero (e.g., move T5 on M3 in x ′′)

• intermediate (e.g., move T2 on M2 in x ′′)

In fact, the impact of a change to the solution depends

• both on the modified elements

• and on the unmodified elements (contrary to Interlude 1)

The objective function is “flat”: several solutions have the same value
(this is a problem when comparing different modifications)

13 / 1

Logic function problems: Max-SAT problem

Given a CNF, assign truth values to its logical variables so as to satisfy
the maximum weight subset of its logical clauses

• a set V of logical variables xj with values in B = {0, 1} (false, true)

• a literal ℓj is a function consisting of an affirmed or negated variable

ℓj (x) ∈ {xj , x̄j}

• a logical clause is a disjunction or logical sum (OR) of literals

Ci (x) = ℓi,1 ∨ . . . ∨ ℓi,ni

• a conjunctive normal form (CNF) is a conjunction or logical product
(AND) of logical clauses

CNF (x) = C1 ∧ . . . ∧ Cn

• to satisfy a logical function means to make it assume value 1

• a function w provides the weights of the CNF clauses

14 / 1

Logic function problems: Max-SAT problem

The ground set is the set of all simple truth assignments

B = V × B = {(x1, 0) , (x1, 1) , . . . , (xn, 0) , (xn, 1)}

The feasible region includes all subsets of simple assignments that are

• complete, that is include at least a literal for each variable

• consistent, that is include at most a literal for each variable

X = {x ⊆ B : |x ∩ Bv | = 1 ∀v ∈ V }

with Bxj = {(xj , 0) , (xj , 1)}

The objective is to maximise the total weight of the satisfied clauses

max
x∈X

f (x) =
∑

i :Ci (x)=1

wi

15 / 1

Example

• Variables
V = {x1, x2, x3, x4}

• Literals
L = {x1, x̄1, x2, x̄2, x3, x̄3, x4, x̄4}

• Logical clauses

C1 = x̄1 ∨ x2 . . . C7 = x2

• Conjunctive normal form

CNF = (x̄1 ∨ x2)∧(x̄1 ∨ x3)∧(x̄1 ∨ x̄3)∧(x̄2 ∨ x4)∧(x̄2 ∨ x̄4)∧x1∧x2

• Weight function (uniform):

wi = 1 i = 1, . . . , 7

x = {(x1, 0), (x2, 0), (x3, 1), (x4, 1)} satisfies f (x) = 5 clauses out of 7

Complementing a variable does not always change f (x) (x1 does, x4 not)

16 / 1

Numerical matrix problems: Set Covering (SCP)

Given

• a binary matrix A ∈ Bm,n with row set R and column set C

• column j ∈ C covers row i ∈ R when aij = 1

• a function c : C → N provides the cost of each column

Select a subset of columns covering all rows at minimum cost

The ground set is the set of columns: B = C

The feasible region includes all subsets of columns that cover all rows

X =

{
x ⊆ B :

∑
j∈x

aij ≥ 1 ∀i ∈ R

}

The objective is to minimise the total cost of the selected columns

min
x∈X

f (x) =
∑
j∈x

cj

17 / 1

Example

c 4 6 10 14 5 6

0 1 1 1 1 0
0 0 1 1 0 0

A 1 1 0 0 0 1
0 0 0 1 1 1
1 1 1 0 1 0

0 1 1 1 1 0 2
0 0 1 1 0 0 1

A 1 1 0 0 0 1 1
0 0 0 1 1 1 1
1 1 1 0 1 0 3

x ′ =
{
c1, c3, c5

}
∈ X

f (x ′) = 19

0 1 1 1 1 0 1
0 0 1 1 0 0 0

A 1 1 0 0 0 1 2
0 0 0 1 1 1 2
1 1 1 0 1 0 2

x ′′ =
{
c1, c5, c6

}
/∈ X

f (x ′′) = 15

“Set Covering”: covering a set (rows) with subsets (columns)

18 / 1

Interlude 3: the feasibility test

Heuristic algorithms often require to solve the following problem

Given a subset x , is x feasible or not? In short, x ∈ X?

