
Solution-based

Heuristic Algorithms
for Combinatorial Optimisation

Lecture notes

Prof. Roberto Cordone

Edoardo Marangoni

University of Milan
Department of Computer Science

September 26, 2024

ii

ii

Contents

Foreword ii

I Introduction to problems and heuristics 3

1 Introduction 5
1.1 Heuristics . 5

1.1.1 History . 5
1.1.2 What is a heuristic algorithm? . 6

1.2 Different types of problems . 6
1.2.1 Optimisation-search problems . 7
1.2.2 Combinatorial Optimisation . 8

1.3 Different types of heuristics . 8
1.3.1 Solution-based heuristics . 8
1.3.2 Metaheuristics . 8

1.4 Caveats . 9

2 Combinatorial optimization problems 11
2.1 Weighted set problems . 11

2.1.1 The knapsack problem . 11
2.1.2 Maximum diversity problem . 12
2.1.3 Interlude I: the objective function . 13

2.2 Partitioning set problems . 14
2.2.1 Bin packing problem . 14
2.2.2 Parallel machine scheduling problem 14
2.2.3 Interlude II: again, the objective function 15

2.3 Logic function problems . 16
2.3.1 Max-SAT problem . 16

2.4 Numerical matrix problems . 17
2.4.1 Set covering problem . 17
2.4.2 Interlude III: the feasibility test . 18
2.4.3 Set packing problem . 18
2.4.4 Set partitioning problem . 18
2.4.5 Interlude IV: the search for feasible solutions 19

2.5 Graph problems . 19
2.5.1 Vertex cover problem . 19
2.5.2 Maximum clique problem . 20
2.5.3 Maximum independent set problem 21

iii

iv CONTENTS

2.5.4 Interlude V: relations between problems 21
2.5.5 The travelling salesman problem . 22
2.5.6 Capacitated minimum spanning tree problem 23
2.5.7 Vehicle routing problem . 24
2.5.8 Interlude VI: combining alternative representations 25

2.6 Summary . 25
2.7 Exercises . 27

2.7.1 Exercise 1 . 27
2.7.2 Exercise 2 . 28
2.7.3 Exercise 3 . 29
2.7.4 Exercise 4 . 29
2.7.5 Exercise 5 . 30
2.7.6 Exercise 6 . 31
2.7.7 Exercise 7 . 32
2.7.8 Exercise 8 . 32
2.7.9 Exercise 9 . 33
2.7.10 Exercise 10 . 33
2.7.11 Exercise 11 . 34
2.7.12 Exercise 12 . 34
2.7.13 Exercise 13 . 35
2.7.14 Exercise 14 . 36
2.7.15 Exercise 15 . 37

II Algorithm analysis 39

3 Theoretical efficiency 41
3.1 Cost as computational complexity . 41

3.1.1 Problems . 41
3.1.2 Algorithms . 41
3.1.3 Cost of a heuristic algorithm . 42
3.1.4 Worst-case asymptotic time complexity 42
3.1.5 Transformations and reductions . 43

3.2 Going beyond worst-case complexity . 44
3.2.1 Parameterised complexity . 44
3.2.2 Average case complexity . 46

3.2.2.1 Phase transitions . 48

4 Theoretical effectiveness 51
4.1 A measure of distance from the optimum . 51
4.2 Theoretical analysis: approximation guarantees 52

4.2.1 Absolute and relative approximation 52
4.2.2 How to obtain an approximation guarantee 52
4.2.3 Tight approximation bounds . 56
4.2.4 Inapproximability . 56
4.2.5 Approximation schemes . 57

4.3 Beyond worst-case approximation . 57
4.3.1 Randomised approximation . 58

4.4 Exercises . 60

iv

CONTENTS CONTENTS v

4.4.1 Exercise 1 . 60
4.4.2 Exercise 2 . 60
4.4.3 Exercise 3 . 60
4.4.4 Exercise 4 . 61
4.4.5 Exercise 5 . 61
4.4.6 Exercise 6 . 62
4.4.7 Exercise 7 . 62
4.4.8 Exercise 8 . 63
4.4.9 Exercise 9 . 63

5 Empirical performance evaluation 65
5.1 Introduction to experimental analysis . 65

5.1.1 Models . 65
5.1.2 Benchmarks . 66
5.1.3 Comparing heuristic algorithms . 66
5.1.4 Statistical models of performance . 67

5.2 A posteriori efficiency evaluation . 68
5.2.1 Run time distribution diagram . 68
5.2.2 Scaling diagram . 70

5.3 A posteriori effectiveness evaluation . 71
5.3.1 Solution quality distribution diagram 71
5.3.2 Parametric SQD diagrams . 72
5.3.3 Algorithm comparison with SQD diagrams 73
5.3.4 Position indices and boxplots . 73

5.4 Relation between quality and computational time 76
5.4.1 A classification of algorithms . 77

5.5 Complete performance diagrams . 78
5.5.1 Qualified run time distribution diagrams 79
5.5.2 Timed solution quality distribution diagrams 79
5.5.3 Solution quality statistics over time diagrams 80

5.6 Wilcoxon test . 81
5.6.1 Assumptions of Wilcoxon’s test . 82
5.6.2 Computation of the p-value . 83

5.7 Exercises . 85
5.7.1 Exercise 1 . 85
5.7.2 Exercise 2 . 86
5.7.3 Exercise 3 - . 87
5.7.4 Exercise 4 - . 88
5.7.5 Exercise 5 - . 89
5.7.6 Exercise 6 - . 89
5.7.7 Exercise 7 - . 90

III Constructive algorithms 93

6 Constructive heuristics 95
6.1 Basic elements of constructive algorithms . 95

6.1.1 The construction graph . 96
6.1.2 The termination condition . 99

v

vi CONTENTS

6.1.3 The general scheme . 99
6.1.4 Effectiveness and efficiency of constructive algorithms 99
6.1.5 Using the objective as a selection criterium 100

6.2 Exact constructive algorithms . 104
6.2.1 The additive case: matroids and greedoids 105

6.3 Nonexact constructive algorithms . 108
6.3.1 Pure constructive heuristics . 108
6.3.2 Adaptive constructive algorithms . 111

6.4 Extensions to the basic constructive scheme 115
6.4.1 Extensions of the construction graph with small subsets 115
6.4.2 Extension of the construction graph using auxiliary subproblems 118
6.4.3 Extensions of the selection criterion: regret functions 120
6.4.4 Extensions of the selection criterion: roll-out heuristics 122

6.5 Destructive heuristics . 124
6.5.1 Why are they less used than constructive heuristics? 124

6.6 Exercises . 126
6.6.1 Exercise 1 . 126
6.6.2 Exercise 2 . 126
6.6.3 Exercise 3 . 127
6.6.4 Exercise 4 . 127
6.6.5 Exercise 5 . 127
6.6.6 Exercise 6 . 128
6.6.7 Exercise 7 . 130
6.6.8 Exercise 8 . 130
6.6.9 Exercise 9 . 132
6.6.10 Exercise 10 . 133
6.6.11 Exercise 11 . 133
6.6.12 Exercise 12 . 134
6.6.13 Exercise 13 . 138
6.6.14 Exercise 14 . 139

7 Constructive metaheuristics 141
7.1 Introduction to constructive metaheuristics . 141

7.1.1 Multistart . 141
7.2 Adaptive research technique . 143
7.3 The semi-greedy algorithm . 145

7.3.1 Convergence to the optimum . 146
7.4 Greedy Randomized Adaptive Search Procedure 147

7.4.1 Definition of the RCL . 148
7.4.2 The reactive tuning of parameters . 149

7.5 Cost perturbation methods and Ant System 150
7.5.1 The role of the trail . 151
7.5.2 Trail update . 152

7.5.2.0.1 The oblivion parameter 153
7.5.2.0.2 The élite solutions 153

7.5.2.1 Variants of the trail update mechanism 153
7.5.3 Convergence properties of the Ant System 154

7.6 Exercises . 156

vi

CONTENTS CONTENTS vii

7.6.1 Exercise 1 . 156
7.6.2 Exercise 2 . 158
7.6.3 Exercise 3 . 159
7.6.4 Exercise 4 . 161
7.6.5 Exercise 5 . 162
7.6.6 Exercise 6 . 164

IV Exchange algorithms 167

8 Exchange heuristics 169
8.1 The general scheme of exchange algorithms 169

8.1.1 Neighbourhood . 170
8.1.2 Connectivity of the search graph . 175

8.2 The steepest descent algorithm . 176
8.2.1 The selection criterium . 176
8.2.2 Exact neighbourhood . 178

8.3 Properties of the search graph . 178
8.3.1 Landscape . 181
8.3.2 Autocorrelation coefficient . 181
8.3.3 Plateau . 182
8.3.4 Attraction basins . 183

8.4 Efficiency of the exchange algorithms . 183
8.4.1 The exploration of the neighbourhood 184

8.4.1.1 Updating a quadratic objective function 185
8.4.2 Updating the feasibility check . 190
8.4.3 Partial saving of the neighbourhood 192
8.4.4 Tradeoff between efficiency and effectiveness 193
8.4.5 Fine tuning of the neighbourhood . 194

8.5 Very large scale neighbourhood search . 194
8.5.1 Efficient visit of exponential neighbourhoods 195
8.5.2 Heuristic visit of large neighbourhoods 201

8.5.2.1 Variable depth search . 201
8.5.2.2 Iterated greedy method (destroy and repair) 205

8.6 Exercises . 206
8.6.1 Exercise 1 . 206
8.6.2 Exercise 2 . 208
8.6.3 Exercise 3 . 209
8.6.4 Exercise 4 . 210
8.6.5 Exercise 5 . 212
8.6.6 Exercise 6 . 214
8.6.7 Exercise 7 . 216

9 Exchange metaheuristics 219
9.1 Introduction to exchange metaheuristics . 219

9.1.1 Termination condition . 219
9.2 Repeating the search . 220

9.2.1 Random generation . 220
9.2.2 Multi-start methods . 221

vii

viii CONTENTS

9.2.3 Exploiting previous solutions . 222
9.2.4 Iterated Local Search . 222

9.2.4.0.1 The acceptance condition 224
9.2.4.1 Variable Neighbourhood Search 225

9.3 Extending the local search . 226
9.3.1 Variable neighbourhood descent . 227
9.3.2 Dynamic local search . 229

9.4 Modifying the selection rule . 232
9.4.1 Simulated Annealing . 232

9.4.1.1 The details of Metropolis simulation algorithm 233
9.4.1.2 The algorithm . 234

9.4.2 Tabu search . 237
9.5 Exercises . 246

9.5.1 Exercise 1 . 246
9.5.2 Exercise 2 . 247
9.5.3 Exercise 3 . 248
9.5.4 Exercise 4 . 250
9.5.5 Exercise 5 . 250
9.5.6 Exercise 6 . 252
9.5.7 Exercise 7 . 253
9.5.8 Exercise 8 . 254
9.5.9 Exercise 9 . 256

V Recombination algorithms 259

10 Recombination metaheuristics 261
10.1 Introduction to recombination metaheuristics 261

10.1.1 General concepts . 261
10.2 Scatter search . 262

10.2.1 The algorithm . 263
10.2.2 Recombination procedure . 263

10.3 Path relinking . 266
10.3.1 General scheme of Path Relinking . 266

10.4 Genetic algorithms . 268
10.4.1 Encodings . 268
10.4.2 General scheme of the genetic algorithm 269
10.4.3 Features of a good encoding . 269
10.4.4 Selection . 273
10.4.5 Crossover . 275
10.4.6 Mutation . 277

10.5 The feasibility problem . 277
10.5.1 Special encodings and operators . 278
10.5.2 Repair procedures . 278
10.5.3 Penalty functions . 279

10.6 Other recombination metaheuristics approaches 280
10.6.1 Memetic algorithms . 280
10.6.2 Evolution strategies . 281

viii

CONTENTS CONTENTS ix

10.7 Exercises . 282
10.7.1 Exercise 1 . 282
10.7.2 Exercise 2 . 282
10.7.3 Exercise 3 . 283
10.7.4 Exercise 4 . 283
10.7.5 Exercise 5 . 284
10.7.6 Exercise 6 . 284
10.7.7 Exercise 7 . 288
10.7.8 Exercise 8 . 290
10.7.9 Exercise 9 . 293
10.7.10 Exercise 10 . 293
10.7.11 Exercise 11 . 294
10.7.12 Exercise 12 . 295

VI Laboratory sessions 297

A Generalities 299
A.1 The maximum diversity problem . 299

A.1.1 Definition . 299
A.1.2 Benchmark instances . 300

A.2 Instance representation . 301
A.3 Solution representation . 303

A.3.1 Consistency check . 308
A.4 The main function . 308

B Laboratory on constructive heuristics 311
B.1 General scheme . 311

B.1.1 The basic constructive heuristic . 312
B.2 Empirical evaluation . 313

B.2.1 Computational time analysis . 314
B.3 Alternative constructive heuristics . 318
B.4 The basic destructive heuristic . 319
B.5 Experimental comparison . 320

C Laboratory on constructive metaheuristics 325
C.1 Greedy randomized adaptive search procedure 326

C.1.1 Choice of the basic constructive heuristic 328
C.1.2 Pseudorandom number extraction . 330
C.1.3 Biased point selection . 330

C.1.3.1 Value-based RCL . 330
C.1.3.2 Identification of the selected point 331

C.1.4 Empirical evaluation . 332
C.1.4.1 Computational time analysis 332
C.1.4.2 Solution quality analysis . 334

C.1.4.2.1 Statistical tests . 334
C.1.4.2.2 Influence of the random seed 335

C.2 Ant System . 337

ix

x CONTENTS

D Laboratory on exchange heuristics 339
D.1 The steepest ascent heuristic . 340

D.1.1 Time complexity estimation . 342
D.1.2 Empirical evaluation . 342

D.1.2.1 Computational time analysis 343
D.1.2.2 Solution quality analysis . 344

D.1.3 Constant-time neighbour evaluation 345
D.1.4 Comparison of initialisation procedures 346
D.1.5 Neighbourhood tuning: global-best versus first-best 347

E Laboratory on exchange metaheuristics 351
E.1 Variable neighbourhood search . 352

E.1.1 Time complexity estimation . 355
E.1.2 Empirical evaluation . 356

E.1.2.1 Computational time analysis 356
E.1.2.2 Solution quality analysis . 356

E.1.3 Parameter tuning . 358
E.1.3.1 Statistical tests . 359

E.2 Tabu search . 362
E.2.1 Time complexity estimation . 364
E.2.2 Empirical evaluation . 364

E.2.2.1 Cyclic or erratic behaviours 365
E.2.2.2 Computational time analysis 365

E.2.3 Parameter tuning . 367
E.3 Comparison between VNS and TS . 369

F Laboratory on recombination metaheuristics 371
F.1 Path relinking . 372

F.1.1 Time complexity estimation . 378
F.1.2 Empirical evaluation . 378
F.1.3 Parameter tuning . 379

F.1.3.1 Comparison with random restart 381
F.2 Scatter search . 382

F.2.1 Time complexity estimation . 386
F.2.2 Empirical evaluation . 387

F.2.2.1 Computational time analysis 387
F.2.3 Parameter tuning . 388

F.3 Comparison with PR and random restart . 388

x

Foreword

I wish to thank Edoardo Marangoni for the remarkable effort of collecting these lecture notes,
which concern the teaching on “Heuristic algorithms” of the Computer Science course. They
have been collected in the academic year 2020/21, based on the slides and the videorecordings
of the course. I have personally added the sections on the laboratory sessions and the exercises,
and I am gradually revising the content of the other sections. The readers are encouraged to
point out mistakes or ambiguities.

Roberto Cordone

1

2 CONTENTS CHAPTER 0

2

Part I

Introduction to problems and heuristics

3

CHAPTER 1

Introduction

This chapter explains the goals of the course on “Heuristic algorithms”, starting with a dis-
cussion on the word heuristic, which has several meanings, depending on the field in which
it is used. Then, we surview the problems addressed in the course, characterise the family of
algorithms that will be described and classify them. In fact, the course does not consider all
heuristic algorithms for all problems, but only solution-based heuristics for combinatorial
optimisation problems.

The main take away of this course is that heuristic algorithms are not recipes for specific
problems. Therefore, this course is not just a parade of specific algorithms used for specific
issues. The theme of this course can be summarised by saying that any heuristic can be used
on any problem, obviously with different performance and outcomes. The point is to consider
general ideas that can be applied to a wide range of problems. So, we will first discuss common
heuristic frameworks to design algorithms and then tailor them to specific problems, considering
the features of each problem to determine whether they can work on it or not. Finally, we will
implement some algorithms in laboratory sessions and quantitatively evaluate their performance
(see the Appendices).

1.1 Heuristics

The term heuristic comes from the greek eurisko, meaning I find. This word is derived from
the very famous story of Archimedes, who had the problem of finding out whether a golden
crown the tyrant of Syracuse had been given was actually made of gold or not. The Greeks
knew that gold is heavy, so if one knows the weight and the volume of the crown, their ratio
tells whether it is solid gold or only plated, or an alloy. But, while measuring the weight is easy,
measuring the volume of an object shaped like a crown is hard. Archimedes realized that if you
put something into water, the water displaced has exactly the same volume as the object, and
that water can be put into shapes whose volume is easy to measure. Eureka!

1.1.1 History

The word heuristic was coined in the 19th century, so no Greek ever used it. The Greeks, how-
ever, talked about something similar to heuristics: a mathematician called Pappus of Alexandria,
living around the 4th century AD, published a book titled “Analyòmenos”, meaning treasure of
analysis, in which he discussed how to build a mathematical proof, starting from the hypotheses
and coming to the thesis, or solve a problem, starting from the data and coming to the result.
In the 17th century, mathematicians like Descartes and Leibniz discussed the ars inveniendi -

5

6 INTRODUCTION CHAPTER 1

which means art of finding. Finding what? - one may ask: mathematical truth, of course. In
the 19th century, Bernard Bolzano discussed the Erfindungskunst, once again the art of find-
ing, which treated the most common strategies to build mathematical proofs. Shortly after, in
a completely different context, philosophers, psychologists and economists started considering
what they called heuristics, : heuristics were now pratical and simple rules that do not aim at an
optimal result but at a satisficing one. Finally, in 1945, György Pólya published a book entitled
“How to solve it” using the term “heuristic” with its original mathematical meaning.

1.1.2 What is a heuristic algorithm?
Considering the field of neuropsychology, philosopy, law and so on, the meaning of heuristic is
the exact opposite of algorithm, as the latter is a formal procedure composed of deterministic
steps leading to the solution of a problem, while the former is a creative solution. In other
words, the algorithm has some correctness proof while the heuristic is drawn from common
sense. So what does it mean to have a heuristic algorithm?

A heuristic algorithm is a procedure run by a computer and composed by well defined steps
(so, it is an algorithm), but it does not have a correctness proof, so it is not guaranteed to be
correct. This sound strange and useless, one may say. On the contrary, it can be quite useful
provided that it costs much less in space and time than a possible exact alternative and that it
frequently yields something close to the correct solution. The closeness is defined following a
definition of distance, so it becomes necessary to introduce a metric in the solution space, in
order to determine if a solution is satisfactory or not. As well, it becomes necessary to introduce
a probabilistic distribution in the solution space, that expresses how often the algorithm yields
a satisfactory solution.

Going back to the idea of proofs, problems and so forth, we can observe that an exact al-
gorithm is always accompanied by a proof of its correctness and, often, the proof matches the
algorithm going through all of its steps and showing that, starting from the data, the steps of the
algorithm guarantee certain mathematical properties, until in the end some new mathematical
property is introduced, and the combination of all these properties guarantees the correct solu-
tion. The relation between the algorithm and its proof is therefore very tight. The process of
building the proof typically starts from heuristic general ideas, that point in the direction of the
correct solution and are tested and combined until they form a proof. Heuristic algorithms fail
to reach a proof. Hence, the basic ideas used in order to find and justify the algorithm remain a
practical support, but they are not strong enough to constitute a proof.

1.2 Different types of problems
Let us take a step further and define the problems that are going to be addressed. The course
focuses only on heuristic algorithms that apply to Combinatorial Optimisation problems and
only on solution-based algorithms (as opposed to model-based ones). Even though we limit
the kind of problems and algorithms, it is still a pretty wide field.

A problem is generically a question on some mathematical system. These problems can be
classified on the basis of the nature of their solution: decision problems have a boolean solution
(true or false), for search problems the solution is a mathematical object belonging to the given
system, for optimisation problems the solution is a number, namely the value of a suitable
function estimating the quality of mathematical objects drawn from a suitable collection in the
given system. An example is the problem of finding the minimum time path to go from home to
the town center: the mathematical system is the map of the town; the objects of the collection

6

CHAPTER 1 1.2. DIFFERENT TYPES OF PROBLEMS 7

are paths from the origin to the destintion. Each of them has a time length and the problem
is to find the path with the shortest total time. Optimisation problems can be combined with
search problems, by searching not only the value, but also the corresponding solution: these
are the problems considered in the course. Other families of problems are counting problems
(find the number of objects in the collection) and enumeration problems (list the objects in the
collection).

1.2.1 Optimisation-search problems
An optimisation problem can be represented as

opt
x∈X

f (x)

where x is a solution (a description of a mathematical object), the feasible region X is the
collection of objects (defined by satisfying suitable conditions) and f : X → R is the objective
function, that quantitatively measures the quality of each object in the collection. Symbol opt
usually stands for min or max.

The problem consists in determing the optimal value f ∗ of the objective function in the
feasible region

f ∗ = opt
x∈X

f (x)

Optimisation-search problems consist in determing at least one optimal solution:

x∗ ∈ X∗ = arg opt
x∈X

f (x) =
{

x∗ ∈ X : f (x∗) = opt
x∈X

f (x)
}

where the arg function provides the whole set of solutions that optimise the objective.
People are interested in optimisation-search problems because several application fields re-

quire objects, or structures, characterised by very high or very low values of a suitable evaluation
function. Exact optimisation is nice, but usually very costly from a computational point of view.
Therefore, heuristics can be the more viable alternative. Moreover, in some fields the evaluation
function is just an approximation of what really goes on in the physical system, and therefore
investing time in exact optimisation can be not really required. In this course we will assume
anyway the point of view of the applications in which an optimal solution is really preferable,
and therefore we will try and improve the objective function as much as possible.

A relevant point is that many search problems or decision problems can be transformed
into optimisation-search problems, in particular when they require to find objects that satisfy
interesting condition or to determine whether they exist. The ides is to relax some of those
conditions until it becomes easy to find objects that satisfy the other ones, and then minimise the
violation of the relaxed conditions. For example, consider the famous four-colour problem: is it
possible to colour a map with exactly four colors, so that any two bordering states have different
colours? Seen as a decision problem, its solution is true or false. Seen as a search problem, its
solution is a mathematical object (a coloured map). Both can be reduced to an optimisation
problem asking for a colouring of the map with a minimum number of colours. Starting with
more than four colours (possibly even one different colour for each state), one can measure the
violations to the threshold of four colours as the difference between the actual number of colours
and 4, and minimise the violation by reducing the number of colours used. Once an optimal
colouring is found, if it has zero violations both the search and decision problem are solved
positively; if it has more, they are solved negatively, proving that four colours are insufficient.

7

8 INTRODUCTION CHAPTER 1

1.2.2 Combinatorial Optimisation

A problem is a Combinatorial Optimisation problem when the feasible region X is a finite set,
so the problem has a finite number of solution. This is a restrictive assumption, but there are
lots of problems which have infinitely many solution that can be somehow reduced to a finite
subset of potentially optimal solution. An example is linear programming, where at least one
of the optimal solution is a basic solution, so one just needs to consider the basic solutions. In
addition, lots of ideas developed for Combinatorial Optimisation problems can be extended to
other problems with infinite solutions.

An alternative definition of Combinatorial Optimisation is the following: they are problems
whose solutions are combinations (subsets with irrelevant ordering) of a finite ground set. That
is also why these problems are known as combinatorial. So, the second definition presents the
feasible region as X ⊆ 2B for a suitable finite ground set B. We recall that, if B is a given finite
set, 2B is the power set of B, which contains every subset of B, from the empty set /0, to the
singletons, pairs, triplets, to the whole set itself. The feasible region X is a subset of this set, so
every solution (element of X) is a subset of 2B.

1.3 Different types of heuristics

1.3.1 Solution-based heuristics

Solution-based heuristics are characterised by the operations that one can make on subsets of
a finite set. If one wants to find a subset of a set, one can mainly do three things. The first
one is build the subset starting from the empty set /0 and iteratively adding elements until a
certain condition is found. This is a form of constructive heuristic: starting from an empty set,
construct a solution adding elements. The idea can be reverted by starting with the full set and
removing elements from it. This gives rise to a destructive heuristic. The second thing one can
do is to exchange elements of a current subset obtained somehow. In a sense, constructive and
destructive heuristics also exchange elements, but the subsets in that case are strictly growing
or reducing. In exchange heuristics, the elements of the subsets are exchanged in a general
way, with no imposed limitation on the direction of the exchange. Finally, the third family of
heuristics consists of recombination heuristics, where subsets are created combining parts of
several given subsets, instead of modifying a single set.

In general, designers of heuristic algorithms can use one of these techniques, but also freely
combine them, adapting to the specific features of the problem.

1.3.2 Metaheuristics

There are two important mechanisms that can be exploited in the design of an algorithm: ran-
domisation and memory. These two mechanisms are perfectly orthogonal to the classification
seen before, meaning that any kind of algorithm can use randomisation or not, and use memory
or not. The full set of options of heuristics, therefore, counts 3 families and 2∗2 = 4 possibil-
ities for each, that is 12 overall. the heuristic algorithms that use randomisation or memory, or
both, are called metaheuristics, from the Greek meta, that stands for beyond.

Randomisation consists in performing operations that are not completely determined by the
data and the results of the previous operations, but partly random. This apparently conflicts
with the definition of algorithms as performing deterministic operations, but the contradiction

8

CHAPTER 1 1.4. CAVEATS 9

is solved by the fact that randomised algorithms are actually deterministic, but require an ad-
ditional information in input, besides the data (typically an integer number, known as random
seed), that is used by a pseudorandom number generator to build a sequence of integer
numbers, which the algorithm uses to decide which operations to perform. Different random
seed imply different sequences, and different results for the same data. Repeating the execu-
tion with the same random seed, on the contrary, guarantees to obtain the same solution. The
random seed is totally arbitrary and can be provided by the user directly or indirectly, using an
entropy source (the computer’s current time, keyboard activity, radioactive decay. . .).

Memory consists in performing operations that depend not only on the data, but also on the
solutions previously obtained by the same algorithm. To use a trendy name, it can be therefore
denoted as a form of machine learning.

1.4 Caveats
When designing a heuristic, it is adviseable to be aware of some risks, that should be avoided.

• choosing an approach for other reasons than its intrinsic value (there are communities in
which a certain algorithm is considered good in every situation: one has to prove that an
algorithm is good);

• design an algorithm based on analogies with physical and natural phenomena (they can
be good ideas, but only after a proof is given);

• using heuristics instead of exact algorithms with an acceptable complexity (this is plain
stupid);

• performing “number crunching”, complex computations on unreliable data, relying on
hardware power (“SUV attitude”);

• using components and parameters without justify their introduction;

• overfitting, that is adapting components and parameters to the specific dataset used in the
experiments.

It is fundamental to free oneself from prejudice and evaluate the performance of an algo-
rithm in a purely scientific way, distinguishing the contribution of each component to the final
result.

9

10 INTRODUCTION CHAPTER 1

10

CHAPTER 2

Combinatorial optimization problems

A Combinatorial Optimisation problem requires to minimise or maximise an objective function
f (x), defined as f : X → R, over the feasible region X , that is a subset of the power set of
B (X ⊆ 2B), with B being a finite ground set; therefore, x ∈ X ⊆ 2B that is x ⊆ B, or, x is a
combination of elements of B.

This section presents a list of Combinatorial Optimisation problems in order to give an idea
of what they are, how to recognize one and to know how to deal with it. The first basic points is
to identify the ground set B, as it is the foundation on which an algorithm to solve the problem
is built: constructive/destructive, exchange and recombinaton heuristics all operate on subsets
of the ground set. We shall start with set problems, revolving around sets, and then consider
logic function problems, numerical matrix problems and graph problems.

In the following chapters, when we will consider general heuristic approaches, it will be
useful to map the abstract ideas onto practical problems, and therefore it will be useful to
have a wide list of potential problems. Applying each approach to different problems allows to
understand it better. Moreover, the same abstract ideas can be good or bad depending on the
structure of the specific problem to which they are applied. Some ideas can even be restricted to
work only on some problems. Finally, some problems that are apparently different have hidden
structures that the algorithms can exploit, and it is therefore useful to see examples and learn
how to exploit such relations. So, we are trying to apply abstract ideas to many problems, to
understand what they have in common and what is different.

2.1 Weighted set problems

2.1.1 The knapsack problem
Given a knapsack of limited capacity, one wants to fill it with different objects, each of which
has a value and a weight. The objects do not fit altogether inside, so a choice has to be made.
The objective is clearly to find the subset of maximum value that fits in the knapsack. The
problem is mathematically defined by the set E of elementary objects, the function v : E → N
describing the volume of each object, the number V ∈N describing the capacity of the knapsack
and, finally, the function φ : E → N describing the value of each object.

See Section 2.7.1 for a deeper discussion of this problem. Its ground set can be trivially
defined as the set of objects, B ≡ E; the feasible region includes all the subsets of objects whose
total volume does not exceed the capacity of the knapsack:

X =
{

x ⊆ B : ∑
j∈x

v(j)≤V
}

11

12 COMBINATORIAL OPTIMIZATION PROBLEMS CHAPTER 2

The objective is to maximise the total value of the chosen objects, that is

max
x∈X

f (x) = ∑
j∈x

φ(j)

E a b c d e f
φ 7 2 4 5 4 1
v 5 3 2 3 1 1

Table 2.1: An example of the Knapsack problem

Table 2.1 gives an example of possible data for this problem. Given the case represented
in the table and a capacity V = 8, consider the two subsets of objects x′ = {c,d,e} ∈ X , which
has f (x′) = 13, and x′′ = {a,c,d} /∈ X , which yields f (x′′) = 16. One can see that x′′ is not a
feasible solution as it is not in X . Strictly speaking, it is not a solution, but it is often defined as
an unfeasible solution.

2.1.2 Maximum diversity problem
The Maximum Diversity Problem (MDP) is defined on a metric space, that is a space with a
notion of distance. It considers a set of points P, a positive integer number k ∈ {1, · · · , |P|} that
represents the cardinality of the subset to select, and a function d : P×P → N that provides the
distance between any two points.

a

b

c

d

e

g

f

Figure 2.1: An instance of the Maximum Diversity Problem

The aim is to find a subset of exactly k points, such that the sum of all the pairwise distances
between the points in the subset is maximised. It is a Combinatorial Optimisation problem
because the number of combinations of k points from the given n is finite. The ground set is
the set of all points B ≡ P (see also Section 2.7.2). The feasible region includes all subsets of k
points:

X =
{

x ⊆ B : |x|= k
}

and the objective function maximises the sum of distances:

max
x∈X

f (x) = ∑
(i, j):i, j∈x

d(⟨i, j⟩)

Figure 2.2 represents two solutions with k = 3.

12

CHAPTER 2 2.1. WEIGHTED SET PROBLEMS 13

a

b

c

d

e

g

f

a

b

c

d

e

g

f

Figure 2.2: Two possible solutions for the MDP instance of Figure 2.1: x = {c,d,e} and x′ =
{a,c, f}.

2.1.3 Interlude I: the objective function
The objective function is defined as a function from the feasible region to the natural numbers:

f : X → N

In general, it can be complex to compute this function. In the worst case, each solution could
have its own value, and the only way to compute it could be to scan the list of values and find
the correct one. Of course, this is not the case of the previous two problems.

The KP has an additive objective function: it is a sum of the values that an auxiliary
function, defined on the ground set, assumes on the elements of the solution:

φ : B → N induces f (x) : X → N to be defined f (x) = ∑
j∈x

φ(j)

This is interesting, as it means that one needs to store only the values of the auxiliary function
φ instead of those of the objective function, that is |B| values instead of |X |. The same holds
for the MDP and its auxiliary function d. The difference is that the objective function here is
quadratic, that is a sum of values of an auxiliary function defined on the pairs of elements of
the solution. Computing it requires to sum sum (k∗ (k−1))/2 numbers (the distance from each
point to each other point). As k ≤ n = |B|, the computation is still of polynomial complexity.

What happens to the objective function if a solution is modified? Is it necessary to recom-
pute its value from scratch, or can you update it, more efficiently? For the KP, and for all
additive objective functions, if a solution is modified adding new elements and removing some
original ones, the value of the objective function can be obtained simply summing the values
of the auxiliary function for the new elements and subtracting those of the removed ones. For
example, in the KP instance considered above f ({c,d,e}) = 13; if we remove e and add f , then
f ({c,d, f}) = 13− φ(e)+ φ(f) = 10. This takes constant time if the number of added and
removed elements is constant.

The objective function of the MDP must be treated differently: we can avoid to recompute
it from scratch, but the terms that must be summed and subtracted are not a constant number,
even if the number of removed and added elements are constant. The complexity is linear in k.
We shall see that it is actually possible to update the value of the objective in constant time, but
it takes a more refined approach.

Another important remark is that the objective function for the KP and the MDP problem
are defined on the whole of 2B, instead of just on X . This is not really necessary, but we shall
see that it can be helpful.

13

14 COMBINATORIAL OPTIMIZATION PROBLEMS CHAPTER 2

In summary, important questions on a problem are the cost to compute the objective function
of a solution from scratch, the cost to update it after small modifications, the actual domain on
which it is defined, and the family to which it belongs (additive, quadratic, etc. . .).

2.2 Partitioning set problems
Now we consider two problems in which a given set of objects must be divided into disjoint
subsets, obtaining a partition that satisfies suitable conditions.

2.2.1 Bin packing problem
In the Bin Packing Problem (BPP), a set of objects with a volume is given and each of them
must be put in a container of fixed capacity, drawn from a set of containers C. The objective
is to use the least number of containers, never exceeding the capacities. Formally, a set E of
elements (or object) is given, and a function v : E → N gives the volume of each object; a set C
of containers is given and a number V ∈N represent the volume of the containers (the same for
all of them).

How to describe this problem as a Combinatorial Optimisation problem?
How can a solution be described as a subset of a suited ground set B?

We can define the ground set (see also Section 2.7.3) as

B = E ×C

that includes all the (element,container) pairs. A solution, in fact, is a subset of such pairs: take
the first object and put it in a certain container, take the second and put it in a certain container,
and so on. A solution consists in a list of such pairs that assign all the elements in E to suitable
containers. Let us define Be = {(i, j) ∈ B : i = e} as the set of all ordered pairs in the ground
set that refer to the object e, and Bc = {(i, j) ∈ B : j = c} as the set of all ordered pairs in the
ground set that refer to the container c. The feasible region includes all partitions of the objects
among the containers that do not exceed the capacity of any container:

X =
{

x ⊆ B : (∀e ∈ E|x∩Be|= 1)∧ (∀c ∈C ∑
(e,c)∈x∩Bc

v(e)≤V)
}

In words, the first part of the condition is a partition constraint (every element must appear
exactly once in the solution) and the second is a volume constraint (the sum of the volumes of
all elements in a container must not exceed the volume of the container, for all containers).

The objective is to minimise the number of containers used:

min
x∈X

f (x) = |{c ∈C : x∩Bc ̸= /0}|

Figure 2.3 gives an example of a BPP instance and solution.

2.2.2 Parallel machine scheduling problem
The Parallel Machine Scheduling Problem (PMSP) requires to divide a set of tasks among a
set of machines, so that the total completion time (i. e., the time at which all machines have
stopped working) is minimised. Each task has a time length, or duration d: the problem is to
assign tasks to machines so that the maximum time a machine employs to solve all of its tasks

14

CHAPTER 2 2.2. PARTITIONING SET PROBLEMS 15

a b c d e f g

ab
c
d
ef

g

Figure 2.3: An instance of the BPP

is minimised. It is important to underline that the sequence in which the tasks are executed by
each machine is not important: only the completion time matters, and this depends on the sum
of the durations of the tasks assigned to each machine. Formally, a set T of tasks and a set M
machines are given, and each task has a value d (d : T → N) describing its duration.

As before, the ground set is B = T ×M, including all possible (task,machine) pairs (see
also Section 2.7.4). The feasible region includes all partitions of tasks among machines

X =
{

x ⊆ B : ∀t ∈ T |x∩Bt |= 1
}

and the objective function is
min
x∈X

f (x) = max
m∈M

∑
t:(t,m)∈x

d(t)

In words, the solution is a partition, since every task must appear exactly once in it. The objec-
tive minimises the maximum value with respect to the machines of the total execution times.

2.2.3 Interlude II: again, the objective function
The last two problems show that the ground set B is not always one of the sets given by the
problem. It may also be some combination of such sets. Considering the questions introduced in
the last interlude, the two objective functions are not additive: they are not sums on the elements
of the solution. Even considering the number of containers used as a sum of units (one for each
container), this is not a sum on the (element,container) pairs included in the solution. Even
considering that the completion time includes sums of durations, they are partial sums only one
of which (the maximum) is considered. Both objectives are not trivial to compute, though there
is still a polynomial algorithm that calculates their values.

Once again, the objective function is defined not only on feasible solutions, but also on
general subsets of the ground set.

When a feasible solution is modified, the impact on the objective value is variable. In some
cases, nothing happens (moving a task from a machine to another sometimes does not change
the overall maximum completion time). In other cases, the objective function changes as much
as the duration of the moved task (this happens when the task is moved to the machine with the

15

16 COMBINATORIAL OPTIMIZATION PROBLEMS CHAPTER 2

overall maximum execution time). In yet other cases, the objective function has an intermediate
change (this happens when the task moves from the machine with the maximum execution time
to another, or when it moves to a machine that had a time close, but not equal, to the maximum.

The question whether these values can be updated without recomputing them from scratch
will be considered later: the answer is not trivial, but very important for the overall efficiency
of the algorithm.

Another interesting point is that the objective function is flat, meaning that several solutions
have the same value. As one might imagine, this can be a problem when the algorithm has to
choose which modification to perform in order to improve a solution.

2.3 Logic function problems

2.3.1 Max-SAT problem
The Max-SAT problem, where SAT stands for satisfiability, is very well known in computer
science. It concerns a set V of logical variables x j with a boolean value (true or false). By
literal we denote a very simple logical function consisting of an affirmed or negated variable

l j(x) ∈ {x j,¬x j} with j = 1, . . . ,n

Literals are combined in a logical sum (with non exclusive ORs operators) to create disjunc-
tions, called logical clauses

Ci(x) = li,1 ∨·· ·∨ li,ni with i = 1, . . . ,m

In turn, the clauses are combined in a logical product (with AND operators) to build a conjunc-
tive normal form (CNF):

CNF(x) = (l1,1 ∨·· ·∨ l1,ni)∧·· ·∧ (ln,1 ∨·· ·∨ ln,ni)

Statisfying a logical function means finding a truth assignment, that is an assignment of
logical values to the logical variables so that the overall function assumes the value true (1). The
CNF is called normal because a theorem proves that any logical function can be transformed
into a logically equivalent CNF, a form that assumes the same values as the original function
for any truth assignment.

The Max-SAT problem requires to find a truth assignment that maximises the number of
satisfied clauses. It is possible to consider a weighted version, defining a weight function on the
set of clauses and maximising the sum of the weights of the satisfied clauses. For example, let
the set of variables be

V = {x1,x2,x3,x4}

so that the set of literals is
L = {x1,¬x1, · · · ,x4,¬x4}

Let the CNF to satisfy be

CNF = (¬x1 ∨ x2)∧ (¬x1 ∨ x3)∧ (¬x1 ∨¬x3)∧ (¬x2 ∨ x4)∧ (¬x2 ∧¬x4)∧ x1 ∧ x2

In the unweighted case (∀Ci : wi = 1), solution x = {(x1,0),(x2,0),(x3,1),(x4,1)} satisfies 5
clauses out of 7, so f (x) = 5.

16

CHAPTER 2 2.4. NUMERICAL MATRIX PROBLEMS 17

The ground set (see also Section 2.7.5) consists of all the possible assignments of values to
the single variables: B = V ×{1,0}. Any truth assignment, in fact, is a subset of this ground
set. Not all subsets are solutions, however. The feasible region includes all subsets of truth
assignments that are complete (each variable has at least a literal) and consistent (each variable
has at most one literal). We therefore define the feasible region as

X = {x ⊆ B : ∀v ∈V |x∩Bv|= 1}
where Bx j = {(x j,0),(x j,1)}. Notice the similarity with the partition problems discussed above:
the variables must be partitioned into true and false ones.

The objective is to maximise the total weight of the satisfied clauses

max
x∈X

f (x) = ∑
i: Ci(x)=1

wi

The complexity of computing the objective function is polynomial. The objective is not defined
on unfeasible solutions (unless one wants to adopt a convention for inconsistent assignments).
The objective function is typically flat in unweighted instances, as the possible values of the
objective function range from 0 to m, whereas the number of solutions is much larger (exactly
2n).

2.4 Numerical matrix problems

2.4.1 Set covering problem
The Set Covering Problem (SCP) concerns numerical matrices. Given a binary matrix (i.e.,
filled with ones or zeros) and a cost function defined on the columns

c : C → N
a column j is said to cover a row i when ai, j = 1. The SCP requires to cover all the rows using
a subset of columns with minimum total cost.

Table 2.2 gives and example of the problem, where solution x′ = {c1,c3,c5} ∈ X has cost
f (x′) = 19.

c 4 6 10 14 5 6

A

0 1 1 1 1 0
0 0 1 1 1 0
1 1 0 0 0 1
0 0 1 1 1 1
1 1 0 0 1 0

Table 2.2: Example of the SCP.

The most natural definition for the ground set is B ≡C, the set containing all columns (see
also Section ??). The feasible region includes all subsets of columns that cover all rows

X =
{

x ⊆ B : ∀i ∈ R ∑
j∈x

ai j ≥ 1
}

where R is the set of all rows. The objective is to minimise the total cost of the selected columns

min
x∈X

f (x) = ∑
j∈x

c(j)

that is additive.

17

18 COMBINATORIAL OPTIMIZATION PROBLEMS CHAPTER 2

2.4.2 Interlude III: the feasibility test
This interlude deals with checking feasibility. Heuristic algorithms often require to check
whether a subset of elements x is feasible or not, that is whether x ∈ X or not: how to com-
pute this? It’s a decision problem, according to the taxonomy described earlier. Considering
SAT, in order to guarantee that a solution is feasible, one has to guarantee that it is a partition
of the variable set, and it is not that difficult. Considering SCP, the feasibility can be decided
going through each row and summing the 1s appearing in the chosen columns: if any rows has
a 0 sum, then the solution is not feasible.

In the case of the KP, the feasibility test requires to compute from the data and from subset
x a single number (the total weight) and compare it with the capacity. The same occurs for the
MDP, where the test requires to compute the cardinality of x and compare it with the required
value. Other problems, like Max-SAT and the PMSP, require to compute and test a set of num-
bers (how many logical values are assigned to each variable, how many machines are assigned
to each task). Finally, problems like the BPP require to compute and test several sets of numbers
(how many containers are assigned to each object and what is the total volume occupied in each
container).

Considering the case of a feasible solution that is slightly modified, it is interesting to un-
derstand if the feasibility of the new subset can be simply updated, instead of recomputed from
scratch. Some modifications can actually be forbidden a priori in order to avoid infeasibility.
For example, given a feasible solution of the MDP, any change in which the number of points
removed is not equal to the number of points added makes the subset unfeasible. Most of the
time, however, there is no way to guarantee feasibility, so that an a posteriori test is required,
and this can be more or less expensive with respect to the complete recomputation.

2.4.3 Set packing problem
The Set Packing Problem is strongly related to the SCP, as it is still defined on a binary matrix
with sets of rows and columns, and a function φ : C →N that associates a value to each column.
Contrary to the SCP, in the SPP two columns j′ and j′′ conflict if they have ai j′ = ai j′′ = 1.
In other words, the columns must be “packed”, without overlapping. The problem amounts to
finding a subset of columns with maximum total value.

Formally, the ground set can be defined as the set of columns B ≡C (see also Section 2.7.7).
The feasible region includes all subsets of nonconflicting columns

X =
{

x ⊆ B : ∀i ∈ R ∑
j∈x

a ji ≤ 1
}

and the objective is to maximise the total value of the selected columns

max
x∈X

f (x) = ∑
j∈x

φ(j)

and is clearly additive.

2.4.4 Set partitioning problem
The set partitioning problem (SPP) is related to both previous problems: a binary matrix is
given and each column has a cost represented by a function c, but in this problem the columns

18

CHAPTER 2 2.5. GRAPH PROBLEMS 19

in the solutions must cover each row exactly once. The ground set is once again B ≡C, and the
feasible region includes all the subsets of columns that cover all rows and are not conflicting

X =
{

x ⊆ B : ∀i ∈ R ∑
j∈x

ai j = 1
}

The objective function is to minimise the total cost of the selected columns

min
x∈X

f (x) = ∑
j∈x

c(j)

2.4.5 Interlude IV: the search for feasible solutions
Another subproblem that is often required in the design of heuristic algorithms is that of find-
ing a feasible solution x ∈ X . This is clearly a search problem. For example, exchange (or
recombination) heuristics by definition start from an initial solution (or many), and this requires
to find one!

Sometimes finding a feasible solution is trivial, because trivial subsets are feasible: a valid
initial solution for the KP and the Set Packing Problem is the empty set x = /0; a valid initial
solution for the SCP is the whole ground set x = B =C (provided that a feasible solution exists).
Sometimes, an initial solution must only satisfy some trivial constraint, like |x| = k for the
MDP. Other times, it has to satisfy a consistency constraint, such as assigning each task to
exactly one machine in the PMSP, each logic variable to exactly one logical value in the Max-
SAT, and so on. These solution are in general nonoptimal, but they are certainly feasible and
valid as a starting point.

In some other situation, it can be very hard to find even a feasible solution. That is the case
for the BPP (if the number of containers is small) and the SPP. No polynomial algorithm is
known to solve the problem of finding a feasible solution in these cases.

In order to find a solution when the problem is really hard, it is possible to make a relaxation
on some constraint of the problem and enlarge the feasible region X to X ′. This means that f
must be defined on X ′, not only on X (is it possible?). Moreover, typically the additional subsets
in X ′ \X tend to have better objective values, and this complicates the task of finding an optimal
feasible solution.

2.5 Graph problems

2.5.1 Vertex cover problem
In the Vertex Cover Problem (VCP), given an undirected graph G = (V,E), one must select a
subset of vertices of minimum cardinality, such that each edge of the graph is incident to at least
a vertex in the solution. The natural ground set is B ≡ V (see also Section 2.7.9). The feasible
region is

X =
{

x ⊆ B : ∀(i, j) ∈ Ex∩ (i, j) ̸= /0
}

where we remind that edge (i, j) is a set of two vertices, so that the intersection x∩ (i, j) is well
defined. The objective is to minimise the number of selected vertices

min
x∈X

f (x) = |x|

19

20 COMBINATORIAL OPTIMIZATION PROBLEMS CHAPTER 2

a b c

d e f g

h

Figure 2.4: An undirected graph.

The VCP admits a weighted version, where a weight function w : V → N is defined on the
vertices and the objective function is the sum of the weights of the chosen vertices.

For example, Figure 2.4 shows an example of VCP instance, while Figure 2.5 shows a
feasible solution x = {b,d,e, f ,g} and an unfeasible subset x′ = {a,c,h}

a b c

d e f g
h

a b c

d e f g
h

Figure 2.5: A feasible solution and an unfeasible subset for the VCP.

2.5.2 Maximum clique problem
In the Maximum Clique Problem (MCP), given an undirected graph G = (V,E) and a weight
function defined on the vertices w :V →N, one must select a subset of pairwise adjacent vertices
of maximum total weight. In other words, a feasible solution is a subset of vertices such that
all the pairs of vertices correspond to an edge. The MCP requires to find a feasible solution
of maximum cardinality. In the weighted MCP, a weight function w : V → N is defined on the
vertices and the problems aims to maximise the sum of the weights of the selected vertices. In
figure 2.6 the subsets x = {b,c, f ,g} and x′ = {a,d,e} are feasible solutions of value 3 and 4,
while x′′ = {b,e, f} is unfeasible.

a b c

d e f g
h

a b c

d e f g
h

Figure 2.6: Two feasible solutions for the MCP.

Formally, then, the ground set is B ≡V , the feasible region includes all subsets of pairwise

20

CHAPTER 2 2.5. GRAPH PROBLEMS 21

adjacent vertices
X = {x ⊆ B : ∀i ∈ x,∀ j ∈ {x⧹{i}}(i, j) ∈ E}

and the objective is to maximise the weight of the selected vertices

max
x∈X

f (x) = ∑
j∈x

w(j)

that for unweighted problems is simply the cardinality of x.

2.5.3 Maximum independent set problem
In the maximum independent set problem (MISP), given an undirected graph G = (V,E) and
a weight function defined on the vertices w : V → N, one must select a subset of pairwise
nonadjacent vertices of maximum weight. This problem is kind of the opposite of the MCP: the
solutions are subsets of vertices of that do not correspond to edges. For example, in Figure 2.4
subsets x′ = {1,6} and x′′ = {1,3} are feasible solutions.

The ground set is B ≡ V . The feasible region includes all subsets of pairwise nonadjacent
vertices

X = {x ⊆ B : ∀i ∈ x,∀ j ∈ {x⧹{i}}(i, j) /∈ E}

and the objective is to maximise the weight of the selected vertices:

max
x∈X

f (x) = ∑
j∈x

w(j)

In order to find a simple solution, one can take a singleton, e.g. x = {1}, which is indeed a
feasible solution.

2.5.4 Interlude V: relations between problems
The last three graph problems are quite similar problems. Indeed, the theory of computational
complexity shows that some problems can be reduced to other problems, that is one can “use” a
problem to solve another problem. A clear example of this is offered by the MCP and the MISP:
given an instance of the MCP, one can build the complement graph of the initial instance (i. e.,
the graph with the same vertices and the edges that link all and only the pairs of vertices not
linked by edges in the original graph). Then, one can find a solution of the MISP on this graph:
the vertices of this solution are pairwise nonadjacent. However, the corresponding vertices in
the MCP instance are pairwise adjacent, by construction. So, they are a valid solution of the
MCP. In short, the MCP can be solved using a transformation of the instance, an algorithm for
the MISP and a back-transformation of the solution (that in this case is trivial, but in general
could be more complex). The converse is also true: we can find a solution for a MISP instance
by reducing it to an instance of a MCP. This works for optimal solutions (that remain optimal)
and heuristics solutions (that remain heuristic).

MCP ↔ MISP

Less expectedly, the VCP is reducible to the SCP: given the graph that is the instance of
VCP, build a binary matrix transforming each edge ei of the graph in a row ri of the matrix and
each vertex v j in a column c j. For each edge ei that is incident to a vertex v j, set ai j = 1 (every
row, therefore, has exactly two 1’s); otherwise, set ai j = 0. For a weighted instance of the VCP,
assign the cost of each vertex to the associated column; otherwise, set a uniform cost equal to 1.

21

22 COMBINATORIAL OPTIMIZATION PROBLEMS CHAPTER 2

Solving the SCP identifies a set of columns that cover all rows. Correspondingly, the associated
vertices covering all edges. This identifies a feasible solution for the VCP. If the solution of
the SCP is optimal, the same holds for the VCP; if it is heuristic, the VCP solution is simply
heuristic.

The reduction is only unidirectional: it is impossible, except for special cases in which each
row has exactly two 1’s, to reduce in a simple way1 a SCP instance to a VCP instance:

VCP → SCP but SCP ↚ VCP

A more refined relation exists between the BPP and the PMSP: tasks and objects are rather
similar: both have a “size” (time length or volume) and both have to be assigned in some
way (to machines or to containers). The big difference is that the machines have an unlimited
“capacity” - their working time - but a given number; on the other hand, bins are unlimited in
number, but limited in capacity. However, it is still possible to find a reduction.

Let us reduce a BPP instance into a PMSP instance: objects can be easily transformed into
tasks, turning volumes into time lengths, and containers can be tranformed into machines ignor-
ing the capacity, but the number of machines cannot be derived from the original data. So, we
make an assumption, a “guess”. Solving the PSMP instance exactly will yield an optimal solu-
tion. Interpreting the assignment of tasks to machines as the assignment of the corresponding
objects to the corresponding machines, the total execution time on each machine represents the
total volume of each container. If any execution time exceeds the capacity of a container, the
solution is not feasible. Since it is optimal, one concludes that the number of machines assumed
is insufficient. It must be increased and the solution must be recomputed. When the optimal
completion time of the PMSP is not larger than the capacity of the containers, the number of
machines is feasible. The smallest such number is the optimal number of containers for the
BPP.

The reduction can also be performed in the opposite direction, turning a PMSP instance into
a BPP instance by assuming a capacity for the containers. If the optimal number of containers
is larger than the original number of available machines, then the solution is unfeasible. The
smallest capacity that allows to find a number of containers not larger than the available ma-
chines is the optimal value of the BPP. It can be proved that the number of iterations of this
process required to reach the optimum is polynomial.

Again, it is important to stress the fact that using a heuristic algorithm to solve the reduced
instance ends up providing a heuristic solution for the original problem, because feasible solu-
tions remain feasible, whereas declaring a value as unfeasible can be the result of a mistake (the
heuristic just failed to find a solution) and therefore better solutions could still exist.

In summary, studying relations between problems is important even before starting to think
about algorithms: it can even avoid the design of dedicated algorithms!

2.5.5 The travelling salesman problem
Given a directed graph G = (N,A) and a cost function defined on the arcs c : A → N, solving
the Travelling Salesman Problem (TSP) requires to find a circuit visiting all the nodes of the
graph (Hamiltonian circuit) at minimum cost (see Figure 6.3). This is a very famous graph
optimisation problem.

The ground set is the arc set, B ≡ A (see also Section 2.7.12). The feasible region includes
all the subsets of arcs that identify circuits visiting all the nodes. The objective is to minimise

1To be correct, since both problems are NP-complete, a reduction in the opposite direction is actually possible
in polynomial time, but far from being simple. Therefore, it is never used in practice.

22

CHAPTER 2 2.5. GRAPH PROBLEMS 23

the total cost of the selected arcs
min
x∈x

f (x) = ∑
j∈x

c(j)

and is additive.
To determine whether a subset is a feasible solution, one has to check whether every node

has exactly one arc entering it and one going out of it, but also that the selected arcs form a
connected subgraph, instead of a collection of disconnected subtours.

Figure 2.7: A TSP instance.

Finding a feasible solution for this problem is in general hard. In fact, checking if a graph
contains a Hamiltonian circuit is a strongly NP-complete problem. In complete graphs, that are
very frequent in applications, this problem is however trivial (starting from any node, go from
the last visited node to a random new one until all nodes are visited, then go back to the first
node).

2.5.6 Capacitated minimum spanning tree problem
Given an undirected graph G = (V,E), a root vertex r ∈V , a cost function defined on the edges
c : E → N, a weight function defined on the vertices w : V → N and a capacity, the Capacitated
Minimum Spanning Tree Problem (CMSTP) requires to find the minimum cost spanning tree
such that each subtree appended to the root has total weight not larger than the capacity (see
Figure 2.8). Since a minimum spanning tree is a subset of edges, the ground set can be defined
as B ≡ E. The feasible region includes all spanning trees such that the weight of the vertices
spanned by each subtree appended to the root does not exceed W and the objective is to minimise
the total cost of the edges selected

min
x∈X

f (x) = ∑
j∈x

c(j)

Since the objective function is additive, it is quite easy to evaluate it and also to recompute it
in case of small modifications of the subset of edges. It is however harder to verify the feasibility
of a given set of edges: it is necessary to visit each subtree (therefore, the representation of the
graph and of the tree should make a visit easy), summing the weights of vertices, in order to
check if it is a feasible solution or not. If a feasible solution is modified, the tree (or at least
some subtrees) must be revisited, which is much less efficient than the update of the objective
function.

23

24 COMBINATORIAL OPTIMIZATION PROBLEMS CHAPTER 2

Figure 2.8: An instance of CMSTP.

Finding a capacitated spanning tree is a strongly NP-complete problem, so it is quite hard
to find a feasible solution. If the graph is complete, however, it becomes trivial.

In summary, the objective function is fast to evaluate and to update, whereas the feasibility
test (acyclicity test and subtree weight computation) is not very fast to perform and to update.
Moreover, it is easy to obtain subsets of edges that provide nonoptimal solutions: each subtree
can easily be reoptimised changing the edges, but not the vertices. Is it possible to cope with
these defects?

Changing the ground set can be helpful. In fact, the CMSTP is quite similar to the BPP:
vertices with a weight must be distributed into subsets of limited capacity, just like objects
with a volume must be distributed into containers of limited capacity. By introducing a set of
subtrees T with |T | = |V \ {r}|, we could assign vertices to subtrees (possibly, leaving some
subtree empty) and define the ground set as B ≡ V ×T . The feasible region then includes all
partitions of the vertices into vertex subsets of weight less or equal to W inducing connected
subgraphs on G. The objective is to minimise the sum of the costs of the subtrees that span each
subset of vertices plus the edges that connect them to the root.

This representation makes the weight feasibility test easier, as it is sufficient to scan the
pairs (vertex,subtree) summing the weight of each vertex to the weight of each subtree and
finally check whether these respect the capacity. It is also easy to check that the vertices are
partitioned: each vertex should belong to exactly one subtree. But where is the tree structure?
The information about the edges is implicit: given the vertices of each subtree, to verify that
a subtree exists requires to compute whether the induced subgraph is connected (and can be
reached from the root). However, in a complete graph such a check is not necessary.

In order to compute the objective function, which is based on edges, one must compute the
minimum spanning tree for each subtree identified by the vertices and add the cheapest edge that
connects one of the vertices to the root. This operation has a cost larger than simply scanning
the edges, as in the previous representation. On the other hand, however, this representation
guarantees that the subtrees are optimal with respect to the spanned vertices: a huge number of
nonoptimal solutions are implicitly cancelled.

2.5.7 Vehicle routing problem
Given a directed graph G = (N,A), a “depot” node d ∈ N, a cost function defined on the arcs
c : A →N, a weight function defined on the nodes w : N →N and a capacity W ∈N, the Vehicle
Routing Problem (VRP) is solved by selecting a set of minimum cost circuits that visit all
nodes, starting from the depot and each having a total weight not larger than the capacity (see
Figure 2.9). This is related to the TSP, but the nodes are spanned by several different subtours
instead of a single one. The idea is that vehicles are used to visit customers in need, and one is
not enough because the vehicles have a finite load capacity.

24

CHAPTER 2 2.6. SUMMARY 25

Figure 2.9: A VRP instance.

We consider two ground sets. One could be the set of arcs B ≡ A, the other the set of pairs
(node,circuit), B ≡ N ×C, where C is the set of all possible circuits. The feasible region in the
former case includes include all arc subsets that cover all nodes with circuits visiting the depot
and whose weight does not exceed W . In the latter case, it includes all partitions of the nodes
into subsets of weight not larger than W and admitting a spanning circuit.

The objective is to minimise the total cost of the selected arcs:

min
x∈X

f (x) = ∑
j∈x

c(j)

The feasibility check in the former case requires a visit of the graph, in the latter a simple
computation of the total weight of each circuit (if the graph is complete). Evaluating the ob-
jective function requires a simple sum of costs in the former case. The latter is much harder,
as finding the arcs implicitly defined by the assignment of nodes to circuits actually requires to
find a minimum cost Hamiltonian circuit, that is to solve a TSP instance. This is an NP-hard
problem, so that the idea seems to be unacceptable. In practice, it is not a very good idea, but
it can be remarked that, for small capacities, the set of nodes of the auxiliary TSP instance will
typically be small, so that solving the problem might actually be practical. Moreover, nothing
really forbids to solve the TSP problem heuristically, instead of exactly.

2.5.8 Interlude VI: combining alternative representations
Different ground set for the same problem can have advantages and disadvantages: a ground set
can be good for the feasibility checks and a different one can be good for the evaluation of the
objective function. Which one to choose depends on what operations are more frequently used
in the algorithms that we want to design.

It is actually possible to use both ground sets. A disadvantage is that this increases the space
required to represent solutions and the time required to update them. However, if solutions are
used more frequently than updated (and this is commonly the case), the burden of keeping them
up to date is acceptable.

A second disadvantage is that the different representations of the solutions must be kept
consistent during the algorithm.

2.6 Summary
In summary, the questions that one must ask when facing a Combinatorial Optimization problem
are:

• what is the most appropriate ground set?

25

26 COMBINATORIAL OPTIMIZATION PROBLEMS CHAPTER 2

• are there several possible definitions?

• how to compute the objective function?

• how to update it when a solution is modified?

• how to check whether a subset of the ground set is a feasible solution?

• how to update the feasibility status when a solution is modified?

• how to find a feasible solution?

• are there useful relations between the given problem and other ones?

Always answer these questions when starting to deal with this family of problems.

26

CHAPTER 2 2.7. EXERCISES 27

2.7 Exercises
The first part of these notes and, correspondingly, the first item of the exam deal with combina-
torial optimisation problems. A practitioner and, correspondingly, a successful student should
be able to identify combinatorial optimisation problem, defining a reasonable ground set, and
consequently to answer the main questions discussed throughout this chapter: how to distin-
guish feasible solutions from general subsets, how to find a feasible solution, how to compute
the objective function for a given solution, what kind of function it is, and what costs are re-
quired to perform these operations. All these questions basically require to start choosing a
representation for the data and the solutions.

Most of the following exercises solve these problems for the several examples provided in
this chapter. The identification of the ground set is therefore already revealed in the previous
sections, though in some cases alternative ground sets can and will be discussed.

Notice two points:

1. the exercises do not require the most efficient implementation possible, provided that it is
always polynomial;

2. the complexities described can usually be strongly improved by adopting a more sophis-
ticated representation of the solutions.

Indeed, the purpose of these exercises it to get a feeling of which elements of a problem in-
fluence the complexity of the basic operations that heuristic algorithms perform, and how to
overcome the resulting problems. That is exactly what happens when a problem is investigated
in practice.

Also notice that estimating the complexity of computing the objective function and testing
a subset for feasibility requires background knowledge on worst-case asymptotic complexity
that is recalled in Section 3.1. Since the practical skills required by the course on this topic are
already tested here, Chapter 3 provides no numerical exercise.

2.7.1 Exercise 1
Given a set E of elementary objects, a positive integer volume ve and a positive integer value
φe for each object e ∈ E and a positive integer capacity V , the Knapsack Problem requires to
find a subset of objects of maximum total value, such that their maximum total volume does not
exceed the capacity.

Explain why it is a Combinatorial Optimization problem, proposing a possible ground set.
Answer the following questions describing how the data are represented and how a subset x of
your ground set is represented.

Suggest a procedure to evaluate whether x is a feasible solution and discuss its computa-
tional complexity.

If x is a feasible solution, suggest a procedure to compute the value of the objective and
discuss its computational complexity. Is the objective function additive?

Do feasible solutions always exist? If they do, propose an easy way to compute one.

Solution As already suggested, the most obvious ground set is the set of objects, B ≡ E.
How to represent it? An integer number n for its cardinality, an integer number for the

capacity V and two integer vectors v and φ , respectively, for the volumes and values are the

27

28 COMBINATORIAL OPTIMIZATION PROBLEMS CHAPTER 2

most natural representations. Subsets x can be represented as incidence vectors of length n, but
also as lists or vectors of elements.

Given an incidence vector2 x, the feasibility test requires to scan it summing the volumes ve
of the elements for which xe = 1. Subset x is a feasible solution if and only if the sum does not
exceed the capacity. The computational time required is Θ(n).

Given a feasible solution x, it is possible to compute its value by scanning the corresponding
incidence vector and summing the values φe of the elements for which xe = 1. The computa-
tional time required is Θ(n). The objective function is additive, because it is a sum on the
elements of the solution. The emphasised words are fundamental: a sum on something different
from the elements of the solution is not additive!

Feasible solutions always exist: the empty solution is feasible.

2.7.2 Exercise 2
Given a set of points P, a nonnegative distance di j between each pair of points i, j ∈ P and a
positive integer k ≤ |P|, the Maximum Diversity Problem requires to find a subset of k points
such that the sum of their pairwise distances is maximum.

Explain why it is a Combinatorial Optimization problem, proposing a possible ground set.
Answer the following questions describing how the data are represented and how a subset x of
your ground set is represented.

Suggest a procedure to evaluate whether x is a feasible solution and discuss its computa-
tional complexity.

If x is a feasible solution, suggest a procedure to compute the value of the objective and
discuss its computational complexity. Is the objective function additive?

Do feasible solutions always exist? If they do, propose an easy way to compute one.

Solution As already suggested, the most obvious ground set is the set of points, B ≡ P, but
one could also think of considering the pairs of points B ≡ P×P.

The problem can be represented by the cardinality n = |P| and an integer square matrix
D = {di j} for the pairwise distances3.

Let us consider the first ground set. Given an incidence vector x of length n, the feasibility
test requires to scan it and check whether exactly k elements are equal to 1. This requires Θ(n)
time. Given a feasible solution x, its value can be computed with a double loop on the elements
equal to 1, summing the distances di j. If one saves such elements in a vector, the cost is Θ

(
k2);

otherwise, it is Θ(kn) or Θ
(
n2), according to how smart the loop is. The objective function is

nonadditive (quadratic, to be precise). Feasible solutions always exist: get the first k elements
(or a random subset of k).

Let us now consider the second ground set. The solution x is an incidence matrix of n rows
and n columns. The feasibility test requires to scan it and check whether it contains exactly
a subsquare of k rows and k columns whose intersection is equal to 1. This requires Θ

(
n2)

time. Given a feasible solution x, its value can be computed with a double loop on the elements
equal to 1, summing the distances di j. The cost is Θ

(
k2), or Θ(kn) or Θ

(
n2), exactly as above,

depending on the exact implementation. The objective function is additive. Of course, feasible

2For the sake of simplicity, we give the same name to the subset and the vector, with a slight abuse of notation.
3Further details on the representation of data and solution, and the computational costs are discussed in the first

laboratory session, in Chapter A.

28

CHAPTER 2 2.7. EXERCISES 29

solutions always exist: this is a feature of the problem, independent from its representation.
Overall, the second ground set does not seem a good idea, even neglecting the space complexity.

2.7.3 Exercise 3
Given a set of elementary objects E and a set of containers C, a nonnegative integer volume
ve for each object e ∈ E and a positive integer capacity V for the containers, the Bin Packing
Problem requires to assign each object to exactly one container so that the capacity of all
containers is respected while using the smallest possible number.

Explain why it is a Combinatorial Optimization problem, proposing a possible ground set.
Answer the following questions describing how the data are represented and how a subset x of
your ground set is represented.

Suggest a procedure to evaluate whether x is a feasible solution and discuss its computa-
tional complexity.

If x is a feasible solution, suggest a procedure to compute the value of the objective and
discuss its computational complexity. Is the objective function additive?

Do feasible solutions always exist? If they do, propose an easy way to compute one.

Solution The suggested ground set is B ≡ E ×C, that is the assignment of single objects to
single containers.

The problem can be represented by the cardinalities n = |E| and m = |C|, the integer value
of the capacity V and an integer vector v for the volumes. Given an incidence matrix x of n rows
and m columns, the feasibility test requires to scan it and check whether exactly one element
is equal to 1 in each row and whether the total volume occupied in each container respects the
capacity V . A Boolean vector f of n elements can store the information whether an object
is assigned or not to any container; an integer vector w of m elements can store the volume
occupied in each container. A double loop on the elements xec = 1 can check whether fe is
already 1 and setting it to 1 and sum the volume ve to wc and check whether this respects the
capacity V . The overall time is Θ(nm). A better representation of the solution would use an
integer vector c of n elements, such that ce is the index of the container used by element e:
the feasibility test would simply check whether ce makes sense and sum ve to wce . That would
take Θ(n+m) (both vectors must be initialised). The objective function can be evaluated by
performing the same double loop and increasing a counter every time the volume of a container
increases from 0 to a positive value. That takes the same time as above. The objective function is
nonadditive. Feasible solutions always exist if there are enough containers of sufficiently large
volume (for example, m = n and V = maxe∈E ve. Otherwise, the problem can be NP-complete.

2.7.4 Exercise 4
Given a set of tasks T , a set of machines M and a duration dt for each task t ∈ T , the Par-
allel Machine Scheduling Problem requires to assign each task to a machine so that the total
completion time is minimum.

Explain why it is a Combinatorial Optimization problem, proposing a possible ground set.
Answer the following questions describing how the data are represented and how a subset x of
your ground set is represented.

Suggest a procedure to evaluate whether x is a feasible solution and discuss its computa-
tional complexity.

29

30 COMBINATORIAL OPTIMIZATION PROBLEMS CHAPTER 2

If x is a feasible solution, suggest a procedure to compute the value of the objective and
discuss its computational complexity. Is the objective function additive?

Do feasible solutions always exist? If they do, propose an easy way to compute one.

Solution The suggested ground set is B = T ×M. The problem can be represented by the
numbers of tasks and machines, n = |T | and m = |M| and an integer vector d for the durations.

Given an incidence matrix x of n rows and m columns, the feasibility test requires to scan it
and check whether exactly one element is equal to 1 in each row. A Boolean vector f of n ele-
ments can store the information whether a task is assigned or not to any machine. A double loop
on the elements xtm = 1 can check whether ft is already 1 and setting it to 1. The overall time
is Θ(nm). A better representation of the solution would use an integer vector m of n elements,
such that mt is the index of the machine used to perform task t: the feasibility test would simply
check whether mt makes sense. That would take Θ(n) time. The objective function can be
evaluated by defining an integer vector t of m elements to store the total operating time on each
machine, performing the same double loop as above and increasing tm by de whenever xem = 1.
That takes the same time as the feasibility check. The objective function is nonadditive, even if
it involves sums, because it is not a sum on the ground set. Feasible solutions always exist: for
example, all tasks can be assigned to a single machine.

2.7.5 Exercise 5
Given a logical formula in conjunctive normal form, composed by a product of m clauses C j on
a set V of n variables xi, and an integer weight w j for each sum, the Maximum Satisfiability
Problem requires to find a truth assignment to the variables that satisfies a subset of clauses of
maximum weight.

Explain why it is a Combinatorial Optimization problem, proposing a possible ground set.
Answer the following questions describing how the data are represented and how a subset x of
your ground set is represented.

Suggest a procedure to evaluate whether x is a feasible solution and discuss its computa-
tional complexity.

If x is a feasible solution, suggest a procedure to compute the value of the objective and
discuss its computational complexity. Is the objective function additive?

Do feasible solutions always exist? If they do, propose an easy way to compute one.

Solution The problem can be represented in several ways. A simple one is to build a matrix
A = {ai j} where ai j = −1 if the j-th clause includes literal x̄i, ai j = 1 if it includes literal xi,
ai j = 0 if it includes none of the two. Alternatively, a vector of n lists (one for each clause)
could include in each list the indices i of the variables that appear as affirmed literals, and
another vector of n lists could include the indices of the negated ones. Or the vectors could
refer to the variables and the indices in the lists to the clauses. More refined representations can
improve the average-case complexity, or the worst-case one in special classes of instances, or
possibly even the worst-case complexity, but this is beyond the purpose of the exercise.

The ground set is suggested to be B = V ×{1,0}. Given an incidence matrix x of n rows
and 2 columns, the feasibility test requires to scan it and check whether exactly 1 element in
each row is equal to 1. This requires Θ(n) time. Given a feasible solution x, its value can be
computed scanning the m clauses and for each clause scanning the variables (or the occurrences

30

CHAPTER 2 2.7. EXERCISES 31

of the literals) to check whether at least one satisfies the clause. In this case, the weight of the
clause is added to a total. The overall cost is Θ(mn)4. The objective function is nonadditive.
A feasible solution always exist: give random values (or a fixed deterministic value) to all
variables.

Are alternative ground sets possible? In general, they are. A set nearly equivalent to the
chosen one is B = V , meaning that the variables in x must be set to 1 and those out of x to 0.
This definition has the advantage that all subsets are feasible solutions.

Is it possible to define the ground set as the set of clauses, B = {C j}, meaning that a solution
is composed by the satisfied clauses? That would make the objective function additive, as its
value would be the sum of the weights on the satisfied clauses. But the feasibility test would
require to determine whether a given subset of clauses is satisfiable or not. This is the well-
known NP-complete SAT problem: solving it repeatedly several times would be impractical,
so it is not acceptable.

2.7.6 Exercise 6
Given a set of rows R, a set of columns C, a binary matrix A with rows and columns correspond-
ing to the two sets and a cost c j for each column, the Set Covering Problem requires to cover
all the rows with a subset of columns of minimum total cost.

Explain why it is a Combinatorial Optimization problem, proposing a possible ground set.
Answer the following questions describing how the data are represented and how a subset x of
your ground set is represented.

Suggest a procedure to evaluate whether x is a feasible solution and discuss its computa-
tional complexity.

If x is a feasible solution, suggest a procedure to compute the value of the objective and
discuss its computational complexity. Is the objective function additive?

Do feasible solutions always exist? If they do, propose an easy way to compute one.

Solution The natural ground set is B = C. The problem can be represented by a Boolean
matrix for A and an integer vector for c. More refined representations could replace the matrix
with a vector of lists associated to the rows and reporting the indices of the columns that cover
each row, or a vector of lists associated to the columns and reporting the indices of the rows
covered by each row, or even both at the same time.

Given an incidence vector x of n = |C| elements, the feasibility test defines a vector σ of
m = |R| elements that count how many times each row is covered by the columns of x. Scanning
x, each element with x j = 1 determines the column of A which must be scanned increasing the
counter σi for each row such that ai j = 1. At the end, the solution is feasible if and only if
σi ≥ 1 for every row i ∈ R. With the basic representation, this takes time Θ(nm), and even
the more refined representation do not improve the worst-case. The objective function can be
evaluated by summing the costs for all elements with x j = 1, which takes Θ(n) time. The
objective function is additive. Feasible solutions exist if and only if there is no row with ai j = 0
for all j ∈C or, equivalently, x =C is feasible.

Can the ground set be the set of rows R? That would make no sense: given that all rows
must be covered, selecting a subset of rows would have no meaning for this problem.

4If the number of literals in a clause is limited, the more refined representations are more efficient.

31

32 COMBINATORIAL OPTIMIZATION PROBLEMS CHAPTER 2

2.7.7 Exercise 7
Given a set of rows R, a set of columns C, a binary matrix A with rows and columns correspond-
ing to the two sets and a value φ j for each column, the Set Packing Problem requires to select a
subset of columns of maximum total value such that no two columns cover a common row.

Explain why it is a Combinatorial Optimization problem, proposing a possible ground set.
Answer the following questions describing how the data are represented and how a subset x of
your ground set is represented.

Suggest a procedure to evaluate whether x is a feasible solution and discuss its computa-
tional complexity.

If x is a feasible solution, suggest a procedure to compute the value of the objective and
discuss its computational complexity. Is the objective function additive?

Do feasible solutions always exist? If they do, propose an easy way to compute one.

Solution The natural ground set is B = C. The representation of the problem is the same as
for the Set Covering Problem of the previous exercise.

Given an incidence vector x of n = |C| elements, the feasibility test still exploits the counter
vector σ of m = |R| elements, that is built as in the previous exercise, but at the end is checked
to determine whether σi ≤ 1 for every row i ∈ R. This takes time Θ(nm). The objective function
is evaluated summing the values for all elements with x j = 1, in time Θ(n), and it is additive.
The empty solution is always feasible.

Can the ground set be the set of rows R? In general, the covered rows form a subset, but each
row can be covered by several columns, and knowing the row does not specify which column
covers it: neither the feasibility nor the value of a subset x can be computed.

2.7.8 Exercise 8
Given a set of rows R, a set of columns C, a binary matrix A with rows and columns correspond-
ing to the two sets and a cost c j for each column, the Set Partitioning Problem requires to find
a subset of columns of minimum total cost such that they cover exactly once each row.

Explain why it is a Combinatorial Optimization problem, proposing a possible ground set.
Answer the following questions describing how the data are represented and how a subset x of
your ground set is represented.

Suggest a procedure to evaluate whether x is a feasible solution and discuss its computa-
tional complexity.

If x is a feasible solution, suggest a procedure to compute the value of the objective and
discuss its computational complexity. Is the objective function additive?

Do feasible solutions always exist? If they do, propose an easy way to compute one.

Solution The natural ground set is B = C. The representation of the problem is the same as
for the Set Covering Problem and the Set Packing Problem of the previous two exercises.

Given an incidence vector x of n = |C| elements, the feasibility test exploits an integer
counter vector σ of m = |R| elements, that is built scanning the binary matrix as in the previous
exercises, but at the end is checked to determine whether σi = 1 for every row i ∈ R. This
takes time Θ(nm). The objective function is evaluated summing the values for all elements

32

CHAPTER 2 2.7. EXERCISES 33

with x j = 1, in time Θ(n), and it is additive. As discussed in the notes, it is NP-complete to
determine whether a feasible solution exists or not for a given instance.

Can the ground set be the set of rows R? The two reasons considered in the previous exer-
cises to give a negative answer both hold in this case.

2.7.9 Exercise 9
Given an undirected graph G = (V,E), the Vertex Cover Problem requires find a minimum
cardinality subset of vertices such that all edges are indicent to at least one vertex of the subset.

Explain why it is a Combinatorial Optimization problem, proposing a possible ground set.
Answer the following questions describing how the data are represented and how a subset x of
your ground set is represented.

Suggest a procedure to evaluate whether x is a feasible solution and discuss its computa-
tional complexity.

If x is a feasible solution, suggest a procedure to compute the value of the objective and
discuss its computational complexity. Is the objective function additive?

Do feasible solutions always exist? If they do, propose an easy way to compute one.

Solution The natural ground set is B = V . A graph can be represented in several ways:
the main ones are the adjacency matrix (a binary matrix of n = |V | rows and columns stating
whether each pair of vertices corresponds to an edge or not), the list of edges (a list of m = |E|
pairs of indices identifying the extreme vertices of the edges of the graph, and the vector of
forward stars (a vector of n lists, associated to the vertices, each one including the indices of the
vertices adjacent to the current one). The choice influences the complexity of the operations,
but they can all be transformed into each other.

Given an incidence vector x of n elements, the feasibility test scans the edges of the graph
and for each edge (u,v) ∈ E checks whether xu = 1 and xv = 1. The list of edges allows to
perform this operation in Θ(m) time. The objective function can be evaluated by counting the
vertices v ∈V for which xv = 1, in Θ(n) time. Since this is equivalent to summing all values of
x, the objective function is additive. The whole vertex set V is always a feasible solution.

2.7.10 Exercise 10
Given an undirected graph G = (V,E), the Maximum Clique Problem requires find a maximum
cardinality subset of vertices that are all pairwise adjacent to each other.

Explain why it is a Combinatorial Optimization problem, proposing a possible ground set.
Answer the following questions describing how the data are represented and how a subset x of
your ground set is represented.

Suggest a procedure to evaluate whether x is a feasible solution and discuss its computa-
tional complexity.

If x is a feasible solution, suggest a procedure to compute the value of the objective and
discuss its computational complexity. Is the objective function additive?

Do feasible solutions always exist? If they do, propose an easy way to compute one.

33

34 COMBINATORIAL OPTIMIZATION PROBLEMS CHAPTER 2

Solution The natural ground set is B = V . We will choose a representation for the graph
depending on the operations to be performed.

Given an incidence vector x of n elements, the feasibility test scans it to count the vertices
and scans the edges of the graph to count the edges such that both extremes have xv = 1. If |x| is
the number of vertices, the number of edges must be |x|(|x|−1)/2. This takes time Θ(n+m).
Alternatively, the vector of forward stars allows to check only the edges that have one extreme
with xv = 1. This improves the average-case performance.

The objective function can be evaluated by counting the vertices v ∈V for which xv = 1, in
Θ(n) time. Since this is equivalent to summing all values of x, the objective function is additive.
Any edge (u,v) ∈ E is a feasible solution.

2.7.11 Exercise 11
Given an undirected graph G = (V,E), the Maximum Independent Set Problem requires find a
maximum cardinality subset of vertices that are all pairwise nonadjacent to each other.

Explain why it is a Combinatorial Optimization problem, proposing a possible ground set.
Answer the following questions describing how the data are represented and how a subset x of
your ground set is represented.

Suggest a procedure to evaluate whether x is a feasible solution and discuss its computa-
tional complexity.

If x is a feasible solution, suggest a procedure to compute the value of the objective and
discuss its computational complexity. Is the objective function additive?

Do feasible solutions always exist? If they do, propose an easy way to compute one.

Solution The natural ground set is B = V . We will choose a representation for the graph
depending on the operations to be performed.

Given an incidence vector x of n elements, the feasibility test scans the edges of the graph
to count the edges such that both extremes have xv = 1. This number must be zero. The check
takes time Θ(m) (improvable in the average case by scanning only the forward stars of the
vertices with xv = 1).

The objective function can be evaluated by counting the vertices v ∈V for which xv = 1, in
Θ(n) time. Since this is equivalent to summing all values of x, the objective function is additive.
Any single vertex v ∈V is a feasible solution.

2.7.12 Exercise 12
Given a directed graph G= (N,A) and a cost ci j for each arc (i, j)∈ A, the Travelling Salesman
Problem requires to find a circuit visiting all nodes with minimum total cost.

Explain why it is a Combinatorial Optimization problem, proposing a possible ground set.
Answer the following questions describing how the data are represented and how a subset x of
your ground set is represented.

Suggest a procedure to evaluate whether x is a feasible solution and discuss its computa-
tional complexity.

If x is a feasible solution, suggest a procedure to compute the value of the objective and
discuss its computational complexity. Is the objective function additive?

Do feasible solutions always exist? If they do, propose an easy way to compute one.

34

CHAPTER 2 2.7. EXERCISES 35

Solution The suggested ground set is B = A. We will choose a representation for the graph
depending on the operations to be performed.

Given an incidence matrix x of n rows and columns, the feasibility test scans it to check
that each row i ∈ N has a single cell with xi j = 1 and each column j ∈ N has a single cell with
xi j = 1. While scanning the matrix, we build a vector Ji providing for each node j ∈ N the only
node j for which xi j = 1. Then, starting from an arbitrary node i0, we move to i1 = Ji0 and so
on, flagging the index of each visited node in an auxiliary Boolean vector fi, until we reach an
already visited node. The subset x is a feasible solution only if all indices are flagged at the end
of the visit. If the graph is not complete, one also has to check all cells with xi j = 1 correspond
to existing arcs. The overall check requires Θ

(
n2) time.

The objective function can be evaluated by scanning the incidence matrix x and summing all
costs for the elements with xi j = 1. The objective function is therefore additive. In a complete
graph, any matrix xiπ(i) = 1 for which (π (1) ,π (2) , . . . ,π (n)) is a permutation of the nodes,
is a feasible solution. As discussed in the text, in incomplete graphs, the existence of feasible
solutions is an NP-complete problem.

2.7.13 Exercise 13
Given an undirected graph G = (V,E), a root vertex r ∈ V , a cost ce for each edge e ∈ E, a
weight wv for each vertex v ∈ V and a capacity W, the Capacitated Minimum Spanning Tree
Problem requires to find a spanning tree of minimum total cost such that the total weight of each
subtree appended to the root vertex does not exceed the capacity.5

Explain why it is a Combinatorial Optimization problem, proposing a possible ground set.
Answer the following questions describing how the data are represented and how a subset x of
your ground set is represented.

Suggest a procedure to evaluate whether x is a feasible solution and discuss its computa-
tional complexity.

If x is a feasible solution, suggest a procedure to compute the value of the objective and
discuss its computational complexity. Is the objective function additive?

Do feasible solutions always exist? If they do, propose an easy way to compute one.

Solution A first possible ground set is B = E. A good representation for the graph is the
vector of forward stars, because the subtrees appended to the root vertex will be identified by a
visit. On complete graphs, however, the adjacency matrix is probably better. Correspondingly,
the solution can be represented marking the elements of the forward stars that correspond to the
edges of the solution; on complete graphs, a binary matrix could be appropriate.

The feasibility test must check whether the subtrees appended to the root have a weight not
larger than the capacity and whether they are subtrees or cyclic subgraphs. That can be done
with a visit from the root using only the edges marked, summing the weights of the vertices
visited and checking that no vertex is visited twice. That takes Θ(m) time.

The objective function can be evaluated by summing all costs for the edges with xe = 1,
once again in Θ(m) time. The objective function is additive.

A second possible ground set is B = V ×T , where T = {1, . . . , |V |− 1} is a set of indices
for potential subtrees. The vector of forward stars is still a good representation for the graph.

5This exercise must be revised: until then, take it as a suggestion for sophisticated problems.

35

36 COMBINATORIAL OPTIMIZATION PROBLEMS CHAPTER 2

Given an incidence matrix x of n = |V | rows and n − 1 columns indicating which pairs
(vertex,subtree) are used, the feasibility test defines an integer vector ω of |V |− 1 elements to
store the weights of the potential subtrees appended to the root. The check scans the elements
with xvt = 1 and sums wv to ωt , checking whether it exceeds W or not. Then, for each index
t with ωt > 0 it finds the connected components of the subgraph induced by the vertices with
xvt = 1: there must always be a single component. Overall, the test takes Θ(n+nm) time. The
objective function can be evaluated by defining and building a vector tv that provides the subtree
to which each vertex v belongs (the one for which xvt = 1) solving a minimum spanning tree
problem on the edges that have both extremes in the same component. The time is that of Prim’s
or Kruskal’s algorithm. The objective function is not additive on the (vertex,subtree) pairs.

A complete graph always admits feasible solutions. As discussed in the text, the existence
of feasible solutions is in general an NP-complete problem.

2.7.14 Exercise 14
Given a directed graph G = (N,A), a depot node d ∈ N, a cost ci j for each arc (i, j) ∈ A, a
weight wi for each node i ∈ N and a capacity W, the Vehicle Routing Problem requires to find
a collection of circuits of minimum total cost such that the total weight of each circuit does not
exceed the capacity and they all visit the depot.6

Explain why it is a Combinatorial Optimization problem, proposing a possible ground set.
Answer the following questions describing how the data are represented and how a subset x of
your ground set is represented.

Suggest a procedure to evaluate whether x is a feasible solution and discuss its computa-
tional complexity.

If x is a feasible solution, suggest a procedure to compute the value of the objective and
discuss its computational complexity. Is the objective function additive?

Do feasible solutions always exist? If they do, propose an easy way to compute one.

Solution A first possible ground set is B=A. A good representation for the graph is the vector
of forward stars, but on complete graphs the adjacency matrix is probably better. Correspond-
ingly, the solution can be represented marking the elements of the forward stars that correspond
to the arcs of the solution; on complete graphs, a binary matrix could be appropriate.

The feasibility test must check whether the solution consists of circuits visiting the depot
and whether these have a weight not larger than the capacity. That can be done with a visit from
the depot using only the arcs marked, summing the weights of the vertices visited, checking
that the circuits get back to the depot and they overall visit each node exactly once. That takes
Θ(m) time.

The objective function can be evaluated by summing all costs for the arcs with xe = 1, once
again in Θ(m) time. The objective function is additive.

A second possible ground set is B = N ×C, where C = {1, . . . , |N|− 1} is a set of indices
for potential circuits. The vector of forward stars is still a good representation for the graph.

Given an incidence matrix x of n = |V | rows and n − 1 columns indicating which pairs
(node,circuit) are used, the feasibility test defines an integer vector ω of |V |−1 elements to store
the weights of the potential circuits going out of the depot. The check scans the elements with
xic = 1 and sums wi to ωc, checking whether it exceeds W or not. It also checks whether there is

6This exercise must be revised: until then, take it as a suggestion for sophisticated problems.

36

CHAPTER 2 2.7. EXERCISES 37

always exactly one arc going in and out of every node (except for the depot), whether all circuits
end in the depot and whether all nodes are visited. Overall, the test takes Θ(n+nm) time. The
objective function can be evaluated by defining and building a vector ci that provides the circuit
to which each node i belongs (the one for which xic = 1) solving a Travelling Salesman Problem
on the subgraph induced by the nodes assigned to each circuit. This is impractical, but it can be
done for small instances; for large ones, it can be done heuristically, or with sophisticated tools
that go beyond the scope of the course.

A complete graph always admits feasible solutions. As discussed in the text, the existence
of feasible solutions is in general an NP-complete problem.

2.7.15 Exercise 15
Given a set of points P, an integer distance di j for each pair of points i, j ∈ P and a positive
number p < n = |P|, the p-median problem requires to find an assignment of each point to one
of p points (including itself), such that the sum of the distances from all points to the assigned
ones is minimum.

Explain why it is a Combinatorial Optimization problem, proposing a possible ground set.
Answer the following questions describing how the data are represented and how a subset x of
your ground set is represented.

Suggest a procedure to evaluate whether x is a feasible solution and discuss its computa-
tional complexity.

If x is a feasible solution, suggest a procedure to compute the value of the objective and
discuss its computational complexity. Is the objective function additive?

Do feasible solutions always exist? If they do, propose an easy way to compute one.

Solution A first possible ground set is B = P×P, that is the set of possible assignments. A
good representation for the problem is given by a square matrix of n rows and columns for the
distances and an integer number p.

Given an incidence matrix x of n rows and columns, the feasibility test scans it to check
that each row i ∈ N has a single cell with xi j = 1 and exactly p columns j ∈ N have cells with
xi j = 1. The overall check requires Θ

(
n2) time.

The objective function can be evaluated by scanning the incidence matrix x and summing
all distances for the elements with xi j = 1. The objective function is therefore additive.

Feasible solutions always exist: it is enough to select p random points as medians and assign
the other ones to them at random (or, better, each one to the closest median).

A second possible ground set is B = P, that is the set of medians. Given an incidence vector
of length n, the feasibility test scans it to check that exactly p elements have xi = 1. This takes
Θ(n) time.

The objective function can be evaluated by scanning the points and for each of them scan-
ning the incidence vector x to find the selected median that is closest to the point. The objective
function is not additive, because it is not a sum of values associated to the elements of the
solution.

Feasible solutions always exist: it is enough to select p random points as medians.

37

38 COMBINATORIAL OPTIMIZATION PROBLEMS CHAPTER 2

38

Part II

Algorithm analysis

39

CHAPTER 3

Theoretical efficiency

The second part of the course is dedicated to the features of heuristic algorithms: we previously
described heuristic algorithms as algorithms that do not always provide correct solutions but
are characterized by two good aspects: their cost is much lower than an exact algorithm and
they “frequently” yield something “close” to the correct solution. We will consider these two
aspects, costs and quality, meaning distance and probability of achieving a certain quality, from
two points of view: an a priori analysis, based on theory, and a posteriori, based on evidence
and empirical data gained from the execution of the algorithm on a benchmark dataset.

3.1 Cost as computational complexity

This section deals with basics notions of computational complexity, that should be common
background for computer science students.

3.1.1 Problems
We’ve seen that a problem is a question on some system of mathematical objects. Usually, there
are infinitely many systems that are very similar to each other. For example, one could wonder
whether 7 is a prime number, but also whether 10 is, 50 is, and so on. These are not intrinsically
different problems. Instead, they are different instances of the same problem. So, in formal
terminology, a problem is the function which relates each instance I in a set I of all instances
with the corresponding solution S in the set S of all solutions.

P : I → S

Defining a function doesn’t mean to know how to compute it. This knowledge is expressed by
an algorithm.

3.1.2 Algorithms
An algorithm is a formal procedure composed of elementary steps forming a finite sequence.
These steps are determined completely by the input of the algorithm and by the results of the
previous steps. An algorithm is said to solve a certain problem if, given in input an instance
I ∈ I of that problem, it returns in output the solution S ∈ S corresponding to the instance.
Thus, an algorithm is a function relating instances and solutions:

A : I → S

41

42 THEORETICAL EFFICIENCY CHAPTER 3

which seems identical to the definition of the problem. However, the algorithm defines both a
function and the way to compute it. In particular, an algorithm is exact if its associated function
coincides with the problem itself. So, for every instance it provides the “correct” solution.
Otherwise, it is heuristic. A heuristic algorithm is useful if it is efficient and effective.

3.1.3 Cost of a heuristic algorithm
The cost of a heuristic algorithm is the computational cost in space (the memory used) and in
time (the time necessary for the computation to conclude). Usually, in the definition of com-
plexity, the importance of time is more stressed than that of space. First, space is a renewable
resource, while time definitely is not. Second, using an amount of space nearly always requires
to use at least the same amount of time. Finally, it is technically easier to distribute the use of
space than of time. Space and time are partly interchangeable, as it is possible to reduce the use
of one by increasing the use of the other.

The time required to solve a problem depends on several aspects: the specific instance to
solve, the algorithm used, the machine running the algorithm and so on. What is needed is a
measure that allows to make comparisons. First of all, the measurement should be independent
from the technology used, to avoid changing the measure each time the machine used changes.
Second, it must be concise, that is summarized in a symbolic expression. Third, it should be
ordinal, to allow comparing different algorithms. The computational time in seconds for all
possible instances of a problem violates all these requirements.

3.1.4 Worst-case asymptotic time complexity
The classic definition adopted is the worst-case asymptotic time complexity. This replaces the
physical time with the number of steps performed by an algorithm to transform the input into
the output. The abstract concept of elementary operation, that takes exactly one step, must be
defined: usually, sums, differences, products, divisions, comparisons, read and write operations
are considered as elementary. The time is therefore defined as the number T of elementary
operations performed, expressed as a function of the size of an instance. This is a suitable value
n, for example the number of elements of the ground set, variables of clauses of the CNF, nodes
or arcs of the graph and so on. What matters is the worst-case, the maximum value of T on all
instances of size n

T (n) = max
I∈In

T (I) with n ∈ N

that is approximated from above and/or below with a simpler function f (n) considering only
their asymptotic behaviour for n →+∞.

The Θ functional space

The number of operations required to solve an instance of size n in the worst case is

T (n) ∈ Θ(f (n))

when, formally,

∃c1∃c2∃n0 : ∀n((n ≥ n0) =⇒ (c1 f (n)≤ T (n)≤ c2 f (n)))

with c1 and c2 two positive real constants and n0 a natural number. In words, one can find two
real positive coefficients and a natural number such that the computational time is restricted

42

CHAPTER 3 3.1. COST AS COMPUTATIONAL COMPLEXITY 43

between c1 f (n) and c2 f (n) for all values of n greater than n0. Asymptotically, f (n) estimates
T (n) up to a multiplying factor: for large instances, the computational time is at least and at
most proportional to the values of f (n).

The O functional space

Considering only the approximation from above, one gets the Big-O functional space:

T (n) ∈ O(f (n))

which formally means that

∃c∃n0 : ∀n((n ≥ n0) =⇒ (T (n)≤ c f (n)))

with c ∈ R+ and n ∈ N. Asymptotically, f (n) overestimates T (n) up to a multiplying factor; in
other words, there is some real constant c such that c · f (n) is always bigger than T (n) after n0.

The Ω functional space

Considering only the approximation from below, one gets the Ω functional space:

T (n) ∈ Ω(f (n))

formally means that
∃c∃n0 : ∀n((n ≥ n0) =⇒ (T (n)≥ c f (n)))

with c ∈ R+ and n ∈ N. Asymptotically, f (n) underestimates T (n) up to a multiplying factor;
in other words, there is some real constant c such that c · f (n) is always smaller than T (n) after
n0.

Combinatorial optimization problems always admit an exact algorithm that is exhaustive:
in the worst case, it considers all possible subsets of the ground set, x ∈ 2B. Each subset must be
tested for its feasibility, taking time α(n), and the value of the objective f (x) must be computed,
taking time β (n). Consequently, the time complexity of the exhaustive algorithm is

T (n) ∈ Θ(2n(α(n)+β (n)))

which is at least exponential and most of the time impractical. In combinatorial optimization,
the main distinction is between polynomial complexity and exponential complexity. In general,
heuristic algorithms are polynomial.

3.1.5 Transformations and reductions
We have already seen that problems can be transformed into other problems: take any instance
Ip of problem P, transform it into an instance IQ of problem Q (using some time), solve it with
an algorithm AQ to obtain SQ, transform the result back into SP (using some time). This can be
done in a single iteration or in several ones. If transforming the instance and transforming back
the solution take polynomial time, and if the number of iterations required by the transformation
is polynomial (or constant, such as 1), then the complexity of the overall algorithm mainly
depends on the complexity of AQ

1.

1Of course, the transformation increases the complexity, but the point is that, if AQ is polynomial, then the
resulting algorithm remains polynomial.

43

44 THEORETICAL EFFICIENCY CHAPTER 3

3.2 Going beyond worst-case complexity
The standard worst-case definition of complexity has many disadvantages: it considers only
instances of large size, and only very hard instances. Small instances are neglected. Easy in-
stances are also ignored. We would like to know if a given instance is “easy” or not. Secondly,
the worst-case complexity gives an estimate which is usually meaningful, but in general overly
rough. There are algorithms for which the estimate is nearly always so excessive to become
useless. An example is the simplex algorithm for the Linear Programming problem. The in-
stances of this problem are infinitely many, but only a finite set of basic solutions are relevant.
The simplex algorithm explores them with exponential worst-case complexity. However, for an
extremely large majority of instances, the complexity of this algorithm is a polynomial of very
low complexity.

What can we do to go beyond the standard definition of worst-case complexity?
There are two ways to escape from the limitations of the classical description of the com-

plexity of an algorithm:

• Parameterised complexity, that is to introduce some other relevant parameter k, besides
n, and express the time as T (n,k), which may lead to the understanding that the algorithm
is hard with respect to k, but actually easy with respect to n;

• Average-case complexity, that is to assume a probability distribution on I and express
the time as the expected value

T (n) = E[T (I)|I ∈ In]

In the first case, k can be as large as n, implying that the problem is hard, but k can be small also
for very large instances, meaning that the problem is easy for those instances. In the second
case, the probability distribution weighs not only the hard instances, but also the easy ones; if
the hard instances are very rare, their weight will have a small impact on the overall measure.

3.2.1 Parameterised complexity
Some algorithms are actually not exponential with respect to n, but with respect to some other
parameter k. If both k and n are large, then obviously the algorithm is inefficient, but if k is
small, then the algorithm will be cheaper also for large instances, possibly even polynomial.

The parameter k can be a part of the input, like a capacity, the maximum number of literals
per clause in logic function problems, the number of nonzero elements in numerical matrix
problems, the maximum degree, the diameter in graph problems and so on. In these cases, it is
possible to know a priori whether the algorithm is efficient on a given instance.

In other cases, the additional parameter k is part of the solution: then, one cannot know
a priori if the algorithm is efficient or not. However, an estimate of k could be provided by
heuristic solutions, and this could provide the required information.

Example: the vertex covering problem

Given a graph G = (V,E), the VCP requires to find a minimum subset of vertices that cover
every edge of the graph. The exhaustive algorithm for this problem tests each of the 2n subsets
of vertices to check whether it covers all edges; for such subsets, it computes the cardinality
and saves the smallest one. This algorithm has time complexity

T (n,m) ∈ Θ(2n(m+n))

44

CHAPTER 3 3.2. GOING BEYOND WORST-CASE COMPLEXITY 45

where n= |V | and m= |E| ≤ n(n−1)/2. If we already know a solution x with f (x)= |x|= k+1,
we restrict the search to solutions of at most k vertices. Consequently, a naive algorithm consists
in scanning all subsets of exactly k vertices, instead of all subsets. This algorithm has time
complexity

T (n,m,k) ∈ Θ(nkm)

where factor nk approximates
(n

k

)
. If k is a small constant, the algorithm is polynomial. But we

can do better.

Bounded tree search

A better algorithm can be based on the following useful property:

∀x ∈ X ,∀(u,v) ∈ E x∩ (u,v) ̸= /0

that is the definition of a feasible solution: in words, they must include at least one vertex for
each edge. The bounded tree search algorithm selects an edge (u,v). Since either u or v (or
both) are contained in the solution, the problem can be split into two subproblems: the first has
u ∈ x and the second has u /∈ x and v ∈ x. In both cases, to check if the subproblem is feasible,
it is necessary to compute

V =V \ x and E = E \{e ∈ E : e∩ x ̸= /0}

removing all the vertices in the partial solution and all the covered edges. If |x|< k and E ̸= /0,
select another edge (u,v) ∈ E and split the subproblem. If |x| ≤ k and E = /0 then x is the
required solution. If |x|= k and E ̸= /0 the subproblem has no solution better than k+1.

The complexity is T (n,m,k) ∈ Θ(2km), polynomial in n and much more efficient than the
naive algorithm for n ≫ 2.

Kernelization

The concept of kernelization is a special case of problem transformation: instead of reducing
the instances of the problem to instances of another one, kernelization transforms the instances
of P into smaller instances of P. To this purpose, it exploits properties that allow to prove the
existence of optimal solution that include certain elements of B or do not include some elements
of B. So, kernelization works by removing from B elements that are not needed, without af-
fecting the quality of the solution. In this way, one obtains smaller instances. Sometimes, the
final size of the instance no longer depends on n, and an exhaustive algorithm can solve it in
polynomial time. Even if that is the case, kernelization can still be useful, because it generates
smaller problems, on which a heuristic algorithm will be faster and probably better. In principle,
the kernelization itself could be heuristic, meaning that the elements excluded or fixed could be
chosen heuristically, instead of being provably optimal.