It is a decision problem

The feasibility test requires to compute from the solution and test

• a single number: the total volume (KP), the cardinality (MDP)

• a single set of numbers: values assigned to each variable
(Max-SAT), number of machines for each task (PMSP)

• several sets of numbers: number of containers for each object and
total volume of each container (BPP)

The time required can be different if the test is performed

• from scratch on a generic subset x

• on a subset x ′ obtained slightly modifying a feasible solution x

Some modifications can be forbidden a priori to avoid infeasibility
(insertions and removals for MDP, PMSP, Max-SAT),
while others require an a posteriori test (exchanges)

19 / 1

Numerical matrix problems: Set Packing

Given

• a binary matrix A ∈ Bm,n with row set R and column set C

• columns j ′ e j ′′ ∈ C conflict with each other when aij′ = aij′′ = 1

• a function ϕ : C → N provides the value of each column

Select a subset of nonconflicting columns of maximum value

The ground set is the set of columns: B = C

The feasible region includes all subsets of nonconflicting columns

X =

{
x ⊆ B :

∑
j∈x

aij ≤ 1 ∀i ∈ R

}

The objective is to maximise the total value of the selected columns

max
x∈X

f (x) =
∑
j∈x

ϕj

20 / 1

Example

ϕ 4 6 10 14 5 6

0 1 0 0 1 0
0 0 1 1 0 0

A 1 0 0 0 0 1
0 0 0 1 1 1
1 1 1 0 0 0

0 1 0 0 1 0 1
0 0 1 1 0 0 1

A 1 0 0 0 0 1 0
0 0 0 1 1 1 1
1 1 1 0 0 0 1

x ′ =
{
c2, c4

}
∈ X

f (x ′) = 20

0 1 0 0 1 0 1
0 0 1 1 0 0 0

A 1 0 0 0 0 1 2
0 0 0 1 1 1 2
1 1 1 0 0 0 1

x ′′ =
{
c1, c5, c6

}
/∈ X

f (x ′′) = 15

“Set Packing”: packing disjoint subsets (columns) of a set (rows)

21 / 1

Numerical matrix problems: Set Partitioning (SPP)
Given

• a binary matrix A ∈ Bm,n with a set of rows R and a set of
columns C

• a function c : C → N that provides the cost of each column

select a minimum cost subset of nonconflicting columns covering all rows

The ground set is the set of columns: B = C

The feasible region includes all subsets of columns that cover all rows and
are not conflicting

X =

{
x ⊆ B :

∑
j∈x

aij = 1 ∀i ∈ R

}

The objective is to minimise the total cost of the selected columns

min
x∈X

f (x) =
∑
j∈x

cj

22 / 1

Example

c 4 6 10 14 5 6

0 1 0 0 1 0
0 0 1 1 0 0

A 1 0 0 0 0 1
0 0 0 1 1 0
1 1 1 0 0 0

0 1 0 0 1 0 1
0 0 1 1 0 0 1

A 1 0 0 0 0 1 1
0 0 0 1 1 0 1
1 1 1 0 0 0 1

x ′ =
{
c2, c4, c6

}
∈ X

f (x ′) = 26

0 1 0 0 1 0 1
0 0 1 1 0 0 0

A 1 0 0 0 0 1 2
0 0 0 1 1 0 1
1 1 1 0 0 0 1

x ′′ =
{
c1, c5, c6

}
/∈ X

f (x ′′) = 15

“Set Partitioning”: partition a set (rows) into subsets (columns)

23 / 1

Graph problems: Travelling Salesman Problem (TSP)

Given

• a directed graph G = (N,A)

• a function c : A → N that provides the cost of each arc

select a circuit visiting all the nodes of the graph at minimum cost

The ground set is the arc set: B = A

The feasible region includes the circuits that visit all nodes in the graph
(Hamiltonian circuits)

How to determine whether a subset is a feasible solution?

And a modification of a feasible solution?

Can we rule out some modifications?