Kernelization of the VCP The useful property exploited for the VCP is that if the degree of
vertex v is δv ≥ k+ 1, then vertex v belongs to any feasible solution of cardinality ≤ k. This
is proved by contradiction: assuming that a vertex v of large degree (≥ k+1) does not belong
to the required solution means that the k+ 1 incident edges must be covered in another way.
The only way is to use the adjacent k+1 vertices, generating a solution of cardinality ≥ k+1.
By contradiction, vertex v must belong to any solution of cardinality ≤ k. So, the steps of the
kernelization algorithm are as follows:

45

46 THEORETICAL EFFICIENCY CHAPTER 3

1. start at step t = 0 with k0 = k and an empty vertex subset xt := /0

2. set t = t +1 and add to the solution the vertices of degree ≥ kt +1:

∀v ∈V δv ≥ kt +1 ⇒ xt := xt−1 ∪ v

3. update kt := k0 −|xt |
4. remove the covered edges, the vertices of zero degree and the vertices in x:

E := {e ∈ E : e∩ xt = /0} and V := {v ∈V : δv > 0}\ xt

5. if |E| > k2
t there is no feasible solution; if |E| ≤ k2

t ⇒ |V | ≤ 2k2
t , apply the exhaustive

algorithm.

The kernelization algorithm starts assuming a value k+ 1 for |x| (guess or heuristic). All
vertices with degree ≥ k + 1 are added to the solution x. Now, the vertices to be found are
k−|x|, that is less than k. The updated value of k becomes the new threshold for the degree of
vertices. This can imply that a new batch of vertices is added to the solution. After “cleaning”
the vertex and edge sets, the algorithm compares the the number of remaining edges with the
current value of k2. If if it is > k2, the remaining edges cannot be covered with less then
k vertices, because all remaining vertices have degree ≥ k. This means that no solution is
feasible. If, on the contrary, the number of remaining edges is ≤ k2, there are at most 2k2

t
vertices. The kernelization procedure, followed by the exhaustive algorithm, have a complexity
T (n,k) ∈ Θ(n+m+22k2

k2), which is very good if k is small.

3.2.2 Average case complexity
Instead of characterising the worst-case complexity of an algorithm using secondary parameters,
we can replace it with the average-case complexity, that computes the expected value of T (n):

T (n) = E[T (I)|I ∈ In]

instead of the maximum maxI∈In T (n).
This requires to define a probability distribution on the instance, which means in turn

defining a suitable probabilistic model, which is far from being an easy task. In the context of
theoretical studies, this means that a theoretical probability distribution model is introduced, and
theorems are proved to compute the time complexity of the algorithm on instances following
that model. This is interesting, and can be useful when it can be found empirically that instances
follow some kind of distribution. In the context of empirical studies, a simulation model can
be derived evaluating the probability distribution of measured data. This allows to generate
other realistic instances at random to test the algorithms. We now survey some examples of
probabilistic models for the main families of problems in combinatorial optimisation.

Probabilistic models for random binary matrices

There are three main probability models with respect to the generation of a binary matrix. We
neglect the generation of cost vectors and value vectors.

Equiprobability In the equiprobability model, all 2mn possible matrices of m rows and n
columns are assigned the same probability to be selected.

46

CHAPTER 3 3.2. GOING BEYOND WORST-CASE COMPLEXITY 47

Uniform probability In the uniform probability model, each cell of a matrix is set to 1 with
a given probability p

∀i = 1, · · · ,m;∀ j = 1, · · · ,n P(ai j = 1) = p

This model is more general than equiprobability, as it allows to assign different probabilities to
sparse or dense matrices.

Fixed density The last model is the fixed density model, where a parameter δ ∈ [0,1] is
defined and out of the mn cells, δ ·mn are extracted with uniform probability and set to 1. It
resembles the uniform probability, but in this case the number of 1s is fixed exactly.

Probabilistic models for graphs

Equiprobability Since a graph can be represented through its adjacency matrix, the proba-
bility models for graphs correspond to those for matrices. In the equiprobability model, all
2

n(n−1)
2 graphs have the same probability to be selected.

Uniform probability In Gilbert’s model (or uniform probability model) the probability
G(n, p) is defined as

∀(i ∈V, j ∈V \ i) P[(i, j) ∈ E] = p

All graphs with the same number of edges m have the same probability pm(1 − p)
n(n−1)

2 −m,
different for each m. If p = 0.5, this model is the same as the equiprobability.

Erdős-Rényi Finally, in the Erdős-Rényi model the probability G(n,m) is defined as follows:
extract m unordered vertex pairs out of the n(n−1)

2 with uniform probability and create an edge
for each one. If p = 2m

n(n−1) , it resembles the uniform probability model, but the number of edges
is fixed.

Probabilistic models for logic functions (random CNF)

A CNF is a conjunction of disjunctions (an AND of ORs). Logical clauses have a certain
number n of variables and a given number of literals k for each disjunction (called logical
clause) - let us assume k is the same for each logic clause.

Fixed probability The fixed-probability ensemble model lists all
(n

k

)
2k (there are

(n
k

)
ways

to dispose n variables in groups of k, and for each group there are 2k possible truth assignment
to its literals) clauses of k distinct and consistent literals and adds each one to the CNF with
probability p.

Fixed size The fixed-size ensemble model builds m clauses, adding to each one k distinct and
consistent literals, extracted with uniform probability p. The process is somewhat opposite to
the previous one, as it starts from a fixed number of clauses and constructs them with variable
size. The fixed-probability model assumed a fixed size, but a variable number of clauses. If
p = m

(n
k)2k , the two models resemble each other, but the fixed size model cannot generate the

same set of instances.

47

48 THEORETICAL EFFICIENCY CHAPTER 3

3.2.2.1 Phase transitions

The concept of phase transition is a practical insight coming from the empirical study of prob-
lems. It has been observed that the instance set can be divided into different regions, charac-
terised by different values of deterministic or probabilistic parameters. The instances in some
of these regions require a much longer time, whereas those in others prove easier. For example,
for graphs, m = 0 and p = 0 correspond to empty graphs, m = n·(n−1)

2 and p = 1 correspond
to complete graphs and intermediate values correspond to graphs of intermediate density, de-
terministically if one sets m and probabilistically if one sets p. Sometimes, an algorithm has
strongly different performance on sparse and on dense graphs. This concerns the computational
time (for both exact and heuristic algorithms) and the quality of the solution (for heuristic al-
gorithms). The interesting point is that quite often the performance varies steeply and abruptly
in small regions of the parameter space: this phenomenon is similar to the phase transition of
physical systems, for example when ice melts into water, which happens at a very strict temper-
ature and physical zone. It is not only interesting, but also allows to analyse a given instance
and determine a priori in which “region of complexity” it lies.

Example: phase transition in 3-SAT and MAX-3-SAT The first example of phase transition
concerns the satisfiability problem. Given a CNF on n variables, with logical clauses containing
3 literals, the 3-SAT (which was proved to be NP-complete by Karp) is solved by finding a
truth assignment that satisfies all clauses. The MAX-3-SAT is solved by finding the maximum
number of satisfiable clauses. So, the parameters are the number of variables n and the number
of literals for each disjunction, which is 3. Another important parameter is α = m

n , the ratio of
clauses to variables, where m is the number of clauses in the CNF.

(a) Complexity VS Probability of Satisfiability
in 3-SAT.

(b) Complexity of the decision vs the optimiza-
tion problem.

Figure 3.1: Phase plots.

As figure 3.1 (a) shows, for low values of α the probability of a positive solution (the
CNF is satisfiable) is high and the computational cost of finding this answer is low. But as α

increases (so there are more clauses or less variables), the problem becomes harder to solve and
its probability to be satisfied drops - in fact, having lots of clauses and few variables quickly
induces some contradiction. Figure 3.1 (b), instead, plots the computational costs of the two
version of the problem, showing the cost of the 3-SAT problem in blue and that of Max-3-SAT
in red. The computational time is in logarithmic scale, this time. The optimization version
(Max-3-SAT) is harder than the decision one (SAT), because it is not sufficient to say that the

48

CHAPTER 3 3.2. GOING BEYOND WORST-CASE COMPLEXITY 49

CNF is unsatisfiable: one must find how many of the clauses are satisfiable at most.
The practical value of this information is that it is sufficient to calculate α in order to know

approximately where the instance lies, and how long an algorithm will take to solve it. Notice
that these results refer to a single specific algorithm, but experience often shows that they extend
to large families of algorithms, and therefore they highlight a property of the problem itself.

Figure 3.2: VCP Phase.

Example: phase transition in the vertex covering problem The VCP exhibits a somewhat
similar phase transition, as Figure 3.2 shows. This time, the critical parameter is |x|

|V | , the ratio of
the cardinality of the solution to the total number of vertices in the graph. This is an a posteriori
value, which cannot be evalued in advance, since x is unknown. If the ratio is small, a small
number of vertices is enough to cover all the edges: these vertices can be found quickly. As the
solution starts to be around 30% of the total number of vertices, finding them is increasingly
difficult as the size of the instance increases. If the number of vertices in the solution becomes
larger, around 40% of the total vertices, it will become easier to find them, because most of
them are evidently necessary in any feasible solution of a good quality.

In partial contradiction to what discussed so far, the time complexity of a heuristic algo-
rithm is usually strictly polynomial with low exponents and it is fairly robust with respect to
secondary parameters. If the algorithm uses random steps or memory (that is, if the heuristic is
a metaheuristic) the complexity is not even clearly defined, as a basic procedure is repeatedly
applied, obtaining a different solution at each iteration. While the computational time is well
defined for each single iteration, in theory, a metaheuristic could run indefinitely. In practice,
it is terminated by a user-defined condition. So, the previous concepts mainly apply to exact
algorithms.

However, there are many reasons to discuss them in a course on heuristics. First and fore-
most, to guide the search for the correct algorithm: an exact algorithm can be efficient in a spe-
cific case and inefficient in the worst ones. Secondly, to show that exact and heuristic algorithms
can interact proficuously, as the latter can provide information to improve the former. Third, to
show that kernelization is not restricted to exact algorithms, but it also improves heuristic ones,
making them more efficient and more effective. Lastly, to show that the harder instances of a
problem can be identified a priori.

49

50 THEORETICAL EFFICIENCY CHAPTER 3

50

CHAPTER 4

Theoretical effectiveness

A heuristic algorithm is effective if it “frequently” gives a solution “close” to an exact (that is,
optimal) one. We will now discuss the meaning of “frequently” and “close”.

We can formally discuss this concept by introducing the concept of distance of a solution
to the optimal one and frequence (probability) of “hitting” a solution within a given distance
from an optimal one. We can do this analysis in two ways, just as in the case of efficiency: via
a theoretical analysis (a priori) or via an experimental analysis (a posteriori).

4.1 A measure of distance from the optimum
The effectiveness of a heuristic optimization algorithm A is related to the difference between
the “heuristic value” fA(I) (the objective function value of the result of the algorithm A on the
instance I) and the optimum f ∗(I) (the best solution existing for I). The relation can be specified
in several different ways.

Absolute difference The most direct definition is the absolute value of the difference itself:

δ̃A(I) = | fA(I)− f ∗(I)|

While this definition is natural and obvious, it is rarely used in practice, as it depends on the
unit of measure of the objective function. Suppose that we are minimizing the overall cost of a
circuit in the TSP, measuring it in days of travel time. You could choose hours, or minutes, or
seconds, instead, and the value of δ̃A(I) would strongly depend on this choice. This definition
makes sense only when the objective function is a pure number.

Relative difference A second definition relates the difference to the value of the optimum:

δA(I) =
| fA(I)− f ∗(I)|

f ∗(I)

This is quite frequent in experimental analysis and it has the advantage to be a pure number,
also when the objective is a physical quantity with a unit of measure.

Approximation ratio A third, widely used, possibility is the approximation ratio:

ρA(I) = max
[

fA(I)
f ∗(I)

,
f ∗(I)
fA(I)

]
≥ 1

51

52 THEORETICAL EFFECTIVENESS CHAPTER 4

The expression holds both for minimization and maximization problems: in the former case,
f ∗(I)< fa(I); in the latter, the opposite is true. It is clearly related to the relative difference:

δA(I) =

ρA(I)−1 for minimisation problems
ρA(I)−1

ρA(I)
for maximisation problems

4.2 Theoretical analysis: approximation guarantees
In order to guarantee a priori the performance of an algorithm, the idea is once again to consider
the worst case, exactly as for the efficiency.

4.2.1 Absolute and relative approximation
In general, the value fA(I) returned by a heuristic may be very bad with respect to the optimal
value f ∗(I). If the heuristic is good, however, the difference will not be very large. For example,
there might be an absolute approximation:

∀I ∈ I ∃α̃A ∈ N : δ̃A ≤ α̃A

meaning that the absolute distance is somewhat limited by an integer constant. This is very rare,
even for problems whose objective value is a pure number. An example is Vizing’s algorithm
for the edge coloring problem.

More frequently, a relative approximation might be possible:

∀I ∈ I ∃αA ∈ R+ : ρA(I)≤ αA

meaning that the approximation ratio ρA(I) has an upper bound limited by the real constant αA.
If any of the previous holds, the algorithm provides an approximation guarantee, absolute

or relative. An interesting thing is that the definition can be extended to cases in which a
constant approximation guarantee cannot be found, by replacing the approximation constant
with a suitable function of the instance size:

∀I ∈ In∀n ∈ N ρA(I)≤ αA(n)

where αA : N→ R+.
It is important to remark that, while the efficiency of an algorithm necessarily has a size-

dependent expression, its effectiveness may have an independent one.

4.2.2 How to obtain an approximation guarantee
We can now discuss a general abstract strategy to prove that an algorithm has an approxima-
tion guarantee, provided that the guarantee exists. We aim to prove that ρA ≤ αA, that is (for
minimization problems)

∀I ∈ I ∃αA ∈ R+ : fA(I)≤ αA f ∗(I)

The first step to do that is typically to analyse the problem and design a procedure that generates
a lower bound LB(I)

∀I ∈ I LB(I)≤ f ∗(I)

52

CHAPTER 4 4.2. THEORETICAL ANALYSIS: APPROXIMATION GUARANTEES 53

that is an underestimate of the objective function. Once this value is found, the second step is
to design a procedure that builds a feasible solution, whose value UB(I) is by definition (being
feasible) an overestimate of the optimum, but is also related to LB(I) by a coefficient αA

∀I ∈ I UB(I) = αALB(I)

A possible third and final step is to design a procedure whose solution is not worse than UB(I)

∀I ∈ I fA(I)≤UB(I)

Then, the concatenation of these three procedures provides an algorithm such that

∀I ∈ I fA(I)≤UB(I) =⇒ ∀I ∈ IαLB(I)≤ α f ∗(I)
=⇒ ∀I ∈ I fA(I)≤ αA f ∗(I)

The trickiest part is usually the second step, so let us delve into it by showing an example.

A 2-approximated algorithm for the VCP

Given an undirected graph G = (V,E), we aim to find the subset of vertices of minimum cardi-
nality such that each edge of the graph is incident to it. We define a set of nonadjacent edges as
matching, and a matching such that any edge outside of it is adjacent to one of the edges inside
of it (so that it cannot be enlarged) as maximal matching. Notice that a maximal matching is
not necessarily maximum, as there can be maximal matchings of different cardinality.

(a) VCP instance. (b) Matching 1.

(c) Matching 2. (d) Matching 3.

Figure 4.1: VCP instance and matchings.

We can solve the VCP with the following matching algorithm:

1. build a maximal matching M ⊆ E scanning the edges of E in any arbitrary order and
including in M those not adjacent to any edge already in M

2. the set of extreme vertices of the edges in the matching is a VCP solution

xA :=
⋃

(u,v)∈M

{u,v}

3. it can be improved removing the redundant vertices.

53

54 THEORETICAL EFFECTIVENESS CHAPTER 4

Proof. The first step of the algorithm provides a lower bound LB(I) on the optimum f ∗(I).
Consider the graph G′ = (V,M) made of all vertices of V and only the edges in any maximal
matching M. A covering of E is always also a covering for any subset of edges E ′ ⊆ E. There-
fore, the cardinality of an optimal covering for E ′ does not exceed that of an optimal covering
for E

E ′ ⊆ E =⇒ |x∗E ′| ≤ |x∗E |
But any optimal covering for E ′ = M includes exactly one of the extreme vertices for each edge,
and therefore has cardinality |M|.

∀M |M| ≤ |E| =⇒ |x∗M| ≤ |x∗E | =⇒ |M| ≤ |x∗E |
⇒ LB(I) = |M| ≤ |x∗E |= f ∗(I)

Figure 4.1 gives a numerical example: the matching algorithm finds a maximal matching M
with 3 edges. To cover all the edges in M, exactly |M|= 3 vertices are necessary and sufficient,
as each edge must be and is covered independently from the other ones. The VCP on the whole
graph has an optimal solution f ∗ = 5 (5 vertices can cover all its edges), that is larger.

LB(I) = |M| ≤ f ∗(I)

The second step of the algorithm includes in a solution both extreme vertices for each edge
in the matching, so that UB(I) = 2 · |M| (in the example, 6 edges). This set of vertices is actually
a feasible solution for the VCP, because it clearly covers all edges in M, but it also covers all the
other edges in E \M. In fact, by the definition of maximal matching, such edges are adjacent to
those of the matching, that is are incident to the vertices of the matching. Consequently, those
vertices cover the whole edge set. But the cost of such a solution is twice the lower bound. The
third step just removes redundant vertices, keeping a feasible solution while possibly reducing
its cardinality.

fA(I)≤UB(I) = 2 · |M|= 2 ·LB(I)≤ 2 · f ∗(I)

So, we have found both an upper and a lower bound, and they are related. Hence the thesis.

∀I ∈ I fA(I)≤ 2 f ∗(I) ∴ αA = 2

Model-based heuristics This short section is an addendum not included in the topics required
for the exam. It can be interesting to notice that the heuristic described above does not actu-
ally fall into any of the three categories of solution-based heuristics listed in Section 1.3.1: it
does not build a subset of the ground set (vertices) progressively adding elements; it does not
exchange elements between the current solution and its complement; it does not recombine two
or more solutions. Actually, even if it works on the elements of the Combinatorial Optimisation
problem, it is implicitly guided by manipulations to a hidden “model”. The VCP admits the
following Mathematical Programming formulation:

min ∑
v∈V

xv

xu + xv ≥ 1 (u,v) ∈ E
xu ∈ {0,1} u ∈V

where the binary variable xv is equal to 1 when the solution includes vertex v and equal to 0
otherwise.

54

CHAPTER 4 4.2. THEORETICAL ANALYSIS: APPROXIMATION GUARANTEES 55

This formulation can be relaxed (admitting new feasible solutions) by replacing the inte-
grality constraints xv ∈ {0,1} with weaker nonnegativity constraints xv ≥ 0 for all v ∈V , which
yields a Linear Programming problem. This admits the following dual problem:

max ∑
(u,v)∈E

yuv

∑
(u,v)∈∆u

yuv ≤ 1 u ∈V

yuv ≥ 0 (u,v) ∈ E

which can be interpreted as a Maximum Matching problem, where the yuv variables (necessarily
in [0,1]) indicate whether an edge is selected or not. Any heuristis solution of the dual problem
(a maximal matching) underestimates its optimum, that is equal to the optimum of the original
primal problem, that underestimates the optimum of the original unrelaxed VCP. This shows
more directly the relation between the two problems.

A 2-approximated algorithm for the TSP under the triangle inequality

Consider the TSP with the additional assumptions that graph G = (N,A) is complete and the
cost function c is symmetric and satisfies the triangle inequality:

∀i, j ∈ N ci j = c ji

and
∀i, j,k ∈ N ci j + c jk ≥ cik

This problem is, in general, strongly NP-complete. Under the previous assumptions, it is still
hard, but it admits a heuristic algorithm with an approximation guarantee.

This algorithm is known as the double-tree algorithm:

1. consider the complete undirected graph corresponding to G (i. e., replace each pair of
opposite arcs with a single edge)

2. build a minimum cost spanning tree T ∗ = (N,X∗)

3. make a pre-order visit of T ∗, building two lists of arcs:

(a) x lists the arcs used both by the visit and the backtracking: this is a circuit visiting
each node, possibly several times

(b) x′ lists the arcs linking the nodes in pre-order ending with the first: this is a circuit
visiting each node exactly once

As for the VCP, the algorithm finds a lower bound on the optimum, a feasible solution that
provides an upper bound with a value related to the lower bound by a multiplication factor 2
and a potential improvement of the upper bound. This means that the final solution is within a
certain factor of the optimum. In short, the double-tree algorithm is 2-approximated.

Proof. Given any Hamiltonian circuit, deleting an arc yields a Hamiltonian path, that is neces-
sarily cheaper. A Hamiltonian path spans all nodes, therefore it corresponds to a spanning tree
in the corresponding undirected graph. Usually, it is not a spanning tree of minimum cost. So,
a minimum spanning tree is surely a lower bound on the cost of any Hamiltonian circuit, even
the optimal one. So, LB(I) = c(X∗). List x contains both the arcs that correspond to each edge

55

56 THEORETICAL EFFECTIVENESS CHAPTER 4

of X∗, and by symmetry both have the same cost as the edge. Therefore, c(x) = 2LB(I). The
Hamiltonian circuit obtained connecting in sequence the nodes visited in pre-order has a cost
c(x′)≤ c(x) thanks to the triangle inequality. In fact, for any path A → . . .→ Z, the edge A → Z
that directly connects its extreme vertices has a cost not larger than the sum of the total cost of
the path. Hence, UB(I) = c(x′)≤ 2LB(I).

∀I ∈ I fA(I)≤UB(I)≤ 2LB(I)≤ 2 f ∗(I)

4.2.3 Tight approximation bounds

An interesting question now is whether there is actually a subset I of instances such that

fA(I) = αA f ∗(I)

that is, if the approximation guarantee is tight or just an upper bound that could possibly be
improved by a more precise analysis. If “the bound is tight” (this is the expression commonly
used to state the property), the study of the instances of I could evaluate whether they are rare or
frequent, explain the weak points of the algorithm and possibly introduce ad hoc modifications
to improve it.

4.2.4 Inapproximability
Not all problems admit approximated algorithms of polynomial complexity (of course, all com-
binatorial optimisation problems can be solved exactly, so they can also be approximated, but
usually in exponential time). The concept of an inapproximable problem, however, is rather
complicated, as it is currently impossible to rule out definitely the existence of an approximation
guarantee for a problem, due to the unsolved P versus NP question.

“Inapproximability” is a short way to say that a problem cannot be approximated unless
NP-complete problems can be solved exactly in polynomial time, a possibility that is left open
for future research. In that case, the approximation guarantee would be α = 1 for all problems
of NP . Such a thing is considered extremely unlikely to happen, but a proof is still missing.
Showing that a problem is “inapproximable”, therefore, amounts to proving that the existence
of an approximation guarantee would imply the possibility to solve in polynomial time an NP-
complete problem.

For example, consider the family of TSP instances on complete graphs with cost function:

ci j =

{
0 ∀(i, j) ∈ A0

1 ∀(i, j) ∈ (N ×N)\A0

that violates the triangular inequality. If any solution of zero cost (f (I) = 0) is found, it means
that the solution is a Hamiltonian circuit made only of edges from A0. So, the noncomplete
graph G(N,A0) has a feasible Hamiltonian circuit. If the optimal solution has a positive cost,
then A0 does not include any Hamiltonian circuit. In short{

f ∗(I) = 0 if A0 contains a Hamiltonian circuit
f ∗(I)≥ 1 otherwise

56

CHAPTER 4 4.3. BEYOND WORST-CASE APPROXIMATION 57

This means that, given any noncomplete graph with arc set A0, one could build a “comple-
tion” with the cost function described above, solve the TSP and determine whether the original
graph contains or not a Hamiltonian circuit. In short, one could solve the TSP in decision form
on a general graph in polynomial time. This is a strongly NP-complete problem and the ex-
istence of a polynomial algorithm implies that P versus NP an unlikely result that scholars
have been trying to prove or disprove since the Seventies. This concerns an exact polynomial
algorithm. What about an approximated one?

Assuming that such an approximation algorithm could exist, it would yield a solution of
cost

∀I ∈ I fA(I)≤ α f ∗(I)

but when the graph has a Hamiltonian circuit of zero cost, necessarily the approximation algo-
rithm would yield a solution of cost

f ∗(I) = 0 ⇐⇒ fA(I) = 0

In other words, if the approximation algorithm finds a zero cost solution, it proves that a zero
cost Hamiltonian circuit exists; when it does not find any, it proves that such a circuit does not
exist, because otherwise the approximation guarantee would be violated. Consequently, also a
polynomial approximation algorithm solves the decision version of the TSP on general graphs,
proving that P =NP .

4.2.5 Approximation schemes
On the bright side, sometimes it is possible to find several approximation guarantees. Exact al-
gorithms, such as the exhaustive one, provide the best possible approximation guarantee αA = 1,
usually in exponential time TA. An approximated algorithm usually provides a worse guarantee
(αa > 1) requiring a shorter time TA.

Instead of a single polynomial algorithm with time TA and guarantee αA, there may be a
complete family of different compromises between efficiency and effectiveness, that improve
the approximation guarantee while increasing the computational complexity. Such a family of
algorithms is called an approximation scheme, and can be seen as a parametric algorithm Aα ,
that allows to choose the guarantee α . An example of this situation is the Knapsack Problem.

4.3 Beyond worst-case approximation
Just as the efficiency, the effectiveness of an algorithm can be measured without resorting to
the worst-case approach. An algorithm could have a very bad worst-case performance, with
no approximation or an approximation α = 1000000, but in practice yield nearly always an
optimal solution. How can we describe this situation? There are two alternative approaches
similar to those used for the complexity and an additional third one.

Parametrisation Instead of dividing the instances only by size, other parameters ki can be
identified and an approximation guarantee depending on ki (not constant) can be found.

Average-case Assuming a probabilistic model for the instances, the expected value of the
approximation factor can be proved to respect a certain threshold. In this case, the algorithm
could perform badly on single instances, but on average it will not.

57

58 THEORETICAL EFFECTIVENESS CHAPTER 4

4.3.1 Randomised approximation
Metaheuristics differ from classical heuristics in that they use randomisation or memory. The
former mechanism is implemented by feeding the algorithm not only with an instance of the
problem, but also with a random seed (typically an integer number). This is used in a pseu-
dorandom number generator to generate other numbers, which will be used to take decisions
inside the algorithm, together with the data of the problem. Changing the random seed, a dif-
ferent sequence of pseudorandom numbers will be generated, and a different solution will be
obtained. Instead of considering the instance of the problem as the outcome of a random exper-
iment, one can investigate the stochastic distribution of the results with respect to the random
seed. In particular, the quality of the solution becomes a random variable, whose properties can
be studied.

So, a randomised algorithm is run not on an instance I, but on a pair (I,ω), where ω is the
random seed, obtaining a value fA(I,ω). The approximation ratio is a function of ω as well
(ρA(I,ω)), so both are random variables. The expected value of the approximation ratio can be
limited by an approximation guarantee:

∀I ∈ I E[ρa(I,ω)]≤ αA

Each single run of the algorithm can violate the approximation αA, but running it algorithm sev-
eral times, the average of the approximation ratio will tend to converge to a value not larger than
the guarantee. Of course, the best approximation ratio will become smaller than the guarantee
faster than the average.

Randomisation could have an impact also on the computational time T (I), but in general
this is not really meaningful: while the decisions taken and their results strongly depend on the
pseudorandom numbers, the number of steps typically is much less influenced.

A randomised approximation algorithm for Max-SAT

Given a CNF, we aim to assign values of truth to the logical variables so as to maximise the total
weight of the logical clauses that are satisfied. A very simple randomised algorithm assigns a
random value to each variable with equal probabilities, 1

2 for true and 1
2 for false. What is the

expected value of the final solution?
Let Cx ⊆ {1, · · · ,m} be the subset of clauses satisfied by solution x. The objective value

f (x) = fA(I,ω) is the total weight of the clauses in Cx and its expected value is

E[fA(I,ω)] = E[∑
i∈Cx

wi] = ∑
i∈C

(wi · I(i ∈ Cx))

where I(i ∈ Cx) is the indicator function of condition i ∈ Cx, equal to 1 when the condition is
true, to 0 when it is false. The properties of the expected value allow to show that

E[fA(I,ω)] = ∑
i∈C

(wi · I(i ∈ Cx)) = ∑
i∈C

(wi ·Pr[i ∈ Cx])

where the probability Pr[i ∈ Cx] is estimated as follows. Suppose that formula i ∈ C has ki liter-
als, and let kmin = mini∈C ki be the minimum number of literals over all clauses. The probability
of satisfying a certain clause i ∈ C is

Pr[i ∈ Cx] = 1−
(

1
2

)ki

58

CHAPTER 4 4.3. BEYOND WORST-CASE APPROXIMATION 59

which can be minorised by a term independent from i

1−
(

1
2

)ki

≥ 1−
(

1
2

)kmin

This means that

E[fA(I,ω)]≥ ∑
i∈C

wi ·

[
1−
(

1
2

)kmin
]
=

[
1−
(

1
2

)kmin
]

∑
i∈C

wi

and since kmin ≥ 1 and ∀I ∈ I f ∗(I)≤ ∑i∈C wi one can obtain1

E[fA(I,ω)]≥
[

1−
(

1
2

)]
f ∗(I) =

1
2

f ∗(I)

Notice that this is an approximation guarantee on the average: in each single run, we could be
very unlucky, even for a long sequence of runs. However, in a sufficient number of runs (that
are very fast, due to the simplicity of the algorithm), the sample mean will tend to approach the
theoretical expected value. And the best value in the sample will be better than that!

1Very strictly speaking, E[fA(I,ω)] ≥ f ∗(I)/2 implies that f ∗(I)/E[fA(I,ω)] ≤ 2, not that E[ρA(I,ω)] =
E[f ∗(I)/ fA(I)] ≤ 2, but the main message of this section is that approximation guarantees of some sort can be
obtained for an average with respect to repeated runs of a randomised algorithm.

59

60 THEORETICAL EFFECTIVENESS CHAPTER 4

4.4 Exercises

4.4.1 Exercise 1
A heuristic algorithm A is applied to an instance I of a minimization problem and finds a solution
of cost fA (I) = 107. Assuming that the optimum value is equal to f ∗ (I) = 100, compute the
absolute difference δ̃A (I), the relative difference δA (I) and the approximation ratio ρA (I).

Solution For minimization problems, the absolute difference is the absolute value of the dif-
ference between the value of the solution found by the heuristic and the value of the optimal
solution:

δ̃A (I) = fA (I)− f ∗ (I) = 107−100 = 7

The relative difference is the ratio between the absolute difference and the value of the
optimum:

δA (I) =
fA (I)− f ∗ (I)

f ∗ (I)
=

107−100
100

= 0.07 = 7%

The approximation ratio is the ratio between the value of the solution found by the heuristic
and the value of the optimal solution:

ρA (I) =
fA (I)
f ∗ (I)

=
107
100

= 1.07

4.4.2 Exercise 2
A heuristic algorithm A is applied to an instance I of a maximization problem and finds a solu-
tion of cost fA (I) = 195. Assuming that the optimum value is equal to f ∗ (I) = 200, compute
the absolute difference δ̃A (I), the relative difference δA (I) and the approximation ratio ρA (I).

Solution For minimization problems, the absolute difference is the absolute value of the dif-
ference between the value of the optimal solution and the value of the solution found by the
heuristic:

δ̃A (I) = f ∗ (I)− fA (I) = 200−195 = 5

The relative difference is the ratio between the absolute difference and the value of the
optimum:

δA (I) =
f ∗ (I)− fA (I)

f ∗ (I)
=

200−195
200

= 0.025 = 2.5%

The approximation ratio is the ratio between the value of the optimal solution and the value
of the solution found by the heuristic:

ρA (I) =
f ∗ (I)
fA (I)

=
200
195

≈ 1.026

4.4.3 Exercise 3
A heuristic algorithm A is applied to an instance I of a minimization problem, whose opti-
mal solution has a cost equal to f ∗ (I) = 30. Assuming that the approximation ratio is equal
to ρA (I) = 1.2, compute the relative difference, the absolute difference and the value of the
solution obtained by the algorithm.

60

CHAPTER 4 4.4. EXERCISES 61

Solution For minimization problems, the relative difference is simply related to the approxi-
mation ratio:

δA (I) =
fA (I)− f ∗ (I)

f ∗ (I)
=

fA (I)
f ∗ (I)

−1 = ρA (I)−1 = 0.2

Therefore, the absolute difference is:

δ̃A (I) = fA (I)− f ∗ (I) = δA (I) f ∗ (I) = 0.2 ·30 = 6

and the value obtained by the algorithm is

fA (I) = f ∗ (I)+ δ̃A (I) = 30+6 = 36

4.4.4 Exercise 4
A heuristic algorithm A is applied to an instance I of a maximization problem, whose optimal
solution has a cost equal to f ∗ (I) = 50. Assuming that the approximation ratio is equal to
ρA (I) = 1.25, compute the relative difference, the absolute difference and the value of the
solution obtained by the algorithm.

Solution For maximization problems, the relative difference is related to the approximation
ratio:

δA (I) =
f ∗ (I)− fA (I)

f ∗ (I)
= 1− fA (I)

f ∗ (I)
= 1− 1

ρA (I)
= 1− 1

1.25
=

1
5
≈ 0.2

Therefore, the absolute difference is:

δ̃A (I) = f ∗ (I)− fA (I) = δA (I) f ∗ (I) = 0.2 ·50 = 10

and the value obtained by the algorithm is

fA (I) = f ∗ (I)− δ̃A (I) = 50−10 = 40

4.4.5 Exercise 5
A heuristic algorithm A for a minimization problem has a constant approximation guarantee
equal to αA = 1.5. Assuming that it is applied to an instance I whose optimal solution has a
value equal to f ∗ (I) = 80, compute the maximum possible value of the solution obtained by
the algorithm.

Can the algorithm obtain the optimal solution for instance I?
Has the algorithm a constant absolute approximation?

Solution By definition, a constant approximation guarantee αA = 1.5 implies that

ρA (I) =
fA (I)
f ∗ (I)

≤ αA = 1.5 for all I

Therefore, for the specific instance considered:

fA (I)≤ αA f ∗ (I) = 1.5 ·80 = 120

61

62 THEORETICAL EFFECTIVENESS CHAPTER 4

However, fA (I) could be better, and even optimal:

fA (I) ∈ [f ∗ (I) ,αA f ∗ (I)] = [80,120]

A constant absolute approximation would require

fA (I)− f ∗ (I)≤ α̃A for all I

but
fA (I)− f ∗ (I)≤ (αA −1) f ∗ (I) for all I

that is not in general a constant (unless f ∗ (I) is limited).

4.4.6 Exercise 6
A heuristic algorithm A for a maximization problem has a constant approximation guarantee
equal to αA = 2. Assuming that it is applied to an instance I obtaining a solution of value
fA (I) = 500, compute the possible values of the optimum.

Solution By definition, a constant approximation guarantee αA = 2 implies that

ρA (I) =
f ∗ (I)
fA (I)

≤ αA = 2 for all I

Therefore, for the specific instance considered:

f ∗ (I)≤ αA fA (I) = 2 ·500 = 1000

Since, of course, the optimum cannot be worse than fA (I) = 500, its possible values fall in the
range:

f ∗ (I) ∈ [fA (I) ,αA fA (I)] = [500,1000]

4.4.7 Exercise 7

The following table reports the result obtained by algorithm A on a benchmark Ī of 8 instances
of a minimization problem. For the sake of simplicity, assume that all instances have optimal
value equal to 100.

Ī I1 I2 I3 I4 I5 I6 I7 I8
fA 104 100 105 120 101 106 101 110

Discuss the approximation properties of algorithm A, in particular whether A is exact, 1.1-
approximated or 2-approximated.

Solution Algorithm A is certainly not exact, as several results are strictly worse than the opti-
mum. The worst approximation ratio on the benchmark is

max
I∈Ī

ρA (I) = max
I∈Ī

fA (I)
f ∗ (I)

= 1.2

so that A cannot be 1.1-approximated.
It could be 2-approximated, or have any approximation guarantee αA ≥ 1.2. Proving it

requires to know the results on the instances not belonging to the benchmark, or to know that
the benchmark includes the instance with the worst approximation ratio overall.

62

CHAPTER 4 4.4. EXERCISES 63

4.4.8 Exercise 8

The following table reports the result obtained by algorithm A on a benchmark Ī of 8 instances
of a minimization problem. For the sake of simplicity, assume that all instances have optimal
value equal to 100.

Ī I1 I2 I3 I4 I5 I6 I7 I8
fA 120 100 105 180 130 160 100 110

Discuss the approximation properties of algorithm A, in particular whether A is exact, 3/2-
approximated or 2-approximated.

Solution Algorithm A is certainly not exact, as several results are strictly worse than the opti-
mum. The worst approximation ratio on the benchmark is

max
I∈Ī

ρA (I) = max
I∈Ī

fA (I)
f ∗ (I)

= 1.8

so that A cannot be 3/2-approximated.
It could be 2-approximated, or have any approximation guarantee αA ≥ 1.8. Proving it

requires to know the results on the instances not belonging to the benchmark, or to know that
the benchmark includes the instance with the worst approximation ratio overall.

4.4.9 Exercise 9

The following table reports the result obtained by algorithm A on a benchmark Ī of 8 instances
of a maximization problem. For the sake of simplicity, assume that all instances have optimal
value equal to 10.

Ī I1 I2 I3 I4 I5 I6 I7 I8
fA 10 10 5 8 0 9 10 7

Discuss the approximation properties of algorithm A, in particular whether A is exact, 3/2-
approximated or 2-approximated.

Solution Algorithm A is certainly not exact, as several results are strictly worse than the opti-
mum. The worst approximation ratio on the benchmark is

max
I∈Ī

ρA (I) = max
I∈Ī

f ∗ (I)
fA (I)

= +∞

In other words, there is no maximum. No approximation guarantee exists in this case: on
instance I5, algorithm A provides the worst possible solution.

63

64 THEORETICAL EFFECTIVENESS CHAPTER 4

64

CHAPTER 5

Empirical performance evaluation

The a priori analysis of the effectiveness of an algorithm is usually much more complicated
than that of its efficiency, for several reasons. First, the steps of an algorithm have an immediate
relation to its cost, but not to the quality of its result. The average-case analysis (or the analysis
of randomised algorithms) requires statistical tools, that are usually far from being simple. Even
if the theoretical analysis is useful, its results may be not very representative in practice, if the
assumptions are not met by the actual instance considered: for example, if the worst case is not
representative of what actually happens, the analysis will give an approximation much worse
than what is observed in practice. This is rarer for the computational cost.

The experimental analysis of the efficiency and the effectiveness of an algorithm, that is
of the computational time (not space, usually) and of the quality of the result, is performed
by choosing a benchmark of instances and measuring quantitatively the performance of the
algorithm on such instances.

5.1 Introduction to experimental analysis

The experimental method is the typical approach that is used in science. Mathematics is an
exception, as it is more based on formal approaches, but algorithms are an exception in the
exception, as only some properties of the performance of an algorithm can be proved and in-
teresting information can be extracted also from their practical performance. The experimental
analysis of algorithms is an empirical island in a sea of theoretical formalism!

The experimental approach consists in observing the reality and making some assumption
on how the reality “works” by formulating a model. Then, a sequence of steps is repeated until
a satisfactory model is obtained:

1. design computational experiments to validate the model

2. perform the experiments and collect their results

3. analyse the results with quantitative methods

4. revise the model based on the results

5.1.1 Models
What is a model in the context of algorithms? In physics, a model is a law that rules the be-
haviour of phenomena. By analogy, in algorithmics a model is a law that is supposed to rule
the behaviour of an algorithm. Such laws may concern the relation between the computational

65

66 EMPIRICAL PERFORMANCE EVALUATION CHAPTER 5

complexity and the size of the instances, or some other parameter, such as the maximum de-
gree of the vertices of the graph and so on. These assumptions are made on the basis of the
knowledge of the algorithm, but also of a trend exposed by the empirical measurements.

Experimental analysis aims to obtain compact indices of efficiency and effectiveness of an
algorithm, in order to sort and compare them by some measure of quality. Also, experimental
analysis can be used to describe the relation between the indices and the parametric values of
the instances (such as the size n etcetera) and to suggest improvements on the algorithms.

5.1.2 Benchmarks
The main point in the experimental evaluation of an algorithm is the use of a benchmark
sample. Usually, problems are made of infinitely many instances, so not all of them can be
tested and a meaningful subset of them has to be chosen instead: this subset is the benchmark
sample. “Meaningful” means that the chosen instances should represent all the different features
that could be relevant for the laws that rule the algorithm. For example, a benchmark sample
should include instances of different sizes because that is obviously interesting in terms of the
computational complexity and possibly in terms of the quality of the solution, as well. Other
structural features of the instances that may be relevant are: for graphs, the density, degree,
diameter, connectivity and a lot of other indices; for matrices, the density, the ratio between
rows and columns; for logical functions the number of literals per clause, the ratio between the
number of clauses and variables, and so on. Another important point is that instances usually
come from “different sources” which can influence their characteristics: some arise from real-
world examples, others from random, artificial or transformative generation, and others from a
probabilistic distribution assumed a priori.

An important and frequently overlooked aspect is that it would seem natural to introduce a
concept of equiprobable benchmark, meaning that the instances are extracted from the over-
all set assigning them a uniform probability. However, this approach makes no sense, because
infinite sets do not admit equiprobability. This is not a course on statistics, but an intuitive
reason is that any finite benchmark sample has a largest instance (in term of size), and therefore
leaves totally unrepresented the infinite subset of instances that are larger than all the instances
in the benchmark. On the contrary, we can impose equiprobability on finite classes of instances.
Additionally, benchmark instances should not be too easy to solve as the aim is to learn some-
thing when solving them, but also not too hard because solving them would take a lot of time,
and therefore severely reduce the number of instances. Finally, they should have a structure that
matches a practical application, if one exists and is of interest.

Reproducibility The scientific method requires reproducible and controllable results. After
an experiment is performed, other people should be to repeat the experiment and obtain the same
results. So, it is necessary to use publicly available instances (or generate new instances and
make them publicly available), to specify all implementation details, the programming language
and the compiler used to implement algorithm, and technological aspects such as the machine
used, the OS and the available memory.

5.1.3 Comparing heuristic algorithms
A basic principle in the comparison of algorithms is that an algorithm is better than another
one only if it obtains betters results while requiring smaller time. Slow algorithms with good
results and fast algorithms with bad results cannot be compared in a meaningful way. The

66

CHAPTER 5 5.1. INTRODUCTION TO EXPERIMENTAL ANALYSIS 67

computational time can be neglected in some specific situation, such as when no comparison
is performed or when the computational time for the algorithms compared is intrinsically more
or less the same for structural reasons- For example, the two algorithms could be the same but
for different values of numerical parameters, or for the use of secondary procedure that use a
negligible part of the time.

5.1.4 Statistical models of performance
The performance of an algorithm is described with a statistical model. The idea is to model
the execution of an algorithm as a random experiment, whose results depend on the specific
outcome extracted from a sample space. The word “outcome” is used here in the statistical
sense, as the elementary situation arising from the random extraction. In the simpler models,
the outcome is the specific instance I ∈ I or the specific finite benchmark sample of instances

I ⊂ I

on which the algorithm is run. Considering the case of a single instance, the results of the
random experiment are the computational time TA(I) and the relative difference δA(I). Both
are random variables that describe the performance of algorithm A. Instead of considering the
values of computational time and relative difference on all possible instances of the problem,
we will describe the statistical properties of the random variables TA(I) and δA(I), obtaining a
statistical description of the performance of the algorithm.

Notice that describing δA(I) requires to know the value of the optimum for I, f ∗(I). If
possible, an exact algorithm should be used to compute it. If this is not possible (because
the problem is computationally hard and the instances too large), the optimum f ∗(I) can be
estimated from below or above, trying to achieve in both cases the best possible estimate. Let
LB(I) denote an underestimate and UB(I) an overestimate of the optimum:

LB(I)≤ f ∗ (I)≤UB(I)

Considering the reciprocal values:

1
LB(I)

≥ 1
f ∗ (I)

≥ 1
UB(I)

Multiplying by the value fA (I) obtained by algorithm A on instance I, and subtracting 1:

fA (I)
LB(I)

−1 ≥ fA (I)
f ∗ (I)

−1 ≥ fA (I)
UB(I)

−1

which is strictly related to the relative difference. In fact:

fA (I)
f ∗ (I)

−1 =

δA (I) (minimization) ⇒ fA (I)−UB(I)

UB(I)
≤ δA (I)≤

fA (I)−LB(I)
LB(I)

−δA (I) (maximization) ⇒ UB(I)− fA (I)
UB(I)

≤ δA (I)≤
LB(I)− fA (I)

LB(I)

and therefore
| fA (I)−UB(I)|

UB(I)
≤ δA (I)≤

| fA (I)−LB(I)|
LB(I)

which means that, even if the relative difference is unknown, a range of possible values can be
determined1.

1Extended to a whole benchmark of instances, this range yields a region estimate for the diagrams described in
the following.

67

68 EMPIRICAL PERFORMANCE EVALUATION CHAPTER 5

5.2 A posteriori efficiency evaluation

5.2.1 Run time distribution diagram
We first describe the performance with respect to the computational time. A basic descriptive
tool is the so-called Run Time Distribution (RTD) diagram, that plots the distribution function
of the time TA(I) required to solve an instance I in the benchmark sample I (ideally, a diagram
referring to the whole instance set I could be defined, but never drawn in practice, for problems
with an infinite set of instances).

This diagram plots the cumulative distribution function of TA(I):

∀t ∈ R FTA(t) = Pr[TA(I)≤ t]

that is the probability that the random variable TA(I) (the time used to solve instance I with algo-
rithm A) has a value not larger than a parametric value t for all possible t. Of course, this diagram
depends on the specific benchmark considered, but becomes more and more meaningful for the
whole problem as the benchmark becomes more representative. Since the computational time
is always positive, the probability is 0 for all t ≤ 0; as t grows, the probability grows from 0 to
1, because the number of solved instances cannot decrease giving more time to the algorithm.
When the time is enough to solve also the hardest instance of the benchmark, the probability
reaches 1.

Figure 5.1 shows an example, that deserves some discussion to understand the practical
meaning of this diagram.

Figure 5.1: An example of RTD diagram.

This profile raises from a zero probability of solving an instance in a time ≤ 0.001s (a
thousand of a second) to probability 1 for a time slightly larger than 10s. So, on the given
benchmark the computational time is between 0.001s and slightly more than 10s. The vertical
coordinate for t = 1s, that is 0.35, is the fraction of instances solved by the algorithm in a time
not larger than one second. So, about one third (≈ 35%) of the instances are solved in at most
one second, while about two thirds are solved in a time between one second and around twenty
seconds.

Notice that the time axis is in logarithmic scale: regularly spaced times are obtained multi-
plying the previous time by ten. In fact, the computational time ranges on a huge set of values
(three orders of magnitude).

68

CHAPTER 5 5.2. A POSTERIORI EFFICIENCY EVALUATION 69

Figure 5.2: Construction of an RTD plot.

Of course, the computational time strongly depends on the size of the instances. So, it
makes little sense to draw such a diagram on a benchmark including instances of very different
sizes. In that case, in fact, it is rather obvious that small instances will be solved quickly and
large instances will be solved slowly. The diagram is not adding any useful information: it de-
scribes the structure of the benchmark rather than the algorithm itself. The solution is to draw
the diagram for benchmark samples In with fixed n (for example, graphs with exactly 1000
vertices). If the diagram spreads over a wide range of computational times even for a uniform
instance size, this is more interesting. Some other parameter could be influencing the efficiency
(such as the density of the graphs), and the benchmark sample could be constructed by fixing
that parameter as well. If all influential parameters are identified and fixed, all instances are
solved requiring the same time, and the RTD diagram degenerates into a step function. Alterna-
tively, the computational time of the algorithm could actually be strongly variable, depending
on very specific factors. This is not very common for heuristics, but typically occurs for exact
algorithms of exponential complexity, in which even minor aspects can be magnified by the
combinatorial explosion of the number of solutions.

Properties and construction of the RTD diagram

The RTD is by definition monotone and nondecreasing. It is also a stepwise and right-continuous
(so discontinuous) function, as shown in Figure 5.2. In fact, corresponding to each time required
by one or more instances, the diagram increases abruptly by a step proportional to the number of
instances solved. Considering the picture, no instance is solved in a time smaller than t = 0.01,
so F(t) = 0, but at t = 0.01 at least one instance is solved, namely 1/20th of all instances in
the benchmark, so that F(t) = 0.05 for all t ∈ [0.01,0.1). The number of new instances solved
can be inferred multiplying the height of each step by the overall cardinality of the benchmark:
if I = 20, a step of 0.05 (as in t = 0.01) corresponds to a single new instance solved, while a
step of 0.15 (as in t = 1) corresponds to three new instances. If I = 40, these values must be
doubled.

In order to build the RTD diagram, this steps are to be followed:

1. run the algorithm on each instance I ∈ I

2. build the set TA(I) = {TA(I) : I ∈ I}

3. sort TA(I) by nondecreasing values t1 ≤ ·· · ≤ t|I|

69

70 EMPIRICAL PERFORMANCE EVALUATION CHAPTER 5

Figure 5.3: An example of a scaling diagram.

4. plot the points (t j,
j

|I|) for j = 1, · · · , |I|, keeping only the maximum value of j if several
t j coincide.

5.2.2 Scaling diagram
The previous analysis makes sense only if all the parameters of the instances that strongly
influence the computational time (first of all, the size) are fixed. Therefore, a description of the
depencency of the run time on such parameters is needed. This can be done with the scaling
diagram, that represents how the computational time scales with respect to the size (or other
parameters) of the instance. In other words, it describes the dependence of TA(I) on the size n
of I.

The diagram is built by choosing a sequence of values for the size n and generating a bench-
mark sample In for each value. Then, the algorithm is applied to each I ∈ In for all n and the
points (n(I),T (I)) can be plotted. To simplify the diagram, especially if the times for equal
sizes are very similar, a single point (n,∑I∈In

T (I))/|In|) can be plotted for each value of the
size, computing the arithmetic mean of the run times. Once this is done, an interpolating func-
tion must be assumed. This is usually suggested by the theoretical analysis, that provides an
upper bound on the run time, associated to the hardest instances, and with undefined multiply-
ing coefficients. The empirical analysis provided by the scaling diagram estimates a posteriori
the average-case complexity and determines analitically the multiplying factors. It is quite ob-
vious that this empirical average-case complexity must be better than the theoretical worst-case
complexity. If it is found otherwise, then either the theoretical analysis is wrong or something
in the implementation does not match the theoretical algorithm.

Choosing the interpolating function

The interpolating function can be suggested by the theoretical analysis on the algorithm, but
also by a graphical manipulation on the plot, based on the use of logarithmic scales. Our
eyes, in fact, are unable to interpret nonlinear functions with precision, but clearly spot linear
trends. An algorithm typically shows an increasing profile with an upward concavity, due to
the time increasing faster than the size. However, it is hard to distinguish whether the profile
is exponential or polynomial, and even harder to guess the specific function in each of the two
classes.

However, if an algorithm is exponential, using a semilogarithmic scale, that is keeping the
regular scale on the horizontal axis and a logarithmic scale2 on the vertical axis allows to say

2Any base is good, but base 10 is the most familiar one.

70

CHAPTER 5 5.3. A POSTERIORI EFFECTIVENESS EVALUATION 71

that
log10 T (n) = α ·n+β ⇐⇒ T (n) = 10β 10α·n

So, the plot becomes linear in this scale if and only if it is exponential in the original diagram.
The two parameters α and β can be estimated (or calculated with methods such as the least
squares), providing a detailed approximation of the “real” complexity function. Of course, this
approximation neglects additional or multiplicative terms of minor complexity.

If, instead, an algorithm is polynomial, representing it on a logarithmic scale on both axes
allows to say that

log10 T (n) = α log10 n+β ⇐⇒ T (n) = 10β nα

In this case, the coefficient α directly provides the degree of the polynomial. The coefficient 10β

measures the coefficients left unknown by the theoretical analysis, but also the technological
coefficients that transform the number of elementary operations into a physical time in seconds.
Therefore, β depends on the machine used, whereas α should not. Also in this case, other terms
of minor complexity are ignored, so the estimate is approximate (besides the approximation
introduced by the fact that it refers to a specific benchmark sample).

5.3 A posteriori effectiveness evaluation

5.3.1 Solution quality distribution diagram
The statistical model of effectiveness is similar to that of efficiency. The Solution Quality Dis-
tribution (SQD) diagram plots the cumulative distribution function of δA(I) on a benchmark I:

∀α ∈ R FδA
(α) = Pr[δA(I)≤ α]

In words, the SQD diagram shows the probability that the relative difference obtained by the
algorithm on the instances of the benchmark is smaller than or equal to a value α for any
possible real α . We remind that, if the optimal values are unknown, the relative difference is
overestimated or underestimated, and therefore the SQD obtained is only an approximation of
the true one. If both estimates are known, the true SQD is somewhere in the region between the
two estimated diagrams.

Figure 5.4: An example of SQD diagram.

The SQD diagram in Figure 5.4 states that the algorithm investigated never obtains a relative
difference smaller than 7.5% on the benchmark. A relative difference ≤ 8% can be obtained in
≈ 12% of the instances. Finally, all instances can be solved with a gap at most equal to 10%.

71

72 EMPIRICAL PERFORMANCE EVALUATION CHAPTER 5

Properties and construction of the SQD diagram

Figure 5.5: Construction of an SQD plot.

The SQD is a monotone nondecreasing function, as accepting worse gaps allows to solve
more problems. It is equal to 0 for α < 0 (but not necessarily for α = 0!), and equal to 1
for α ≥ maxI∈I δ (I), because it is not possible to have a negative gap and the maximum gap
is associated to the hardest instance in the benchmark. Though it is often approximated as a
continuous profile, the SQD diagram is stepwise and right-continuous (see Figure 5.5), as the
graph steps up at each new value of δA(I). As in the RTD diagram, the number of instances in
the benchmark determines the smallest step.

For an exact algorithm, which solves all instances to optimality, the SQD is a step function
that reaches cumulative frequency 1 at α = 0%. For an α-approximated algorithm, the plot
certainly reaches a cumulative frequency equal to 1 when the relative difference α corresponds
to the approximation ratio guarantee.

The SQD diagram is built in the same way as the RTD:

1. run the algorithm on each instance I ∈ I

2. build the set ∆a(I) = {δA(I) : I ∈ I}

3. sort ∆A(I) by nondecreasing values δ1 ≤ ·· · ≤ δ|I|

4. plot the points (δ j,
j

|I|) for j = 1, · · · , |I|, keeping only the maximum value of j if several
δ j coincide.

5.3.2 Parametric SQD diagrams
Meaningful RTD diagrams usually require to fix the size of the instances. This is not obviously
required by the SQD diagram, since the quality of solutions may not depend so strongly on the
size of the instance. Therefore, the SQD can be meaningful also when drawn with respect to
the whole benchmark. Still, there may be some interest in analysing fixed-size subbenchmarks,
obtaining a different profile for each one.

Figure 5.6 shows an example in which different SQD diagrams are drawn on the same scale,
parameterised by the size of the instances in each subset of the benchmark. In this example,
the gap tends to grow as the size of the instances grows. This is not always the case: there

72

CHAPTER 5 5.3. A POSTERIORI EFFECTIVENESS EVALUATION 73

Figure 5.6: An example of parametric SQD diagram.

are lots of problem in which getting larger instances gives smaller relative gaps. In fact, the
relative difference is the ratio of the absolute gap to the optimal value: large instances tend to
have larger absolute gaps, but also larger optimal values; if the latter prevails, the relative gap δ

decreases overall.

5.3.3 Algorithm comparison with SQD diagrams
We have already stated that an algorithmic comparison can be performed only if the run time
is, at least nearly, the same for all instance of the considered benchmark. Let us assume that
we are in this case. An algorithm A2 strictly dominates an algorithm A1 when it obtains better
results on all instances:

∀I ∈ I δA2(I)≤ δA1(I)

This is a natural definition of dominance, but very rare in practice. It usually happens only on
trivial cases, when A2 “includes” A1, that is first computes the same solution and then improves
it.

A weaker, but more useful, definition is the so called probabilistic dominance of A2 on A1,
that is based on the distribution functions, or the SQD diagrams of the two algorithms:

∀α ∈ R (α > τ) =⇒ (FδA2
(α)≥ FδA1

(α))

An algorithm shows probabilistic dominance on another when the SQD diagram of the former
is “above” that of the latter: it achieves the same gap more frequently. Equivalently, the former
is on the left of the latter: an equal subsample of the best instances (the best half, for example)
corresponds to a better gap.

Figure 5.7 shows a situation in which two algorithms do not dominate each other. Yet, they
are quite different: the quality of the results for A1 is more dispersed than that of A2, as there
are both better and worse gaps. In this case, one can say that A1 is less “robust” than A2, but
choosing one or the other is legitimate, based on whether one adopts an optimistic or pessimistic
view.

5.3.4 Position indices and boxplots
The previous descriptions take a lot of space, while sometimes it is useful to describe the per-
formance of an algorithm in a compact way, possibly even with a single number. This can be

73

74 EMPIRICAL PERFORMANCE EVALUATION CHAPTER 5

Figure 5.7: An example of SQD-based comparison.

done (for the relative difference: the run time is already described by the interpolating function)
with statistical indices. In particular, classical statistical indices of position, such as the sample
mean (the arithmetic mean of all measured values)

δ A =
∑I∈I δA(I)

|I|

and of dispersion, such as the sample variance

σ
2
A =

∑I∈I(δA(I)−δ A)
2

|I|

can be used in this context. However, these classical indices tend to be very influenced by
outliers, that is instances on which the algorithm is very good or very bad. For example,
suppose that an algorithm hits 90% of the times the optimum and 10% of the time a solution
ten times larger than the optimum (that is, a percent gap of (10 f ∗− f ∗)/ f ∗ = 900%). This is
clearly an outlier: the algorithm is quite unstable, but not so bad! However, the corresponding
sample mean of the gap is 0 ·90%+10 ·900% = 90%, suggesting that on average the algorithm
provides solutions that cost nearly twice the optimum.

So, sometimes, indices which are more stable with respect to the outliers are used, such as
the sample median and suitable sample quartiles.

Boxplots

The median and all quartiles can be represented graphically with a boxplot (or box and whiskers
diagram).

The example of Figure 5.8 represents a benchmark of 20 instances, in which the relative
difference ranges from ≈ 4% to ≈ 11.5%, that are the best and the worst value, respectively.
They are also known as zero-th and fifth quartile. The first quartile, or lower quartile, is a value
above one quarter and below three quarters of the elements. The median, or second quartile
is a value above half and below half of the elements. The third quartile, or upper quartile, is
a value above three quarters and below one quarter of the elements. The exact definitions of
these numbers are not perfectly standard: different books and softwares adopt slightly different
definitions.

If the sample consists of an odd number n of elements (δ1, . . . ,δn), the median is the value of
the central one: δ(n+1)/2. In a sample made of an even number of elements, a possible definition

74

CHAPTER 5 5.3. A POSTERIORI EFFECTIVENESS EVALUATION 75

Figure 5.8: An example of boxplot.

is the midpoint between the two central elements: δn/2 + δn/2+1, but any intermediate value
between them is actually a defensible option. Following the same line, a possible definition of
the first quartile is to compute (n+ 1)/4 and interpolate between δ⌈(n+1)/4⌉ and the following
element according to the fractionary part of (n+1)/4; in the same way, the third quartile can be
computed interpolating between δ⌈3(n+1)/4⌉ and the following element based on the fractionary
part of 3(n+1)/4.3 So, in a benchmark of 20 instances, the lower quartile is between the fifth
and the sixth element, because (n+ 1)/4 = 5.25. In the precise definition, is is at one quarter
of the distance from the fifth element and three quarters from the sixth, because the fractionary
part is 0.25. The median is bewteen the tenth and eleventh element (for example, in the middle
point), because (n+1)/2 = 10.5. The upper quartile is between the fifteenth and the sixteenth
element (closer to the latter, to be precise), because 3(n+1)/4 = 15.75.

The boxplot diagram is composed by a rectangle whose borders correspond to the first and
third quartile, with a line corresponding to the median. Two other lines (the “whiskers”) connect
the rectangle to the values of the minimum and maximum. The boxplot gives both position and
dispersion of the benchmark, since all elements fall between the minimum and the maximum,
half of them fall inside the box, half outside, half before the median and half after, a quarter
between each pair of consecutive quartiles.

The boxplot diagram is a simplified version of the SQD, as it reports five points of the
overall profile. It is therefore possible to draw a boxplot starting from an SQD diagram and
to approximately reconstruct the SQD diagram starting from the boxplot (see the exercises in
Section 5.7). In fact, the five quartiles identify four rectangular “zones” in which the SQD
diagram is confined, but they do not provide exact points, except for the minimum and the
maximum.

As two algorithms can be compared using the SQD, they can be compared using boxplots,
as well. Of course, since the description is less precise, less information can be extracted. Fig-
ure 5.9 shows an example with 8 boxplots that represent the relative difference of 8 algorithms
on a benchmark sample. The circles represent outliers: they are extracted from the population
before drawing the boxplots, but reinserted to complete the available information. Some in-

3I have still to check that this definition is the one adopted in the exercises. Anyway, any number in the correct
range is acceptable.

75

76 EMPIRICAL PERFORMANCE EVALUATION CHAPTER 5

teresting conclusion can be drawn from the picture. For example, the boxplots of A7 and A8
are completely separated: this means that algorithm A7 has values better than A8 on all the in-
stances. This is the definition of strict dominance. Notice that having separate boxplots is a
sufficient, but not necessary, condition for strict dominance: an algorithm could have slightly
better results on all instances, with a boxplot only slightly lower.

Figure 5.9: Algorithm comparison with boxplots.

As for probabilistic dominance, the boxplots once again provide necessary conditions or
sufficient conditions. A necessary condition is that each of the five quartiles for an algorithm be
not larger than the corresponding quartile for the other algorithm. For example, each quartile
of A2 is below the corresponding quartile of A3. However, one instance of A2 could sit on the
lower whisker (the minimum) while all the other instances of the first quarter could be close
to the first quartile (they sit on the upper bound); the opposite could happen for A3, forbidding
probabilistic dominance. On the other hand, a sufficient condition can be formulated if each
quartile of an algorithm is below the previous quartile of the other algorithm. In this case, in
fact, the four “zones” of the first boxplot are below the corresponding zones of the other, and
this guarantees that the first SQD diagram is below the second.

5.4 Relation between quality and computational time

A heuristic algorithm is better than another one when it gives better results in shorter time.
Otherwise, none of the two algorithms dominates the other. In general, different algorithms
take different times, so it is actually difficult to compare them. This is in particular complex for
the classical algorithms taught in basic courses, which generate a single solution immediately
before their termination. However, many algorithm (all metaheuristic ones, in particular, but
also heuristic algorithms such as the exchange heuristics) find several solutions during their
execution, and just return the best one. This means that the algorithm can be stopped in advance,
still obtaining a feasible solution (if the termination is not too premature). Therefore, two
algorithms can be stopped at the same time and compared. In turn, this also means that the
relative difference depends not only on the instance, but also on the actual computational time.
The relative difference, therefore, should be defined as δA(t, I), that is the relative difference
achieved by algorithm A at time t on instance I. By convention, if at time t algorithm A has not
found yet a feasible solution, then δA(t, I) = +∞.

76

CHAPTER 5 5.4. RELATION BETWEEN QUALITY AND COMPUTATIONAL TIME 77

Considering the plot with respect to t for a fixed instance I, δA(t, I) is a stepwise monotone
nonincreasing function, since more time yields a better solution. After the regular termination,
for t ≥ T (I), the function is constant.

Randomised algorithms

Considering a metaheuristic algorithm with random steps, the relative difference is also a func-
tion of the random seed ω , so the gap should be defined as δA(t, I,ω). When testing such an
algorithm, therefore, ther are two random elements: the instance I and the random seed. While
testing the algorithm, these two factors can be combined or kept separated. For example, an
experiment can solve a fixed instance I with a batch of seeds Ω; another experiment can fix
ω (running the algorithm in a deterministic way), and solve a sample of instances I. The re-
sults with respect to ω are usually summarised providing both the minimum relative difference
δ ∗

A(I, t) associated with the total time |Ω|t and the average relative difference δ A(I, t) with the
single-run time t.

5.4.1 A classification of algorithms
It is now possible to build a classification of algorithms for combinatorial optimisation prob-
lems, based on the relation between their runtime and solution quality. In my personal opinion,
the names of the classes are quite hard to remember and not very clear, but they are used at least
in some community, and the basic ideas are, on the contrary, clear and useful.

Classification with respect to optimal solutions

All algorithms for combinatorial optimisation problems can be divided into the following three
classes.

Complete algorithms A complete algorithm, more commonly denoted as exact algorithm
returns a solution with relative difference δA(I, t) = 0, that is an optimal solution, in finite time
for all the instances of the problem. Formally:

∀I ∈ I ∃tI ∈ R+ ∀t ≥ tI : δA(I, t) = 0

Probabilistically approximately complete algorithms Randomised algorithms do not pro-
vide an optimal solution in a specific finite time, but the probability to find one does not decrease
as time passes, and possibly increases converging to certainty. A probabilistically approxi-
mately complete algorithm has a probability of getting a relative difference equal to zero that
grows up to one as time goes up to infinity, for all instances. Formally:

∀I ∈ I lim
t→+∞

Pr[δA(I, t) = 0] = 1

where the probability refers to the random seed ω ∈ Ω, since the property holds for every fixed
instance I ∈ I. The idea is that, sooner or later, such an algorithm will find the optimum of any
instance. It is a rather strange property and its utility can be questionable, given that a com-
binatorial optimisation problem always admits an exhaustive algorithm that finds the optimum
certainly in finite time. Finding the optimum very likely in an infinite time does not sound as
big news. However, it is an interesting theoretical property to supports the choice of specific

77

78 EMPIRICAL PERFORMANCE EVALUATION CHAPTER 5

randomisation mechanisms, and from the practical point of view, the idea is that the conver-
gence could be fast enough to make the probability close to one in a time much smaller than the
exponential time required by the exhaustive algorithm. Lots of randomised metaheuristics can
be proved to enjoy this property.

Essentially incomplete algorithms An essentially incomplete algorithm is truly heuristic,
with none of the previous guarantees: for some instances I ∈ I its probability to find the opti-
mum is strictly lower than 1, even as the runtime approaches infinity. Formally:

∃I ∈ I : lim
t→+∞

Pr[δA(I, t) = 0]< 1

Most constructive and exchange heuristics fall within this class. In particolar, for deterministic
algorithms, there is no random seed, and the “probability” becomes 1 for the instances solved
exactly and 0 for the other instances.

Classification with respect to approximated solutions

A more general classification, based on the same concepts, can be introduced by replacing the
search for optimal solutions with the search for approximation guarantees. One just replaces 0
with a threshold α in the three previous definitions.

An α-complete algorithm admits, for each instance I ∈ I, a time tI fter which the algorithm
returns a solution with relative difference ≤ α . This is just an equivalent way to define an
α-approximated algorithm.

A probabilistically approximately α-complete algorithm finds, for each instance I ∈ I,
an α-approximated solution with probability converging to 1 as the runtime approaches infinity.

Finally, an essentially α-incomplete algorithm admits some instance I ∈ I such that an α-
approximated solution can be found only with probability strictly smaller than 1, even as time
approaches infinity.

5.5 Complete performance diagrams
Instead of considering computational time and solution quality as separate aspects, one can
build diagrams that describe them together, showing their trade-offs. These diagrams depend
on two parameters: t is the upper threshold on the runtime, related to the efficiency of the
algorithm; α is the upper threshold on the relative difference, related to the effectiveness of the
algorithm.

We therefore define the success probability πA,n(α, t) as the probability for algorithm A to
find in a time not larger than t a solution with a gap not larger than α on an instance of size n:

πA,n(α, t) = Pr[δA(I, t)≤ α|I ∈ In,ω ∈ Ω]

where the probability is expressed with respect to both possible sources of randomisation, that
are the choice of the instance (with a fixed size, because that influences strongly the runtime)
and the choice of the random seed (if the algorithm is randomised).

As represented in Figure 5.10, this diagram is three-dimensional, as it depends on two vari-
ables, the relative difference and the time.

Three auxiliary families of diagrams can be extracted from it by “cutting” the surface along
planes orthogonal to one of the three axes: quality, time and probability.

78

CHAPTER 5 5.5. COMPLETE PERFORMANCE DIAGRAMS 79

Figure 5.10: An example of success probability diagram

5.5.1 Qualified run time distribution diagrams
The first parametric family includes the qualified run time distribution diagrams, in which a
quality level α is fixed and the profile considered is the intersection of the corresponding plane
with the overall surface (see Figure 5.11).

Figure 5.11: An example of QRTD diagram.

The practical meaning of this diagram is that, if one aims to obtain a certain quality (ex-
pressed by α), the plot shows the probability of reaching such a level of quality for each given
runtime. For example, in an exact algorithm the diagram corresponding to α = 0 reaches prob-
ability 1 in a suitable finite time. In an α-approximated algorithm, optimality may never be
reached, so that diagram could stop below 1, but all diagrams associated to values α ≥ α reach
1 in finite time. Finally, the α-incomplete algorithms have diagrams that do not reach 1 for any
α ≤ α .

5.5.2 Timed solution quality distribution diagrams
The second parametric family includes the timed solution quality distribution diagrams, in
which a maximum time t is fixed and the profile considered is the intersection of the corre-
sponding plane with the overall surface (see Figure 5.12).

The practical meaning is that, given a certain available time, one will have a certain proba-
bility of reaching each possible solution quality. For example, the diagram of an exact algorithm
will be a step functions in α = 0, provided that t is not smaller than the runtime of the algorithm.
If the algorithm is α-approximated, all diagrams with t not smaller than the runtime reach 1 in

79

80 EMPIRICAL PERFORMANCE EVALUATION CHAPTER 5

Figure 5.12: An example of TSQD diagram.

α = α . If the algorithm is probabilistically approximately α-complete, the diagrams converge
to 1 in α = α as t increases. Finally, if the algorithm is α-incomplete, all diagrams remain
below 1 in α = α .

5.5.3 Solution quality statistics over time diagrams

Finally, the solution quality statistics over time diagrams draw the level lines associated to
different quantiles, as represented in figure 5.13.

Figure 5.13: An example of SQT diagram.

These diagrams are less straightforward in their meaning. Suppose that we are interested in
the median of the result obtained for different instances and, if used, random seeds. In other
words, we want results that hold at least half of the time. The profile considered is the intersec-
tion of the corresponding plane with the overall surface (see the dotted line in Figure 5.13), and
shows the possible compromises between time and quality for the best half of the cases. For
example, an optimal solution can be found (half of the times) in at most 20 seconds, whereas
a worse quality (up to a 0.4% gap) has to be accepted for shorter runs. If one wants a stronger
guarantee, one can consider a larger quantile: the continuous line describes the trade-off holding
for 90% of the instances (and random seeds).

80

CHAPTER 5 5.6. WILCOXON TEST 81

5.6 Wilcoxon test
SQD diagrams and boxplots allow to compare algorithms, but such comparisons are intrinsi-
cally qualitative, unless probabilistic or strict dominance can be proved. Statistical tests can be
used to quantitatively evaluate the significancy of the empirical difference between the perfor-
mance of two algorithms on a benchmark sample. In the following, we consider Wilcoxon’s
signed-rank test, which focuses on the relative effectiveness of two algorithms. Many other
tests exist (and could possibly give different results: all results are probabilistic in nature, of
course). Moreover, some tests focus on different aspects. For example, the Kolmogorov-
Smirnoff test determines whether the SQD of two algorithms are significantly different, without
determining if one of them is better than the other: the two profiles in Figure 5.7, are probably
different according to Kolmogorov-Smirnoff, but not to the Wilcoxon test.

Statistical tests are based on formulating a hypotesis H0, called null hypotesis, and com-
puting the probablity to observe a certain empirical behaviour under the condition that the null
hypotesis is true. If that probability is very low, we reject the null hypothesis, even if it could
still be true. More than rejecting or accepting (in a binary way), one should think of trusting
more or less the conclusion suggested by the experiments.

The application of WIlcoxon’s test to the comparison of algorithms assumes as a null hy-
potesis that two algorithms A1 and A2 are equivalent, and therefore fA1 will be half the time
better than fA2 and half the time worse. More in detail:

1. fA1(I)− fA2(I) is a random variable defined on the sample space I.

2. the null hypotesis H0 states that the theoretical median of fA1(I)− fA2(I) is 0.

3. extract a sample of instances I and run the two algorithms on it, obtaining a sample of
paired values (fA1, fA2).

4. the test computes the probability p of obtaining the observed result or a more “extreme”
one, assuming that H0 is true.

5. this is interpreted as the probability

• to reject the null hypothesis H0, assuming that it is true;

• that is, to consider as different two medians that are actually the same;

• that is, to consider as differently effective (with respect to the median of the gap)
two algorithms that are actually equivalent.

6. setting a significance level p, we reject H0 when p < p, concluding that one of the two
algorithms is better than the other, because it is too unlikely to obtain the observed results
in the case in which they are equivalent.

Therefore, in order to apply the test, we build a benchmark sample and run the two algo-
rithms on all instances of the benchmark, obtaining a set of pairs of values. Assuming that H0
is true, the difference of the two values in each pair should be positive or negative the same
number of times, and the positive and negative differences should be approximately of the same
size: having half large positive values and half small negative values, in fact, suggests that the
first algorithm typically tends to return larger values. To take this aspect into account, the pos-
itive and negative results will not only be counted, but also ranked. Now, the aim of the test is
to try and understand if the observed result is just due to “bad luck” or to the fact that the H0

81

82 EMPIRICAL PERFORMANCE EVALUATION CHAPTER 5

is actually false and one of the two algorithms is actually better than the other. This requires
to compute the probability of obtaining the particular set of pairs observed, but also any other
set of pairs that is more unbalanced than the one observed. Once the probability is computed,
it is compared to the so called significance level p, that is the maximum probability to con-
sider safe not to reject H0. Typical values for p are 5% and 1%. If the calculated probability
is smaller, then H0 is considered false and rejected, therefore the theoretical median between
algorithms is considered not null. Whether it is positive or negative, and therefore which of the
two algorithms is better, can be easily found based on the observations.f

5.6.1 Assumptions of Wilcoxon’s test
Wilcoxon’s test involves a number of complex methodological questions, that we shall briefly
survey in the following. First of all, it is a nonparametric test: it does not assume anything on
the distribution of the tested values. This is appropriate for the evaluation of the performance
of heuristic algorithms, because the distribution of the results fA(I) of an algorithm is typically
unknown.

Wilcoxon’s test is based on the assumptions that:

1. all data are measured on an ordinal scale: it must be possible to sort the differences
between the two values in each pair; in our case, the differences are numbers, therefore
cardinal quantities, that can easily be sorted.

2. the two datasets are matched and derive from the same population; in our case, this is
true, because each pair derives from the application of A1 and A2 to the same instance
extracted from I.

3. each pair of values is extracted independently from the others; this would require to gen-
erate each instance in the benchmark independently from the other ones; this assumption
is not always satified in the generation of benchmarks (different instances can be corre-
lated).

For example, vehicle routing problem instances are often generated considering the same cost
function for arcs and different weight functions for nodes, or vice versa. In these case, some
instances are not independent from each other.

Wilcoxon’s test performs the following steps:

1. for every instance in the sample, compute the absolute difference | fA1(Ii)− fA2(Ii)|;

2. sort them by increasing absolute values and assign a rank Ri to each one;

3. separately sum the ranks of the pairs with a positive difference W+ = ∑i: fA1(Ii)> fA2(Ii)Ri

and those of the pairs with a negative difference W− = ∑i: fA1(Ii)< fA2(Ii)Ri. If the null
hypotesis H0 is true then the two sums should be equal.

4. the difference W+−W− allows to compute the value of p: each of the |I| differences can
be positive or negative, so there are 2|I| outcomes. Then, p is the fraction of outcomes in
which |W+−W−| is at least as large as the observed value.

5. if p < p the difference is significant; in this case, if W+ < W−, A1 is better than A2; if
W+ > W−, A1 is worse than A2 (of course, if the problem is a minimisation problem;
otherwise, the opposite holds).

82

CHAPTER 5 5.6. WILCOXON TEST 83

An important detail is that in step (2) some absolute differences can be equal. In this case, they
should be assigned the same rank, that is the average of all ranks with the same value. For
example, suppose that 11 differences, ranking from 5 to 15 actually correspond to the same
absolute difference. In this case, they should not be ranked differently, as 5, 6, etc. . . , but with

the same rank, equal to the average value ∑
15
i=5 i
11 = (5+15)/2 = 10.

5.6.2 Computation of the p-value

Once the total positive and negative ranks W+ and W− have been calculated, it is necessary to
compute the probability p that their difference is significant.

Figure 5.14: Wilcoxon’s test distributions for various sample sizes.

In order to understand the computation, suppose to have only 3 instances (I1, I2 and I3) as in
the upper left corner of Figure 5.14. The differences will receive ranks 1, 2 and 3, with positive
or negative signs. The most unbalanced situations occur when A1 is always better than A2, or
the opposite, so that all three ranks have a negative sign, or all three ranks have a positive sign.
The number of possible cases is 23 = 8. The eight cases can be enumerated, as in the upper-
left corner of Figure 5.14. Only in one case out of eight, all ranks are positive and W+−W− =
(1+2+3)−0 = 6; only in one case out of eight all ranks are negative and W+−W− = 0−(1+
2+3) =−6; in two cases the difference is zero: W+−W− = (1+2)−3 = 0 and W+−W− =
3− (1+ 2) = 0. The null hypothesis suggests that the two values of each pair are extracted
from the same population and positive and negative differences have the same probability to
occur with any ranking (that is, the same probability to be large or small). Therefore, the
eight cases should have the same probability. Supposing that we observe an extreme case (all
negative signs, for example). The probability of being in this biased situation or in a worse
one is the sum of the probabilities for each case that is equally or more strongly unbalanced. In
our example, it is 1

8 +
1
8 = 0.25. This is sufficiently large to think that the observed difference

could be random. Given a larger number of instances, however, large differences correspond
to small probabilities, that can lead to reject the null hypothesis. The p-value can be computed
by enumeration, as in the previous example. If the instances are many, however, the law of big
number proves that the distribution can be approximated it a normal one, and the probability
can be derived from tables.

Wilcoxon’s test can suggest either that one of the two algorithms is significantly better than
the other, or that the two algorithms are statistically equivalent. In both cases, it is important to
remember the answer is stochastic and to “keep an eye” on the value of p, without considering
the answer as binary.

Another application of this test can be that two algorithms could be overall equivalent on
a whole benchmark, but nonequivalent on the subclasses of instances within the benchmark.

83

84 EMPIRICAL PERFORMANCE EVALUATION CHAPTER 5

The problem with this kind of experiments is that each new analysis on the same increases
the probability that we are indeed in a case of “bad luck” and the suggestion of the test is
wrong. This is why the value of p should be taken in serious account: a very small value allows
many analysis before the familywise error rate (FWER) introduces incorrect deductions due to
random results, a value close to the significance level makes these additional deductions quickly
unjustified.

Another question is whether Wilcoxon’s test should be applied to δA(I), instead of fA(I).
Indeed, the results could be different: using δA(I) means giving a smaller weight to the instances
with a larger optimum. There is no strict rule on this point: the definition of “better algorithm”
is indeed at least partly arbitrary. Once again, the size of p is probably the best information: if
the outcome of the test is different in the two cases, the value of p is probably not very small.

84

CHAPTER 5 5.7. EXERCISES 85

5.7 Exercises

5.7.1 Exercise 1
The following table reports the size n of 8 different instances and the computational time re-
quired by algorithm A to solve them.

I1 I2 I3 I4 I5 I6 I7 I8
n(I) 10 50 10 100 20 80 70 100
TA(I) 2.6 62.3 2.6 249.9 10.0 159.9 122.3 250.2

If possible, draw a Run Time Distribution diagram of A on the benchmark Ī; otherwise, explain
why it is not possible. What can be deduced from this diagram, once it is drawn?

If possible, draw a scaling diagram of A on Ī; otherwise, explain why it is not possible.
What can be deduced from this diagram, once it is drawn?

Solution Drawing a RTD on a benchmark of instances of different size is not very signifi-
cant, because it reflects the distribution of instance sizes in the benchmark more than the time
complexity of the algorithm, but of course it is always possible.

0 50 100 150 200 250 300
0

1/8

2/8

3/8

4/8

5/8

6/8

7/8

1

Drawing a scaling diagram simply takes to plot the points provided.

0 20 40 60 80 100
0

50

100

150

200

250

300

85

86 EMPIRICAL PERFORMANCE EVALUATION CHAPTER 5

This is an expected profile, but still not very informative (exponential or polynomial? in
the latter case which polynomial?), but one can try and use a logarithmic scale on both axes,
keeping a uniform distance between values that are multiplied by the same amount (such as 2
or 10).

10 20 40 60 80 100

10

100

This shows that A is a polynomial algorithm. We can even venture to observe that, since
β100α ≈ 250 and β20α ≈ 10 (or choose any other two points), then (100/20)α ≈ (250/10)⇒
5α = 25 ⇒ α ≈ 2.

5.7.2 Exercise 2

The following table reports the result obtained by algorithm A on a benchmark Ī of 8 instances
of a minimization problem. For the sake of simplicity, assume that all instances have optimal
value equal to 100.

Ī I1 I2 I3 I4 I5 I6 I7 I8
fA 104 100 105 120 101 106 101 110

Draw the Solution Quality Diagram and the boxplot diagram of A on the benchmark.

Solution The SQD that describes the performance of A on the benchmark is built computing
all the relative differences and sorting them by nondecreasing values: {0%,1%,1%,4%,5%,6%,10%,20%}.
Since the cardinality of the benchmark is

∣∣Ī∣∣= 8, and since two values coincide, the points that
determine the plot are(

0%,
1
8

) (
1%,

3
8

) (
4%,

4
8

) (
5%,

5
8

) (
6%,

6
8

) (
10%,

7
8

)
(20%,1)

which yields the following diagram.

86

CHAPTER 5 5.7. EXERCISES 87

0 5% 10% 15% 20%
0

1/8

2/8

3/8

4/8

5/8

6/8

7/8

1

The corresponding boxplot diagram is as follows.

0 % 5 % 10 % 15 % 20 % 25 %
0.6
0.8

1
1.2
1.4

In order to draw the boxplot diagram, we have adopted the definitions of quartiles commonly
used in spreadsheets. Since the cardinality of the benchmark is even (n = 8), the median is
halfway between the n/2 = 4th and 5th element, the upper quartile is at one quarter of the way
between the 3/4n = 6th and 7th element, and the lower quartile is at three quarters of the way
between the 1/4n = 2nd and 3rd element. Notice that in this case the two elements coincide.
In an exam, it is acceptable to use the simplified definitions for median (n/2th element), lower
quartile (n/4th element) and upper quartile (3n/4th element).

5.7.3 Exercise 3 -
The following table reports the result obtained by algorithm A on 8 different instances.

I1 I2 I3 I4 I5 I6 I7 I8
fA 54 60 55 51 51 56 54 55

Assume (for the sake of simplicity) that all instances have optimum equal to 50.
Draw the Solution Quality Diagram of A on the benchmark.
Draw the boxplot of A on the benchmark.

Solution The SQD that describes the performance of A on the benchmark is built computing
all the relative differences and sorting them by nondecreasing values: {2%,2%,8%,8%,10%,10%,12%,20%}.
Since the cardinality of the benchmark is

∣∣Ī∣∣ = 8, and since three pairs of values coincide, the
points that determine the plot are(

2%,
2
8

) (
8%,

4
8

) (
10%,

6
8

) (
12%,

7
8

)
(20%,1)

which yields the following diagram.

87

88 EMPIRICAL PERFORMANCE EVALUATION CHAPTER 5

0 5% 10% 15% 20%
0

1/8

2/8

3/8

4/8

5/8

6/8

7/8

1

and the corresponding boxplot (with the same remarks of the previous exercise).

0 % 5 % 10 % 15 % 20 % 25 %
0.6
0.8

1
1.2
1.4

5.7.4 Exercise 4 -
The following picture represents the performance (percent relative difference δ) of six algo-
rithms on a set of benchmark instances:

A1 A2 A3 A4 A5 A6

0 %

25 %

50 %

75 %

100 %

125 %

150 %

175 %

Is any of the algorithms tested 3/2-approximated? Why?
What can be deduced on the relative quality of the six algorithms?

Solution All algorithms are certainly not 3/2-approximated, with the exception of A5, that
could have such an approximation guarantee. A finite benchmark, however, is not enough to
prove it.

Concerning strict dominances

A3 ≺ A2 A4 ≺ A2 A5 ≺ A2

because, for each pair, the worst result of the first algorithm is not worse than the best result of
the second one.

88

CHAPTER 5 5.7. EXERCISES 89

Concerning probabilistic dominances

A1 ≺ A2 A3 ≺ A1 A4 ≺ A1 A6 ≺ A2 A5 ≺ A3

because, for each pair, each quartile of the first algorithm is not worse than the previous quartile
of the second one. Other probabilistic dominances could exist, as they satisfy the necessary
condition that each quartile of the first algorithm is not worse than the corresponding quartile
of the second one (for example, A4 ≺ A3, A4 ≺ A6 and A5 ≺ A6).

5.7.5 Exercise 5 -
The following figure represents the performance (percent relative difference δ) of six algorithms
on a set of benchmark instances:

What can be deduced on the relative quality of the six algorithms?
Is it possible to draw (at least approximately) the SQD diagrams of the six algorithms? If it

is, draw one of the diagrams.

Solution First, there are some strict dominances:

A1 ≺ A4 A1 ≺ A5 A1 ≺ A6

Concerning probabilistic dominances, the sufficient condition holds for:

A1 ≺ A2 A1 ≺ A3 A2 ≺ A4 A2 ≺ A5 A2 ≺ A6 A3 ≺ A6

It is possible to find five points of the diagram. These points identify rectangles in which
the true SQD diagrams is contained, but with an unknow behaviour, besides being stepwise
nonincreasing4

5.7.6 Exercise 6 -
The following table reports the result obtained by algorithms A1 and A2 on 8 different instances.

I1 I2 I3 I4 I5 I6 I7 I8
fA1 104 100 105 120 111 107 101 111
fA2 100 100 108 122 101 102 101 110

4I must get back on this answer to think about what happens when the median and the lower and upper quar-
tile do not correspond to actual values, but are obtained with the spreadsheet definition. A correction could be
necessary.

89

90 EMPIRICAL PERFORMANCE EVALUATION CHAPTER 5

Assume (for the sake of simplicity) that all instances have optimum equal to 100.
Draw the boxplots of the two algorithms on the benchmark. What can be deduced from their

comparison?
Apply the first steps of Wilcoxon’s test to the benchmark, up to the computation of statistics

W+ and W−, that is skipping only the computation of the final p-value.

Solution The two boxplots are the following.

0 % 5 % 10 % 15 % 20 % 25 %
0.5

1
1.5

2
2.5

The boxplots do not show any dominance, though, considering the worst result of A2 as an
outlier, the necessary condition for a probabilistic dominance would hold.

Wilcoxon’s test computes the following differences: 4, 0, −3, −2, 10, 5, 0 and 1. Neglecting
the two null differences, sorting the absolute values and saving the sign of the other differences
provides the following signed ranks:

Rank 1 2 3 4 5 6
Difference 1 −2 −3 4 5 10

Signed rank +1 −2 −3 4 5 6

The sums of the signed ranks are, therefore, W+ = 1+4+5+6 = 16 and W− = 2+3 = 5. The
result of the test, that is not required during an exam, is

W+ = 16, W- = 5, N = 6, p <= 0.3125

suggesting that the difference between the two algorithms is likely to be due to chance.

5.7.7 Exercise 7 -
The following table reports the result obtained by algorithms A1 and A2 on 8 different instances.

I1 I2 I3 I4 I5 I6 I7 I8
fA1 45 93 216 104 80 289 102 71
fA2 57 93 211 102 102 304 110 91

Apply the first steps of Wilcoxon’s test to the benchmark, up to the computation of statistics
W+ and W−, that is skipping only the computation of the final p-value.

Solution Wilcoxon’s test computes the following differences: −12, 0, 5, 2, −22, −15, −8
and −20. Neglecting the null difference, sorting the absolute values and saving the sign of the
other differences provides the following signed ranks:

Rank 1 2 3 4 5 6 7
Difference 2 5 −8 −12 −15 −20 −22

Signed rank +1 +2 −3 −4 −5 −6 −7

90

CHAPTER 5 5.7. EXERCISES 91

The sums of the signed ranks are, therefore, W+ = 1+2 = 3 and W− = 3+4+5+6+7 = 25.
The result of the test, that is not required during an exam, is

W+ = 3, W- = 25, N = 7, p <= 0.07813

suggesting that the difference between the two algorithms is not small, but still possibly due to
chance. As it can be imagined, it is nearly impossible to obtain a statistically significant result
with a benchmark of 8 instances.

91

92 EMPIRICAL PERFORMANCE EVALUATION CHAPTER 5

92

Part III

Constructive algorithms

93

CHAPTER 6

Constructive heuristics

This part of the notes is dedicated to the first of the three classes of heuristics previously listed,
the constructive heuristics. In particular, this chapter discusses heuristics, whereas the follow-
ing one concerns metaheuristics. Together with constructive heuristics, we analyse destructive
heuristics, whose structure is somewhat complementary.

6.1 Basic elements of constructive algorithms
In order to understand constructive heuristics, one should remember that combinatorial opti-
mization problems are characterised by having solutions that are subsets of a suitable given
finite ground set. The simplest way to obtain a solution, therefore, is to start from the empty
subset /0, and add one element at the time until it becomes impossible (or unlikely) that in-
troducing new elements could generate optimal solutions. Then, the algorithm stops. Let us
investigate this process in more detail.

A constructive heuristic updates a subset x(t) at each step t:

1. it starts from an empty subset (x0 = /0), that is obviously a subset of any optimal solu-
tion. If kernelisation or reduction procedures prove that some elements of the ground set
are necessarily included in at least one optimal solution, it makes sense to include these
“forced” elements in x0. Heuristic reasons to think that some element should be included
can also be taken into account.

2. it stops when a termination condition holds: the rationale of the termination condition is
to guarantee that adding elements to the current subset x(t) will not generate any optimal
solution.

3. the construction loop:

(a) determines among all the elements i(t) ∈ B\ that do not belong to the current subset
x(t) those that can extend it in an “acceptable” way.

(b) choses an element i(t) and adds it to the current subset: x(t+1) := x(t)∪{i(t)}. The
choice is based on the evaluation and optimisation of a suitable selection criterium.

4. go back to point 2.

This is a very simple scheme, that allows to generate several different algorithms for the
same problem by simply specifying two characteristic elements: the acceptable extensions
and the selection criterium.

95

96 CONSTRUCTIVE HEURISTICS CHAPTER 6

Notice that at the beginning subset x enjoys the nice property of being part of any optimal
solution, since x(0). This property is usually lost in some step by the addition of a “wrong”
element. The algorithm must try to keep it by a smart definition of the acceptable extensions
and the selection criterium. The same holds for feasibility: at the beginning, x is part of any
feasible solution, but in the following it can lose such a property. This is an even worse outcome,
but in general it is easier to avoid it. It depends on the problem.

6.1.1 The construction graph
The simple scheme of constructive heuristics allows to introduce nice modelling tools, on which
useful theoretical results can be sometimes proved. The main modelling tool is the construction
graph. This is a directed graph, identified by its nodes and arcs.

The node set FA (where F stands for find and A is the specific algorithm described by the
graph) is also known as search space. It is defined as the collection of subsets x ⊆ B which
can be potentially produced by algorithm A during its execution. Hence, FA ⊆ 2B: every node
is a subset of B, but not all subsets of B correspond to nodes of the construction graph (only
the “acceptable” ones). The same problem admits different search spaces, corresponding to
different construction algorithms.

The arcs connect pairs of nodes describing the acceptable extensions: the arc set is the
collection of all pairs (x,x∪ {i}) such that x ∈ FA, i ∈ B \ x and (x∪ {i}) ∈ FA. Every arc
connects a subset to a slightly larger subset, representing an acceptable extension of a subset
with a new element.

Figure 6.1: An example of construction graph, with an execution returning an optimal solution.

Figure 6.1 represents a construction graph. The rectangle represents 2B, that is the power
set of B. This collection of all possible subsets is partitioned by the dashed lines into classes
containing subsets of different cardinality. The first and leftmost class contains all the subsets of
0 elements, and therefore includes only one element, the empty set /0. The second class contains
all singletons, the third the pairs of elements, and so on. Overall, there are n+1 classes, ranging
from cardinality 0 to cardinality n.

The search space FA excludes all subsets that are unreasonable to visit because, for any
reason, it is impossible (or higly unlikely) to reach an optimal solution from them. They belong

96

CHAPTER 6 6.1. BASIC ELEMENTS OF CONSTRUCTIVE ALGORITHMS 97

to 2B \FA, they do not correspond to nodes and, of course, no arc can reach them. The search
space FA usually contains the set of all feasible solution X . Finally, X includes the set of all
optimal solutions X∗. In principle, an algorithm A might exclude feasible solutions, and even
optimal ones, from the search space. These cases, however, are based on suitable theoretical
properties that guarantee the inclusion of other feasible and optimal solutions, to avoid crippling
the search. The aim, then, is simply to concentrate the search on a smaller space, improving the
efficiency and effectiveness of the algorithm.

The execution of a constructive algorithm corresponds to a maximal path in the construction
graph: it starts from the empty set, visits some intermediate subsets and stops in a final subset,
that cannot be extended in any acceptable way. Ideally, the final subset should be optimal, or at
least feasible. Figuret6.1 represents the ideal case, in which the path ends in an optimal solution.
It is the case of all exact constructive algorithms, such as Prim’s, Kruskal’s and Dijkstra’s.

(a) A construction graph with an execution re-
turning a feasibile nonoptimal solution.

(b) A construction graph with an execution re-
turning an unfeasibile solution.

Figure 6.2: Example of construction graphs for nonexact algorithms.

In other cases, such as the ones represented in Figure ??, the path may end in a nonoptimal,
but feasible, solution x ∈ X (Figure (a)), or even in subsets that are not feasible solutions x′ /∈ X
(Figure (b)). These are often called unfeasible solutions. The former is the case of heuris-
tic algorithms such as those used for the KP and the MDP. The latter is the case of heuristic
algorithms for the TSP on noncomplete graphs.

Properties of the search space in construction graphs

A fundamental property of the construction graph is that it is acyclic, since every arc links a
smaller subset to a strictly larger one: no circuit is possible.

Other properties, though not strictly required, are typically imposed, because they corre-
spond to practical aspects in the execution of a constructive algorithm. First of all, the search
space FA should include the empty subset (/0 ∈ FA), because any constructive heuristic al-
gorithm starts from it. Most of the time, the search space FA includes all feasible solutions
(X ⊆ FA), as in Figure 6.1. However, some solutions that are obviously nonoptimal might be
removed from the search space, if it can be proved that visiting them is useless to find an opti-
mal solution. As well, usually an arc links every pair of subsets in the search space such that the
second includes the same elements of the first plus one. However, some of these arcs could be
removed if they are useless to find optimal solutions. For example, in the SCP, when a feasible
solution is reached (that is, a subset of columns covering all rows), adding other columns makes
no sense, because the resulting subsets will be more and more expensive, and none of them will
be optimal. Therefore, the arcs connecting a feasible solution to a larger feasible solution can

97

98 CONSTRUCTIVE HEURISTICS CHAPTER 6

be safely removed from the construction graph. Another common property is that FA should
contain only subsets that can be reached from the empty set with a directed path in the graph.
If this is not possible, such nodes are useless.

A natural candidate for the definition of the search space is the collection of all partial
solutions, defined as all subsets of all feasible solutions. This is a nice definition, that satisfies
all properties discussed above. However, such a definition also poses a computational problem.
In order to determine the acceptable extensions of a subset x, one must answer for each i ∈ B\x
the following question: “Is x∪{i} a partial solution?” This question is called inclusion test, as
it concerns the inclusion of a given subset in the search space. As it must be answered several
times during the execution of the algorithm, the inclusion test must be polynomial, and possibly
very fast. However, this question is also a decision problem (the answer is true or false) that
generalises the feasibility test: “Does there exist a feasible solution?” In fact, answering the
feasibility test is equivalent to answering the inclusion test for x = /0. Depending on the specific
problem considered, such a question can be trivial, easy or even NP-complete.

If there is no easy known way to perform the feasibility test, a way out is to enlarge the
search space, including subsets that are not partial solutions, but can be easily tested. Usually,
the way to do this is to relax some constraint of the problem.

Examples of search spaces

Most constructive algorithms for the KP adopt the feasible solutions as the search space

FA ≡ X

as it is easy to test and satisfies all properties discussed above.
The constructive algorithms for the MDP typically consider the collection of partial solu-

tions (that is, all subsets of cardinality ≤ k)

FA ≡
⋃
x∈X

2x

The same occurs in Kruskal’s algorithm for the MSTP. In fact, this algorithm only forbids cyclic
subsets of edges: the search space contains all forests.

Prim’s algorithm for the MSTP is much more restrictive: it considers only subsets of edges
that form trees spanning the starting vertex. Therefore, it does not include ever partial solution,
but only special promising partial solutions

FA ⊂
⋃
x∈X

2x

For the TSP on general graphs, it is NP-complete to determine whether a given set of
arcs belongs to a Hamiltonian circuit, because it is NP-complete even to determine whether
a Hamiltonian circuit exists at all. Therefore, the set of partial solutions is not a viable choice
for the search space. A possible alternative is to relax the constraints and admit all subsets of
arcs that are not clearly making it impossible to complete the solution. Such subsets are those
in which some nodes have an ingoing or outgoing degree larger than one and those that include
“subtours”, that is circuits visiting only a strict subset of the nodes. In this case, the search space
is strictly larger than the collection of partial solutions:

FA ⊃
⋃
x∈X

2x

98

CHAPTER 6 6.1. BASIC ELEMENTS OF CONSTRUCTIVE ALGORITHMS 99

6.1.2 The termination condition
A constructive algorithm terminates when the current subset x can no longer be extended with-
out leaving the search space. In other words, no arc in the construction graph goes out of the
node. This condition is formally expressed as

∀i ∈ B\ x(t) x(t)∪{i} /∈ FA

or, equivalently
∆
+
A (x

(t)) = {i ∈ B\ x(t) : x(t)∪{i} ∈ FA}= /0

where ∆
+
A (x

(t)) is the set of acceptable extensions of subset x(t), each of which corresponds to
an outgoing arc.

As long as ∆
+
A (x

(t)) ̸= /0, the algorithm chooses one of the acceptable extension, and adds
it to x. When this is no longer possible, it returns the best feasible solution visited during the
execution. This is usually the last visited subset, because the previous ones are either unfeasible
or worse. However, this is not always the case: x(t) could move in and out of X several times
during the execution.

6.1.3 The general scheme
A constructive heuristic (for minimization problems) can be described by the pseudocode of
Algorithm 1. It starts from an empty subset x, and initialises the best solution found x∗ to x and
its value f ∗ to the value f (x) if it is feasible, to +∞ otherwise. The algorithm proceeds until the
termination condition is met, selecting at each step an element i and adding it to x. The choice
of i is based on a selection criterium ϕ(i,x), that depends on i, but in general also on the current
subset x. Therefore, it is a function

ϕA : B×FA → R

that returns a real value estimating how good the insertion of i in x is. For minimisation problem,
we generally assume that good insertion correspond to small values of ϕ .

The general scheme of Algorithm 1 can be tailored to a specific problem by defining ∆
+
A (x)

and ϕA(i,x) which correspond, respectively, to the construction graph (∆+
A identifies the topol-

ogy of the graph: nodes and arcs), and to a weight function associated to the arcs of the graph
(ϕA(i,x) is the weight of the arc from node x to node x∪{i}).

6.1.4 Effectiveness and efficiency of constructive algorithms
At the beginning, subset x is contained in any optimal solution. In the luckiest cases, it maintains
this property throughout the execution of the algorithm, and therefore terminates returning an
optimal solution. The optimality of a constructive algorithm critically depends on the preserva-
tion of this property - being included in an optimal solution - which requires some nice property
both from the problem and from the algorithm.