The objective is to minimise the total cost of the selected arcs

min
x∈X

f (x) =
∑
j∈x

cj

24 / 1

Example

x ′ =
{
(1, 4) , (4, 5) , (5, 8) , (8, 7) ,

(7, 6) , (6, 2) , (2, 3) , (3, 1)
}
∈ X

f (x ′) = 102

x ′′ =
{
(4, 5) , (5, 8) , (8, 7) , (7, 4) ,

(1, 2) , (2, 3) , (3, 6) , (6, 1)
}
/∈ X

f (x ′′) = 106

25 / 1

Interlude 4: the search for feasible solutions

Heuristic algorithms often require to solve the following problem

Find a feasible solution x ∈ X

It is a search problem

The search for a feasible solution is trivial or easy for some problems:

• some sets are always feasible, such as x = ∅ (KP, Set Packing)
or x = B (feasible instances of SCP)

• random subsets satisfying a constraint, such as |x | = k (MDP)

• random subsets satisfying consistency constraints,
such as assigning one task to each machine (PMSP),
one value to each logic variable (Max-SAT), etc. . .

26 / 1

Interlude 4: the search for feasible solutions

But it is hard for other problems:

• in the BPP the problem is easy if the number of containers is large
(e. g., one container for each object)

• in the SPP no polynomial algorithm is known to solve the problem

• in the TSP the problem is easy for dense graphs (e. g., complete)

One can apply a relaxation, i. e. enlarge the feasible region from X to X ′

• the objective f must be extended from X to X ′ (see Interlude 1)

• but often X ′ \ X includes better solutions (. . . how about that?)

27 / 1

Graph problems: Vertex Cover (VCP)

Given an undirected graph G = (V ,E), select a subset of vertices of
minimum cardinality such that each edge of the graph is incident to it

The ground set is the vertex set: B = V

The feasible region includes all vertex subsets such that all the edges of
the graph are incident to them

X =

{
x ⊆ V : x ∩ (i , j) ̸= ∅ ∀ (i , j) ∈ E

}

The objective is to minimise the number of selected vertices

min
x∈X

f (x) = |x |

28 / 1

Example

x ′ =
{
B,D,E ,F ,G

}
∈ X

f (x ′) = 5

x ′′ =
{
A,C ,H

}
/∈ X

f (x ′′) = 3

29 / 1

Graph problems: Maximum Clique Problem

Given

• an undirected graph G = (V ,E)

• a function w : V → N that provides the weight of each vertex

select the subset of pairwise adjacent vertices of maximum weight

The ground set is the vertex set: B = V

The feasible region includes all subsets of pairwise adjacent vertices

X =
{
x ⊆ V : (i , j) ∈ E ∀i ∈ x ,∀j ∈ x \ {i}

}

The objective is to maximise the weight of the selected vertices

max
x∈X

f (x) =
∑
j∈x

wj

30 / 1

Example

Uniform weights: wi = 1 for each i ∈ V

x ′ =
{
B,C ,F ,G

}
∈ X

f (x ′) = 4

x ′′ =
{
A,D,E

}
∈ X

f (x ′′) = 3

31 / 1

Graph problems: Maximum Independent Set Problem

Given

• an undirected graph G = (V ,E)

• a function w : V → N that provides the weight of each vertex

select the subset of pairwise nonadjacent vertices of maximum weight

The ground set is the vertex set: B = V

The feasible region includes the subsets of pairwise nonadjacent vertices

X =
{
x ⊆ B : (i , j) /∈ E ∀i ∈ x ,∀j ∈ x \ {i}

}

The objective is to maximise the weight of the selected vertices

max
x∈X

f (x) =
∑
j∈x

wj

32 / 1

Example

x ′ =
{
B,C ,F ,G

}
∈ X

f (x ′) = 4

x ′′ =
{
A,D,E

}
∈ X

f (x ′′) = 3

33 / 1

Interlude 5: the relations between problems (1)
Each instance of the MCP is equivalent to an instance of the MISP

1 start from the MCP instance, that is graph G = (V ,E)

2 build the complementary graph Ḡ = (V , (V × V) \ E)
3 find an optimal solution of the MISP on Ḡ

4 the corresponding vertices give an optimal solution of the MCP on G
(a heuristic MISP solution gives a heuristic MCP solution)