A general discussion can be made also about the efficiency of constructive algorithms. Their
cost derives from the execution of |x| ≤ n iterations (where n = |B|) and from the complexity
of the operations performed at each iteration. These are the scan of the extension set ∆

+
A (x),

the evaluation of the selection criterium ϕA(i,x) for each i ∈ ∆
+
A (x), the choice of the minimum

value, the update of the current solution x and, possibly, of auxiliary data structures and of the
best known solution x∗. Usually, the most expensive terms are the time T

∆
+
A
(n) required to scan

99

100 CONSTRUCTIVE HEURISTICS CHAPTER 6

Algorithm 1 Constructive Heuristic Pseudocode
1: procedure GREEDY(I)
2: x := /0
3: x∗ := /0
4: if x ∈ X then
5: f ∗ := f (x)
6: else
7: f ∗ :=+∞

8: end if
9: while ∆

+
A (x) ̸= /0 do

10: i := arg min
i∈∆

+
A (x)

ϕA(i,x)

11: x := x∪{i}
12: if x ∈ X and f (x)< f ∗ then
13: x∗ := x
14: f ∗ := f (x)
15: end if
16: end while
17: return (x∗, f ∗)
18: end procedure

the extension set and the time TϕA(n) to compute the selection criterium, so that the resulting
complexity is a polynomial of low order:

TA(n) ∈ O(n(T
∆
+
A
(n)+TϕA(n)))

In conclusione, constructive algorithms are really intuitive, simple to analyse and implement
and tend to be efficient (unless the two main terms of their complexity are costly). However,
they suffer from a strongly variable effectiveness: on some problems they guarantee an optimal
solution; on other problems they may provide approximation guarantees; on most problems they
provide solutions of extremely variable quality; sometimes, they even fail to return a feasible
solution. Studying the problem before implementing any algorithm can determine through an a
priori analysis whether some degree of effectiveness can be reached or not, and what features
an algorithm should have to reach a good performance.

Constructive algorithms are certainly used when they guarantee optimal or near-optimal
solutions, but also when the execution time must be very short or when the problem has a
huge size or requires heavy computations at each step (for example, to compute the selection
criterium). We shall see that they are also used as components of exchange or recombination
algorithms, in order to solve auxiliary subproblems.

6.1.5 Using the objective as a selection criterium
As remarked in Section 2.1.3, the objective function can often be trivially extended from X to
the whole of 2B, or at least to an intermediate domain. If the objective function can be defined
on the search space FA, it is a natural idea to adopt it as a selection criterium:

ϕA(i,x) = f (x∪{i})

This extension allows to use the objective as a guide in the construction, that is as a metric to
decide which element i should be added to the current subset in order to obtain a good solution.

100

CHAPTER 6 6.1. BASIC ELEMENTS OF CONSTRUCTIVE ALGORITHMS 101

The idea is natural, because the objective is exactly what we aim to minimise in the end. In
the following, we consider a number of examples, in which applying this idea produces very
different results.

The fractional knapsack problem

The Fractional Knapsack Problem (FKP) aims to select from a set of objects of identical volume
v a subset of maximum value that fits in a knapsack of limited capacity V . It is, of course, a
special case of the KP, in which the capacity simply corresponds to a cardinality constraint: the
feasible solutions, in fact, are those with |x| ≤ ⌊V

v ⌋.

Algorithm 2 Constructive heuristic for the FKP
1: procedure GREEDYFKP(I)
2: x := /0
3: while |x|< ⌊V

v ⌋ do
4: i := arg max

i∈B\x
φi

5: x := x∪{i}
6: end while
7: x∗ := x
8: f ∗ := f (x)
9: return (x∗, f ∗)

10: end procedure

The pseudocode of Algorithm 2 is an adaptation of Algorithm 1 to the specific problem con-
sidered. The termination condition states that subset x can be extended as long as |x|< ⌊V/v⌋.
Its acceptable extensions are all the element of B \ x. The selection criterium is the objective
function, but can be replaced by an equivalent simpler expression, because it is additive. In fact:

f (x∪{i}) = f (x)+φi ⇒ arg max
i∈B\x

f (x∪{i}) = arg max
i∈B\x

φi

Since all visited subsets are feasible solutions, there is no need to test them for feasibility. Since
every addition is an improvement, the last subset visited is the best solution found, and there is
no need to update it at every iteration.

For example, consider the following instance: with vi = 1 for all i ∈ B and V = 4.

B a b c d e f
φ 7 2 4 5 4 1

The algorithm starts from x := /0 and performs the following steps:

1. x := {a}
2. x := {a,d}
3. x := {a,c,d}
4. x := {a,c,d,e}

Then, it terminates, because the required cardinality has been reached. This algorithm always
finds the optimal solution. Why?

101

102 CONSTRUCTIVE HEURISTICS CHAPTER 6

The knapsack problem

Considering the generalKP, a very similar algorithm can be designed, as reported in Algo-
rithm 3. The only differences are that the set of possible extensions is in general smaller than
B\x, because the volume of its elements must not exceed the residual capacity of the knapsack.
This also affects the termination condition.

Algorithm 3 Constructive Heuristic Pseudocode for the KP
1: procedure GREEDYKP(I)
2: x := /0
3: while ∃i ∈ B\ x;vi ≤V −∑ j∈x v j do
4: i := argmaxi∈B\x;vi≤V−∑ j∈x v j φi

5: x := x∪{i}
6: end while
7: x∗ := /0
8: f ∗ := f (x)
9: return (x∗, f ∗)

10: end procedure

Consider the following instance: with capacity V = 8.

B a b c d e f
φ 7 2 4 5 4 1
v 5 3 2 3 1 1

The algorithm starts from x := /0 and follows these steps:

1. x := {a}
2. x := {a,d}

terminating, because the capacity is exhausted. The solution obtained is not the optimal solution
x∗ = {a,c,e}, even if the algorithm is the same and the problem is extremely similar. Why?

The travelling salesman problem

Consider the TSP with the search space that relaxes the set of all partial solutions in order to
make the inclusion test polynomial and the objective function as the selection criterium.

Algorithm 4 provides the pseudocode, that is once again an adaptation of the general scheme
to this specific problem and search space. Since the objective function is additive, the selection
criterium can be expressed by its variation, that is simply the cost of the added arc. In other
words, the algorithm selects at each step the cheapest arc among those that do not form subtours
and keep a degree ≤ 1 in all nodes. Only the last subset x can be a feasible solution, but it is not
guaranteed to be, so the test must be performed, once, at the end.

Consider the example of Figure 6.3, that is a noncomplete graph, missing just arc (1,3).
Algorithm 4 starts from x := /0 and performs the following steps:

1. since ∆
+
A (x) ̸= /0, add i := (3,5) to x

2. since ∆
+
A (x) ̸= /0, add i := (2,4) to x, noticing that arc (5,3) /∈ ∆

+
A (x) as it would create a

subtour

102

CHAPTER 6 6.1. BASIC ELEMENTS OF CONSTRUCTIVE ALGORITHMS 103

Algorithm 4 Constructive Heuristic Pseudocode for the TSP
1: procedure GREEDYTSP(I)
2: x := /0
3: x∗ := /0
4: f ∗ :=+∞

5: while ∆
+
A (x) ̸= /0 do

6: i := argmini∈∆
+
A (x)

ci

7: x := x∪{i}
8: end while
9: if x ∈ X then

10: x∗ := x
11: f ∗ := f (x)
12: end if
13: return (x∗, f ∗)
14: end procedure

Figure 6.3: Numerical TSP example.

3. since ∆
+
A (x) ̸= /0, add i := (5,2) and update x ((4,2) /∈ ∆

+
A (x))

4. since ∆
+
A (x) ̸= /0, select i :=(4,1) and update x, notice that (2,5),(4,5),(5,4),(3,4) and (4,3) /∈

∆
+
A (x)

Now ∆
+
A (x) = /0, and the algorithm terminates without finding a feasible solution. Yet, feasible

solutions exist (for example, a simple tour along the external arcs). In a complete graph, in-
cluding arc (1,3), the algorithm would certainly find a feasible solution. However, the cost of
that arc could be huge (for example, 100), and the resulting solution would be nonoptimal, and
possibly worse than the optimum without limit. Why?

The maximum diversity problem

The MDP is characterized by a cardinality constraint, as the FKP: it requires to select from a
set of points a subset of k elements with the maximum sum of pairwise distances.

Algorithm 5 adapts the general scheme to this problem. The termination condition simply
checks the cardinality of the current subset x. Any element of B \ x extends x in an acceptable
way. The objective function f (·) is not additive, but quadratic. When adding a new element i to
a subset x, it can be split into the original value of the objective function f (x) plus the distances
of the newly added point i from each original point in x and from each point of x to i, plus the
distance between i and i, that is 0:

f (x∪{i}) = f (x)+2 ∑
j∈x

di j +dii → arg max
i∈B\x

f (x∪{i}) = arg max
i∈B\x

∑
j∈x

di j

103

104 CONSTRUCTIVE HEURISTICS CHAPTER 6

This allows to replace the objective function with a simpler expression as a selection criterium.
The last subset visited is the only feasible solution found and can be directly returned.

Algorithm 5 Constructive Heuristic Pseudocode for the MDP
1: procedure GREEDYMDP(I)
2: x := /0
3: while |x|< k do
4: i := arg max

i∈B\x
∑ j∈x di j

5: x := x∪{i}
6: end while
7: return (x, f (x))
8: end procedure

Unfortunately, this algorithm does not work. Consider the instance represented in Fig-
ure 6.4, whose optimal solution is x∗ = {1,5,6}. At the first step, the algorithm takes the point
with the maximum distance from an empty solution: that is 0 for every point. So any point
is a valid first subset. Suppose that we try all of them, to avoid focusing on one (usually, the
first) that can easily be nonoptimal. The second point is just the farthest from the first (in the
figure, starting from {1} the algorithm generates {1,7}). The third point is that with the maxi-
mum distance from the two original ones: let us take point 3 (but 4 is equivalent). The solution
is nonoptimal. Actually, for any possible starting point the algorithm fails to get the optimal
solution. Why?

Figure 6.4: An example of Maximum Diversity Problem

6.2 Exact constructive algorithms

What features allow the basic constructive algorithm to find the optimum?
Having a search space coincident with the feasible region (FA = X) is not enough, because

both the FKP and the KP have it, but the algorithm does not yield an optimal solution.
Having a cardinality-constrained problem would explain the failure on the KP, but not on

the MDP and the TSP. Having an additive function does not explain the failure on the TSP.

104

CHAPTER 6 6.2. EXACT CONSTRUCTIVE ALGORITHMS 105

There is no general characterization of the problems solved exactly by constructive algo-
rithms, but there are characterization for wide classes of problems.

6.2.1 The additive case: matroids and greedoids
Assume that the objective function is additive, that is, there exists an auxiliary function defined
on the ground set such that the value of the objective for a solution is given by the sum of the
auxiliary function values on the elements of the solution:

∃φ : B → N : f (x) = ∑
i∈x

φi

Assume also that these solutions are the maximal subsets (bases) of the search space:

X = BF = {y ∈ F : ∄y′ ∈ F : y ⊂ y′}

meaning that any feasible solution is acceptable (y ∈ X ⇒ y ∈ F) and no acceptable subset
(y′ ∈ F) is strictly larger than a feasible solution. These assumptions sound abstract, but they
are quite simple: many of the Combinatorial Optimization problems considered so far have an
additive objective function. In most cases, the feasible solution is the last acceptable subset
found: it cannot be enlarged. This is true for the Max-SAT and TSP: once all n variables are
assigned a value, it is impossible to make further assignments; once a Hamiltonian circuit of
n arcs is found, it is impossible to add further arcs. The MDP, BPP and PMSP have feasible
solutions that are bases, but their objective functions are not additive. The SCP has an additive
objective function, but the feasible solutions are not maximal subsets: in general, it is always
possible to add a column to a subset that already covers all rows (and is therefore a feasible
solution).

A separate discussion can be made for the KP, the MCP and the MISP, which have additive
objective functions and solutions that are bases of the search space, but also solutions that are
not bases, because they can be augmented (think of the empty set, for example). They do
not match this assumption, but it is possible to remark that the nonmaximal solutions are by
definition nonoptimal, and therefore can in principle be neglected. For these problems, the
assumptions can be therefore applied with a slight extension, saying that the bases of the search
space coincide with the “relevant” feasible solutions.

Under the assumptions above, the basic constructive algorithm finds an optimal solution for
any additive objective function if and only if the pair (B,F) composed by the ground set and
the search space is a matroid embedding. Since the definition of matroid embedding is rather
complex, in the following we focus on some important simpler cases.

Greedoid

A greedoid is a pair (B,F) with B finite and F ⊆ 2B such that

• trivial axiom: /0 ∈ F , necessary as a greedy algorithm starts from the empty set.

• accessibility axiom: if x ∈ F and x ̸= /0, then ∃i ∈ x : x\{i} ∈ F
In words, any acceptable subset can be destroyed removing its elements in a suitable order
(and, conversely, built from scratch adding elements in a suitable order). Equivalently, any
node of the construction graph can be reached from x(0) = /0. Notice that the axiom does
not require that any element i can be removed from x: only that at least one can.

105

106 CONSTRUCTIVE HEURISTICS CHAPTER 6

• exchange axiom: if x,y ∈ F with |x|= |y|+1, then ∃i ∈ x\ y such that y∪{i} ∈ F
In words, any acceptable subset can be extended to another one adding a suitable element
taken from any acceptable subset of larger cardinality.

Notice that the exchange axiom implies that all bases have the same cardinality, since any
smaller base could be extended taking elements from a larger one, and would not be a base.

Consider the FKP. The trivial axiom certainly holds: the empty set is acceptable. The
accessibility axiom holds as well: any subset of objects respecting the capacity can be reduced
cancelling an element (actually any element) remaining inside the search space. The exchange
axiom also holds: given a feasible subset of 3 elements and a feasible subset of 4 elements, one
of the latter can be added to the former, and this will remain in the search space.

The axioms do not hold for the general KP, the TSP and many other problems. They actually
hold for the MDP, but in this case the objective function is not additive!

The existence of a greedoid is a necessary condition for the optimality of the basic con-
structive algorithm. It is, however, not sufficient. The necessity of the trivial axiom is obvious:
if the empty set is not acceptable, the constructive algorithm, that starts from it, cannot even
be applied. The accessibility axiom is less obvious, but still simple: unreachable nodes could
correspond to solutions (potentially optimal) that cannot be obtained by the constructive algo-
rithm. The exchange axiom is crucial in guaranteeing the optimality of the final solution, based
on choices taken in the single steps; understanding this would require to investigate the proof.

Notice that the axioms combine properties of the problem (referring to the objective function
and the feasible region) with properties of the algorithm (referring to the search space).

Matroid

A matroid is a set system (B,F) with B finite and F ⊆ 2B such that

• trivial axiom: /0 ∈ F

• hereditarity axiom: if x ∈ F and y ⊂ x then y ∈ F
Any acceptable subset can be built adding its element in any order (not only a specific
chosen element).

• exchange axiom: if x,y ∈ F with |x|= |y|+1 then ∃i ∈ x\ y such that y∪{i} ∈ F
Any acceptable subset can be extended taking a suitable element from any acceptable
subset of larger cardinality.

The hereditarity axiom is a stronger version of accessibility; the other two axiom are the same
as for greedoids. The existence of a matroid is a sufficient condition for the optimality of the
basic constructive algorithm. Once again, this combines properties of the problem and of the
algorithm.

Graphic matroid for the MSTP Consider Kruskal’s search space for the MSTP, that is com-
posed by all acyclic subsets of arcs (spanning forests):

F = {x ⊆ B : x forms no cycles}

The trivial axiom holds: the empty set is acceptable because it forms no cycles. The heredi-
tarity axiom holds: if x is acyclic, all of its subsets are also acyclic. The exchange axiom holds:
if x and y are acyclic and |x|= |y|+1 then one can always add a suitable edge of x to y without
forming any cycle (at least one edge can be always added from a larger forest to a smaller one).
See Figure 6.5: x is the set of blue arcs and y is the set of red arcs; edges (A,D), (C,G) and
(D,H) belong to x and can be added to y ((B,F) cannot, and (E,F) would not augment y).

106

CHAPTER 6 6.2. EXACT CONSTRUCTIVE ALGORITHMS 107

Figure 6.5: A matroid to solve the MSTP.

Uniform matroid for the FKP, not the KP Consider the search space for the FKP:

F = {x ⊆ B : |x| ≤ ⌊V/v⌋}

The trivial axiom holds: the empty set respects the cardinality constraint. The hereditarity
axiom holds: if x respects the cardinality constraint, all of its subsets also respect it. The
exchange axiom holds: if x and y respect the cardinality constraint and |x| = |y|+ 1 one can
always add a suitable element of x to y without violating the cardinality (in fact any element of
x).

For the KP, the first two axioms hold, but the third one does not: for example, let V = 6 and
v = [3,3,2,2,1]; the subsets x = {3,4,5} and y = {1,2} are in F , but no element of x can be
added to y.

Greedoids with the strong exchange axiom

Instead of strengthening the accessibility axiom, one can operate strengthening the exchange
axiom. The greedoids with the strong exchange axiom satisfy, of course, the trivial an the
accessibility axiom, but also the following condition: (strong exchange axiom):{

x ∈ F,y ∈ BF such that x ⊆ y
i ∈ B\ y such that x∪{i} ∈ F

=⇒ ∃ j ∈ y\ x :

{
x∪{ j} ∈ F
y\{ j}∪{i} ∈ F

In words, given a basis and one of its subsets from which the basis is accessible (a subset in F),
if there is an element that “leads astray” the subset from the basis (adding i to x makes it so that
x will never reach y, which does not contain i), there must be another one which keeps it on the
“right path” and it must be feasible to exchange the two element in the basis.

Again, it can be proved that these assumptions are a sufficient condition for the optimality
of the basic constructive algorithm.

Greedoid with the strong exchange axiom for the MSTP A classical example of greedoid
with the strong exchange axiom is given by

B = set of edges of a graph
F = collection of trees including a given vertex v1

which yields Prim’s algorithm for the MSTP.
In fact, the trivial axiom is satisfied, as the empty set is a degenerate tree reduced to vertex

v1. The accessibility axiom is satisied, because some edges (the leaves) can always be removed
from a tree without disconnecting it. Finally, the exchange axiom holds in the strong form.

107

108 CONSTRUCTIVE HEURISTICS CHAPTER 6

This is why Prim’s algorithm solves the MSTP exactly, even if the hereditary axiom is
violated (removing any edge from a tree does not always generate a tree).

6.3 Nonexact constructive algorithms

When all the search spaces devised to solve a problem violate the required algebraic properties,
it is possible to try and guide the algorithm though the construction graph using a selection
criterium more sophisticated than the objective function. In particular, the selection criterium
could take into account somehow also the constraints that make the problem hard to solve.
While this may fail getting an exact algorithm, quite often it will get better results, possibly
even an approximation guarantee.

6.3.1 Pure constructive heuristics
Most of the selection criteria ϕA considered so far admitted equivalent expressions depending
only on i: for example, in the KP, ϕA(i,x) = f (x∪{i}) was replaced by φi; in the TSP, f (x∪
{(i, j)}) was replaced by ci j. The algorithms in which the selection criterium depends only
on the new element i are called pure constructive algorithm. In this section, we review other
algorithms of this kind.

A constructive heuristic for the KP

The main reason why the matroid axioms are violated in the KP is that the objects have differ-
ent volumes, and it is no longer true that a small cardinality subset can be enlarged by adding
an element taken from a large cardinality subset. The problem here is the capacity constraint
or, better, the different effect of the capacity constraint on different elements : promising ob-
jects have a large value, but also a small volume. Following this remark one can replace the
naive selection criterium composed by the value with a smarter one, given by the unitary value
ϕA(i,x) =

φi
vi

of each object, that is the ratio of the value with the volume. The resulting algo-
rithm can still perform very badly, but is in general much better and with a small modification
becomes 2-approximated.

Consider the instance described by the following table with capacity V = 8:

B a b c d e f
φ 7 2 4 5 4 1
v 5 3 2 3 1 1

φ/v 1.4 0.67 2 1.67 4 1

The algorithm performs the following steps, where Vr =V −∑i∈x vi is the residual capacity:

1. x := /0,Vr = 8

2. x := {e},Vr = 7

3. x := {c,e},Vr = 5

4. x := {c,d,e},Vr = 2

5. x := {c,d,e, f},Vr = 1

6. since ∆
+
A (x) = /0, terminate.

108

CHAPTER 6 6.3. NONEXACT CONSTRUCTIVE ALGORITHMS 109

The value of the solution found is 14, while the optimal solution is x∗ = {a,c,e} with f ∗ = 15.
The algorithm, therefore, is nonoptimal, but does not perform badly.

There are some critical cases, though. Consider the following table with capacity V = 10:

B a b
φ 10 90
v 1 10

φ/v 10 9

The algorithm chooses object a, which has the maximum ratio, and terminates, returning a
solution of value 10, while the optimum is 90. There are instances with unlimitedly worse gap!
The reason of the mistake is that the first discarded object has a large volume, but also a large
value, exceeding that of the objects selected so far.

2-approximation guarantee for the KP

In order to obtain a 2-approximation guarantee, the algorithm must be slightly modified, fol-
lowing the lines of Algorithm 6. It still starts from the empty set and chooses at each iteration
an element i of maximum unitary value. If the element respects the capacity, it is added to
the solution, as in the basic algorithm; if the capacity is violated, on the contrary, instead of
rejecting the item and proceeding with the next one, the algorithm terminates. From this point
of view, the algorithm is clearly worse. However, before terminating, it considers a degenerate
solution including only the discarded element, and returns the better of the two solutions found.
This provides a better result in the worst case.

Algorithm 6 2-approximated algorithm for the KP
1: procedure GREEDYKP(I)
2: x := /0
3: while V > ∑i∈x vi do
4: i(t) := argmaxi∈B\x(t−1)

φi
vi

5: if vi(t) +∑i∈x(t−1) ≤V then
6: x(t) := x(t−1)∪{i(t)}
7: else
8: x′ := {i(t)}
9: break

10: end if
11: end while
12: return max[f (x), f (x′)]
13: end procedure

In order to prove the approximation guarantee, we have to find an upper bound on the
optimum (this is a maximisation problem) and a feasible solution providing a lower bound with
a constant ratio from the upper bound. The first step consists in proving that the sum of the
values of the two solutions overestimates the optimum:

f (x)+ f (x′)≥ f ∗

Suppose that the capacity of the knapsack is enlarged so that is can host exactly the discarded
object. The new problem is slightly different from the original one, and it surely has a larger

109

110 CONSTRUCTIVE HEURISTICS CHAPTER 6

optimal value, since the solutions that are feasible for the original problem are feasible also for
this one, but additional solutions, potentially better, become feasible. In particular, the solution
obtained combining x and x′ is optimal for the new problem, because it includes the objects of
maximum unitary value and completely fills the capacity: any modification would introduce
objects of smaller unitary value and possibly leave residual capacity.

Then, the lower bound with a fixed ratio to the upper bound is simply the better of the two
solutions:

fA = max[f (x), f (x′)]≥ f (x)+ f (x′)
2

≥ 1
2

f ∗

since the maximum of two numbers is certainly never smaller than their arithmetic mean, which
is half of their sum, and consequently at least half the optimum.

It is also clear that both x and x′ could potentially be improved by adding other elements,
instead of simply terminating the algorithm. However, even without such an improvement, the
result is already 2-approximated.

A constructive heuristic for the TSP

An alternative to modifying the selection criterium is to modify the search space. This can be
done, for example, for the TSP. We have already seen that the search space based on partial
solutions does not admit a polynomial inclusion test (see Section 6.1.1) and its relaxation that
only avoid subtours and vertex degrees larger than 1 provides very bad results. An alternative
approach somewhat similar to Prim’s algorithm for the MSTP consists in restricting the search
space to very special partial solutions, that are anyway able to generate any feasible one.

The so called Nearest Neighbour (NN) algorithm defines FA as the collection of all paths
that start from a given node (for example node 1), plus the Hamiltonian circuits. These subsets
of arcs have a structure that is simple to test and are promising, because any feasible solution
includes some: they just have to be completed visiting the remaining nodes and going back to
the first one.

Let Nx be the set of nodes visited in a path x. The acceptable extensions of x are all the arcs
that go out of the last node and do not close a subtour:

∆
+
A (x) = {(h,k) ∈ A : h = Last(x)∧ (k /∈ Nx ∨ (k = First(x)∧Nx = N))}

In other words, if h is the last node of path x, the acceptable extensions of x are are the arcs
from h to any other node k not belonging to x, unless x has visited all nodes (Nx ≡ N) and k is
the first visited ode.

A quick check to the axioms shows that the trivial axiom obviously holds: the empty set
represents a degenerate path starting in node 1 and not reaching any other node. The accessi-
bility axiom holds: removing the last arc still yields a path starting from node 1, so the reduced
subset is still in the search space. The hereditarity axiom does not hold because most subsets
of a path are not paths. Therefore, there is no matroid. Finally, the exchange axiom is violated,
and consequently there is also no greedoid. Consequently, the algorithm cannot be exact.

Algorithm 7 starts with the empty set. Each iteration finds the arc of minimum cost among
the possible extensions, that is among the arcs that go from the last node of the current path to
a not yet visited node.

It is a very intuitive algorithm, with quadratic complexity: it performs n iterations, and in
each one it scans at most n candidate arcs to determine and add the best one. We already know
that on general graphs the feasibility of the TSP is NP-complete, so no polynomial algoritm
can guarantee to find a feasible solution, but on complete graphs this is always possible. If the
triangular inequality holds, the algorithm is even log(n)-approximated.

110

CHAPTER 6 6.3. NONEXACT CONSTRUCTIVE ALGORITHMS 111

Algorithm 7 Nearest Neighbour heuristic for the TSP
1: procedure NNTSP(I)
2: x := /0
3: h := 1
4: while true do
5: (i, j) := arg min

(h,k)∈∆
+
A (x)

chk

6: x := x∪{(i, j)}
7: if j = 1 then
8: break
9: end if

10: end while
11: return x
12: end procedure

Figure 6.6: A complete graph with arcs not reported for clarity and Euclidean costs.

A numerical example Consider the graph in Figure 6.6. The NN heuristic starting from node
1 finds the suboptimal path in Figure 6.7 (a). Starting from node 2, it finds the suboptimal path in
Figure 6.7 (b). Starting from any of the nodes yields a suboptimal solution: the optimal solution
that corresponds to the convex envelope of the six points cannot be found by this algorithm.

(a) NN heuristic starting from node 1. (b) NN heuristic starting from node 2.

Figure 6.7: NN heuristics on a complete graph starting from different nodes.

6.3.2 Adaptive constructive algorithms

When the selection criterium ϕA depends not only on the new element i, but also on the current
solution x, it is called an adaptive algorithm, as it needs to update the value of the selection
criterium from iteration to iteration, in order to adapt it to the current subset x. Of course, this
makes the procedure more complex from the computational point of view. An example already
considered was the basic constructive algorithm for the MDP. In the following we consider
other examples.

111

112 CONSTRUCTIVE HEURISTICS CHAPTER 6

An adaptive constructive algorithm for the SCP

Given a binary matrix and a cost vector associated to the columns of the matrix, the SCP aims
to find a subset of columns that cover all the rows and have a minimum total cost. The objective
function is obviously additive, but the solution are not maximal subsets, since any feasible
solution can be augmented by additional columns, and actually the minimal feasible subsets are
better.

Using the objective function as the selection criterium leads to choose columns that repeat-
edly cover the same rows. Moreover, the cost of a column is not sufficient to indicate whether it
is promising or not: since the fundamental constraint is to cover all rows, a column should have
a low cost, but also cover many rows. Finally, the rows to cover should not be always the same,
but new ones at each iteration, with respect to rows already covered by the current subset of
columns. In summary, the acceptable extension set ∆

+
A (x) includes only columns that covering

additional rows, and the selection criterion ϕA(i,x) should be adaptive, taking into account not
only the cost ci, but also the number ai(x) of “new rows”, that is rows that are covered by i but
not by x:

ϕA(i,x) =
ci

ai(x)

This algorithm is not exact, but it is log(n)-approximated. The proof is a bit involved. It
requires an auxiliary weight vector defined on the rows of the matrix. At the beginning, this
vector is initialised to θ j = 0 for all j ∈ R. At each iteration t each column i is evaluated with
the criterion

ϕA(i,x(t−1)) =
ci

ai(x(t−1))

and the minimum one is chosen and added to the current subset. Suppose that row j is covered
for the first time by column i j at iteration t j. When a column is added to x, the weights of each
row j newly covered is updated as follows:

θ j =
ci j

a
i j(x

(t j−1)
)

Therefore, the total weight of the rows increases by ci j at step t j, and, correspondingly, the cost
of subset x increases by ci j , as the subset includes column i j. Consequently, sum of the row
weights is always exactly equal to the sum of the selected columns costs

fA(x) = ∑
i∈x

c j = ∑
j∈R

θ j

Since the the values ai(x(t−1)) decrease iteration after iteration, the row weights increase
step by step. Since at each step at least one new row is covered, at step t there are |R(t)| ≤ |R|− t
uncovered rows. The columns of the optimal solution could cover these rows with cost f ∗. This
means that at least one of such columns has unitary cost ≤ f ∗/|R(t)|.

However, the column chosen at each step is the one with minimum unitary cost, that is cer-
tainly not larger than the average cost given by the optimal solution. Therefore, some columns
have a smaller cost and some a larger one. The cost of the final solution will not be larger than
the sum of the upper estimates computed in each step of the algorithm

θ j ≤
f ∗

|R(t j)|
→ ∑

j∈R
θ j ≤ ∑

j∈R

f ∗

|R(t j)|

112

CHAPTER 6 6.3. NONEXACT CONSTRUCTIVE ALGORITHMS 113

In other words, the cost to cover each row j is not larger than the optimum divided by the
number of rows uncovered at the step in which j gets covered.

Now, the number |R(t)| strictly decreases at each step and the sum can be overestimated
reducing |R(t)| by 1 at each step. This yields a harmonic sum, which implies that the approxi-
mation ratio is limited by a logarithmic guarantee:

fA = ∑
j∈R

θ j ≤ ∑
j∈R

f ∗

|R(t j)|
≤

1

∑
r=|R|

f ∗

r
≤ (ln|R|+1) f ∗

A numerical example Consider the SCP instance of Table 6.1.

Table 6.1: An SCP instance.

The algorithm takes the following steps:

1. since ϕA(i,x) = [4.16 2 4 12 12], select i := 2 and set θ1 = θ2 = θ3 = 2 which is less than
f ∗/|R(0)|= 25/6 = 4.16.

2. since ϕA(i,x) = [8.3 − 8 12 12], select i := 3 and set θ4 = 8 which is less than f ∗/|R(1)|=
8.3.

3. since ϕA(i,x) = [12.5 − − 24 12], select i := 5 and set θ6 = 12 which is less than
f ∗/|R(2)|= 12.5.

4. since ϕA(i,x)= [25 − − 24 −], select i := 4 and set θ5 = 24 which is less than f ∗/|R(3)|=
25.

5. all the rows are covered, therefore ∆
+
A (x) = /0 and the algorithm terminates.

Hence, fA = ∑ j∈R θ j = 50 and the approximation holds:

fA ≤ (ln|R|+1) f ∗ ≈ 2.79 f ∗

Adaptive heuristics for the BPP

The BPP requires to divide a set O of voluminous objects into the minimum number of con-
tainers of given capacity drawn from a set C. The ground set B = O×C includes all possible
object-container assignments with one container for each object and with the total volume in
each container not exceeding its capacity.

We consider two heuristics for this problems, that are adaptive, that is apply a selection
criterium that depends on the current subset x. They also show that the selection criterium is
a function in its most general sense, that is a relation between data and value, not necessarily
expressed with an algebraic formula. Both heuristics define the search space FA as the set of
partial solutions: not all objects may be inserted in a bin, each object appears at most in one; no
volume constraint is violated.

113

114 CONSTRUCTIVE HEURISTICS CHAPTER 6

The objective function is certainly not additive, but the basic constructive algorithm may
be applied anyway, starting from an empty subset and taking at every iteration the assignment
that minimises the value of the objective function. However, this algorithm immediately finds
that at the first step all acceptable extensions (assign a new object to a container respecting its
capacity) increase the objective from zero to one container. In the following steps, the objective
is still rather useless, as there are at most two classes of possible assignments: those that keep
the same number of containers and those that increase it by 1. Such a flat objective function is
not a reasonable selection criterium.

First-fit heuristic It is however possible to keep the constructive scheme using other, very
simple, criteria. The first-fit heuristic (FF) splits the choice of the pair (object,container)
into two subsequent choices. The selection criterium is still a function, even if it does not
have a simple algebraic expression. The idea is trivially to choose the first (minimum index)
unassigned object i and the first (minimum index) used container j that has enough residual
capacity to host object i; if no container has enough residual capacity, j is the first unused
container.

(a) First Fit solution. (b) Optimal solution.

Figure 6.8: Example of First-Fit heuristic on an instance.

The general scheme still applies: objects are assigned as long as the solution can be ex-
tended, that is as long as there are unassigned objects. The total number of steps is equal to the
number of objects. Figure 6.8 (a) shows an example of the application of the First-Fit heuristic
on a BPP instance.

The solution obtained is not optimal, as shown in Figure 6.8 (b). It can be proved, however,
that the solution has a 2-approximation guarantee1. First, we find a lower bound on the opti-
mum: in order to host all objects, at least f ∗ ≥ ⌈(∑i∈O vi)/V⌉ containers are necessary (this is
the number of containers needed assuming that the objects could be split). Following the rules
of the FF heuristic, all used containers, apart possibly from the last one, have an occupied vol-
ume strictly greater than V/2. This can be proved by contradiction. Assume that two containers
are less than half filled. This implies that all objects in the second one could fit in the first, but
the algorithm always puts an object in the first container that can host it. So, this is impossible.

Consequently, the total volume exceeds that of the fA − 1 “saturated” containers, that is
larger than V/2:

∑
i∈O

vi > (fA −1)
V
2

1Actually, a better one, but the proof for the 2-approximation is simple.

114

CHAPTER 6 6.4. EXTENSIONS TO THE BASIC CONSTRUCTIVE SCHEME 115

which implies

(fA −1)< 2
∑i∈O vi

V
≤ 2 f ∗ → fa ≤ 2 f ∗

Decreasing first-fit heuristic Of course, the approximation ratio α = 2 proved above holds
for any given permutation of the objects. Intuition would suggest to select first the smallest ob-
jects, in order to keep the value of the objective, f (x∪{i}), as small as possible. This, however,
neglects that all the objects must be assigned. In fact, it is better to select the largest objects first.
By construction, each object in a container has a volume strictly larger than the residual capac-
ity of all the previous containers. Keeping the smallest objects in the end guarantees that most
containers have a small residual capacity, and therefore their volume is effectively exploited.
So, the idea is to apply the First-Fit heuristic on a permutation of the objects to insert by de-
creasing volumes. This heuristic doesn’t yield an optimal solution in general, but it provides a
better worst-case approximation ratio:

fA ≤ 11
9

f ∗+1

as well as better empirical results on the average.
The remark that all objects must be “serviced” and, therefore, it is better to take into account

the most “critical” ones first is a general property that holds for many other problems, as we
shall see.

6.4 Extensions to the basic constructive scheme
In addition to designing a suitable search space and a suitable selection criterium, the basic
scheme constructive of constructive heuristics can be extended also in more general ways. There
are two basic enhancings. The first is to modify the construction graph replacing the rule that
arcs correspond to adding a single element to an acceptable subset with a more general one:
either adding more than one element or even adding elements to x but also removing some
(provided that a “net increment” in the cardinality of the subset still occurs).

The second extension focuses on the selection criterium, making it dependent not only on
the added element i and the current subset x, but on more sophisticated information. We will
examine two possible extenstions, one using a regret-based function, that estimates the potential
future loss associated to the inclusion of a certain element in the current subset and one using
a lookahead function, that estimates the final value of the objective function implied by the
addition of a certain element in subset x.

6.4.1 Extensions of the construction graph with small subsets
The basic constructive algorithm adds an element at a time to the current subset. In order to
generalise this scheme, more than one element can be added at each step. In this case, the
selection criterium ϕA(B+,x) (instead of ϕA(i,x)) depends on the current subset x and on each
acceptable subset of elements of the ground set that are currently out of the solution

B+ ⊆ B\ x

Another possibility is to add some elements from outside and remove some elements from the
solution. In this case, the selection criterion will be a function ϕA(B+,B−,x) with

B+ ⊆ B\ x and B− ⊆ x with |B+|> |B−|

115

116 CONSTRUCTIVE HEURISTICS CHAPTER 6

As in the basic scheme, the construction graph has nodes corresponding to subsets of the
ground set (the search space) and arcs corresponding to pairs of subsets such that the second one
is obtained from the first one by applying an acceptable extension. The graph is still acyclic.
Contrary to the basic scheme, the set of extensions ∆+(x) is not composed by single elements
of the ground set, but by pairs of subsets (B+,B−). This family of pairs of subsets must be
designed in such a way that optimising the selection criterion is a polynomial problem:

min
B+⊆B\x,B−⊆x

ϕA(B+,B−,x)

While previously the set was clearly limited in size, now minimising this selection criterion
can be computationally complex, because the subsets B+ and B− can be very numerous, possi-
bly generating an unwanted exponential task. The two classical ways to limit this complexity
are: i) to limit the size of the subsets B+ and B−, e.g. |B+| = 2 and |B−| = 1; ii) to define a
specific family of set pairs such that minimising the selection criterion becomes a classic poly-
nomial problem, that can be optimised efficienly (for example, a shortest path problem). In the
following, we examine both cases.

A third search space for the TSP

In the previous sections we have discussed two constructive heuristics for the TSP based on
different search spaces. The first one considered the subsets of arcs that forbid subtours and
impose an outer and an inner degree not larger than one for all nodes. The second is the nearest
neighbour heuristic, in which the search space is composed of all the paths starting in a certain
node. The acceptable extensions are the arcs from the last visited node to an external one
(or, if all nodes have already been visited, to the given starting node). In both algorithms, the
selection criterium is the cost of the added arc. The first algorithm has a very bad performance,
the second is reasonably good. We introduce now a third search space, and apply to it three
different selection criteria.

Let us define the search space FA is the set of all the circuits in the graph that include a
given node, say node 1 (without loss of generality). A circuit cannot be obtained from another
by adding a single arc to another circuit. It can be obtained by removing an arc (i, j) and adding
two arcs (i,k),(k, j). In this context, B+ = {(i,k),(k, j)} and B− = {(i, j)}.

Figure 6.9: Building a new circuit from a given circuit.

The idea is to start from an empty set of arcs x0 = /0 (it would be more correct to think of
it as a degenerate circuit composed by a self loop on node 1), and iteratively choose a node
different from those spanned by the current solution, and an arc inside the solution, which
shall be removed. The node and the arc identify automatically the two arcs that should be
added. Therefore, the number of possible extensions in a complete graph is (n−|x|)|x| ∈ O(n2),
deriving from the (n−|x|) possible nodes and the |x| possible arcs. If the graph is complete, after
n−1 iterations the solution will be a Hamiltonian circuit. Otherwise, the number of choices is
smaller and the process could terminate in advance without returning any feasible solution. The
following three algorithms are based on different selection criteria to determine the added node
and the removed arc.

116

CHAPTER 6 6.4. EXTENSIONS TO THE BASIC CONSTRUCTIVE SCHEME 117

Cheapest insertion algorithm for the TSP The cheapest insertion (CI) heuristic uses as a
selection criterion the objective function

ϕA(B+,B−,x) = f (x∪B+ \B−)

This is additive, hence extensible to the whole search space FA. Thanks to the additivity of f (x)

arg min
B+,B−

ϕA(B+,B−,x) = argmin
i,k

(csi,k + ck,si+1 − csi,si+1)

where k ∈ N \ Nx (the set of nodes spanned by x) ranges on the potential new nodes and
(si,si+1) ∈ x on the potentially removed arcs, as in Figure 6.10. The cost f (x) of the original
solution can be neglected, as it is constant for all extensions. Therefore, the computational cost
to evaluate ϕA decreases from Θ(n) to Θ(1). This is fundamental, as the elementary insertion

Figure 6.10: Example of an insertion.

step must be as fast as possible. It estimates O(n2) alternatives (trivially feasible in complete
graphs, but checkable in constant time also in general ones), and the objective function can be
computed updating it in constant time. The scheme of this algorithm is:

1. start with an the self-loop centered on node 1: x(0) = {(1,1)};

2. select the arc (si,si+1) ∈ x and the node k /∈ Nx such that (csi,k + ck,si+1 − csi,si+1) is mini-
mum;

3. if the circuit does not visit all nodes go back to point (2), otherwise terminate.

This algoritm is not exact, but it is 2-approximated for graphs that respect the triangle inequality
(not on general complete graphs).

The CI algorithm performs n−1 steps and at each step t it evaluates (n−t)t pairs (node,arc)
in constant time, performs the best addition/removal and decides whether to terminate. So, the
overall complexity is Θ(n3). However, it can be reduced to Θ(n2 ∗ log(n)) collecting in a min-
heap the best insertion cost for each external node: each of the n steps, then, selects the best
insertion in O(1) time, performs it and thus creates two new arcs, that provide insertion points
for each external node, and possibly improve the value saved in the heap; each of the O(n)
updates of the heap takes O(log(n)) time.

Nearest insertion heuristic for the TSP The nearest insertion (NI) heuristic has the same
search space FA as the CI heuristic, but a different selection criterion. The CI algorithm tends
to select nodes that are close to the circuit x: minimising (csi,k+ck,si+1 −csi,si+1), in fact, implies
that csi,k and ck,si+1 are small. We have also seen, discussing the FF and the DFF heuristics for
the BPP that the selection criterion is not always a function that can be expressed analytically.

117

118 CONSTRUCTIVE HEURISTICS CHAPTER 6

The NI heuristic splits the selection criterium is split into two subprocedures: the first one
applies chooses the node k to add as

k = argmin
l /∈Nx

(min
si∈Nx

csi,l)

while the second one chooses the arc to remove as

(si,si+1) = arg min
(si,si+1)∈x

(csi,k + ck,si+1 − csi,si+1)

In other words, instead of minimising the cost of the new solution considering all pairs (node,arc),
the criterium first choses the closest external node, then choses the “right” arc to break. These
two steps repeat until the circuit visits all the nodes. Once again, the algorithms it not exact but
2-approximated under the triangle inequality.

It performs n− 1 steps: at each step t it evaluates the distance of (n− t) nodes from the
circuit, each one in Θ(t) time; then, it selects the node at minimum distance, evaluates the
removal of t arcs (each one in Θ(1) time), performs the best addition/removal and decides
whether to terminate. So, the overall complexity is again Θ(n3). It can be reduced to Θ(n2)
collecting in a vector the closest external node for each internal node: each of the n− 1 steps
selects the closest node in O(n) time, inserts it creating two new insertions for each external
node, which possibly improve the value saved in the vector; each of the O(n) improvements
takes O(1) time. So, the algorithm has the same approximation guarantee as CI, but is faster.

Farthest insertion heuristic for the TSP The farthest insertion (FI) heuristic is very similar
to the NI heuristic, but in a sense complementary: the nodes to be inserted are chosen maximis-
ing the distance from the current circuit (that is, the minimum distance from its nodes). This
guarantees that the most problematic nodes - the farthest ones - are served in the best way. In
a way, this is the same philosophy seen in the DFF algorithm for the BPP. Formally, the FI
heuristic starts with a degenerate circuit centered on node 1 (x(0) = {(1,1)}). At each step, it
first selects the farthest node k from the cycle x

k = argmax
l /∈Nx

(min
si∈Nx

csi,l)

and then the arc (si,si+1) that minimises the objective function

(si,si+1) = arg min
(si,si+1)∈x

(csi,k + ck,si+1 − csi,si+1)

If the circuit does not visit all nodes it selects another one, otherwise it terminates. It can be
proved that this algorithm is log(n)-approximated under the triangle inequality, hence worse
than the previous ones in the worst case. However, often it proves experimentally better. Its
complexity is the same as the NI heuristic, Θ(n2).

6.4.2 Extension of the construction graph using auxiliary subproblems

A second possible extension of construction graphs consists in adding subsets of element chosen
by solving an auxiliary subproblem.

118

CHAPTER 6 6.4. EXTENSIONS TO THE BASIC CONSTRUCTIVE SCHEME 119

The Steiner tree problem

To illustrate this second possibility, we introduce a new problem called the Steiner tree problem
(STP). Given an undirected graph G=(V,E), a cost function c : E →N on the edges and a subset
of special vertices U ⊂ V , the problem requires to find a minimum cost tree connecting all the
special vertices. An instance of the STP is represented in Figure 6.11, where the special nodes
are represented in red. The nonspecial vertices can be included or not, arbitrarily.

Figure 6.11: An example of STP instance.

At first sight, it seems reasonable to consider only the special vertices, remove the other
ones, and find the minimum spanning tree on the former: the example in Figure 6.11 shows
that this is not the right tactic in general. Moreover, in general the special vertices do not even
induce a connected subgraph.

A basic constructive heuristic for the STP would start from an empty set of arcs and iter-
atively add one edge at a time, possibly with a search space inspired by Kruskal (the set of
all forest spanning the special vertices), or a search space inspired by Prim (the set of all trees
including a given pivotal vertex). This does not work well because it easily yields solutions
with redundant edges: the algorithm has a really hard time trying to discern useful edges from
redundant ones. The algorithm “knows” that an edge is cheap, but not whether it is useful or
not to reach the special vertices.

Distance heuristic for the STP The critical point is to distinguish useful edges from reduntant
ones, besides considering their cost. The distance heuristic (DH) focuses on the constraint that
all special vertices must be spanned by the solution. Its idea is to start from a special vertex,
say 1, and step after step add a new special vertex j connected with a path to the previous
ones. In other words, the DH iteratively adds a path B+ from the solution x (a tree) to a special
vertex, instead of a single edge. In this way, x remains a tree, but spans a new special vertex.
The minimum cost path can be computed efficiently at each step using Dijkstra’s or any other
shortest path algorithm.

Consider Figure 6.12; the algorithm works as follows:

1. start from a degenerate tree composed by a single special vertex A: x(0) := /0;

2. add the closest special vertex B through path (a,e,d,b): x := {(a,e),(e,d),(d,b)}.

3. add the closest special vertex G through path (g,h,d): x := {(a,e),(e,d),(d,b),(g,h),(h,d)}.

4. since all special vertices are in the solution, terminate.

The solution obtained in this example is optimal. In general, the DH algorithm is 2-approximated.
It is equivalent to computing a minimum spanning tree on a graph with vertices reduced to the
special vertices and edges corresponding to minimum paths.

119

120 CONSTRUCTIVE HEURISTICS CHAPTER 6

Figure 6.12: A second example of STP instance.

Let us see a counterexample to optimality regarding the DH algorithm for the STP. In the
complete graph of Figure 6.13 all vertices except vertex 1 are special, so U =V \{1}. The cost
function is

cuv =

{
(1+ ε)M u = 1∨ v = 1
2M u,v ∈U

where M is a nonnecessary constant used only to obtain integer cost for any ε .

Figure 6.13: Counterexample to DH optimality.

The optimal solution is the spanning star centered in 1, with cost

f ∗ = (n−1) · (1+ ε)M

(see Figure 6.13 on the right), while the DH returns a star spanning only the special vertices and
costing:

fDH = (n−2) ·2M

(see Figure 6.13 on the left). The approximation ratio is

ρDH =
fDH

f ∗
=

n−2
n−1

· 2
1+ ε

< 2

and converges to 2 as n increases and ε decreases.

6.4.3 Extensions of the selection criterion: regret functions
Another way to extend the basic scheme of constructive algorithms, even keeping a standard
construction graph with arcs corrisponding to the addition of a single element, is to define more
sophisticated selection criteria. The basic limitation of constructive algorithms is that decisions

120

CHAPTER 6 6.4. EXTENSIONS TO THE BASIC CONSTRUCTIVE SCHEME 121

taken in the first steps strongly influence the rest of the computation. In particular, they can
severely restrict the future feasible choices. Consider the insertion of objects into containers in
the BPP: quite clearly, the first insertions limit the possibility to put other objects in the same
containers. As well, in the TSP choosing to service certain nodes impose a starting shape to
the circuit, and only one arc of that shape can be changed at each step to reach other nodes.
In the CMSTP, since the capacity of each subtree has to be respected, early links could make
completely fill some subtrees and make them unavailable to host vertices not yet added, even if
they would be particularly fit.

A selection criterion can be designed to try and take this aspect into account implicitly: we
have seen that the DFF heuristic for the BPP starts assigning the largest objects, to keep many
containers available for the smallest ones. As well, the FI heuristic for the TSP visits the farthest
nodes first, in order to obtain a circuit offering good choices also for the last nodes.

A typical regret-based heuristic requires to:

1. partition the acceptable extensions ∆
+
A (x) into disjoint classes of choices such that at

least one must belong to any feasible solution; for example, since the ground set of the
BPP is made of pairs (object,container), one can divide the extensions into classes each
referring to an object (all the possible assignments of the first object, of the second object,
and so on);

2. compute the value of a basic selection criterion for all extensions and divide them accord-
ing to the classes obtained above;

3. compute for each class the regret, defined as the difference between the second-best
and the best extension in each class, or, alternatively, the difference between the average
(possible weighted) and the best choice; such a function estimates the damage incurred
by postponing the best choice.

4. choose the class with maximum regret and the best choice in that class (therefore, in
general not the best overall).

A large regret means that not choosing the best option in the class might force in later steps to
choose the second-best option (or even a following one). If the regret is large, the quality of
these choices will be much worse, suggesting that the best choice must be taken immediately,
as long as it is feasible. The basic requirement is that at least one choice for each class must be
taken: for example, at least an assignment for each object, at least an outgoing (or ingoing) arc
for each node, at least a machine for each task, etc. . .

Example on the CMSTP Consider the CMSTP with ground set B = V ×T , that is the pairs
(vertex,subtree), with the constraint that each vertex must belong to exactly one subtree. Con-
sider the example of Figure 6.14 with root in r, a uniform vertex weight ∀v ∈ V wv = 1 and a
capacity W = 2.

The feasible solutions are spanning trees such that all subtrees appended to the root vertex r
have a total weight not larger than W . Let the search space F include all partial solutions.

In the first iteration, each vertex can belong to one out of four subtrees: (1,1), (1,2), (1,3),
(1,4), (2,1), . . . , (4,4) with different costs. The basic constructive heuristic puts vertex 2 in
subtree 1 (chosen lexicographically), vertex 3 in subtree 2 (adding 3 to the first subtree would
require a cost of 100 to link 2 and 3, the same holds for using subtree 3 or 4); vertex 4 must
be added to subtree 1 connecting with vertex 2 at cost 2 (building a new subtree would cost
100); vertex 5 has to go in subtree 2 with 3, since subtree 1 is currently full and building a third

121

122 CONSTRUCTIVE HEURISTICS CHAPTER 6

Figure 6.14: An instance of CMSTP problem. The graph is complete: the arcs not reported
have have weight 100.

subtree would cost the same. Thus:

f (x) = 1+1+2+100 = 104

The regret algorithm (using the difference between second-best and best choice) puts vertex 2
in subtree 1 and vertex 3 in subtree 2 (the regrets are all equal to zero); then:

• the regret of vertex 4 is the difference c(4,2)− c(4,1) = 4−2 = 2

• the regret of vertex 5 is the difference c(5,2)− c(5,1) = 100−3 = 97

So the algorithm puts vertex 5 in subtree 1 with 2 and vertex 4 in subtree 2 with vertex 3 and
obtains

f (x) = 1+3+1+4 = 9

The regret technique works very well when the problem is tightly constrained. In loosely con-
strained instanes it can lead to ineffective results.

6.4.4 Extensions of the selection criterion: roll-out heuristics
Roll-out heuristics are based on the idea of making a look-ahead, that is asking would happen
in the end when a new element is chosen and added to the solution. These heuristics have been
proposed in 1997 by Bertsekas and Tsitsiklis. They are meta-algorithms, meaning that they
depend on a basic constructive algorithm A. They:

• start from an empty subset x(0) = /0;

• at each step t

– extend the subset in each feasible way: ∀i ∈ ∆
+
A (x) x(t−1)∪{i};

– apply the basic heuristic to each extended subset and compute the resulting solution
xA(x(t−1)∪{i});

– use the value of the solution as the selection criterion to choose i(t) ϕA(i,x) =
f (xA(x(t−1)∪{i}));

• terminate when ∆
+
A (x) is empty.

In other words, these heuristics try every feasible move, look at the final result and go back to
choose the move with the best final result. So, lots of attempts are done and the basic heuristic
is run lots of times. Under very general conditions, the result of the roll-out heuristic dominates

122

CHAPTER 6 6.4. EXTENSIONS TO THE BASIC CONSTRUCTIVE SCHEME 123

that of the basic heuristic. The complexity remains polynomial, but much larger than that of the
basic heuristic: in the worst case, in fact,

Tro = |B|2TA

because the process takes O(|B|) steps and at each one the basic heuristic is run for each of the
O(|B|) acceptable extensions.

Example: roll-out for the SCP Given the SCP instance of Table 6.2, the feasible solutions
are subsets of columns that cover all the rows. We know a good log-approximated algorithm,
based on the ratio between the cost and the number of newly covered rows.

c 25 6 8 24 12

A

1 1 0 0 0
1 1 0 0 0
1 1 1 0 0
1 0 1 1 0
1 0 0 1 0
1 0 0 0 1

Table 6.2: An instance of the SCP.

Applying the roll-out heuristic, each of the five columns is taken as part of the solution and
the original heuristic algorithm is applied to it:

1. start with the empty subset x(0) = /0;

2. for each column i, apply the constructive heuristic starting from subset x(0)∪{i}= {i};

• for i = 1, obtain xa({1}) = {1} of cost fA({1}) = 25
• for i = 2, obtain xa({2}) = {2,3,5,4} of cost fA({2}) = 50
• for i = 3, obtain xa({3}) = {3,2,5,4} of cost fA({3}) = 50
• for i = 4, obtain xa({4}) = {4,2,5} of cost fA({4}) = 43
• for i = 5, obtain xa({5}) = {5,2,3,4} of cost fA({5}) = 50

3. the best solution is the first one, therefore i(1) = 1;

4. since all rows are covered, the algorithm terminates.

The scheme can be generalised by applying several basic heuristics A[1], · · · ,A[l] and increas-
ing the number of look-ahead steps, i.e. using x(t−1)∪B+ with |B+| > 1. Both generalisations
increment the computational time, but the overall scheme does not change significantly:

• start with an empty subset x(0) = /0

• at each step t

– for each possible extension B+ ∈ ∆
+
A (x

(t−1)) apply each basic algorithm A[i] starting
from x(t−1)∪B+.

– the selection criterion is mini fA[i](x(t−1)∪B+)

– use the value of the solution as the selection criterion to choose i(t) ϕA(i,x) =
mini fA[i](x(t−1)∪B+)

• terminate when ∆
+
A (x) is empty

123

124 CONSTRUCTIVE HEURISTICS CHAPTER 6

6.5 Destructive heuristics
Destructive heuristics are complementary to constructive ones. Their general scheme is:

• start with the full ground set: x(0) := B

• remove a selected element at a time:

– so as to remain within the search space FA, in other words ∆
+
A (x) = {i ∈ x : x\{i} ∈

FA}
– so as to maximize a selection criterion ϕA(i,x), usually a cost reduction

• terminate when ∆
+
A (x) = /0

A destructive heuristic for minimisation problems can be described by Algorithm 8. This algo-

Algorithm 8 Destructive Heuristic Pseudocode
1: procedure STINGY(I)
2: x := B
3: x∗ := B
4: if x ∈ X then
5: f ∗ := f (x)
6: else
7: f ∗ :=+∞

8: end if
9: while ∆

+
A (x) ̸= /0 do

10: i := argmaxi∈∆
+
A (x)

ϕA(i,x)
11: x := x\{i}
12: if x ∈ X and f (x)< f ∗ then
13: x∗ := x
14: f ∗ := f (x)
15: end if
16: end while
17: return (x∗, f ∗)
18: end procedure

rithm is often also called stingy, as it starts with the entire ground set in x and proceeds throwing
away the most “expensive” objects. For example, in the SCP one can start with all columns and
iteratively remove the most expensive column that covers only rows covered by other columns,
until no such column can be found. In the MST problem, the stingy algorithm is exact, as
Kruskal’s or Prim’s algorithm: starting from the full set of edges, costly edges get iteratively
discarded from the solution provided that the vertices remain connected. The reason why it is
rarely taught is that it is computationally more expensive: to test whether the graph remains
connected requires a visit, that is more costly than the acyclicity test run by union-find sets in
Kruskal or the automatic generation of only feasible solutions in Prim.

6.5.1 Why are they less used than constructive heuristics?
When the solutions are much smaller than the ground set (|x| << |B|), a destructive heuristic
requires a larger number of steps than a constructive one. It is also more likely to make wrong

124

CHAPTER 6 6.5. DESTRUCTIVE HEURISTICS 125

decision at an early step, given that there are more possible choices. Sometimes, it requires
more time to evaluate ∆

+
A (x) and ϕA(i,x) at each single step.

Nonetheless, whenever a constructive heuristic returns redundant solutions, it is useful to
“append” a destructive heuristic at its end as a post-processing phase. This auxiliary destructive
heuristic starts from a solution x of the constructive heuristic, instead of B. It typically adopts
as a search space the feasible region:

FA = X =⇒ ∆
+
A (x) = {i ∈ x : x\{i} ∈ X}

and as a selection criterion the objective function

ϕA(i,x) = f (x\{i})

Usually, it terminates after very few steps.

Constructive/destructive heuristic for the SCP Consider the following SCP instance:

c 25 8 24 12

A

1 0 0 0
1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

The constructive heuristic selects, in order, columns 1,2,4 and 3, which is redundant.
The auxiliary destructive heuristic removes column 2 and provides the optimal solution x∗ =
{1,3,4}.

125

126 CONSTRUCTIVE HEURISTICS CHAPTER 6

6.6 Exercises

6.6.1 Exercise 1
Given an undirected graph G = (V,E) and a cost function defined on its edges c : E → N, the
Maximum Matching Problem consists in finding a subset of nonadjacent edges of maximum
total cost. Suppose that the ground set B for this problem has been defined as the set of edges E,
and the search space F as the collection of all subsets of nonadjacent edges (i. e., it coincides
with the feasible region).

Does (B,F) satisfy the trival axiom?
Does (B,F) satisfy the accessibility axiom?
Does (B,F) satisfy the hereditarity axiom?
Does (B,F) satisfy the exchange axiom?
What can be deduced from this?

Solution The trivial axiom is obviously satisfied: an empty set of edges includes no pair of
adjacent edges. The hereditarity axiom (and therefore the accessibility one) is also satisfied,
because removing edges from a set does not create a new pair of adjacent edges. The exchange
axiom is not satisfied, because it is easy to find counterexamples. For example, let x = {(2,3)}
and y = {(1,2) ,(3,4)}: the two subsets are both part of the search space and the latter is larger
than the former, but none of the edges in the latter can be added to former remaining in the
search space. As a confirm, the bases of the search space, that is the maximal matchings, can
have different cardinalities. Since the objective function is additive and the (potentially optimal)
feasible solutions are the bases of the search space, the Maximum Matching Problem is not in
general solved exactly by the greedy algorithm.

6.6.2 Exercise 2
Given an undirected graph G = (V,E) and a weight function defined on its vertices c : E →
N, the Maximum Clique Problem consists in finding a subset of pairwise adjacent vertices of
maximum total weight. Suppose that the ground set B for this problem has been defined as the
set of vertices V , and the search space F as the collection of all subsets of pairwise adjacent
vertices (i. e., it coincides with the feasible region).

Does (B,F) satisfy the trival axiom?
Does (B,F) satisfy the accessibility axiom?
Does (B,F) satisfy the hereditarity axiom? Does (B,F) satisfy the exchange axiom?

Solution For the trivial axiom, one can conventionally say that the vertices of an empty set
are adjacent or that they are not, as it seems preferable. The hereditarity axiom (and, therefore,
the accessibility one) is certainly satisfied, because when vertices are removed from a subset,
the remaining ones still are pairwise adjacent. The exchange axiom is not satisfied, because
it is easy to find counterexamples. Let x = {(1)} and y = {2,3}: if edges (1,2) and (1,3)
do not exist, none of the vertices from y can be added to x and still form a clique. In fact,
maximal cliques can have different cardinalities. Since the objective function is additive and
the (potentially optimal) feasible solutions are the bases of the search space, the Maximum
Clique Problem is not in general solved exactly by the greedy algorithm.

126

CHAPTER 6 6.6. EXERCISES 127

6.6.3 Exercise 3
Considering the BPP, assume as ground set the collection of all object-container pairs (B =
E ×C) and as search space the collection of all partial solutions, that is subsets of pairs that
assign each object to at most one container without exceeding the capacity of the containers.
Discuss whether ground set and search space satisfy the trivial, the hereditarity, the accessibility
and the exchange axiom. What can be deduced from the discussion?

Solution For the trivial axiom, an empty set is certainly a partial solution: all objects are
assigned to zero containers (therefore, not more than 1) and the occupied volume is zero for all
containers (therefore, not exceeding the capacity). The hereditarity axiom (and, therefore, the
accessibility one) is certainly satisfied, because when objects are removed from the container to
which they are assigned, the remaining ones still have at most one assignment and the capacity
of the containers still is respected. Considering the exchange axiom, the partition constraint is
not a problem: if a subset has one assignment more than a second one, then that assignment
can be added to the first. However, the capacity of the containers could be easily violated. A
counterexample very similar to the one discussed for the KP can be proposed. Suppose that
in subset x an object completely fills the first container, while in subset y two other objects
completely fill the first container: none of the two assignments of y can be feasibly added to x.
Since the objective function is not additive, this discussion actually does not prove or disprove
anything on the optimality of the greedy algorithm, that is however clearly nonexact.

6.6.4 Exercise 4
Given a directed graph G= (N,A), a cost function defined on its edges, c : A→N, a source node
s and a destination node t, the Shortest Path Problem requires to find a directed path of minimum
total cost from s to t. Assume the set of arcs A as the ground set and the collection of all paths
starting from s as the search space and discuss whether ground set and search space satisfy the
trivial, the hereditarity, the accessibility and the exchange axiom. What can be deduced from
the discussion?

Solution The trivial axiom is satisfied, as an empty set of arcs can be seen as a (degenerate)
path from s. The hereditarity axiom is violated, because removing arcs from a path usually does
not yield a path. The accessibility axiom is satisfied, because removing the last arc leaves a path
starting from s. Finally, the exchange axiom is violated, because counterexamples can be easily
built (just take two disjoint paths). This proves that in general the greedy algorithm does not
solve exactly the Shortest Path Problem.

6.6.5 Exercise 5
Given the following instance of the Knapsack Problem with capacity V = 10:

Objects a b c d e f g
Prize φ 10 3 5 12 7 6 8

Volume v 5 1 2 4 3 1 6

solve it with the trivial constructive algorithm that uses the objective function as a selection
criterium, and with the standard constructive algorithm that uses the ratio of object prize to
object volume. For the sake of simplicity, break ties with a lexicographic rule on the objects.

127

128 CONSTRUCTIVE HEURISTICS CHAPTER 6

Solution In the first case, since the objective function is additive, the selection criterium can
be reduced to the prize of the single objects: ϕA (i,x) = φi. The algorithm proceeds as follows,
updating at each step ∆

+
A (x) = {i ∈ E \ x : v(x)+ vi ≤V} and x:

1. start from x = /0;

2. select arg max
i∈∆

+
A (x)

φi = d, and obtain x = {d};

3. select arg max
i∈∆

+
A (x)

φi = a, and obtain x = {d,a};

4. select arg max
i∈∆

+
A (x)

φi = f , and obtain x = {d,a, f};

5. stop, because ∆
+
A (x) = /0.

Solution x = {a,d, f} has a total value of f (x) = 28.
The second algorithm computes the ratios ϕA (i,x) = φi/vi.

Objects a b c d e f g
ϕA (i,x) 2 3 5/2 3 7/3 6 4/3

and proceeds as follows:

1. start from x = /0;

2. select arg max
i∈∆

+
A (x)

φi/vi = f , and obtain x = { f};

3. select arg max
i∈∆

+
A (x)

φi/vi = b (applying the lexicographic rule to choose between b and d),

and obtain x = { f ,b};

4. select arg max
i∈∆

+
A (x)

φi/vi = d, and obtain x = { f ,b,d};

5. select arg max
i∈∆

+
A (x)

φi/vi = c, and obtain x = { f ,b,d,c};

6. stop, because ∆
+
A (x) = /0.

Solution x= {b,c,d, f} has a total value of f (x)= 26. In this case, the smarter heuristic actually
obtained a worse result.

6.6.6 Exercise 6
Given the following instance of the Parallel Machine Scheduling Problem (PMSP) with 3 ma-
chines:

Task a b c d e f g
d 9 3 7 4 5 4 10

solve it with the basic constructive heuristic that assigns tasks to machines using the objective
function as the selection criterium. For the sake of simplicity, break ties with a lexicographic
rule first on the machines, then on the tasks.

Solve it again choosing first the task by decreasing durations di, and then the machine with
the objective function. In both choices, break ties lexicographically.

128

CHAPTER 6 6.6. EXERCISES 129

Solution The set of possible extensions ∆
+
A (x) includes the pairs (t,m) ∈ T ×M such that

task t has not yet been assigned to a machine in x. The basic constructive heuristic proceeds as
follows:

1. start from x = /0;

2. select arg min
(t,m)∈∆

+
A (x)

f (x∪{(t,m)}) = (b,1), because for all choices the completion time

is equal to the duration dt of the chosen task, b is the task with the shortest duration and
machine 1 is chosen lexicographically;

3. select arg min
(t,m)∈∆

+
A (x)

f (x∪{(t,m)}) = (d,2), because d is the remaining task with the

shortest duration (breaking lexicographically the tie with f) and all machines except for
1 give the minimum completion time, but machine 2 is lexicographically the first;

4. select arg min
(t,m)∈∆

+
A (x)

f (x∪{(t,m)}) = (f ,3);

5. select arg min
(t,m)∈∆

+
A (x)

f (x∪{(t,m)}) = (e,1);

6. select arg min
(t,m)∈∆

+
A (x)

f (x∪{(t,m)}) = (c,2);

7. select arg min
(t,m)∈∆

+
A (x)

f (x∪{(t,m)}) = (a,3);

8. select arg min
(t,m)∈∆

+
A (x)

f (x∪{(t,m)}) = (g,1);

The resulting solution is x = {(b,1),(e,1),(g,1),(c,2),(d,2),(a,3),(f ,3)} with completion
time f (x) = max(18,11,13) = 18.

The constructive heuristic that considers tasks by nonincreasing durations proceeds as fol-
lows:

1. start from x = /0;

2. select first argmax
t∈T

dt = g and then arg min
m∈M

f (x∪{(g,m)}) = 1 (lexicographically);

3. select first argmax
t∈T

dt = a and then arg min
m∈M

f (x∪{(a,m)}) = 2 (lexicographically);

4. select first argmax
t∈T

dt = c and then arg min
m∈M

f (x∪{(c,m)}) = 3;

5. select first argmax
t∈T

dt = e and then arg min
m∈M

f (x∪{(e,m)}) = 3;

6. select first argmax
t∈T

dt = d (lexicographically) and then arg min
m∈M

f (x∪{(d,m)}) = 2;

7. select first argmax
t∈T

dt = f and then arg min
m∈M

f (x∪{(f ,m)}) = 1;

8. select first argmax
t∈T

dt = b and then arg min
m∈M

f (x∪{(b,m)}) = 3.

The resulting solution is x = {(f ,1),(g,1),(a,2),(d,2),(b,3),(c,3),(e,3)} with completion
time f (x) = max(14,13,15) = 15.

129

130 CONSTRUCTIVE HEURISTICS CHAPTER 6

6.6.7 Exercise 7
Given the following instance of the Bin Packing problem (BPP):

Items a b c d e f Bin capacity
Volumes 34 4 10 30 2 12 40

apply the First-Fit and the Decreasing First-Fit algorithms to solve the problem.

Solution The First-Fit heuristic proceeds as follows:

1. start from x = /0;

2. put object a into container 1: the residual capacity becomes 40−34 = 6;

3. put object b into container 1: the residual capacity becomes 6−4 = 2);

4. put object c into container 2: the residual capacity becomes 40−10 = 30);

5. put object d into container 2: the residual capacity becomes 30−30 = 0);

6. put object e into container 1: the residual capacity becomes 2−2 = 0);

7. put object f into container 3: the residual capacity becomes 40−12 = 28);

The resulting solution is x = {(a,1),(b,1),(e,1),(c,2),(d,2),(f ,3)} and the value of the ob-
jective is f (x) = |x|= 3. It is optimal, as ⌈∑i∈E vi/V⌉= ⌈92/40⌉= 3.

The Decreasing First-Fit heuristic proceeds as follows:

1. start from x = /0;

2. put object a into container 1: the residual capacity becomes 40−34 = 6;

3. put object d into container 2: the residual capacity becomes 40−30 = 10);

4. put object f into container 3: the residual capacity becomes 40−12 = 28);

5. put object c into container 2: the residual capacity becomes 10−10 = 0);

6. put object b into container 1: the residual capacity becomes 6−4 = 2);

7. put object e into container 1: the residual capacity becomes 2−2 = 0);

The resulting solution and value of the objective function are the same.

6.6.8 Exercise 8
Given the following undirected graph, solve the Weighted Vertex Cover Problem with a con-
structive algorithm using the objective as the selection criterium. Break ties using the lexico-
graphic order.

130

CHAPTER 6 6.6. EXERCISES 131

1 4 2

5 4 3

5 2

a b c

d e f

g h

Solve it with an adaptive selection criterium that computes for each vertex the ratio of the
weight and the number of not yet covered incident edges. Break ties using the lexicographic
order.

Solution The basic constructive heuristic proceeds as follows:

1. start from x = /0;

2. select arg min
i∈V\x

wi = a, and obtain x = {a};

3. select arg min
i∈V\x

wi = c, and obtain x = {a,c};

4. select arg min
i∈V\x

wi = h, and obtain x = {a,c,h};

5. select arg min
i∈V\x

wi = f , and obtain x = {a,c,h, f};

6. select arg min
i∈V\x

wi = b, and obtain x = {a,c,h, f ,b};

7. select arg min
i∈V\x

wi = e, and obtain x = {a,c,h, f ,b,e};

8. select arg min
i∈V\x

wi = d, and obtain x = {a,c,h, f ,b,e,d};

9. stop, because all edges are covered by the vertices in x.

The objective value of the resulting solution x = {a,c,h, f ,b,e,d} is f (x) = 1+2+2+3+4+
4+5 = 21. There are many redundant vertices.

The adaptive constructive heuristic proceeds as follows:

1. start from x = /0;

2. select arg min
i∈V\x

wi/δi(x) = a, and obtain x = {a};

3. select arg min
i∈V\x

wi/δi(x) = c, and obtain x = {a,c};

4. select arg min
i∈V\x

wi/δi(x) = h, and obtain x = {a,c,h};

5. select arg min
i∈V\x

wi/δi(x) = e, and obtain x = {a,c,h,e};

6. select arg min
i∈V\x

wi/δi(x) = d, and obtain x = {a,c,h,e,d};

7. stop, because all edges are covered by the vertices in x.

The objective value of the resulting solution x = {a,c,h,e,d} is f (x) = 1+2+2+4+5 = 14.

131

132 CONSTRUCTIVE HEURISTICS CHAPTER 6

6.6.9 Exercise 9

Given the following instance of the Maximum Clique Problem (MCP):

a

b c d

e

f g h

apply a constructive heuristic that defines the selection criterium as the degree δi of each vertex
i ∈V . This must be maximised, breaking ties with the alphabetic order.

Solution The selection criterium δi assumes the following values:

i a b c d e f g h
δi 3 5 7 4 4 4 6 3

Its aim is clearly to favour vertices with many neighbours, which are more likely to belong
to large cliques. Notice that this specific criterium is not particularly smart, because it is not
adaptively updated as the current subset x is augmented: the degree counts also neighbours that
cannot be added to the current subset. This is done for the sake of simplicity.

At the first step, the set of possible extensions includes all vertices; in the following steps, it
includes only the vertices adjacent to all vertices of the current subset x:

∆
+ (x) =

{
V when x = /0

{i ∈V : ∃ j ∈ x : (i, j) ∈ E} when x ̸= /0

The basic greedy algorithm therefore starts from x := /0 and:

1. it selects c = arg max
i∈∆+(x)

δi and updates x := {c} and ∆+ (x) = {a,b,d,e, f ,g,h};

2. it selects g = arg max
i∈∆+(x)

δi and updates x := {c,g} and ∆+ (x) = {b,d,e, f ,h};

3. it selects b = arg max
i∈∆+(x)

δi and updates x := {b,c,g} and ∆+ (x) = {e, f};

4. it selects e = arg max
i∈∆+(x)

δi (lexicographically) and updates x := {b,c,e,g}

and ∆+ (x) = { f};

5. it selects f = arg max
i∈∆+(x)

δi and updates x := {b,c,e, f ,g} and ∆+ (x) = /0;

6. it terminates, because ∆+ (x) = /0.

132

CHAPTER 6 6.6. EXERCISES 133

6.6.10 Exercise 10
Consider the constructive algorithm for the Capacitated Minimum Spanning Tree Problem (CM-
STP) inspired by Kruskal’s algorithm for the MST problem: the ground set is the edge set E;
the search space F includes all forest (acyclic subsets of edges) such that the trees obtained
removing the root have weight ≤ W ; the selection criterium is the objective function. Apply
this algorithm to the instance with root in vertex a, weight function wv = 1 for all v ∈ V \ {a}
and wa = 0, capacity W = 2 and cost function:

Cost a b c d e f
a 0 10 5 4 9 6
b 10 0 9 8 11 7
c 5 9 0 12 15 3
d 4 8 12 0 2 13
e 9 11 15 2 0 7
f 6 7 3 13 7 0

Solution The heuristic proceeds as follows:

1. start from x = /0;

2. select (d,e);

3. select (c, f);

4. select (a,d);

5. select (a,c);

6. reject (a, f) (it forms a cycle);

7. reject (b,d) (it forms a subtree of excessive weight);

8. reject (a,e) (it forms a cycle);

9. select (a,b);

10. terminate, because the result is a spanning tree and any other edge would form a cycle.

The resulting solution x = {(d,e),(c, f),(a,d),(a,c),(a,b)} has objective value f (x) = 24.

6.6.11 Exercise 11
Solve the following instance of the Set Covering problem (SCP):

a b c d e f g h i l
1 3 6 4 3 4 18 19 7 2
1 1 0 0 1 0 0 1 1 0
1 0 1 0 0 0 1 0 0 1
0 0 1 1 0 0 0 1 1 0
0 0 0 0 1 0 1 0 0 0
0 0 1 0 1 1 0 1 0 1
0 0 0 1 0 1 1 0 0 0
0 1 0 1 0 1 0 1 0 0

133

134 CONSTRUCTIVE HEURISTICS CHAPTER 6

with the basic constructive heuristic and the adaptive greedy heuristic whose selection criterium
is the ratio of the column cost to the number of newly covered rows.

Solution The basic constructive heuristic proceeds as follows:

1. start from x = /0;

2. select arg min
i∈C\x

ci = a;

3. select arg min
i∈C\x

ci = l;

4. select arg min
i∈C\x

ci = b (applying the lexicographic rule);

5. select arg min
i∈C\x

ci = e;

6. select arg min
i∈C\x

ci = d (applying the lexicographic rule);

7. terminate, because all rows are covered.

The resulting solution x = {a,b,d,e, l} has objective value f (x) = 13.
The adaptive constructive heuristic proceeds as follows:

1. start from x = /0 and compute the ratios ρi(x) = ci/ai(x):[
0.5 1.5 2 1.3̄ 1 1.3̄ 6 4.75 3.5 1

]
2. select argmini∈C\x ρi(x) = a and update the ratios:[

− 3 3 1.3̄ 1.5 1.3̄ 9 6.3̄ 7 2
]

3. select arg min
i∈C\x

ρi(x) = d (applying the lexicographic rule) and update the ratios:

[− ∞ 6 − 1.5 4 18 19 ∞ 2]

4. select arg min
i∈C\x

ρi(x) = e

5. terminate, because all rows are covered.

The resulting solution x = {a,d,e} has objective value f (x) = 8.

6.6.12 Exercise 12
Consider the instance of the Travelling Salesman Problem on a complete graph with the follow-
ing cost function:

a b c d e
a 0 10 6 13 5
b 8 0 7 5 8
c 11 6 0 7 1
d 4 8 2 0 3
e 13 8 13 11 0

Solve it with the Nearest Neigbour, the Cheapest Insertion, the Nearest Insertion and the Far-
thest Insertion heuristics, starting from node a. For the sake of simplicity, break all ties with a
lexicographic rule.

134

CHAPTER 6 6.6. EXERCISES 135

Solution In the following, it is strongly advisable to draw pictures of the solutions, in order to
help visualise the progress of the algorithm and the moves that are available at each step.

The Nearest Neighbour heuristic simply moves from the last visited node to the nearest node
not yet visited, until all nodes are visited. Then, it returns to the starting node:

1. start from a;

2. go from a to e;

3. go from e to b;

4. go from b to d;

5. go from d to c;

6. go from c back to a.

The resulting solution x = {(a,e),(e,b),(b,d),(d,c),(c,a)} has a cost equal to f (x) = 5+8+
5+2+11 = 31.

The Cheapest Insertion heuristic starts from a self-loop around node a and proceeds breaking
one of the arcs in the current circuit and adding two arcs to reach a nonvisited node. At each
step, it requires to maintain for each external node (i ∈ N \Nx) the |x| possible insertions in the
current solution (to be efficient, they should form a min-heap, but this is impractical in small
exercises solved by hand). Starting from a self-loop around a:

1. the possible insertions (add a node from N \Nx and remove an arc from x) are:

δ f x
N \Nx (a,a)

b 10+8−0 = 18
c 6+11−0 = 17
d 13+4−0 = 17
e 5+13−0 = 18

Choose c (lexicographically), and obtain x = {(a,c),(c,a)}.

2. now there are three external nodes and two internal arcs:

δ f x
N \Nx (a,c) (c,a)

b 10+7−6 = 11 6+8−11 = 3
d 13+2−6 = 9 7+4−11 = 0
e 5+13−6 = 12 1+13−11 = 3

Choose d and (c,a), and obtain x = {(a,c),(c,d),(d,a)}.

3. now there are two external nodes and three internal arcs (notice that column (a,c) is the
same as above, whereas the other two correspond to the newly added arcs):

δ f x
N \Nx (a,c) (c,d) (d,a)

b 10+7−6 = 11 6+5−7 = 4 8+8−4 = 12
e 5+13−6 = 12 1+11−7 = 5 3+13−4 = 12

135

136 CONSTRUCTIVE HEURISTICS CHAPTER 6

Choose b and (c,d), and obtain x = {(a,c),(c,b),(b,d),(d,a)}.

4. now there is a single external nodes and four internal arcs (notice that columns (a,c) and
(d,a) are the same as above, whereas the other two correspond to the newly added arcs):

δ f x
N \Nx (a,c) (c,b) (b,d) (d,a)

e 5+13−6 = 12 1+8−6 = 3 8+11−5 = 14 3+13−4 = 12

Choose e (necessarily) and (c,b).

5. stop, because no external node remains.

The resulting solution x = {(a,c),(c,e),(e,b),(b,d),(d,a)} has a cost equal to f (x) = 6+1+
8+5+4 = 24. We can also notice that the sum of the variations chosen during the process is,
obviously, the same: ∑δ f = 17+0+4+3 = 24.

The Nearest Insertion heuristic is very similar, but it splits the computation in two inde-
pendent phases: the first one computes for each external node the distance from the circuit in
order to choose one to add; the second computes the variation of the objective function for each
internal arc in order to choose one to remove. Starting from a self-loop around a:

1. the distances cai of the external nodes from the circuit are:

N \Nx
b c d e

Distance 10 6 13 5

Choose e and the only existing arc (a,a), with variation δ f = 5+13−0 = 18, to obtain
x = {(a,e),(e,a)} with cost δc = 5+13 = 18.

2. now the external nodes are only three, and their distances from the circuit can be updated
by simply comparing the previous ones with the distance from the newly added node cei:

N \Nx
b c d

Distance min(10,ceb) = 8 min(6,cec) = 6 min(13,ced) = 11

Choose c and consider the two internal arcs that can be removed:

x
(a,e) (e,a)

δ f 6+1−5 = 2 13+11−13 = 11

Therefore, break (a,e), and obtain x = {(a,c),(c,e),(e,a)}.

3. now the external nodes are only two, and their distances from the circuit can be updated
comparing the previous ones with cci:

N \Nx
b d

Distance min(8,ccb) = 6 min(11,ccd) = 7

136

CHAPTER 6 6.6. EXERCISES 137

Choose b and consider the three internal arcs that can be removed:

x
(a,c) (c,e) (e,a)

δ f 10+7−6 = 11 6+8−1 = 13 8+8−13 = 3

Therefore, break (e,a), and obtain x = {(a,c),(c,e),(e,b),(b,a)}.

4. finally, there is only one remaining external node: N \Nx = {d} and four internal arcs can
be removed:

x
(a,c) (c,e) (e,b) (b,a)

δ f 13+2−6 = 9 7+3−1 = 9 11+8−8 = 11 5+4−8 = 1

Therefore, break (b,a).

5. stop, because no external node remains.

The resulting solution x = {(a,c),(c,e),(e,b),(b,d),(d,a)} has a cost equal to f (x) = 6 +
1+ 8+ 5+ 4 = 24, which is, obviously, equal to the sum of the variations obtained during
the process: ∑δ f = 18+ 2+ 3+ 1 = 24. The solution is also the same obtained with the CI
heuristic, but the single steps are different and in general also the result will be different.

Finally, the Farthest Insertion heuristic has the same structure of the Nearest Insertion
heuristic, but it replaces the choice of the external node at minimum distance from the current
circuit with that of the external node at maximum distance. Starting from a self-loop around a:

1. the distances cai of the external nodes from the circuit are:

N \Nx
b c d e

Distance 10 6 13 5

Choose d and the only existing arc (a,a), with variation δ f = 13+4−0 = 17, to obtain
x = {(a,d),(d,a)} with cost δc = 13+4 = 17.

2. now the external nodes are only three, and their distances from the circuit can be updated
comparing the previous ones with cdi:

N \Nx
b c e

Distance min(10,cdb) = 8 min(6,cdc) = 2 min(13,cde) = 3

Choose b and consider the two internal arcs that can be removed:

x
(a,d) (d,a)

δ f 10+5−13 = 2 8+8−4 = 12

Therefore, break (a,d), and obtain x = {(a,b),(b,d),(d,a)}.

137

138 CONSTRUCTIVE HEURISTICS CHAPTER 6

3. now the external nodes are only two, and their distances from the circuit can be updated
comparing the previous ones with cci:

N \Nx
c e

Distance min(2,cbc) = 2 min(3,cbe) = 3

Choose e and consider the three internal arcs that can be removed:

x
(a,b) (b,d) (d,a)

δ f 5+8−10 = 3 8+11−5 = 14 3+13−4 = 12

Therefore, break (a,b), and obtain x = {(a,e),(e,b),(b,d),(d,a)}.

4. finally, there is only one remaining external node: N \Nx = {c} and four internal arcs can
be removed:

x
(a,e) (e,b) (b,d) (d,a)

δ f 6+1−5 = 2 13+6−8 = 11 7+7−5 = 9 2+11−4 = 9

Therefore, break (a,e).

5. finally, the only remaining external node: Nx = {c} can be inserted in the solution in four
possible ways

• break (a,e) and obtain δc = 6+1−5 = 2;
• break (e,b) and obtain δc = 13+6−8 = 11;
• break (b,d) and obtain δc = 7+7−5 = 9;
• break (d,a) and obtain δc = 2+11−4 = 9;

Therefore, break (a,e).

6. stop, because no external node remains.

The resulting solution x = {(a,c),(c,e),(e,b),(b,d),(d,a)} has a cost equal to f (x) = 6+1+
8+5+4 = 24, obviously coinciding with the sum of the variations obtained during the process.
The solution is the same obtained with the CI and FI heuristics, but the single steps performed
are completely different, and in general also the final solution will be different.

6.6.13 Exercise 13
Given the instance of the Vehicle Routing Problem (VRP) in which node a is the depot, the other
nodes have weight wi = 1 (i ∈ {b,c,d,e}), the vehicles have capacity W = 2, and the arcs of the
graph have the following costs:

Cost a b c d e
a 0 10 6 3 7
b 8 0 7 4 6
c 7 5 0 8 7
d 4 2 10 0 2
e 7 8 5 1 0

apply the Nearest Neighbour constructive heuristic, breaking ties with a lexicographic rule.

138

CHAPTER 6 6.6. EXERCISES 139

Solution The heuristic makes the following steps: a → d → b → a → c → e with cost f (x) =
3+ 2+ 8+ 6+ 7+ 7 = 33. Notice that sometimes (for example, when the last node visited is
c) the depot node a could be a viable destination for the next step. One must indicate whether
this is acceptable or not. The solution above considers it as nonacceptable, as obviously the
remaining nodes must anyway be visited, and returning to the depot does not seem reasonable,
unless this is forced by the capacity constraint.

6.6.14 Exercise 14
Solve the following instance of the Maximum Diversity Problem with k = 3 with the basic
destructive heuristic:

Distance a b c d e f g
a 0 14 2 3 18 2 5
b 14 0 18 1 15 10 8
c 2 18 0 19 5 10 9
d 3 1 19 0 1 12 4
e 18 15 5 1 0 8 12
f 2 10 10 12 8 0 3
g 5 8 9 4 12 3 0

breaking ties with a lexicographic rule.

Solution The destructive heuristic starts from the whole ground set B = P and iteratively
removes the point that yields the maximum value of the objective function f (x\{i}). It is easy
to prove that, when an element is removed from a solution, the objective function decreases
by twice the total distance of that element from the remaining ones. Therefore, instead of
recomputing from scratch the objective function, one can simply minimise the total distance of
the removed element from the solution (since the distance of the element from itself is zero).

At first, the vector of the total distances is:

[44 66 63 40 59 45 41]

Therefore, we remove d and update the total distances, subtracting from each point i the value
of ddi:

[41 65 44 − 58 33 37]

Now, we remove f and update again the distances subtracting d f i:

[39 55 34 − 50 − 34]

Now, we remove c and update the distances subtracting dci:

[37 37 − − 45 − 25]

Finally, we remove g and we stop, because we have reached the desired cardinality: solution
x = {a,b,e} has a value of f (x) = 14+ 18+ 14+ 15+ 18+ 15 = 94. If one also updates the
total distances subtracting dgi, they become:

[32 29 − − 33 − −]

and their sum coincides with the objective function (32+29+33 = 94), because it is the sum
of all pairwise distances.

139

140 CONSTRUCTIVE HEURISTICS CHAPTER 6

140

CHAPTER 7

Constructive metaheuristics

After extending the basic scheme of constructive algorithms, that is modifying the construction
graph and the selection criterion, but keeping the basic concept of iteratively enlarging a subset
initialised as the empty set until it reaches a final solution, we can now move to constructive
metaheuristics, that iterate the basic scheme, introducing random steps or memory-based steps
that allow to generate different solutions.

7.1 Introduction to constructive metaheuristics

Constructive algorithms, apart from the few provably exact, usually have strong limitations. The
idea of the constructive metaheuristics, then, is to generate many different solutions, improving
the effectiveness of the algorithm, since at least some of these solutions will be better than
that generated by the simple heuristic. Of course, this will also decrease the efficiency, as the
computational time will be given by the sum of every execution of the “basic” constructive
algorithm. The tradeoff between efficiency and effectiveness must be tuned depending on the
available resources.

We will first consider the simplest metaheuristic approach, called multistart or restart, that
consists in running several constructive algorithms, based on different search spaces and dif-
ferent selection criteria. Then, we will introduce the two main mechanisms featured in meta-
heuristics, that is the use of randomisation, as in the case of the semigreedy algorithms, the
GRASP (Greedy Randomized Adaptive Search Procedure) and the Ant Systems and the use of
memory - that is the exploitation of solutions found in the previous iterations - as in the case
of the ART (Adaptive Research Technique), the cost perturbation methods and, again, the Ant
Systems.

7.1.1 Multistart
Multistart is a classical, very simple and natural approach: it is based on the idea of having
several different heuristics and running all of them in sequence, returning the best solution
found overall:

• define different search spaces FA[l] and selection criteria ϕA[l](i,x)

• apply each resulting algorithm A[l] to obtain x[l]

• return the best solution x = arg min
l=1,...,ℓ

f (x[l]) (for minimization problems, max for maxi-

mization)

141

142 CONSTRUCTIVE METAHEURISTICS CHAPTER 7

Each algorithm A[l] has its own search space and its selection criterium: they can be completely
different or the same algorithm with numerical parameters set to different values.

A technical remark is required if we want to extend the concept of construction graph from
the constructive heuristics to the constructive metaheuristics. It is possible to use a single graph
by simply including all the nodes and arcs defined by at least one algorithm A[l]:

FA =
ℓ⋃

l=1

FA[l]

but defining arc weights that depend on l: ϕA(i,x, l) = ϕA[l](i,x), with infinite value for the arcs
that are forbidden in a specific algorithm A[l]: ϕA(i,x, l) =+∞ if i /∈ ∆

+
A[l] (x). In other words, the

different algorithms are modelled as different iterations (with an index l) of a single algorithm,
the search spaces of the single algorithms are “merged”, considering all the subsets that can
be visited by at least one of them, and the weights of the arcs are tuned using the value of the
specific algorithm applied in the current iteration, with infinite values for the arcs that are not
available.

Example

Consider the three constructive heuristics for the TSP whose search space is composed by cir-
cuits starting and ending in some node 1: the cheapest insertion, the nearest insertion and the
farthest insertion heuristic. Even without introducing new selection criteria ϕ , it is possible
to generate a whole family of constructive heuristics combining them with suitable numerical
parameters. The basic structure remains the same: first choose the new node to insert (insertion
step), then choose the arc to break (selection step).

Consider the latter, assuming that in the first step node k has been selected. Instead of using
the variation of the objective function, as in all three considered heuristics, we may modify it as

i∗k = arg min
i∈{1,··· ,|x|}

γi,k = µ1(csi,k + ck,si+1)− (1−µ1)csi,si+1

where µ1 ∈ [0,1] tunes the relative strength of the two components of the variation δ f : the
increase in cost due to the added node k and the decrease in cost due to the removed edge
(si,si+1).

Notice that, even if the components are two, we do not need two different parameters, be-
cause multiplying them for any positive number yields an equivalent criterium, that has the same
optimal solutions. The number of parameters must always be kept as little as possible using nor-
malisations. A typical normalisation is to impose that the coefficients of a linear combination
have nonnegative coefficients with a sum equal to 1: this is known as a convex combination.
Of course, when the parameters are two, setting their sum to 1 means that they can be expressed,
respectively, as µ1 and 1−µ1 and that 0 ≤ µ ≤ 1.

Let us discuss the extreme cases: when µ1 = 0, only the cost of the removed arc is con-
sidered; when µ1 = 1, only the cost of the two added arcs is considered. Intermediate values
tune the weights favouring one of the other terms. In particular, µ1 = 1/2 yields a function γi,k
equivalent to the variation of the objective function.

The rationale of this function might be (it is just an example, not a common strategy) that
the removed arc measures a saving that is certainly gained, whereas the two added arcs might
be removed in any future step. Therefore, the first component of γi,k might be less “informative”
than the second. This might even be tuned from step to step.

142

CHAPTER 7 7.2. ADAPTIVE RESEARCH TECHNIQUE 143

Considering the insertion step, a parametric selection criterion could be:

k∗ = arg min
k∈N\Nx

ϕA(k,x) = µ2d(x,k)−µ3d(x,k)+(1−µ2 −µ3)γi∗k ,k

where µ2,µ3 ∈ [0,1] tune the relative strength and sign of the distance of the added node k
from the current circuit x and the increase in cost due to its insertion. The result is a convex
combination, with three nonnegative parameters summing to 1, that is µ2, µ3 and 1− µ2 − µ3.
Tuning the weights yields different heuristics: when µ2 = µ3 = 0, one obtains the CI algorithm
(of course, if µ1 = 1/2 in the selection step); when µ2 = 0 and µ3 = 1, one obtains the NI
algorithm; finally, when µ2 = 1 and µ3 = 0, one obtains the FI algorithm. Notice that this
specific combination is quite uncommon, because the same function (d(x,k)) appears in two
terms with opposite signs. In general, this should be avoided, because it confuses the tuning
of the parameters (for example, all combinations with µ2 = µ3 ∈ [0,1/2) actually yield the CI
heuristic and the combination with µ2 = µ3 = 1/2 yields a degenerate zero function, that makes
no sense. Once again, it is just an example for a general concept.

7.2 Adaptive research technique

The Adaptive Research Technique (ART) was proposed by Patterson et al. in 1998 to solve the
CMSTP. After that, it was never taken into account in the literature; so, in a sense, it is a failure.
Nonetheless, it is interesting from several points of view and, possibly, it was not exploited
at its best. The starting point is that a constructive heuristic often obtains bad results due to
mistakes committed in the first steps of the algorithm, where elements that are deceivengly
good are added but, in the long run, force bad results. We have seen an example for the KP
in Section 6.3.1, where an object with a very good unitary cost was added to the solution,
forbidding the addition of other good elements and ending in a bad result. A way out it to
reject the deceivengly good elements: the problem, of course, is to decide which elements are
deceptive. The roll-out approach tries to answer this question making a look-ahead, that is,
trying one by one all the possibilities and comuting the final solution obtained. This approach
is clearly very expensive. The approach of the ART is to forbid an element, hoping that in that
way the element chosen in alternative “drive” the flow of the algorithm on the right path of the
construction graph. Due to this basic idea, it could be also called a tabu greedy method (this
name is not standard, but certainly much more expressive). Formally, we can represent the idea
as a restriction of the search space in iteration l from F to F [l], based on the solutions obtained
by the algorithm in the previous iterations:

min
i:x∪{i}∈F [l]

ϕA(i,x) with F [l] = F [l](x[1]A , · · · ,x[l−1]
A)

Of course, this is a memory mechanism, which makes the ART a metaheuristic approach. For-
bidding elements has also an important effect: the algorithm can be repeated, obtaining different
final results. A fundamental point is that the prohibitions introduced must be temporary, because
otherwise in subsequent repetitions of the algorithm, they progressively forbid the search space,
making it impossible to find optimal or even feasible solutions, and thus terminating the algo-
rithm. Therefore, the ART is ruled by a parameter known as the expiration time L, that is the
number of iterations during which an element remains forbidden after having been selected for
prohibition.

143

144 CONSTRUCTIVE METAHEURISTICS CHAPTER 7

Basic scheme of the ART

In detail, the ART starts by defining a basic constructive heuristic A, so that, in a sense, the
ART is a meta-algorithm. The tabu mechanism, that handles the prohibitions, employs a vector
defined on the ground set: Ti is the iteration at which the algorithm chooses to forbid element i∈
B. Since at first no element is forbidden, we set ∀i ∈ B Ti =−∞. At each iteration l ∈ {1, · · · , ℓ},
where ℓ is the maximum number of iterations imposed by the user, the algorithm follows these
steps:

1. apply heuristic A forbidding all elements such that l ≤ Ti +L; in this way, automatically,
all prohibitions older than L expire; let x[l] be the resulting solution

2. if x[l] improves the best solution found until now, save it and save all values Ti− l, as they
will tell which solutions were forbidden and which solutions were allowed; in this way, it
is possible to know how such a solution was obtained, so as to intensify the search around
that solution

3. decide, with probability π , whether to forbid or not each i ∈ x[l] and set Ti = l for each
forbidden element

4. (possibly) make auxiliary changes to L, π or Ti

In the end, the best solution found will be returned.

c 25 6 8 24 12

A

1 1 0 0 0
1 1 0 0 0
1 1 1 0 0
1 0 1 1 0
1 0 0 1 0
1 0 0 0 1

Table 7.1: An instance of the SCP.

Example: ART for the SCP Consider the SCP instance in Table 7.1. Its optimal solution
consists of the first column, while the basic (adaptive) greedy algorithm would choose columns
{2,3,5,4}, obtaining a bad solution. Let us apply the ART metaheuristic, with the following
iterations:

1. the basic heuristic with no prohibition finds the solution x[1] = {2,3,5,4} of cost f (x[1]) =
50; suppose that, at random, column 2 is forbidden;

2. the basic heuristic now finds the solution x[2] = {3,1} of cost f (x[2]) = 33; suppose that,
at random, column 3 is forbidden;

3. the basic heuristic now finds solution x[3] = {1} of cost f (x[3]) = 25, that is optimal;

4. ...

Of course, this was a lucky case: an unlucky random choice could forbid column 1 at step 2 and
delay the identification of the optimal solution, but the prohibition would expire and, sooner or
later, a combination of prohibitions allowing to find the optimum could be generated.

144

CHAPTER 7 7.3. THE SEMI-GREEDY ALGORITHM 145

Parameters of the ART

The ART has three basic parameters: the total number of iterations ℓ, the length L of the pro-
hibition and the probability π of the prohibition. The number of iterations is mainly tuned by
the available time. The other two are technical parameters that influence the performance of the
algorithm in the single iteration. They can be tuned by finding the correct value with experi-
mental campaigns. These tend to be very long, because one must consider all possible values
of each parameter. This is a reason why minimising the number of parameters and their range
is a good idea. An additional problem is that the experimental evaluation is performed on a
specific benchmark, and can lead to overfitting, that is labelling as good in an absolute sense
values that are good only on the benchmark instances considerated. The excess of parameters
is an undesirable aspect, which often reveals an insufficient study of the problem and of the
algorithm.

Diversification and intensification

Forbidding elements is a diversification mechanism. Diversification is a general concept, which
consists in trying to find solutions that are different from those previously found: this drives
the search in the solution space from the region in which the algorithm currently operates to
different regions. It is also known in textbooks with the alternative name of exploration.

A complementary concept is the concept of intensification: when a “promising” solution
is found, meaning that for some reason we suspect that better and very similar solutions could
exist, the search should be driven to look around this solution, looking for similar ones. This
concept is also known with the alternative name of exploitation.

The two concepts are complementary: we must not choose one of them, but combine them,
with the right tradeoff, that can be different in different steps of the algorithm. In the ART, the
tuning is ruled by the number of elements forbidden in each iteration and the expiration time.
Forbidding many elements means that algorithm must look for very different solutions, thus
diversifying; forbidding few elements means that the algorithm must look for something only
slightly different, intensifying the research. A long expiration time keeps a large number of
forbidden elements used in the past, therefore diversifying the search; a short expiration time
allows to go back to solutions similar to the ones visited in the past, thus intensifying.

The values of the parameters, and therefore the balance between diversification and intensi-
fication is not necessarily constant throughout the execution. In particular, the parameters that
rule it (π and L) could depend on features of the data: πi and Li could be smaller for good
elements i (e.g., large value or small cost). On the other hand, they could also be tuned based
on memory, that is “learning” parameter values: πi and Li could be smaller for elements that
belong to the best solutions found so far. Alternatively, they could change from iteration to
iteration, and therefore be defined as π(l) and L(l), depending on the fact that the best solution
found so far is improving (therefore, it could make sense to intensify the search) or the search
is stagnating (therefore, it could be better to diversify it). An other way to intensify the search
could be to restart the algorithm reinitialising Ti to obtain the same Ti− l values associated with
the best solution, so to obtain exactly the same solution and then move in a region close to it.

7.3 The semi-greedy algorithm

The semigreedy algorithm, proposed by Hart and Shogan in 1987, tackles the basic problem of
the constructive scheme (taking the wrong choice at some step) with randomisation. While the

145

146 CONSTRUCTIVE METAHEURISTICS CHAPTER 7

greedy algorithm chooses at each step the best acceptable extension according to the selection
criterion

i∗ = arg min
i∈∆

+
A (x)

ϕA(i,x)

the semigreedy algorithm assumes that, even if ϕA(i,x) is incorrect, it is not completely wrong.
In other words, that the elements belonging to an optimal solution are very good for ϕA(i,x),
even if not strictly optimal. How to know which element to choose?

The semigreedy algorithm defines a suitable distribution function on the elements of ∆
+
A (x),

so as to favour the elements with the best values of ϕA(i,x). Then, the new element is selected
through a random extraction:

min
i∈∆

+
A (x)

ϕ
[l]
A (i,x,ω)

Formally, the idea is to assign a probability πA(i,x) to each arc (x,x∪{i}) of the construction
graph in such a way that

∀x ∈ FA :

∆
+
A (x) ̸= /0 =⇒ ∑

i∈∆
+
A (x)

πA(i,x) = 1

so that the probabilities of the arcs going out of each node sum to 1 and better arcs have larger
probabilities:

ϕA(i,x)≤ ϕA(j,x) ⇐⇒ πA(i,x)≥ πA(j,x)

for each i, j ∈ ∆
+
A (x),x ∈ FA (of course, for minimisation problems).

This heuristic approach can be reapplied several times, in general obtaining different solu-
tions.

7.3.1 Convergence to the optimum
The semigreedy have interesting properties concerning the possibility to reach an optimal so-
lution. In short, it has a nonzero probability to obtain it under the rather obvious technical
condition that there exists a path from /0 to X∗ in the construction graph (accessibility of at least
an optimal solutions). Moreover, the probability to obtain the optimum grows gradually with
the number of iterations, because each one strictly decreases the probability of not reaching the
optimum, that is always taking a wrong path.