→ →

→ →

The process can be applied also in the opposite direction
34 / 1

Interlude 5: the relations between problems (2)

The VCP and the SCP are also related, but in a different way; each
instance of the VCP can be transformed into an instance of the SCP:

• each edge i corresponds to a row of the covering matrix A

• each vertex j corresponds to a column of A

• if edge i touches vertex j , set aij = 1; otherwise aij = 0

• an optimal solution of the SCP gives an optimal solution of the VCP
(a heuristic SCP solution gives a heuristic VCP solution)

A B C D E F G H
(A,D) 1 0 0 1 0 0 0 0
(A, E) 1 0 0 0 1 0 0 0
(B,C) 0 1 1 0 0 0 0 0
(B, F) 0 1 0 0 0 1 0 0
(B,G) 0 1 0 0 0 0 1 0
(C , F) 0 0 1 0 0 1 0 0
(C ,G) 0 0 1 0 0 0 1 0
(D, E) 0 0 0 1 1 0 0 0
(D,H) 0 0 0 1 0 0 0 1
(F ,G) 0 0 0 0 0 1 1 0
(F ,H) 0 0 0 0 0 1 0 1

It is not simple to do the reverse

35 / 1

Interlude 5: the relations between problems (3)
The BPP and the PMSP are equivalent, but in a more sophisticated way:

• the tasks correspond to the objects
• the machines correspond to the containers, but

• BPP: minimise the number of containers, given the capacity
• PMSP: given the number of machines, minimise the completion time

Start from a BPP instance

1 make an assumption on the optimal number of containers (e.g., 3)
2 build the corresponding PMSP instance
3 compute the optimal completion time (e.g., 95)

• if it exceeds the capacity (e.g., 80), increase the assumption (4 or 5)
• if it does not, decrease the assumption (2 or 1)

(using heuristic PMSP solutions leads to a heuristic BPP solution)

The reverse process is possible

The two problems are equivalent,
but each one must be solved
several times

36 / 1

Graph problems: Capacitated Min. Spanning Tree Problem

Given

• an undirected graph G = (V ,E) with a root vertex r ∈ V

• a function c : E → N that provides the cost of each edge

• a function w : V → N that provides the weight of each vertex

• a number W ∈ N that is the subtree appended to the root (branch)

select a spanning tree of minimum cost such that each branch respects
the capacity

The ground set is the edge set: B = E

The feasible region includes all spanning trees such that the weight of the
vertices spanned by each branch does not exceed W

The feasibility test requires to visit the subgraph

The objective is to minimise the total cost of the selected edges

min
x∈X

f (x) =
∑
j∈x

cj

37 / 1

Example

Uniform weight (wi = 1 for each i ∈ V) and capacity: W = 3

x ′ =
{
(r , 3) , (3, 2) , (3, 6) , (r , 4) ,

(r , 5) , (5, 7) , (5, 8)
}
∈ X

f (x ′) = 95

x ′′ =
{
(r , 3) , (3, 2) , (3, 6) , (r , 5) ,

(5, 4) , (5, 8) , (8, 7)
}
/∈ X

f (x ′′) = 87

It is easy to evaluate the objective, less easy the feasibility

38 / 1

Cost of the main operations

The objective function is

• fast to evaluate: sum the edge costs

• fast to update: sum the added costs and subtract the removed ones

but it is easy to obtain subtrees that span vertices in a nonoptimal way

The feasibility test is

• not very fast to perform:
• visit to check for connection and acyclicity
• visit to compute the total weight of each subtree

• not very fast to update:
• show that the removed edges break the loops introduced by the

added ones
• recompute the weights of the subtrees

This also holds when the graph is complete

What if we described the problem in terms of vertex subsets?

39 / 1

An alternative description

Define a set of branches T (as the containers in the BPP)

One for each vertex in V \ {r}: some can be empty

The ground set is the set of the (vertex,branch) pairs: B = V × T

The feasible region includes all partitions of the vertices into connected
subsets (visit, trivial on complete graphs) of weight ≤ W (as in the BPP)

X =

{
x ⊆ B : |x ∩ Bv | = 1 ∀v ∈ V \ {r},

∑
(i,j)∈Bt

wi ≤ W ∀t ∈ T , . . .

}

with Bv = {(i , j) ∈ B : i = v}, B t = {(i , j) ∈ B : j = t}

The objective is to minimise the sum of the costs of the branches
spanning each subset of vertices and appending it to the root

It is a combination of minimum spanning tree problems

40 / 1

Example

The previously considered solutions now have a different representation

x ′ =
{
(2,T1) , (3,T1) , (6,T1) , (4,T2) ,

(5,T3) , (7,T3) , (8,T3)
}
∈ X

f (x ′) = 95

x ′′ =
{
(2,T1) , (3,T1) , (6,T1) , (4,T2) ,

(5,T2) , (7,T2) , (8,T2)
}
/∈ X

f (x ′′) = 87

The feasibility test only requires to sum the weights,
computing the objective requires to solve a MST problem

41 / 1

Cost of the main operations

The objective function is

• slow to evaluate: compute a MST for each subset

• slow to update: recompute the MST for each modified subset

but the subtrees are optimal by construction

If the graph is complete, the feasibility test is

• fast to perform:
• sum the weights of the vertices for each subtree

• fast to update:
• sum the added weights and subtract the removed ones

Advantages and disadvantages switched places

42 / 1

Graph problems: Vehicle Routing Problem (VRP)
Given

• a directed graph G = (N,A) with a depot node d ∈ N
• a function c : A → N that provides the cost of each arc
• a function w : N → N that provides the weight of each node
• a number W ∈ N that is the capacity of each circuit

select a set of circuits of minimum cost such that each one visits the
depot and respects the capacity

The ground set could be
• the arc set: B = A
• the set of all (node,circuit) pairs: B = N × C

The feasible region could include
• all arc subsets that cover all nodes with circuits visiting the depot

and whose weight does not exceed W (again the visit of a graph)
• all partitions of the nodes into subsets of weight non larger than W

and admitting a spanning circuit (NP-hard problem!)

The objective is to minimise the total cost of the selected arcs

min
x∈X

f (x) =
∑
j∈x

cj

43 / 1

Example

Uniform weight (wi = 1 for each i ∈ N) and capacity: W = 4

The solutions could be described as

• arc subsets
x =

{
(d , 2) , (2, 3) , (3, 6) , (6, d) , (d , 4) ,

(4, 5) , (5, 8) , (8, 7) , (7, d)
}
∈ X

• node partitions
x =

{
(2,C1) , (3,C1) , (6,C1) , (4,C2) ,

(5,C2) , (7,C2) , (8,C2)
}
∈ X

f (x) = 137

44 / 1

Interlude 6: combining alternative representations

The CMSTP and the VRP share an interesting complication:
different definitions of the ground set B are possible and natural

• the description as a set of edges/arcs
looks preferable to manage the objective

• the description as a set of pairs (vertex,tree)/(node/circuit) looks
better to generate optimal solutions and to deal with feasibility

Which description should be adopted?

• the one that makes easier the most frequent operations

• both, if they are used much more frequently than updated, so that
the burden of keeping them up-to-date and consistent is acceptable

45 / 1

Homework

Answer all the fundamental questions on all the considered problems

1 Objective function:

a) What is the cost of computing f (x) given x?
b) Is f (x) additive, quadratic, etc. . . ?
a) What is the cost of computing f (x ′)

given f (x) and a “small” transformation x → x ′?
c) Is f (x) “flat”?

2 Feasibility:

a) What is the cost of testing whether subset x is a feasible solution?
b) What is the cost of testing whether subset x ′ is a feasible solution

given a feasible solution x and a “small” transformation x → x ′?
c) Are some transformations intrinsically feasible (or unfeasible)?
d) Is it easy to find a feasible solution?

Is there a subset that is always feasible?

3 Relations between problems:

a) Are there trasformations from/to the problem to/from other ones?

4 Ground sets:

a) Are there alternative definitions of the ground set?
b) What are their relative advantages and disadvantages?

46 / 1