In fact, given a specific possible run of a semigreedy algorithm, that is a maximal path γ in
the construction graph, from the empty set to a terminal subset, the probability of following it
is the product of the probabilities on the arcs

∏
(y,y∪{i})∈γ

πA(i,y)

due to the law of conditional probabilities. The probability of reaching a specific node x at the
end of the path is the sum of the probabilities on the set Γx of all paths leading to x

∑
γ∈Γx

∏
(y,y∪{i})∈γ

πA(i,y)

as they are incompatible events (the algorithm cannot follow two paths in Γx in a single run).
Therefore, the probability of reaching a solution x in the optimal subset is strictly positive if and

146

CHAPTER 7 7.4. GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE 147

only if the construction graph admits a path of nonzero probability from the empty set to the
optimal solutions.

Under this condition, the probability not to reach any optimal solution is strictly lower than
1 and strictly decreases, converging to zero as the number of iterations grows up to infinity
(ℓ → +∞). The complementary probability of reaching an optimal solution correspondingly
converges to 1. In other words, under this condition the semigreedy algorithm is probabilisti-
cally approximatively complete. We shall see that more sophisticated algorithms, in which the
probabilities are not constant from iteration to iteration, have a more complex behaviour.

Examples of stochastic construction graphs

A first example of an algorithm that uses a stochastic construction graph is the random walk,
which in the context of heuristics is a constructive metaheuristic where all the arcs going out of
the same node have the same probability. This algorithm finds a path to the optimum with prob-
ability 1, if such a path exists in the graph. The time required to reach a predefined probability
can be extremely long, possibly longer than the time required to solve exactly the problem with
the exhaustive algorithm.

A deterministic constructive heuristic sets all probabilities on the graph to zero except for
those on the arcs of a single path, namely the arcs that satisfy the selection criterium. Ran-
domised metaheuristics are in general midway between these two extreme cases: the probabil-
ities of the arcs going out of a node are neither perfectly uniform nor concentrated on a single
arc. Focusing the probabilities on the most promising arcs and reducing them on the other ones
accelerates the average convergence time, weakening the guarantee of convergence to the opti-
mum in the worst case. An algorithm that sets to zero the probability on some arcs can even bar
the way to the optimum. An algorithm that modifies the probabilities from iteration to iteration
(which the semigreedy algorithm does not do) can reduce the overall probability of finding the
optimum from 1 to a strictly lower value, even if a path to the optimum is not strictly removed.

7.4 Greedy Randomized Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure (GRASP), proposed by Feo and Re-
sende in 1989, is a sophisticated variant of the semigreedy heuristic and one of the most popular
heuristics in the literature.

It is greedy because it uses a greedy basic constructive heuristic; it is randomised because it
takes random steps; it is adaptive because the constructive heuristic typically uses an adaptive
selection criterion ϕA(i,x) (but this is not strictly necessary). Finally, it is a search algorithm
because it alternates the constructive heuristic and an exchange heuristic, that allows strongly
better results. This aspect will be ignore in this chapter, and investigated in the following ones.

As the semigreedy algorithm, GRASP defines a probability function such that better values
of the selection criterion correspond to larger probabilities; for minimisation problems:

ϕA(i,x)≤ ϕA(j,x) ⇐⇒ πA(i,x)≥ πA(j,x)

A possible way to define such a function, commonly adopted in genetic algorithms, is to express
π directly as a strictly decreasing function of ϕ . GRASP adopts a different approach because
(as we shall see in Chapter 10.4.4) experiments on genetic algorithms prove that this method
tends to be rather biased and ineffective. Building on the results of those experiments, ranking
schemes have been proposed and adopted also in GRASP and semigreedy algorithms.

147

148 CONSTRUCTIVE METAHEURISTICS CHAPTER 7

The two most popular schemes are the Heuristic Based Stochastic Sampling (HBSS) and
the Restricted Candidate List (RCL). Both are based on ranking: the elements of the ac-
ceptable extension set ∆

+
A (x) are sorted by nonincreasing values of ϕA(i,x) and are assigned

probabilities according to their position (or rank) in the ordered sequence. The probability,
then, is not given as a function of ϕA(i,x), but as a function of the rank, that is an ordinal value.
This allows a much better control of the probability values used. The HBSS scheme assigns
a decreasing probability according to a simple profile (linear, exponential, etc. . .). The RCL
scheme assigns a uniform probability to the first k arcs and zero to the remaining ones. See
Figure 7.1 for examples of both. Notice that, setting the probability of some arcs to zero, the
RCL strategy potentially destroys the property of global convergence to the optimum.

Figure 7.1: Ranking Schemes at a step where |∆+
A (x)|= 10 extensions are available

7.4.1 Definition of the RCL
The RCL strategy is more common than the HBSS strategy. It admits two main variants. The
first one directly defines the cardinality of the subset of arcs: the RCL, in fact, includes the best
µ elements of ∆

+
A (x), where µ ∈ {1, · · · , |∆+

A (x)|} is a parameter explicitly fixed by the user.
Setting µ = 1 yields the constructive basic heuristic, while setting µ = |B| yields a random
walk. The second strategy is based on value of the different extensions. The algorithm first
computes the minimum and maximum values of the selection criterium in ∆

+
A (x)

ϕmin(x) = min
i∈∆

+
A (x)

(i,x) and ϕmax(x) = max
i∈∆

+
A (x)

(i,x)

Then, it includes in the RCL all the elements of ∆
+
A (x) whose value is between ϕmin and

(1− µ)ϕmin + µϕmax, where parameter µ ∈ [0,1] is by the user. Setting µ = 0 yields some-
thing similar to the basic constructive heuristic (actually, several equivalent extensions with the
minimum value of the selection criterium could be included in the RCL and one would be cho-
sen at random with uniform probability). Setting µ = 1 yields a random walk. Clearly, this
second definition imposes an adaptive cardinality to the RCL, based on the distribution of the
values of the selection criterium between the best and the worst choice.

Algorithm 9 provides a pseudocode of the method. In practice, the values of ϕA(i,x) are
not actually sorted: first one extracts a random numer; then, the position in the ranking of

148

CHAPTER 7 7.4. GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE 149

Algorithm 9 GRASP Pseudocode (TO BE UPDATED)
1: procedure GRASP(I)
2: x∗ := /0
3: f ∗ :=+∞

4: for l = 1 to ℓ do
5: while ∆

+
A (x) ̸= /0 do

6: ϕi := ϕA(i,x)i ∈ ∆
+
A (x)

7: L := Sort(∆+
A (x),ϕ)

8: π := AssignProbabilities(L,µ)
9: i := RandomExtract(L,π)

10: x := x∪{i}
11: end while
12: x := Search(x)
13: if x ∈ X and f (x)< f ∗ then
14: x∗ := x
15: f ∗ := f (x)
16: end if
17: end for
18: return (x∗, f ∗)
19: end procedure

the selected element is derived from the random numerb; finally, the corresponding element is
found, without necessarily sorting the set.

GRASP for the SCP Considering the SCP instance reported in Table 7.1, let us apply a
GRASP algorithm using a RCL with µ = 2 candidates. A possible execution is:

1. start with the empty subset x(0) = /0;

2. compute the rank of the elements in ∆+(x). Choose the two best candidates to build
a RCL with the µ constratint: column 2, which has ϕ2 = 2 and column 3, which has
ϕ3 = 4; select (at random) column 3

3. build a RCL with 2 candidates: column 2 and column 1, which has ϕ1 = 6.25; select (at
random) column 1

4. the solution obtained is x = {3,1} of cost f (x) = 33

Notice that with µ = 2 the optimal solution cannot be obtained (unless a destructive post-
processing phase is added), whereas it can be reached with µ = 3.

7.4.2 The reactive tuning of parameters
All randomisation schemes for semigreedy and GRASP algorithms are tuned by suitable pa-
rameters. For the HBSS scheme, this is the slope of the probability profile (be it linear or
exponential); for the RCL scheme, it is the cardinality or the threshold µ . Instead of fixing the
value of µ a priori, one can tune it during the execution of the algorithm, learning from the
previous results. This is a way to exploit memory, in addition to randomisation.

149

150 CONSTRUCTIVE METAHEURISTICS CHAPTER 7

A classical way to do that is the following reactive method, that performs batches of ℓ
iterations, divided into phases in which different configurations are applied; after each batch,
the length of the single phases are updated:

1. select m configurations of parameters µ1, · · · ,µm and set ℓr = ℓ/m

2. run each configuration µr for ℓr iterations

3. evaluate the mean f̄ (µr) of the results obtained with µr

4. update the number of iterations ℓr for each µr based on f̄ (µr)

ℓr =

1
f̄ (µr)

∑
m
s=1

1
f̄ (µs)

ℓ for r = 1, · · · ,m

5. repeat the whole process, going back to point (2), for R times

The idea is to experiment with different values of µ , at first using them for the same number of
iterations, and then updating their relative weight, conceding more iterations to the configura-
tions µi that yield the best objective values on the average. This scheme is based on the specific
values of the objective. Other schemes can be based on scores that count the number of best
known results obtained by each configuration.

7.5 Cost perturbation methods and Ant System
Another family of constructive metaheuristics is composed by the cost perturbation meth-
ods. Their basic idea is, instead of forbidding some of the acceptable extensions or tuning the
probability to select each of them, to modify the appeal of each choice, that is the value of the
selection criterion, based on the information provided by previous iterations. Therefore, it is a
memory mechanism.

Given a basic constructive heuristic A, at each step of iteration l the selection criterion
ϕA(i,x) is tuned by a multiplying factor τ

[l]
A (i,x) before taking choices, so that

ψ
[l]
A (i,x) =

ϕA(i,x)

τ
[l]
A (i,x)

becomes the actual selection criterium. When a full solution has been built, the multiplying fac-
tor τ

[l]
A (i,x) is updated based on the previous solutions x[1], · · · ,x[l−1]. In this way, the elements

with better values of ϕA(i,x) tend to be favoured, but τ
[l]
A (i,x) tunes this effect. In particular, it

can promote intensification by increasing for the elements that appear most frequently in good
solutions, so as to reduce the selection criterium and generate solutions similar to the previous
ones. Alternatively, one can induce diversification by decreasing the multiplying factor for the
most frequent elements, in order to increase the selection criterium and obtain solutions differ-
ent from the previous ones. Enforcing intensification or diversification will depend on whether
one thinks that the previous solutions were promising or not.

The most famous and important family of cost perturbation methods is the Ant System,
which admits a number of variants, and combines cost perturbation with randomisation. This
method was proposed by Dorigo, Maniezzo and Colorni in 1991, drawing inspiration from the

150

CHAPTER 7 7.5. COST PERTURBATION METHODS AND ANT SYSTEM 151

Figure 7.2: Ant behaviour.

social behaviour of ants. The ants go from food to the nest at random and when an ant finds
food it goes back to the nest, leaving some chemical trail on the ground, so that other ants will
be induced to follow it and find the source of food (see Figure 7.2). Since there are different
paths to the source of food, less ants will get there by longer paths and the chemical trail on the
ground will be weaker, attract less ants and progressively disappear; after a while, only the best
path will be followed, as more ants follow it. The process of indirect communication among
different agents who are influenced by the results of the actions of all agents is called stigmergy.

The natural analogy is not important; in fact, it is adviseable to forget it as soon as pos-
sible (among many other reasons, because the shortest path problem admits polynomial exact
algorithms, and it is not reasonable to solve it in this way), keeping only the basic point that
is relevant for optimisation: the use of a trail to mark the data and influence the elementary
choices taken to build a solution.

Since the choice is not only influenced by memory, but also randomised, the basic idea of
the Ant System can be summarised as follows:

min
i:x∪{i}∈F

ϕ
[l]
A (i,x,ω,x[1]A , · · · ,x[l−1]

A)

7.5.1 The role of the trail

In the abstract model, an agent is an application of a basic constructive heuristic, and the trail
plays the role of function τ for cost perturbation methods. Each execution of the heuristic
leaves a trail on the data, depending on the solution generated: on the other hand, its choices
are influenced by the trails left by other executions. The process also has random components.

Differently from the semigreedy heuristic, at each iteration l the basic heuristic A runs f
times, instead of one, building a population of solutions. At each step of A, all elements of
∆
+
A (x) can be chosen (there is no RCL) and the probability πA(i,x) depends both on the selection

criterion ϕA(i,x) and the auxiliary information provided by the trail τA(i,x), instead of only on
the selection criterium. In the basic version of the Ant System, the trail is produced in previous
iterations, in some versions also by other agents during the same iteration.

The trail is uniform at first (τA(i,x) = τ0) and later tuned increasing or decreasing it, in order
to favour promising choices or to avoid repetitive choices, respectively. The trail τA(i,x) is not
associated to each arc (x,x∪{i}) of the construction graph, because that would require a data
structure occupying a huge amount of memory. Typically, the trail values are associated to the
elements of the ground set i ∈ B (τA(i), instead of τA(i,x)), implying that all the arcs of the
construction graph that correspond to adding the same element i to any possible x ∈ FA have
the same trail value. In any case, for the sake of efficiency the trail must be the same for large
blocks of arcs with an easy characterisation.

151

152 CONSTRUCTIVE METAHEURISTICS CHAPTER 7

Randomised choice

Instead of selecting the best element according to the selection criterion ϕA(i,x), i is extracted
from ∆

+
A (x) with probability

πA(i,x) =
τA(i,x)µτ ηA(i,x)µη

∑ j∈∆
+
A (x)

τA(j,x)µτ ηA(i,x)µη

where τ is the trail and η is the visibility function

ηA(i,x) =

{
ϕA(i,x) for maximisation problems

1
ϕA(i,x)

for minimisation problems

that simply assigns larger values to the more promising choices1. Differently from the ranking
scheme used in GRASP, the probability depends on the specific values of the selection criterium.
The expression of the probability is normalised by the denominator.

The two parameters µτ and µη tune the strength of the randomisation and the relative weight
of the two terms in the numerator. If µη ≈ 0 and µτ ≈ 0 the probability distribution becomes
uniform (a random walk). If they are both very large, the probability concentrates on the larger
value of τA(i,x)ηA(i,x)2. Setting µη ≫ µτ favours the data, simulating the basic constructive
heuristic (this makes sense when the known solutions are not very significant, that is not much
was learnt from the previous iterations). Setting µη ≪ µτ favours memory, keeping close to the
previous solutions (this makes sense when the known solutions are very significant).

Ant Colony System

There is a plethora of variants of the Ant System. The Ant Colony System distinguishes the
tuning of randomisation and the relative tuning between data and memory by splitting each step
into two phases. The first phase makes a randomised choice between two alternative: either
(with probability q) to select an acceptable extension deterministically, or (with probability
1− q) to make a randomised choice. Setting q ≈ 1 favours determinism, while setting q ≈ 0
favours randomicity. In the second phase, if the deterministic selection prevailed, the algorithm
maximises τA(i,x)ηA(i,x); if the randomised one prevailed, the algorithm applies a random
choice with probabilities

πA(i,x) =
ηA(i,x)τA(i,x)µτ

∑ j∈∆
+
A (x)

ηA(i,x)τA(j,x)µτ

where parameter µtau tunes the weight of memory with respect to the data: µτ ≫ 1 favours
memory , µτ ≪ 1 favours the data. This is a form of normalisation, different from the classical
convex combination of coefficients, but perfecty equivalent3.

7.5.2 Trail update

At each iteration l, h instances of the basic heuristic A are run, producing a population X [l] of
solutions. A subset X̃ [l] of the obtained solutions is selected to update the trail. In particular,

1It should be noted that using values such as 1/ϕA(i,x) could create numerical problems when ϕA(i,x) is large.
In particular, different values of ϕA(i,x) can yield very similar values of 1/ϕA(i,x). This is only the classical
definition, that could be replaced by more sensible expressions.

2Of course, if the product is larger than 1; otherwise, it does the opposite.
3Just raise the product to a suitable power and take its logarithm.

152

CHAPTER 7 7.5. COST PERTURBATION METHODS AND ANT SYSTEM 153

their elements are favoured by increasing the associated trail in the following iterations. In order
to do this, the trail is updated as follows:

τA(i,x) := (1−ρ)τA(i,x)+ρ ∑
y∈X̃ [l]:i∈y

FA(y)

where ρ ∈ [0,1] is an oblivion parameter, used to reduce the current trail and leave space to
the new contributions, whereas FA(y) is a fitness function that measures the quality of solution
y. The purpose of the update is to increase the trail on the elements of the solutions y ∈ X̃ [l] and
decrease it on the other elements. Therefore, one must impose that FA(y)> τ .

7.5.2.0.1 The oblivion parameter When ρ ≈ 1, the update cancels the current trail and
keeps only the new contribution. This is reasonable when the previous solutions are not trust-
worthy and different ones should be explored, diversifying the search. When ρ ≈ 0, the update
preserves the current trail and completely ignores the new contribution. This is reasonable
when the previous solutions are trustworthy and similar ones should be explored, intensifying
the search.

7.5.2.0.2 The élite solutions The solutions to be collected in X̃ [l] describe the most promis-
ing region of the solution space, since they try and attract the search in the following iterations.
The classical Ant System simply used all solutions obtained X̃ [l] = X [l]. Recently, elitist meth-
ods are preferred, in which only good solutions are taken into account. Often, X̃ [l] is reduced to
a single solution, that is the best one found in iteration l, or even the best solution found overall.
The elitist methods find better results in shorter time, but they require additional mechanisms to
avoid premature convergence, that is getting “stuck” around previous solutions.

7.5.2.1 Variants of the trail update mechanism

It should be clear by several notes that the Ant System runs risks of “number-crunching”, if
the numerical values of the trail are not managed correctly. Several variants have tackled this
problem in different ways.

The MAX −MIN Ant System, for example, forces the trail to be confined in a limited range
of values [τmin,τmax] experimentally tuned. The HyperCube Ant Colony Optimization (HC-
ACO) pushes this concept further normalising the values of the trail between 0 and 1.

The Ant Colony System (already mentioned for the separation between the tuning of ran-
domisation and the balance between memory and data) performs two kinds of trail updates:

• the global update - already seen - modifies it at each iteration ℓ, with the purpose to
intensify the search on promising solutions;

• the local update modifies the trail at each application g of the basic heuristic, in order to
discourage different applications in the same iteration to take identical choices

τA(i,x) := (1−ρ)τA(i,x)∀i ∈ x[l,g]A

The purpose is to diversify the search; in fact, in this case the trail is strictly reduced
on the elements that belong to the solution found by the previous “ant” g of the current
iteration l.

Algorithm 10 reports a pseudocode of the Ant Colony System, emphasising the position and
role of the two update mechanisms.

153

154 CONSTRUCTIVE METAHEURISTICS CHAPTER 7

Algorithm 10 Ant Colony System Pseudocode
1: procedure ANTSYSTEM(I)
2: x∗ := /0
3: f ∗ :=+∞

4: for l = 1 to ℓ do
5: for g = 1 to h do
6: x := A(l,τA)
7: x := Search(x) ▷ Improvement heuristic
8: if f (x)< f ∗ then
9: x∗ := x

10: f ∗ := f (x)
11: end if
12: τA := LocalUpdate(τA,x)
13: end for
14: X̃ [l] := Update(X̃ [l],x)
15: τA := GlobalUpdate(τA, X̃ [l])
16: end for
17: return (x∗, f ∗)
18: end procedure

7.5.3 Convergence properties of the Ant System
The Ant System converges to the optimum with probability 1 if suitable assumptions are made
on the management of the trail function. The analysis is interesting because it sheds light on
the learning mechanism, even if the technical assumptions are actually far from being satisfied
in practice.

The analysis is based on the idea that the trail τA(i,x) is a weight function defined on the
arcs (x,x∪{i}) of the construction graph. It assumes a visibility function uniformly fixed to 1,
that is ηA(i,x) = 1. In other words, the basic heuristic should only decide based on the trail,
ignoring the data of the problem. This is a quite strange assumption, but it is useful to guarantee
general results, independent from the features of the specific problem, and it can be proved that
this restriction can be removed, and the results holds also for basic heuristics considering the
data, as well.

Suppose that at the beginning of iteration l, the trail is τ [l]. Then, the basic heuristic(s)
are run and γ [l] is the best known path on the construction graph from the empty set to a final
solution at the end of iteration l. The pair (τ [l],γ [l−1]) can be seen as the state of the computation
at the beginning of iteration l. It is also the state of a nonhomogeneous Markov process, that
is a stochastic mechanism in which the probability of each state depends only on the previous
iteration. The process is nonhomogeneous because the dependency on the previous iteration
varies with l .

The proof concludes that for l →+∞, that is after an unlimited number of iterations, at least
one run follows an optimum path in F with probability 1 and the trail τ converges to a maximum
along one of the optimal paths and to zero on all other arcs of the construction graph.

The main point in the proof is that the trail is being updated with a variable coefficient of
oblivion ρ:

τ
[l](i,x) :=

{
(1−ρ [l−1])τ [l−1](i,x)+ρ [l−1] 1

|γ [l−1]| if (x,x∪{i}) ∈ γ [l−1]

(1−ρ [l−1])τ [l−1](i,x) otherwise

154

CHAPTER 7 7.5. COST PERTURBATION METHODS AND ANT SYSTEM 155

where |γ [l−1]| is the number of arcs of path γ [l−1], used to normalise the trail. If the oblivion
decreases slowly enough

ρ
[l] ≥ 1− log(l)

log(l +1)
and

+∞

∑
l=0

ρ
[l] =+∞

then with probability 1 the state converges to (τ∗,γ∗) where γ∗ is an optimal path in the con-
struction graph and τ∗(i,x) = (|γ∗|)−1 for arcs (x,x∪{i}) ∈ γ∗ and 0 otherwise. The conditions
on the oblivion are that the sum diverges, so as to forget the trail on the wrong paths quickly
enough, but that ρ decreases slowly enough not to get stuck on a path with premature conver-
gence.

A second variant of the Ant System also admits global convergence and maintains a constant
oblivion ρ . In this case, however, the trail is slowly forced to decrease to a minimum threshold

τ(i,x)≥ cl

log(l +1)
and lim

l→+∞
c[l] ∈ (0,1)

Also in this case, the state converges to (τ∗,γ∗) with probability 1. The intuition is that the trail
must decrease fast but not too fast.

In practice, all algorithms proposed so far in the literature associate the trail to groups of arcs
(x,x∪{i}) (e.g. to a single element of the ground set i ∈ B) for efficiency reasons. Moreover,
they use constant values for parameters ρ and τmin. Therefore, the convergence guarantee is not
proved for practical algorithms. However, one should notice that the aim of a heuristic is not to
converge until it finds the optimal solution in each application: it is only to find it once during
the execution. Therefore, the result of the theorem is far stronger than needed, and the intuition
it gives on the tuning of the process is precious.

155

156 CONSTRUCTIVE METAHEURISTICS CHAPTER 7

7.6 Exercises

7.6.1 Exercise 1
Given the following instance of the Vertex Cover Problem (VCP)

1 4 2

5 4 3

5 2

a b c

d e f

g h

apply iteration t = 15 of an ART with tenure L= 2, a tabu attribute vector defined on the vertices

t a b c d e f g h
Ti 14 10 4 8 5 13 9 11

using the basic constructive heuristic whose selection criterium is the value of the objective
(φ (i,x) = f (x∪{i})). Break ties with the alphabetic order.

Update the tabu attribute vector assuming probability π = 0.15 and the following pseudo-
random number sequence: 0.6, 0.8, 0.2, 0.9, 0.6, 0.1. . .

Solve again the problem at iteration t = 15 using the adaptive constructive heuristic whose
selection criterium is the ratio of the weight of each vertex i and the number of newly covered
edges incident in i (φ (i,x) =wi/|∆({i},V \ x) |). Also in this case, break ties with the alphabetic
order.

As before, update the tabu attribute vector assuming probability π = 0.15 and the following
pseudorandom number sequence: 0.6, 0.8, 0.2, 0.9, 0.6, 0.1. . .

Solution The ART runs a specified constructive heuristic skipping the forbidden elements of
the ground set, that are those such that t ≤ Ti+L, that is Ti ≥ t−L = 13. The meaning is trivially
that, if L = 2, a prohibition imposed at the end of iteration 13 holds during iterations 14 and 15,
and then expires. In the present case, therefore, vertices a and f are forbidden; all other vertices
are allowed.

The basic heuristic skips a and chooses c and h (in alphabetic order), it skips f , chooses b
and e (in alphabetic order), and finally d and g (again, in alphabetic order). The final solution
x = {c,h,b,e,d,g} has a cost equal to f (x) = 2+2+4+4+5+5 = 22.

A trivial remark: forbidding vertices in the VCP automatically forces vertices in the solution:
if a is forbidden, in fact, in order to cover edges (a,b) and (a,g) necessarily the solution must
contain vertices b and g. This could have been applied at the beginning to avoid starting from
an empty set. It is also a condition that should be kept into account when applying prohibitions,
to avoid generating unfeasible situations.

The solution is also clearly redundant, given that the algorithm completely ignored the fun-
damental constraint of covering edges. Also from this point of view, using the starting informa-
tion discussed above would have improved the results.

In the pseudorandom number sequence, only the sixth value falls within the range [0,π], and
should therefore be forbidden in the following. The text did not specify how we should scan

156

CHAPTER 7 7.6. EXERCISES 157

the elements of the solution to update their tabu attribute. If we scan them in the order in which
they have been selected (that is, if we represent the solution as a list or table), g is updated and
forbidden:

t a b c d e f g h
Ti 14 10 4 8 5 13 15 11

If we scan the elements in alphabetic order, considering only those that belong to the solution
(that is, if we represent the solution with an incidence vector), h is updated and forbidden:

t a b c d e f g h
Ti 14 10 4 8 5 13 9 15

The adaptive constructive heuristic starts from x = /0, computing and updating at each iter-
ation the number of additional covered edges δi (x) and the ratios wi/δi (x), still forbidding a
and f :

1. since

V a b c d e f g h
δi (x) - 3 2 3 4 - 4 2

wi/δi (x) - 4/3 2/2 5/3 4/4 - 5/4 2/2

select c (in alphabetic order);

2. since

V a b c d e f g h
δi (x) - 3 - 2 3 - 4 2

wi/δi (x) - 4/3 - 5/2 4/3 - 5/4 2/2

select h;

3. since

V a b c d e f g h
δi (x) - 3 - 2 3 - 3 -

wi/δi (x) - 4/3 - 5/2 4/3 - 5/3 -

select b;

4. since

V a b c d e f g h
δi (x) - - - 1 2 - 3 -

wi/δi (x) - - - 5/1 4/2 - 5/3 -

select g;

5. since

V a b c d e f g h
δi (x) - - - 0 1 - - -

wi/δi (x) - - - +∞ 4/1 - - -

157

158 CONSTRUCTIVE METAHEURISTICS CHAPTER 7

select e;

6. since all edges are covered, stop.

The final solution x′ = {c,h,b,g,e} has a cost equal to f (x̄) = 2+2+4+5+4 = 17. It is better
than the previous one, but still redundant.

In the pseudorandom number sequence, none of the first five values falls within the range
[0,π]. Therefore, no element is forbidden and T remains unchanged:

t a b c d e f g h
Ti 14 10 4 8 5 13 9 11

This creates the risk to obtain in iteration t +1 = 16 the same solution as in iteration t = 15. Of
course, the expiration of the prohibition for element f could avoid it.

7.6.2 Exercise 2
Consider the instance of the Travelling Salesman Problem on a complete graph with the follow-
ing cost function:

a b c d e
a 0 10 6 3 5
b 8 0 7 5 8
c 11 6 0 7 1
d 4 8 2 0 3
e 13 9 13 11 0

and solve it with the ART assuming that the current iteration index is t = 10, L = 4, π = 0.15,
that the constructive heuristic applied is the Nearest Neighbour heuristic starting from node a
and breaking ties with the lexicographic rule. Also assume the following tabu attribute matrix:

a b c d e
a −∞ −∞ 8 2 1
b −∞ −∞ −∞ 3 −∞

c 2 −∞ −∞ −∞ −∞

d 7 −∞ 9 −∞ 5
e −∞ −∞ −∞ 6 −∞

and update it in the end assuming the following sequence of pseudorandom numbers: 0.8, 0.1,
0.3, 0.7, 0.2.

Repeat the exercise with the same data, parameters and tabu attribute matrix, except for
Tca = 6 and Ted =−∞. Then, repeat it again with the original data, parameters and tabu attribute
matrix, but setting Tbc = 6 and Ted =−∞.

Solution Since t = 10 and L = 4, the forbidden arcs are those with Ti ≥ t−L = 6, that is (a,c),
(d,a) and (d,c) and (e,d).

The NN heuristic first selects (a,d). Then, since (d,c) is forbidden, it selects (d,e), followed
by (e,b), (b,c) and, finally, (c,a). The final solution is x = {(a,d),(d,e),(e,b),(b,c),(c,a)}
and its total cost is f (x) = 3+3+9+7+11 = 33.

In the pseudorandom number sequence, only the second term is ≤ π . If the solution x is
represented as a sequence of arcs (it is unreasonable to use a binary matrix), the second arc, that
is (d,e), is now forbidden and the tabu attribute matrix becomes:

158

CHAPTER 7 7.6. EXERCISES 159

a b c d e
a −∞ −∞ 8 2 1
b −∞ −∞ −∞ 3 −∞

c 2 −∞ −∞ −∞ −∞

d 7 −∞ 9 −∞ 10
e −∞ −∞ −∞ 6 −∞

Going back to the original tabu attribute matrix with the modified settings Tca = 6 and Ted =
−∞ meaning that the forbidden arcs are (a,c), (d,a) and (d,c) and (c,a). The NN heuristic
starts as in the previous example: it first selects (a,d), then skips (d,c) and selects (d,e),
followed by (e,b) and (b,c). At this point, the only feasible move is to select (c,a), but this arc
is forbidden.

The same happens with Tbc = 6 and Ted =−∞, because the forbidden arcs are (a,c), (d,a)
and (d,c) and (b,c). The NN heuristic selects (a,d), skips (d,c) and selects (d,e) and (e,b).
At this point, (b,c) is forbidden by the tabu and all other arcs going out of b by the prohibition
of subtours.

7.6.3 Exercise 3
Given the following instance of the Parallel Machine Scheduling Problem (PMSP) with 3 ma-
chines:

t a b c d e f
dt 27 12 15 25 11 16

apply a basic greedy heuristic in which the selection criterium is split into two steps:

1. select the task with the maximum time length: i∗ := argmax
t∈T

dt ;

2. select the machine that minimises the objective function: m∗ := arg min
m∈M

f (x∪{t,m}).

In case of ties, in both steps choose the item of minimum index.
Apply a GRASP metaheuristic which still deterministically selects the task of maximum

time length, but chooses the machine with a Restricted Candidate List (RCL) of two elements,
assuming the following sequence of pseudorandom numbers: 0.2, 0.4, 0.3, 0.8, 0.6, 0.1.

Solution The basic greedy heuristic performs the following operations:

1. start with x := /0;

2. select task a, compute the processing time on the three machines for each possible choice
(respectively, (27,0,0) for m1, (0,27,0) for m2 and (0,0,27) for m3) and select the one
implying the minimum completion time, that is m1, (based on the minimum index rule
for ties);

3. select task d, compute the processing time on the three machines for each possible choice
(respectively,(52,0,0) for m1, (27,25,0) for m2 and (27,0,25) for m3) and select the one
implying the minimum completion time, that is m2;

4. select task f , compute the processing time on the three machines for each possible choice
(respectively (43,25,0), (27,41,0), (27,25,16)) and choose the minimum one, that is
m3;

159

160 CONSTRUCTIVE METAHEURISTICS CHAPTER 7

5. select task c, compute the processing time on the three machines for each possible choice
(respectively (42,25,16), (27,40,16), (27,25,31)) and choose the minimum one, that is
m3;

6. select task b, compute the processing time on the three machines for each possible choice
(respectively (39,25,31), (27,37,31), (27,25,43)) and choose the minimum one, that is
m2;

7. select task e, compute the processing time on the three machines for each possible choice
(respectively (38,37,31), (27,48,31), (27,37,43)) and choose the minimum one, that is
m1;

8. terminate, because there is no possible augmentation.

The final solution assigns tasks a and e to m1, tasks b and d to m2 tasks c and f to m3, with total
processing times equal to (38,37,31) and a completion time f (x) = 38.

The GRASP metaheuristic finds at each step the two best alternatives and selects the first
when r ≤ 0.5, the second otherwise:

1. start with x := /0;

2. select task a, compute the processing time on the three machines for each possible choice
(respectively, (27,0,0) for m1, (0,27,0) for m2 and (0,0,27) for m3), put m1 and m2 in
the RCL (based on the minimum index rule for ties) and choose m1 because r = 0.2;

3. select task d, compute the processing time on the three machines for each possible choice
(respectively,(52,0,0) for m1, (27,25,0) for m2 and (27,0,25) for m3), put m2 and m3 in
the RCL (both with a completion time of 27) and choose m2 because r = 0.2;

4. select task f , compute the processing time on the three machines for each possible choice
(respectively (43,25,0), (27,41,0), (27,25,16)), put m3 (competion time 27) and m2
(completion time 41) in the RCL and choose m3 because r = 0.3;

5. select task c, compute the processing time on the three machines for each possible choice
(respectively (42,25,16), (27,40,16), (27,25,31)) put m3 (competion time 31) and m2
(completion time 40) in the RCL and choose m2 because r = 0.8;

6. select task b, compute the processing time on the three machines for each possible choice
(respectively (39,40,16), (27,52,16), (27,40,28)), put m1 (competion time 40) and m3
(completion time 40) in the RCL and choose m3 because r = 0.6;

7. select task e, compute the processing time on the three machines for each possible choice
(respectively (38,40,28), (27,51,28), (27,40,39)), put m1 (competion time 40) and m3
(completion time 40) in the RCL and choose m1 because r = 0.1;

8. terminate, because there is no possible augmentation.

The final solution assigns tasks a and e to m1, tasks c and d to m2 tasks b and f to m3, with total
processing times equal to (38,40,28) and a completion time f (x) = 40.

160

CHAPTER 7 7.6. EXERCISES 161

7.6.4 Exercise 4
Given the following instance of the Knapsack Problem with capacity V = 11:

Objects a b c d e f g
Prize φ 10 3 5 12 7 6 8

Volume v 5 1 2 4 3 1 7

solve it with a GRASP algorithm that applies the trivial constructive heuristic defining the selec-
tion criterium as the objective function. Randomise the choice building a value-based restricted
candidate list (RCL) with parameter µ = 0.4 and pseudorandom number sequence: 0.4, 0.1,
0.7. . .

Solution The algorithm starts from the empty set (x = /0) and:

1. since ∆
+
A (x) = {i ∈ E \ x : v(x)+ vi ≤V}= E and

Objects a b c d e f g
φ 10 3 5 12 7 6 8

the best and worst values are φmax = 12 and φmin = 3, and the threshold value is φµ =
φmax −µ (φmax −φmin) = (1−µ)φmax +µφmin = 8.4. Therefore, RCL = {a,d} and each
of its elements has probability 1/2. The pseudorandom number 0.4 suggests to select a4

2. since ∆
+
A (x) = {b,c,d,e, f} (a ∈ x and vg + v(x)>V) and

Objects a b c d e f g
φ - 3 5 12 7 6 -

the best and worst values and the threshold are unchanged. Therefore, RCL = {d} and
the choice is deterministic.

3. since ∆
+
A (x) = {b,c, f} and

Objects a b c d e f g
φ - 3 5 - - 6 -

the best and worst values are φmax = 6 and φmin = 3, and the threshold value is φµ =
(1−µ)φmax +µφmin = 4.8. Therefore, RCL = {c, f} and each of its elements has prob-
ability 1/2. The pseudorandom number 0.1 suggests to select c5

Solution x = {a,d,c} has a total value of f (x) = 27.

4Of course, if the elements are sorted, the answer could be different, but we assume that they are not, for the
sake of simplicity.

5Once again, the order of the elements is relevant. Moreover, if the previous choice was performed stochasti-
cally, even though with probability 1, the pseudorandom number 0.1 would have been “consumed” and we would
apply 0.7, selecting f .

161

162 CONSTRUCTIVE METAHEURISTICS CHAPTER 7

7.6.5 Exercise 5
Given the following instance of the Maximum Clique Problem (MCP):

a

b c d

e

f g h

apply the Ant System metaheuristic, assuming that the basic constructive heuristic defines the
selection criterium as the degree δi of each vertex i ∈V , to be maximised, breaking ties with the
alphabetic order. Suppose that the number of ants is g = 1 (for the sake of simplicity), that the
visibility function is ηi = δi, the trail function at the current iteration is defined on the vertices
of the graph and assumes the following values:

i a b c d e f g h
τi 1 1 2 1 1 2 1 2

the probability function is

π (i,x) =
τiηi

∑

j∈∆
+
j

τ jη j

and the following sequence of pseudorandom numbers is given: r = 0.4,0.6,0.2,0.8,0.9,0.1. . .

Based on the solution obtained, update the trail function combining the current trail and
the visibility, with an oblivion coefficient ρ = 0.1 and a conversion coefficient Q = 1 for the
visibility.

Solution The visibility function ηi = δi assumes the following values:

i a b c d e f g h
ηi 3 5 7 4 4 4 6 3

Its aim is clearly to favour vertices with many neighbours, which are more likely to belong
to large cliques. Notice that this specific criterium is not particularly smart, because it is not
adaptively updated as the current subset x is augmented: the degree counts also neighbours that
cannot be added to the current subset. This is done for the sake of simplicity.

At the first step, the set of possible extensions includes all vertices; in the following steps, it
includes only the vertices adjacent to all vertices of the current subset x:

∆
+ (x) =

{
V when x = /0

{i ∈V : ∃ j ∈ x : (i, j) ∈ E} when x ̸= /0

The Ant System metaheuristic starts from x := /0 and performs randomised moves based on
the following values:

162

CHAPTER 7 7.6. EXERCISES 163

i a b c d e f g h
τi 1 1 2 1 1 2 1 2
ηi 3 5 7 4 4 4 6 3

τiηi 3 5 14 4 4 8 6 6

where the last line can be normalized dividing all values by their sum, that is 50, to obtain the
probability function. For the sake of simplicity, however, we deal directly with the nonnor-
malised values.

The algorithm performs the following steps6:

1. r = 0.4 with a sum of 50 implies 20; considering the partial sums of τiηi on the elements
of ∆+ (x):

i a b c d e f g h
τiηi 3 5 14 4 4 8 6 6

Partial sum 3 8 22 26 30 38 44 50

we select c and update x := {c} and ∆+ (x) = {a,b,d,e, f ,g,h};

2. r = 0.6 with a sum of 36 implies 21.6; considering the partial sums of τiηi on the elements
of ∆+ (x):

i a b d e f g h
τiηi 3 5 4 4 8 6 6

Partial sum 3 8 12 16 24 30 36

we select f and update x := {c, f} and ∆+ (x) = {b,e,g};

3. r = 0.2 with a sum of 15 implies 3; considering the partial sums of τiηi on the elements
of ∆+ (x):

i b e g
τiηi 5 4 6

Partial sum 5 9 15

we select b and update x := {b,c, f} and ∆+ (x) = {e,g};

4. r = 0.8 with a sum of 10 implies 8; considering the partial sums of τiηi on the elements
of ∆+ (x):

i e g
τiηi 4 6

Partial sum 4 10

we select g and update x := {b,c, f ,g} and ∆+ (x) = {e};

6This exercise updates the set of possible augmentations and correspondingly the probability function. This is
the correct and standard way to operate. In other exercises, for the sake of simplicity, I keep the same probability
function throughout the exercise, allowing the extraction of elements that are not acceptable or that have already
been selected and suggesting to simply neglect them and go on with the following pseudorandom number. I have
still to decide which is the most sensible approach.

163

164 CONSTRUCTIVE METAHEURISTICS CHAPTER 7

5. of course, we select e and update x := {b,c,e, f ,g} and ∆+ (x) = /0;

6. the algorithm terminates.

The final solution is x := {b,c,e, f ,g} and its value is f (x) = |x|= 5.

Based on solution x := {b,c,e, f ,g}, the trail function can be updated to favour the elements
of x and disfavour the other ones, depending also on the quality of x (intensifying update). The
update formula is:

τi =

{
(1−ρ)τi for i /∈ x
(1−ρ)τi +ρQ f (x) for i ∈ x

where Q = 1 is a conversion factor to combine visibility and trail values, and ρ = 0.1 is the
oblivion coefficient. In the present case, therefore, the trail on all vertices is multiplied by
1−ρ = 0.9 and that on the vertices of x is increased by ρQ f (x) = 0.1 ·1 ·5 = 0.5:

i a b c d e f g h
τ
(old)
i 1 1 2 1 1 2 1 2

τ
(new)
i 0.9 1.4 2.3 0.9 1.4 2.3 1.4 1.8

7.6.6 Exercise 6
Solve the following instance of the Maximum Diversity Problem with k = 3

Cost a b c d e
a 0 10 8 7 5
b 10 0 3 7 1
c 8 3 0 5 2
d 4 7 5 0 3
e 5 1 2 3 0

applying the Ant System in which the constructive heuristic adopts the objective function as the
selection criterium (also at the first step) and breaks ties with the alphabetic order, the number of
ants is g = 1 (for the sake of simplicity), the visibility function is defined as the objective func-
tion, but with a minimum value of 1 to account for the first step (η(i,x) = min(f (x∪{i}) ,1)),
the trail function at the current iteration is defined on the points and assumes the following
values:

i a b c d e
τi 1 2 1.5 1 1

the probability function is

π (i,x) =
τiηi

∑

j∈∆
+
j

τ jη j

and the following sequence of pseudorandom numbers is given: r = 0.9,0.1,0.3,0.4. . .

Based on the solution obtained, update the trail function combining the current trail and
the visibility, with an oblivion coefficient ρ = 0.2 and a conversion coefficient Q = 0.1 for the
visibility.

164

CHAPTER 7 7.6. EXERCISES 165

Solution At the first step, the visibility is equal to 1 for all points. As in the previous exercise,
for the sake of simplicity we operate on the values of τiηi without normalising them, exploiting
the partial sums to perform the random selections:

i a b c d e
ηi 1 1 1 1 1
τi 1 2 1.5 1 1

τiηi 1 2 1.5 1 1
Partial sum 1 3 4.5 5.5 6.5

Since r = 0.9 and the total sum is 6.5, the selected element corresponds to 5.85 and is e.
At the second step, the visibility is the distance from e, η(i,x) = die (or twice that distance,

if one prefers: the choice remains the same). The updated values are:

i a b c d e
ηi 5 1 2 3 -
τi 1 2 1.5 1 -

τiηi 5 2 3 3 -
Partial sum 5 7 10 13 -

Since r = 0.1 and the total sum is 13, the selected element corresponds to 1.3 and is a.
At the third step, that is the last one, the visibility is the sum of the distances from e and a,

η(i,x) = die +dia. The updated values are:

i a b c d e
ηi - 11 10 10 -
τi - 2 1.5 1 -

τiηi - 22 15 10 -
Partial sum - 22 37 47 -

Since r = 0.3 and the total sum is 47, the selected element corresponds to 14.1 and is b. The final
solution is, therefore, x = {a,b,e} and its value is f (x) = 16 (or 32, considering the distances
in both directions).

Since the problem is of maximisation, the update formula is:

τi =

{
ρτi for i /∈ x
ρτi +(1−ρ)Q f (x) for i ∈ x

and, therefore, the trail on all points is multiplied by 1− ρ = 0.8 and that on a, b and e is
increased by ρQ f (x) = 0.2 ·0.1 ·16 = 0.32:

i a b c d e
τ
(old)
i 1 2 1.5 1 1

τ
(new)
i 1.12 2.32 1.2 0.8 1.12

165

166 CONSTRUCTIVE METAHEURISTICS CHAPTER 7

166

Part IV

Exchange algorithms

167

CHAPTER 8

Exchange heuristics

As all other algorithms considered in this course, exchange algorithms are based on the concept
of manipulating subsets of the ground set. An exchange heuristic does it updating a current
subset x step by step, exchanging elements in and out of the solutions: some elements taken
from B\ x are inserted in x, other elements of x are removed.

8.1 The general scheme of exchange algorithms
The general scheme of exchange algorithms is

1. start from a feasible solution x(0) ∈ X found somehow, often by a constructive heuristic

2. generate a family of feasible solutions by exchanging elements. For example, add a subset
A external to x(t) and drop a subset D belonging to x(t):

x′A,D = x∪A\D with A ⊆ B\ x and D ⊆ x

3. use a selection criterion ϕ(x,A,D) to choose the subsets to exchange

(A∗,D∗) = arg min
(A,D)

ϕ(x,A,D)

4. perform the chosen exchange to generate the new current solution

x(t+1) := x(t)∪A∗ \D∗

5. if a termination condition holds, terminate; otherwise, go back to point (2).

The execution of an exchange heuristic requires a preexisting feasible solution. This is
often achieved by applying a constructive heuristic, which ideally takes a small time. This
means that the starting point is not given a priori, as in the case of constructive heuristics.
Different starting solutions usually imply different final ones. Depending on the case, however,
the final result could be more or less depending on the initialisation. Discussing constructive
heuristics, we have seen that they include extension in which the solution is updated using both
added and deleted sets. However, the extension required a strict increase in the cardinality of
the solution. Exchange heuristics do not require this. On the contrary, they usually require
that both the starting and modified subset are feasible solutions. The graph that results from
this mechanism is not acyclic. On the contrary, the arcs are usually symmetric, though this
is not strictly required. The algorithm proceeds, iteration after iteration, replacing the current

169

170 EXCHANGE HEURISTICS CHAPTER 8

solution with a new one - called the incumbent solution - that is used as the starting point for the
next iteration. The process ends when some specific termination condition is satisfied. As for
the constructive algorithms, the algorithm is determined by the set of acceptable modifications
and by the selection criterion, but additionally also the termination condition must be specified,
given that there all solutions have possible successors.

8.1.1 Neighbourhood
An exchange heuristic is defined by the family of pairs of subsets (A,D) that can be exchanged
for every solution x(t). Equivalently, it is defined by the collection of solutions generated by
these exchanges. The neighbourhood is a function that associates to each feasible solution
x ∈ X a subset of feasible solutions N(x)⊆ X :

N : X → 2X

The situation can be formally described with a search graph, whose nodes represent the
feasible solutions x ∈ X and whose arcs connect each solution x with the solutions in its neigh-
bourhood N(x). An arc can be seen as a move, that represent moving some elements in and/or
out of a solution x to obtain a different solution x′ ∈ N(x). So, the triplets (x,A,D) and the
arcs of the search graph represent exactly the same thing. The main difference with respect to
the construction graph is that the former is acyclic, has a very specific starting node x(0) = /0
and terminal nodes, whereas the search graph is cyclic and has no starting and ending node,
and all nodes correspond to feasible solutions. In both cases, however, a run of the algorithm
corresponds to a path in the graph.

Exactly as several construction graph, several search graphs can be defined on the same
problem. The basic difference is that usually all search graphs have the same nodes (the fea-
sible solutions), whereas the construction graph can also have different nodes. Technically, an
exchange heuristic could visit unfeasible solutions, extending the standard search graph. This
implies a set of problems that will be described in more detail when presenting the recombina-
tion algorithms in Section 10.5. In the following, we discuss how neighbourhoods are defined.

Neighbourhood based on distance

There are two main approaches to define a neighbourhood. The first one, related to the definition
of neighbourhood adopted in continuous mathematics, is based on the concept of distance. Let
us remind that every subset of a finite set, and therefore every feasible solution x ∈ X , can be
represented by its incidence vector

xi =

{
1 i ∈ X
0 i ∈ B\ x

The distance between two solutions x and x′ represented as incidence vectors can be defined in
several ways. For example, the class of Lp-distances defines for all p ≥ 0

dp(x,x′) = p

√
∑
i∈B

|xi − x′i|p

Since the incidence vectors are binary, all such distances are equivalent. In particular, they
coincide with the Euclidean distance (L2)

d2(x,x′) =
√

∑
i∈B

|xi − x′i|2

170

CHAPTER 8 8.1. THE GENERAL SCHEME OF EXCHANGE ALGORITHMS 171

the Manhattan distance (L1)
d1(x,x′) = ∑

i∈B
|xi − x′i|

and the Hamming distance (L0)1

dH(x,x′) =
∣∣{i ∈ B : xi ̸= x′i}

∣∣
All such distances trivially count the number of elements that belong to one of the two subsets,
and not the other one:

d(x,x′) =
∣∣x\ x′

∣∣+ ∣∣x′ \ x
∣∣

A typical definition of neighbourhood is the set of all solutions with a Hamming distance
from x not larger than k for a suitable integer k:

NHk(x) = {x′ ∈ X : dH(x,x′)≤ k}

This is a parametric definition.

Example: the KP The KP instance with B = {1,2,3,4}, v = [5 4 3 2] and V = 10 (see Fig-
ure 8.1) has 13 feasible solutions out of 16 possible subsets of the ground set: subsets {1,2,3,4},
{1,2,3} and {1,2,4}, in fact, are unfeasible. Solution x = {1,3,4}, marked in blue has a a
neighbourhood NH2(x) consisting of 7 elements, marked in red. The subsets in black do not
belong to the neighbourhood, because their Hamming distance from x is strictly greater than 2.

Figure 8.1: Neighbourhood of a KP solution with Hamming distance and k = 2.

Neighbourhood based on operations

A second way to define a neighbourhood is based on operations. An operation is a function ap-
plied to a solution, that generates another solution by adding and/or removing suitable elements.
A family of operations O, consequently, defines a family of solutions

NO(x) = {x′ ∈ X : ∃o ∈ O : o(x) = x′}

Consider, for example, the operations that add to x an element of B \ x, those that remove
from x at most an element (including the case of not modifying x) and the operations that
exchange one element of x with one of B\ x. The neighbourhood NO resulting from the union
of all these operations is related to those defined by the Hamming distance, but does not coincide
with any of them. More precisely:

NH1 ⊂ NO ⊂ NH2

1The Hamming distance corresponds to p = 0, because all nonzero differences contribute to the sum with a
term equal to 1; the zero differences generate 00 indeterminate forms, which are conventionally set to 0.

171

172 EXCHANGE HEURISTICS CHAPTER 8

In fact, the subsets of Hamming distance 1 from x have incidence vectors with at most one
different value from that of x, therefore at most one element can be added or one can be removed:
this neighbourhood does not admit any exchange operation. On the other hand, the subsets of
Hamming distance ≤ 2 allow a single swap between an internal and an external element, but
also two additions or two removals. The former operations are included in O, whereas the latter
are not.

As the distance-based ones, these neighbourhoods can be parametrised considering se-
qunces of k operations of O instead of a single one

NOk = {x′ ∈ X : ∃o1, · · · ,ok ∈ O : ok(ok−1(· · ·o1(x))) = x′}

where O should include the identity operation (that does not modify its argument) in order to
keep the starting solution in the neigbourhood and to guarantee that each neighbourhood NOk

includes the ones with smaller values of k.

Different distance and operation-based neighbourhoods

In general, an operation-based neighbourhood includes solutions with different values of the
Hamming distance from x. A classical neighbourhood for the TSP is the single node swap
neighbourhood NS1 , which includes the solutions obtained swapping two nodes in their visit
order.

Figure 8.2: TSP Problem

Consider the TSP instance in Figure 8.2: the neighbourhood of solution x= {(3,1),(1,4),(4,5),(5,2),(2,3)},
that corresponds to the node sequence (3,1,4,5,2), is

NS1(x) ={(1,3,4,5,2),(4,1,3,5,2),(5,1,4,3,2),(2,1,4,5,3),(3,4,1,5,2),
(3,5,4,1,2),(3,2,4,5,1),(3,1,5,4,2),(3,1,2,5,4),(3,1,4,2,5)}

This neighbourhood cannot be defined using Hamming distances. Swapping two adjacent
nodes, in fact, as in the first case, removes three of the five original arcs ((3,1),(1,4),(2,3))
and adds three new arcs ((1,3),(3,4),(2,1)), so that the Hamming distance is 3+ 3 = 6. On
the other hand, swapping two nonadjacent nodes, as in the second neighbour solution, four arcs
are removed ((1,4),(4,5),(2,3),(3,1)) and, obviously, four arcs have been added, so that the
Hamming distance is 4+4 = 8. However, NS1 coincides neither with NH6 nor with NH8: in fact,
other exchanges of three or four arcs are possible.

Coinciding distance and operation-based neighbourhoods

In other cases, operation and distance based neighbourhoods are actually equivalent. This is
particularly common when the feasible solution of the problem have a fixed number of ele-
ments. Consider for example the MDP, whose solutions contain k elements: when adding an

172

CHAPTER 8 8.1. THE GENERAL SCHEME OF EXCHANGE ALGORITHMS 173

element, another element must be removed; all such moves belong to the family of single swaps.
Considering the incidence vector, a single swap flips a bit from 1 to 0 and another bit from 0 to
1. The resulting solution belongs to NH2 . Since only feasible solutions in NH2 have two opposite
flips, NS1 ≡ NH2 , and this can be easily extended to NSk ≡ NH2k for all k.

Something similar happens for the BPP, whose ground set B collects the pairs (object,container),
and the PMSP with the pairs (task,machine). In both problems the neighbourhood NT1 includes
solutions obtained with a single transfer (of an object to a container, or a task on a machine).
The neighbourhood NH2 includes the solutions at Hamming distance not larger than 2, that are
exactly the same, once again because only two opposite flips are feasible and they must concern
pairs with the same object. So, NTk ≡ NH2k for all k.

Another example is provided by the Max-SAT problem, where neighbourhood NFk , defined
by at most k flips of variables (invertions of their truth assignment) coincides with neighbour-
hood NHk for the ground set B =V ×B introduced in Section 2.3.1.

In summary, operation-based neighbourhood can correspond to distance-based neighbour-
hood or not, according to the case.

Different neighbourhoods for the same problem

In general, different definitions of neighbourhood can be given for the same problem. Graph
problems, in particular, often allow to describe operations in terms of edges (arcs) or in terms
of vertices (nodes).

Edge swap neighbourhood for the CMSTP Considering the CMSTP, a natural neighbour-
hood can be defined with respect to edges, saying that an edge is deleted and another one is
added (in short a single edge swap). Figure 8.3 shows the swap of edge (i, j) with edge (i,n).
The consequence is that the whole subtree rooted in node i moves to a different branch (subtree
rooted in r) of the solution. This can be interpreted as the transfer or some vertices from branch
to branch. In general, a single edge swap can transfer an arbitrary number of vertices: there is
no relation between the two number.

(a) Before exchange (b) After exchange

Figure 8.3: A single edge swap in the CMSTP

Vertex transfer neighbourhood for the CMSTP Conversely, let us define a neighbourhood
in terms of vertex transfers. Figure 8.4 shows the transfer of vertex n from branch 2 to branch
1. We remind that, when the ground set is assumed to consist of assignments of vertices to
branches, the objective function must be computed solving a MSTP for each branch. Therefore,

173

174 EXCHANGE HEURISTICS CHAPTER 8

after a vertex transfer, the two minimum trees spanning the modified branches must be recom-
puted. While doing this, in general, it is not known how many of the original edges will be
removed and how many new edges will be added, even if a single vertex is transferred.

(a) Before exchange (b) After exchange

Figure 8.4: A single vertex transfer in the CMSTP

In summary, two completely heterogeneous ground sets can be considered for the CMSTP
(one based on edges and one based on assignment of vertices to branches), and two corre-
sponding neighbourhoods (one based on edge swaps and one based on vertex transfers) can be
defined. They are both equivalent to distance-based neighbourhoods NH2 , but they are quite
different from each other, as the ground set is not the same.

This is very similar to the use of different search spaces in constructive algorithms: in fact,
it provides different solutions.

Transfer neighbourhood for the PMSP As already observed, the PMSP allows to define a
single transfer neighbourhood NT1 , based on the transfer of a task on a machine (see the example
represented in Figure 8.5). This coincides with the Hamming distance neighbourhood NH2 , as
in the incidence vector a bit flips from 0 to 1 and another bit flips from 1 to 0, assuming a ground
set composed by assignments of tasks to machines.

Figure 8.5: A single transfer for the PMSP

Swap neighbourhood for the PMSP Instead of transferring a single task, one can move two,
exchanging their respective positions. Let NS1 be the neighbourhood based on a single swap
between tasks, as represented in Figure 8.6.

The relationship between task swaps and task transfers is similar to the relationship between
Hamming distance and operations in the case of the KP discussed previously: they do not
coincide, but a swap is a specific case of two transfers:

NS1 ⊂ NT2

174

CHAPTER 8 8.1. THE GENERAL SCHEME OF EXCHANGE ALGORITHMS 175

Figure 8.6: A single task swap for the PMSP

8.1.2 Connectivity of the search graph
Choosing a neighbourhood is not trivial: the properties of the neighbourhood critically affect
the performance of exchange algorithms. A set of important properties are related to the con-
nectivity of the search graph.

Weak connectivity

Exactly as for constructive heuristics with the construction graph, an exchange algorithm is able
to reach an optimal solution only if the search graph contains a path from the starting solution
to X◦. Additionally, exchange heuristic have not a fixed starting solution: their general scheme
starts from an arbitrary feasible solution. Therefore, every feasible solution should be able to
reach at least one optimal solution, that is there should be a path from x to X∗ for every x ∈ X

∀x ∈ X x⇝ x∗ : x∗ ∈ X∗

A search graph having such a property is denoted as weakly connected to the optimum. Proving
this property for a given neighbourhood is quite difficult, given that the optimal solution set X∗

is unknown.

Strong connectivity

Often, a stronger condition is used, requiring that any feasible solution should be reachable from
any feasible solution. This is strong connectivity, that is the existence of a path in the search
graph from x to y for every x,y ∈ X :

∀x,y ∈ X x⇝ y

As done for constructive metaheuristics, we can associate to each arc of the search graph a
probability of being followed, so the possibility to reach an optimal solution with nonzero prob-
ability can be expressed in terms of the existence of paths composed by arcs with nonzero
probability.

Connectivity has an immediate impact on the quality of a neighbourhood. Consider the
single swap neighbourhood NS1 for the MDP. It guarantees a way to go from any feasible
solution to any feasible solution, because there is a path made of at most k swaps between them.
Finding this path is another matter, far from trivial, but even random walks have a probability to
succeed. Considering the single swap neighbourhood for the KP or the SCP: the corresponding
search graphs are not strongly connected. For example, a solution with j elements will never
be able to reach a solution with i ̸= j elements, even with an arbitrary number of swaps. In

175

176 EXCHANGE HEURISTICS CHAPTER 8

order to make the search graph strongly connected, swaps must be accompanied by removals
and additions.

Example on the connectivity of the solution space

Even if a problem has solutions with a fixed number of elements, additional constraints could
forbid to move from a solution to any other, destroying strong connectivity. Consider the in-
stance of the CMSTP in Figure 8.7: the weights are uniform and equal to 1, except for vertex b
which has weight 2.

Figure 8.7: Three solutions for a CMSTP instance.

Given V = 4, only three solutions are feasible, all with two subtrees:

x = {(r,a),(a,b),(b,e),(r,d),(c,d),(d,g),(f ,g)}
x′ = {(r,a),(a,e),(e, f),(f ,g),(r,d),(c,d),(b,c)}
x′′ = {(r,a),(a,b),(b,c),(r,d),(d,g),(f ,g),(e, f)}

All solutions are n− 1 = 7 edges. These are mutually reachable only swapping at least two
edges (that is, removing two and adding two at a time). The single edge swap neighbourhood
does not allow to move from one of these feasible solutions to any other. This is due to the
capacity constraint, that forbids to transfer vertices only in one direction (as all single edge
swaps do by construction).

The lesson taught by this example is that, even if the general structure of the problem seems
to allow connectivity, additional complicating constraints can make some subsets unfeasible
and therefore cancel the paths in the search graph that lead from a feasible solution to another
one.

8.2 The steepest descent algorithm

8.2.1 The selection criterium
The selection criterion guides the algorithm through the search graph from each solution to a
neighbour one, aiming to an optimal solutions, or at least to promising ones. As in constructive
algorithms, the most natural choice is to use the objective function as a selection criterion

ϕ(x,A,D) = f (x∪A\D)

This is even truer for exchange algorithms because the process visits feasible solutions, for
which the objective function is a correct measure of quality, whereas the constructive algorithms
visited subsets to which the objective function has to be extended and for which it could easily
provide a miopic estimate of quality.

Adopting the objective as a selection criterium, the algorithm moves from x(t) to the best
solution in N(x(t)). As in constructive algorithms, replacing the objective with the variation

176

CHAPTER 8 8.2. THE STEEPEST DESCENT ALGORITHM 177

δ f (x,A,D) = f (x∪A\D)− f (x) usually allows to reduce the computational time. To avoid
cyclic behaviours, only strictly improving solutions are accepted at each iteration. The resulting
algorithm is called steepest descent, because at each step it decreases the objective as much as
possible. For maximisation problems, it is called steepest ascent or hill climbing.

Algorithm 11 Exchange Algorithm Pseudocode
1: procedure STEEPESTDESCENT(I)
2: x := x(0)

3: Stop := f alse
4: while Stop = f alse do
5: x̄ := argminx′∈N(x) f (x′)
6: if f (x̄)≥ f (x) then
7: Stop := true
8: else
9: x := x̄

10: end if
11: end while
12: return (x, f (x))
13: end procedure

The pseudocode of steepest descent is presented in Algorithm 11. Since the current solution
changes only when outperformed by the best neighbour one (f (x̄) < f (x)), the last solution
obtained is the best and it is directly returned, without managing a data structure ad hoc.

Local and global optimality

By definition, the steepest descent algorithm terminates in a locally optimal solution, that is a
solution x̄ ∈ X not worse than any neighbour one:

∀x ∈ N(x) f (x̄)≤ f (x)

A globally optimum solution is always also locally optimal, but clearly the opposite is not
true in general:

X∗ ⊆ X̄N ⊆ X

where X∗ is the set of globally optimal solutions and X̄N the set of locally optimal solutions,
that depend on the specific neighbourhood N chosen. Figure 8.8 illustrates the two concepts for
a continuous function, where the idea is very similar, even if it is not the case of our analysis.

Figure 8.8: Global optimum and local optimum.

177

178 EXCHANGE HEURISTICS CHAPTER 8

8.2.2 Exact neighbourhood

A neighbourhood function N : X → 2X such that each local optimum is also a global optimum

X̄N = X∗

is called an exact neighbourhood (function). The steepest descent algorithm is exact for such
neighbourhoods, since it will terminate in X̄N , and consequently in the region of optimal solu-
tions. A trivial case is given by the whole feasible region:

∀x ∈ X N(x) = X

This is, however, a useless definition, as it turns the steepest descent algorithm into the exhaus-
tive algorithm: the selection criterion checks every feasible solution.

Sadly, exact neighbourhoods are extremely rare. An important example is the single edge
swap neighbourhood for the MSTP: given any spanning tree, one can consider each edge out
of the tree, add it closing a cycle, remove an edge of the cycle so that the result is still a
spanning tree (thus remaining in the set of feasible solutions) and check whether in this way
the objective function value can be reduced. Performing repeatedly the best swap at every
iteration (or, actually, any strictly improving swap), it can be proved that the final result is a
minimum spanning tree. This is another exact algorithm besides Prim’s and Kruskal’s. It is less
used because its complexity is higher. However, if the starting solution is sufficiently good (for
example, because it was optimal before some edge cost was slightly modified), the number of
iterations will be sufficiently small to make it an efficient algorithm.

Another example is provided by the single swap between basic and nonbasic variables used
by the simplex algorithm for Linear Programming. This can be seen as a combinatorial opti-
misation problem if one considers it as the problem of identifying an optimal subset of m basic
variables (one for each constraint) out of the overall n variables. Of course, the objective func-
tion is not additive: it is not a sum of fixed costs associated to the basic variables; it must be
computed manipulating the coefficient matrix, the cost vector and the right-hand-side vector.
Anyway, the simplex algorithm consists in iteratively swapping a basic variable with a nonbasic
one so that the objective function improves: step by step, the algorithm terminates in a local
optimum, that is actually a global optimum.

8.3 Properties of the search graph

The effectiveness of steepest descent, and of exchange algorithms in general, depends on the
properties of the search graph and of the objective function. Some relevant properties are:

• the size of the search space |X |: a larger number of solutions makes the problem harder;

• the connectivity of the search graph: weak connectivity is necessary, more paths to the
optimal solutions make it easier to reach them

• the diameter of the search graph, that is the number of arcs of the minimum path between
the two farthest solutions: a smaller diameter makes reaching the required solution faster
and more likely; a richer neighbourhood produces denser graphs, which usually have a
smaller diameter, but other factors may affect this property: the smallworld effect allows
even sparse graphs to have a small diameter.

178

CHAPTER 8 8.3. PROPERTIES OF THE SEARCH GRAPH 179

Consider, for example, the neighbourhood NS1 (swap of two nodes) for the symmetric TSP
on complete graphs. The search space consists of |X |= (n−1)! solutions. The neighbourhood
of each one includes NS1(x) =

(n
2

)
= n(n−1)

2 solutions. The search graph is strongly connected
and has diameter n−2, as the first node of the sequence is always 1 and the last one is automati-
cally in place when the others have been fixed. For example, x = (1,5,4,2,3) can be trasformed
into x′ = (1,2,3,4,5) in 3 steps:

x = (1,5,4,2,3)→ (1,2,4,5,3)→ (1,2,3,5,4)→ (1,2,3,4,5) = x′

More complex relevant properties are

• the density of global optima |X∗|/|X | and local optima |X̄N |/|X |: if the local optima are
numerous, it is harder to find the global ones;

• the distribution of the quality δ (x̄) of local optima: if the local optima are good enough,
it is less important to find a global one;

• the distribution of the locally optimal solutions in the search space: if the local optima are
close to each other, it is not necessary to explore the whole space. Once a local optima is
reached, intensification allows to reach the other ones. On the contrary, if the local optima
are spread, diversification is more appropriate.

Computing these indices requires an exhaustive exploration of the search graph for each single
instance. In practice, one performs a sampling of the instances and of the solutions of each
instance (which can be a problem in and of itself). These analyses require a very long time and
can even be misleading if the global optima are unknown, and therefore part of the required
information is only approximately estimated.

Example: the TSP

Considering the TSP on a complete symmetric graph with Euclidean costs, such analyses typi-
cally show that the Hamming distance between two local optima is on average way smaller than
n, that is the local optima concentrate in a small region of X . This means that, once a local op-
timum is found, the search should be intensified. The Hamming distance between local optima
on average exceeds that between local and global optima. This suggests that the global optima
tend to concentrate in the middle of local optima, another information that supports intensifi-
cation. The fitness-distance correlation diagram of Figure 8.9 reports the percent gap δ (x̄) of
several local optima with respect to the global optimum versus their (Hamming) distance from
the globally optimal solutions dH(x̄,X∗).

In the case of the TSP, they appear to be correlated: better local optima are closer to the
global optima than worse ones. Moving towards better local optima (that is, smaller percentage
deviation from the optimum) brings the solution closer to the global optimum. It is still possible
to improve the gap (going down) and move away from the global optimum (move right), but
it is more unlikely. So, applying an intensification mechanism that moves the search in the
surroundings of the best known solutions is probably useful to find even better ones.

Example: the QAP

The Linear Assignment Problem (LAP) is a Combinatorial Optimization problem in which a set
of tasks must be assigned to a set of machines so that each task correspond to a single machine
and each machine to a single task, with a given cost per each possible pair (task,machine),

179

180 EXCHANGE HEURISTICS CHAPTER 8

Figure 8.9: Fitness-distance correlation diagram for the TSP.

representing the fact that a machine can perform the task better or worse than other ones: the
aim is to minimise the sum of all costs for the assignments selected. It is clearly additive.

Figure 8.10: Fitness-distance correlation diagram for the QAP.

The Quadratic Assignment Problem (QAP) is a variant in which the total cost of the assign-
ments also includes terms describing the interferences between pairs of different assignments.
Besides the linear cost of assigning task t1 to machine m1 and task t2 to machine m2, there is
also a cost that is paid when both assignments are selected. The typical FDCD for this problem,
represented in Figure 8.10, shows that even if the solution is improved in term of deviation from
the best quality (fitness), it does not necessarily get closer to the global optimum: there is no
correlation between the two indices. In this case, the search should be diversified, more than
intensified.

Such a diagram also gives suggestions about the importance of good starting solutions for
an exchange algorithm: if good solutions tend to be closer to the optimum, it makes sense to
spend time finding a good initial solution; if, on the contrary, there is no correlation, spending
less time on the initialization and more on the exchanges is more reasonable.

The following sections survey a number of descriptive concepts and tools to describe the
behaviour of exchange heuristics.

180

CHAPTER 8 8.3. PROPERTIES OF THE SEARCH GRAPH 181

8.3.1 Landscape

The landscape is a triplet (X ,N, f), where X is the search space (i.e., the set of feasible so-
lutions), N : X → 2X is the neighbourhood function and f : X → N is the objective function.
The first two objects correspond to the search graph (respectively, nodes and arcs), the third
to the objective function, that can be seen as a weight function on the nodes. The landscape
depends both on the problem (nodes and node weights) and on an exchange algorithm (arcs).
The effectiveness of the algorithm strongly depends on its landscape.

Consider the two landscapes in Figure 8.11, where an increase or decrase in height stands
for an increment or decrement in cost. We strive to get to the lowest nodes in the landscape.
If the landscape is “smooth” and has few local optima, than the steepest descent algorithm will
usually lead to a very good solution with a number of steps. If the landscape is very rugged,
it will quickly lead to a bad local optimum. The first situation is more appropriate for steepest
descent than the second.

Figure 8.11: Two different landscapes.

There can be very different type of landscape, such as those represented in Figure 8.12. The
one in the upper left corner is an exact neighbourhood. In the upper right corner there is a good
global optimum with other very bad local optima: steepest descent will perform poorly. In the
lower left corner, the landscape has pretty much similar local optima, distributed everywhere.
The lower right corner is a combination of the previous situations, in which the steepest descent
will perform very badly, because many local optima are bad, but a mechanism to get out of local
optima and reach better ones could drive the search in the correct direction.

Figure 8.12: Different 3D landscapes.

8.3.2 Autocorrelation coefficient

The aim is to give a quantitative measure able to distinguish the situations depicted in Fig-
ure 8.12. The basic idea is to do it empirically, performing a random walk on the search graph
for tmax iterations, so as to determine a sequence of values of the objective f (1), · · · , f (tmax) and

181

182 EXCHANGE HEURISTICS CHAPTER 8

then combining them in an index of “ruggedness”. First, compute the sample mean:

f̄ =
∑

tmax
t=1 f (t)

tmax

Then, compute the empirical autocorrelation coefficient:

r(i) =
∑

tmax−i
t=1 (f (t)− f̄)(f (t+1)− f̄)

tmax−i

∑
tmax
t=1 (f (t)− f̄)2

tmax

Let us explain the denominator first. We compute the difference between each value of the
sequence and the mean value, raise it to the square and average it over tmax iterations. This
expression, called the square mean error measures how close the sequence of values is to the
mean, telling whether the value of the objective function remains pretty much the same or if
it varies steeply. The numerator is very similar, but the difference from the mean is computed
in two different points and the two differences are multiplied. The aim is to understand not
only whether the difference is large or small, but also whether it changes its sign or keeps the
same. When i = 0, numerator and denominator are the same, so that r(0) = 1: each value of the
sequence is perfectly correlated with itself. When i > 0, the numerator measures whether going
from a solution to a solution at i steps of distance the value of the objective changes much or
only little, and whether it is above the mean in one solution and below in the other, or it keeps
on the same side in both solutions. If the two factors summed at the numerator have the same
sign, the autocorrelation coefficient is positive, which suggests that the landscape is smooth.
If they are opposite in sign, the autocorrelation coefficient is negative and this means that the
landscape is rugged at distance i. In summary:

• if r(i)≈ 1 in a large range of distances the landscape is smooth:

– the neighbour solutions have values close to the current one

– there are few local optima

– the steepest descent heuristic is effective

• if r(i) varies steeply the landscape is rugged:

– the neighbour solutions have values far from the current one

– there are many local optima

– the steepst descent heuristic is ineffective

In general, as i increases, the correlation coefficient tends to converge to 0, because solutions
far away from each other have values of the objective that are not correlated to each other.

8.3.3 Plateau
A plateau is a set of connected solutions in which the objective function has exactly the same
value.

Take, for example, the instance of PSMP represented in Figure 8.13, moving one of the tasks
from machine M1 to machine M3, the objective function does not change. The same happens
transferring any of the two tasks on machine M3 to machine M1: manydifferent solutions in
the single transfer neighbourhood are perfectly equivalent. In this case, the selection criterion

182

CHAPTER 8 8.4. EFFICIENCY OF THE EXCHANGE ALGORITHMS 183

Figure 8.13: Instance of PMSP with a plateau.

given by the objective function is nearly ineffective, as it gives no indication on the direction
in which to move. This complicates very much the problem. A landscape with large plateaus
is particularly smooth, but, contrary to the typical behaviour of smooth landscapes, this is not a
desirable property.

8.3.4 Attraction basins
Starting from any feasible solution, the steepest descent leads deterministically to a locally
optimal solution. The set of all starting solutions that end up in the same locally optimal solution
is known as its attraction basin.

Figure 8.14: Attraction basins.

The attraction basins are separated by arcs, which have on one side a solution “attracted”
by a local optimum and on the other side an adjacent solution attracted by a different local
optimum. The number of attraction basins in a search space is of interest, as the steepest descent
algorithm is effective if the attraction basins are few and large, while it is ineffective if the
attraction basins are many and small.

8.4 Efficiency of the exchange algorithms
We now discuss the computational complexity of exchange algorithms and, in particular, the
problem of improving as much as possible their efficiency. This is a crucial point as, when
metaheuristics will be introduced, the basic scheme of exchange algorithms will be repeated,
allowing to also improve the effectiveness of the overall process, and reducing the time required
by the basic scheme makes it possible to extend it more strongly.

Exchange algorithms are composed by a simple cycle, exactly as constructive algorithms.
The number of iterations of this cycle, however, is not known a priori as a function of the size
of the problem or some other parameter. This value, tmax, depends on the structure of the search
graph and of the objective function, and on the details of the exchange algorithm. Considering

183

184 EXCHANGE HEURISTICS CHAPTER 8

the steepest descent algorithm, tmax depends on the starting point x(0), and on the width of the
attraction basins. There is an active field of research dedicated to the theoretical estimation of
the complexity of exchange algorithms (also known as local search algorithms), but the results
are not very strong or general. We therefore ignore this point and focus on the analysis of the
single iterations of this cycle, that is on the exploration of the neighbourhood of the current
solution. The number of iterations, and consequently the complexity of the overall algorithm
will be measured a posteriori, in order to determine some empirical average-case information.

8.4.1 The exploration of the neighbourhood
The exploration of the neighbourhood, line (5) in Algorithm 11, has an interesting property: it
is a Combinatorial Optimization problem, as it aims to find the best solution in a given finite
set. This auxiliary problem is usually solved in two possible ways: either with an exhaustive
search or with a specialised algorithm. Of course, the second way is better, but only possible
for neighbourhoods having very specific structures. The former way is general and, since a
neighbourhood is smaller than the whole feasible region, the exhaustive algorithm can actually
be a viable approach.

Exhaustive visit of the neighbourhood

For the exhaustive visit of the neighbourhood, the operation

x̃ := arg min
x′∈N(x)

f (x′)

can be expanded as a loop, that generates one by one all the neighbour solutions, computes the
corresponding value of the objective function, and updates when necessary the best solution
found.

Apparently, the complexity is given by the cardinality of the neighbourhood |N(x)| multi-
plied by the cost of evaluating each solution, expressed as γ f (|B|, |x|), since in general it depends
on the size of the problem and, possibly, of the solution. For example, computing the value of
a solution for the MDP takes O

(
k2) time, if it is done from scratch. This estimate, however,

neglects the fact that it is not always possible to generate only neighbour solutions starting from
x: sometimes, the operations that define the neighbourhood generate also unfeasible subsets.
For example, given a solution of the KP, adding or swapping elements can violate the capacity
constraint. In general, therefore, the loop generates all solutions of a superset N′(x) of the actual
neighbourhood (N(x) ⊂ N′(x)), made up of candidate subsets, evaluates the feasibility of each
subset, spending time time γx(|B|, |x|) and, finally, evaluates the cost of each feasible solution
using time γ f (|B|, |x|).

The resulting complexity for the exploration of the neighbourhood combines three terms:
the number of subsets visited (|N′(x)|), the time required to evaluate their feasibility (γx) and,
finally, the time required to evaluate the objective function for each feasible solution (γ f):

T (|B|, |x|) = |N′(|B|, |x|)|
(
γx(|B|, |x|)+ γ f (|B|, |x|)

)
Since the number of elements N′ is an intrinsic feature of the neighbourhood definition, the
main effort in reducing the computational cost of the exploration consists in limiting the time
required to compute the objective function and to check the feasibility of a subset.

The following sections describe a number of cases in which these computations are per-
formed more efficiently than a full recomputation from scratch.

184

CHAPTER 8 8.4. EFFICIENCY OF THE EXCHANGE ALGORITHMS 185

Updating an additive objective function

It has already been suggested that updating the value of the objective function is more efficient
than recomputing it from scratch. Additive objective functions, in particular, offer a simple and
powerful example of this concept.

If the objective function is a sum of terms of an auxiliary function defined on the elements
of the solutions, the variation associated to adding the elements of a subset A and removing
those of a subset D can be expressed as

δ f (x,A,D) = f (x∪A\D)− f (x) = ∑
i∈A

φi − ∑
j∈D

φ j

Examples of this kind of moves are the swap of objects in the KP, of columns in the SCP, of
edges in the CMSTP, etc. . . Since f (x) is the same for all pairs (A,D), in order to select the best
move one can replace the minimisation of f (x∪A\D) with the minimisation of δ f (x,A,D).
This has two advantages: i) the time required to compute δ f (x,A,D) is O(|A|+ |D|), that is
often a small constant, instead of O(|x|), that is typically O(n); ii) the value of δ f (x,A,D) is
independent from x. The first advantage will be discussed now, the second later on.

Example: the symmetric TSP Consider the TSP with neighbourhood NR2 (the so called
2-optimal exchanges), where two arcs are removed, two different arcs are added and the inter-
mediate sequence is reversed, so as to build again an Hamiltonian circuit (see Figure 8.15).

(a) Before the exchange. (b) After the exchange.

Figure 8.15: Example of an exchange for neighbourhood NR2 .

Notice that this is not a k-swap neighbourhood, as the number of arcs that are removed and
added is not a fixed number k: the number of arcs replaced by their opposite ones is variable,
and in general it is O(n). Therefore, apparently, the property above discussed does not hold.
However, if the cost function is symmetric, the variation of f (x) is

δ f (x,A,D) = csi,s j + csi+1,s j+1 − csi,si+1 − cs j,s j+1

and consists of exactly four terms: the costs of the two removed arcs, (si,si+1) and (s j,s j+1),
and the costs of the two added arcs (si,s j) and (si+1,s j+1). The costs of the reversed arcs, in
fact, are perfectly compensated by those of their opposite ones. Of course, this does not work
for the asymmetric TSP.

8.4.1.1 Updating a quadratic objective function

Now, let us consider a problem, such as the MDP, in which the objective function is quadratic, so
that computing its value f (x) costs O(n2). Let us focus on the single swap neighbourhood NS1 ,

185

186 EXCHANGE HEURISTICS CHAPTER 8

that contains the subsets obtained moving from x to x′ = x \ {i}∪{ j}. Updating the objective
function requires to compute:

δ f (x, i, j) = f (x\{i}∪{ j})− f (x) = ∑
h,k∈x\{i}∪{ j}

dhk − ∑
h,k∈x

dhk

The first sum includes the distances between pair of points that belong to x, excluding point i,
or between those points and point j. The second sum includes the distances between pair of
points in x. Both sums consist of O

(
n2) terms, but most of the terms in the first one appear also

in the second one: when computing the difference they will cancel each other out. This allows
a general “trick” for simmetric quadratic functions (with dii = 0):

δ f (x, i, j) = ∑
h∈x\{i}∪{ j}

∑
k∈x\{i}∪{ j}

dhk − ∑
h∈x

∑
k∈x

dhk

= 2 ∑
k∈x

d jk −2 ∑
k∈x

dik −2di j

Computing this expression only takes O(n) time.
In fact, the terms that appear only in the first sum are those involving j, that is, all the

distances from point j to every point in x \ {i} and viceversa. since the objective function
is simmetric, the opposite distances are the same and can be replaced by the double of one
of them. The terms that appear only in the second sum are those involving i, that is, all the
distances from point i to every point in x and viceversa. Once again, by symmetry, we can take
only one of the two distances and double it. Finally, the first sum can be extended including the
distance di j, provided that an identical term is subtracted. This guarantees that both sums take
place for k ∈ x. The final expression involves n+n+1 terms, and is linear, instead of quadratic.

Adding and removing 2di j makes little sense, but allows a powerful trick. Let us denote by
Dℓ = ∑k∈x dℓk the total distance of point ℓ from the solution x. The variation of the objective
function can be written in the more compact form:

δ f (x, i, j) = 2(D j(x)−Di(x)−di j)

If Dℓ is known for each ℓ ∈ B, the computation takes O(1) time. In other words, the quadratic
time is reduced to a constant time, provided that the information Dℓ is available.

Example: the MDP Now consider the instance of the MDP reported in Figure 8.16 (a): a
feasible solution consists of the 3 points marked in red, on the left, out of the 6 overall points,
while the complement of the complementary points, on the right, are marked in blue. Suppose
that we need to evaluate the exchange

x → x′ = x\{i}∪{ j}

with i ∈ x and j ∈ B\ x. As discussed above, the variation of the objective function is obtained
subtracting the distances from point i to x (see Figure 8.16 (b)), adding the distances from point
j to x (see Figure 8.16 (c)), and subtracting the spurious term di j, that the second operation
generated (see Figure 8.16 (d)).

In the end, the updated value is

f (x∪ j \ i) = f (x)−Di +D j −di j

and the cost is computed in O(1) time for each possible swap, given that Dℓ is known.

186

CHAPTER 8 8.4. EFFICIENCY OF THE EXCHANGE ALGORITHMS 187

(a) The instance.
(b) Subtract all the distances between i and
points in x.

(c) Add all the distances between j and points
in x. (d) Subtract the spurious distance di j.

Figure 8.16: A swap on the neighbourhood for the MDP.

187

188 EXCHANGE HEURISTICS CHAPTER 8

At the end of the neighbourhood exploration, when all the swaps have been evaluated, the
current solution is updated, performing one of the swaps considered. This means that the values
Dℓ are no longer valid. However, they do not need to be recomputed from scratch: they can be
easily updated, since the solution has changed only slightly, by subtracting the distance of each
point ℓ from the removed point i and adding its distance from the added point j, that is

Dℓ = Dℓ−dℓi +dℓ j

The auxiliary data structure is updated in O(n) time for each iteration. Since it allows to reduce
the computational complexity for each neighbour solution from O(k2) or O(k) to a constant
time, and the number of neighbour solutions is n(n− k), the additional time required at the end
is negligible with respect to the huge time saving.

Updating a nonlinear objective

Even some nonlinear objective functions can be updated in constant time, using suitable auxil-
iary information. The PMSP offers an interesting example. The “scheme” is the same as above:
save some aggregated information on the current solution x(t), use it to compute f (x′) efficiently
for each x′ ∈ N(x(t)), update it in the end, when x(t) is replaced by x(t+1).

Example: the PMSP Consider the transfer or the swap neighbourhood for the PMSP. We
have already observed that moving to the solutions in such neighbourhoods changes the ob-
jective function in a rather convoluted way with respect to the “current” solution, due to its
nonlinearity.

Figure 8.17: Instance of PMSP.

Figure 8.17 reports an instance in which moving any task from machine M1 to machine M2
keeps the objective function unchanged. In fact, the completion time is the total working time
of machine M3, which remains the maximum. Moving a task from machine M3 to another
may modify the objective function by amounts different from the length of the task moved: in
general, the variation of the objective function is any value up to the time duration of the task
moved, both in the positive and in the negative ([−dtask,dtask]). In the case of a swap, things are
similar, considering the difference between the durations of the two tasks involved.

Recomputing the overall objective function is expensive: it requires to compute the sum of
durations for each machine and to find the maximum one. Therefore, the cost is linear in the
number of tasks and machines. The cost can be reduced if one notices that the machines not
involved in the transfer or swap do not their working time. Therefore, saving the working time
for each machine, one only needs to recompute (in constant time) the working times for the two
modified machines and recompute (in linear time with respect to the machines) the maximum
total working time.

The following procedure, however, works in constant time for each neighbour solution. The
auxiliary information required are the total working time for all machines and the indices of the

188

CHAPTER 8 8.4. EFFICIENCY OF THE EXCHANGE ALGORITHMS 189

two machines with the maximum and the second maximum working time. Now, any transfer
or swap modifies the working times of two machines, which can be recomputed in constant
time. More precisely, one of them increases and the other one decreases (except for swaps
between tasks of the same duration, that leave both numbers unchanged). If none of them is the
maximum, the new completion time (overall maximum) is obtained comparing the old one with
the working time that has increased. If the maximum is the decreased value, the new completion
time can remain the same, be replaced by the second maximum time or, finally, be replaced by
the increased value. In any case, the new value of the objective function can be obtained in
constant time.

Once the neighbourhood is explored and one new solution is chosen, the auxiliary informa-
tion must be updated: updating the two modified working times is simple and fast; updating
the maximum and second maximum can be done in constant time by keeping all working times
in a max-heap. This takes O(log(|M|)) time. Notice that, in a max-heap the maximum value
is in the first position, whereas the second maximum one is either in the second or in the third
position.

Using local auxiliary information

So far, the auxiliary information exploited to update the objective function referred to the start-
ing solution x. In the next example, we consider a case in which it refers to the previous
neighbour solution. This can come in handy when the number of elements added or deleted is
not constant with respect to x, but it progressively increases.

Consider the asymmetric TSP with neighbourhood NR2: the neighbour solutions differ from
x for O(n) arcs, because arcs (si,si+1) and (s j,s j+1) are removed, arcs (si,s j) and (s j,si+1) are
added and a whole path is reversed. If the cost function were symmetric, the objective function
could be updated in constant time, but since it is asymmetric, this is no longer true! The reversed
arcs have a different cost, and part of the solution must be computed again, possibly in O(n)
time.

(a) TSP instance before swap. (b) TSP instance after swap.

Figure 8.18: Swap for an asymmetric TSP instance.

Can we figure out a way to do the update in constant time? We apply again the idea of keep-
ing additional information, but referring to the previous neighbour solution, instead of the cur-
rent solution. Suppose that the indices i and j follow the lexicographic order, as in Figure 8.18:
the picture on the left represents solution x2, while the one on the right represents the following
neighbour solution, x3. The first arc removed is the same for both solutions ((πi,πi+1)). The
second arc in the latter is the following one with respect to the former ((π j+1,π j+2), instead of
(π j,π j+1)). This means that the reversed path in x3 has just one arc more than the reversed path
in x2, and its old and new cost can be updated, instead of computing it from scratch.

So, the variation of f (x) is

δ f (x, i, j) = csi,s j + csi+1,s j+1 − csi,si+1 − cs j,s j+1 + cs j···si+1 − csi+1···s j

where the fifth term is the cost of the reversed path and the sixth is the cost of the original
direct path. The first four terms are specific for each neighbour solution, but can be computed

189

190 EXCHANGE HEURISTICS CHAPTER 8

in constant time. The last two term can be updated in constant time with respect to the previous
neighbour solution by saving and updating cs j···si+1 and csi+1···s j with the cost of the additional
direct or reversed arc: {

cs j,··· ,si+1 = cs j,··· ,si+1 + cs j+1,s j

csi+1,··· ,s j = csi+1,··· ,s j + cs j,s j+1

So, when x j is visited, its objective function value is computed using information related to
x j−1 and obtained from the visit of x j−1. The chain of updates goes back to the first neighbour
solution x1, which draws information directly from x. In fact, at the first step the reversed path
is just one arc and its cost can be easily computed from the data in constant time.

This implies that the neighbourhood of solution x is visited in a given order, designed so
as to guarantee the possibility of the update in constant time. Is it acceptable to explore the
neighbourhood in a predefined order? The answer depends on the specific algorithm considered.
If the neighbour contains many equivalent solutions, in general the first one is accepted, and
using a specific exploration order adds a bias on the exploration. Moreover, methods that do not
explore the whole neighbourhood cannot usually adopt this trick, because skipping part of the
neighbourhood could break the chain updates, that must be on the contrary be uninterrupted.

8.4.2 Updating the feasibility check
Not all definitions of neighbourhood allow to generate only feasible subsets: swaps are cer-
tainly feasible in the MDP, while other problems (for example, the MSTP) allow to restrict the
exploration to feasible swaps (add an edge and remove only the edges on the unique paths be-
tween the extreme vertices of the added edge and the root of the tree). In general, however, the
exploration process generates also unfeasible subsets:

ÑO(x) = {x′ ⊆ B : ∃o ∈ O : o(x) = x′} ⊇ NO(x) = ÑO(x)∩X

In this situation, before computing the objective function one must first check the feasibility
of the generated subsets. This usually requires to estimation one or more auxiliary functions
(for example, the total volume of solution x in the KP, the number columns covering each row
in the SCP, and so on). Of course, it is more efficient to update these functions instead of
recomputing them from scratch. The techniques that can be used are exactly the same used
to update the objective function. For example, the total volume of a subset in the KP can be
updated by adding the volume of the added elements and subtracting the volume of the removed
ones, which takes constant time for all exchanges in which the number of added and removed
elements is constant.

Example: the CMSTP

A more sophisticated example concerns the CMSTP with the single edge swap neighbourhood
NS1 . A single edge swap transfers a whole subtree from a branch to another one. This implies
a variation in the total weight of the two branches, one of which increases, and could possibly
exceed the capacity. While the single vertex transfer neighbourhood NT1 allows a constant time
update of the total volumes, because a single vertex is transferred, the edge swap can move O(n)
vertices, and recomputing the volume apparently takes more time. In fact, the total volume of
a branch can be recomputed visiting the branch, in linear time with respect to the number of
vertices in the branch.

Suppose, however, that the total volume of the subtree appended to each vertex of the graph
in the current solution is known. The solution can be represented with a vector that provides for

190

CHAPTER 8 8.4. EFFICIENCY OF THE EXCHANGE ALGORITHMS 191

(a) Before exchange (b) After exchange

Figure 8.19: Edge exchange in CMST

each vertex the “father” vertex, that is the first one on the unique path to the root. Cutting the
edge between a vertex and its father disconnects a subtree, whose total weight can be saved in
another vector, in the position corresponding to the index of the vertex considered. Assuming
to have these three vectors, consider the instance in Figure 8.19 (a): adding edge (i,n) closes a
cycle, whose edges can be determined moving from i to the root and from n to the root through
the vertices indicated by the father vector. This also provides the two vertices immediately
appended to the root on the two paths. Each edge thus obtained could be removed in order to
obtain a new spanning tree. For example, adding edge (i, j) to replace edge (i,n) would modify
the objective function by δ f = cin − ci j, which can be computed in constant time. The swap
also moves a subtree from a branch to another branch of the original solution. The total volume
of the moved subtree is given by the auxiliary weight vector in position i, whereas the residual
capacity of the receiving branch is given by the same vector in the position corresponding to the
vertex appended to the root. Comparing the former with the latter determines whether the swap
is feasible or not. This takes constant time for each edge. The branch from which the subtree is
removed, in fact, is obviously feasible.

Of course, in the end, when the best swap is performed, all the auxiliary information must
be updated, but only some vertices of the two involved branches need modifications, and this
can be done in O(n) time (exploiting the father vector, or with a visit).

A general scheme for efficient neighbourhood exploration

In summary, the efficient exploration of a neighbourhood (possibly in constant time for each so-
lution) exploits additional data structures that provide suitable information in aggregated form.
These structures must be initialised and updated. They can be

• global, when they save information about the current solution, and are therefore updated
at the end of the exploration, when the incumbent solution replaces it;

• local, when they save information about the previous neighbour solution, and are there-
fore updated when a new neighbourh solution is considered.

The former is the case of the vector of total distances from the solution in the MDP, the total
processing time in each machine for the PMSP, the total volume appended to each vertex in the
CMSTP. The latter is the case of the total cost of the reversed subpath in the asymmetric TSP.
The update of the latter is much more frequent, and therefore must be much faster (typically, in
constant time). The overall scheme is summarised in Algorithm 12.

191

192 EXCHANGE HEURISTICS CHAPTER 8

Algorithm 12 Sophisticated Exchange Heuristic Pseudocode
1: procedure STEEPESTDESCENT(I)
2: x := x(0)

3: GD := InitializeGD()
4: Stop := f alse
5: while Stop = f alse do
6: x̃ := 0
7: δ̃ := 0
8: LD := InitializeLD()
9: for ∀x′ ∈ N(x) do

10: if f (x′)< f (x̃) then
11: x := x̃
12: end if
13: LD :=U pdateLD(LD,x′)
14: end for
15: if f (x̃)≥ f (x) then
16: Stop := true
17: else
18: x := x̃
19: GD :=U pdateGD(GD, x̃)
20: end if
21: end while
22: return (x, f (x))
23: end procedure

8.4.3 Partial saving of the neighbourhood
Instead of accelerating the evaluation of the single neighbour solutions, several problems allow
to avoid evaluating part of the neighbourhood. This nice sophisticated technique does not work
for all problems. It is based on the idea that some problems have solutions composed of inde-
pendent parts that have an implication on the effects of the moves. For example, the solutions
of the BPP partition a set of objects into containers, those of the VRP divided customers into
vehicles, the CMSTP divides vertices into branches, etc. . .

In formal terms, when performing an operation o ∈ O (that is a pair of subsets A and D, we
remind) on a solution x ∈ X , the variation of the objective

δ f (x,o) = f (o(x))− f (x)

and the feasibility of o(x) depends only on a part of x. In this case, there might exists a large
subset Õ(o∗)⊂O such that

∀o ∈ Õ : δ f (o∗(x),o) = δ f (x,o)

The variation in the objective function due to the application of an operation o(x), does not
always depend on the whole solution x, so it remains the same for x′ = oast(x), making it ad-
vantageous to

1. compute δ f (x,o) for each o ∈ O and save the values

2. perform the best operation o∗, generating the new solution x′

192

CHAPTER 8 8.4. EFFICIENCY OF THE EXCHANGE ALGORITHMS 193

3. retrieve δ f (x′,o) for each o ∈ Õ, as they are still valid values, recompute δ f (x′,o)o ∈
O\Õ and save them

4. go back to (2)

Figure 8.20: A move in the NS1 neighbourhood for the CMSTP.

Example: the CMSTP Consider the CMSTP instance in Figure 8.20. Suppose that both the
red exchange, that consists in replacing edge (i, j) with edge (i,n), and the blue exchange are
improving: the red exchange decreases the objective function from 100 to 95 and the blue
exchange decreases it to 99. The effect of the first exchange is −5 and the effect of the second
is −1. The steepest descent algorithm selects the first exchange, obtaining the solution on the
right side of the picture. One can easily see that the blue exchange is still applicable in the
new solution, as it involves different subtrees. Its effect is still a decrease of −1 in the objective
function, making it 94. This exchange is also feasible as it was before, because nothing changed
in the distribution of vertices in the two subtrees concerned with the exchange. Therefore, one
can build the set of feasible exchanges with the associated variations δ f , perform the best
exchange, remove from the set of feasible exchanges those that operate on the same subtrees
and recompute the exchanges on those subtrees, instead of recomputing all possible exchanges.

Such a technique cannot be used for the MDP, as every exchange interacts with every other
exchange: the objective function is given by the sum of the total distance of every point with
every other point in the solution, so every point in every solution interferes with the value of the
objective function.

8.4.4 Tradeoff between efficiency and effectiveness
The choice of the neighbourhood implies a tradeoff between efficiency and effectiveness. In
fact, the complexity of the heuristic depends on the number of iterations performed (tmax) which
is hard to predict a priori, on the number of subsets generated to visit the neighbourhood (strictly
related to its cardinality) and to the complexity of computing the feasibility and cost of every
subset, as discussed in the previous sections.

It is rather clear that the first two elements, the number of iterations and the cardinality of
the neighbourhood, conflict with each other: a very small neighbourhood decreases the latter,
but probably increases the former, because small neighbourhoods do not have many good so-
lutions and, therefore, the objective is decreased less at each step. A large neighbourhood, on
the contrary, might have very good solutions and decrease the objective in fewer steps. So, the
overall speed depends on both factors, and one has to find a neighbourhood large enough to
contain many good solutions, but small enough to be explored quickly. The tradeoff is partic-
ularly complex as different neighbourhoods also induce different local optima. Enlarging the

193

194 EXCHANGE HEURISTICS CHAPTER 8

size of the neighbourhood improves the effectiveness of the algorithm by an unknown amount,
while the efficiency quickly worsens.

8.4.5 Fine tuning of the neighbourhood
Once a neighbourhood is defined, one can still tune apply small modifications to it, in order
to find better tradeoffs between effectiveness and efficiency. For example, some elements of
the ground set can be more promising than other ones (the simplest case is when the objective
function is additive and some elements have lower costs or higher values). Instead of evaluating
all the possible exchanges defined by a neighbourhood N, therefore, one could restrict to the
exchanges between element of low cost out of the solution with elements of high cost in it. This
corresponds to defining a subneighbourhood of N, with a smaller size: the efficiency improves,
the effectiveness probably worsens, but the effect might be stronger for the first than for the
second. For example, one could find (nearly) the same local optimum in (much) shorter time.

Instead of considering the data, one can identify promising elements of the ground set based
on the results obtained in the previous steps. This sounds like a memory mechanism, but it is not
based on several runs of the whole algorithm. The idea is simply to notice that, when visiting a
large neighbourhood, possibly good improvements over the current one are found immediately:
does it make sense to go on and find the best solution overall in the neighbourhood?

The steepest descent algorithm applies the global-best strategy, completing the exploration
of the neighbourhood and taking the best choice overall. Other exchange algorithms applies the
first-best strategy, that stops as soon as the first improvement is found

if f (x̃)< f (x) then x := x̃,break;

Such an algorithm probably does not improve much the objective in each single iteration, but
it saves a lot of time and performs many more iterations. Whether this is a good idea or not
depends on the problem. In a problem with a smooth landscape, typically neighbour solutions
are rather similar to each other, so the best solution is not much better than the first improving
one, and the first-best strategy may make sense. If the landscape is rugged the best neighbour
solution could be much better than the first improving one, so that it may be better to use a
global-best strategy. Of course, many intermediate strategies can also be designed between
these two extremes.

8.5 Very large scale neighbourhood search
We have already discussed the remark that large neighbourhoods probably include better solu-
tions and lead to better local optima. A neighbourhood whose size is exponential, or a poly-
nomial of high-order with respect to the size of the ground set, could provide very good local
optima. However, exploring such a neighbourhood exhaustively would require a high compu-
tational time. A solution to this drawback is to find another way to evaluate the solutions, so as
to combine a very large neighbourhood with a very small exploration cost. This can be done in
two ways:

1. define the neighbourhood in such a way that one can avoid visiting it exhaustively, but
apply a suitable algorithm to visit efficiently. After all, the exploration of a neighbour-
hood is a combinatorial optimization problem: we’re trying to find the best solution in a
finite set, and this problem is exactly the problem that’s being solved with the additional
constraint on the contents of the solution.

194

CHAPTER 8 8.5. VERY LARGE SCALE NEIGHBOURHOOD SEARCH 195

2. explore the neighbourhood heuristically and return a promising neighbouring solution
instead of the best one.

8.5.1 Efficient visit of exponential neighbourhoods
Visiting an exponential neighbourhood in short time requires specific features from the neigh-
bourhood. This section describes, therefore, four specific examples, which are interesting be-
cause they can be generalised to families of problems. The first, called Dynasearch, is based on
the idea of building an auxiliary binary matrix and solving a Set Packing Problem on it. The sec-
ond one involves making cyclic exchanges between components of the solution, and modelling
them as the search for negative cost circuits in an auxiliary graph. The last two examples involve
shortest path problems in auxiliary graphs: in the case of order-first split-second methods, they
are easy shortest path problems; in the case of ejection chains, they are NP-hard variants.

All examples have in common the idea of transforming the problem of finding the optimal
solution in the neighbourhood into an auxiliary subproblem on a combinatorial structure such
as a matrix or a graph.

Dynasearch

Section 8.4.3 presented a technique to accelerate the exploration of a neighbourhood by saving
the effect of moves evaluated in previous iterations. The idea was that when solutions are
divided into components, sometimes operations o and o′ ∈O that work on different components
of the solution are completely independent.

The idea of Dynasearch is that in the same situation the order in which different indepen-
dent moves are performed becomes irrelevant and, for additive objective functions, their effects
are simply summed:

f (o′(o(x))) = f (o(o′(x))) = δ f (o)+δ f (o′)

with no dependence on x. The problem is now to find the best combination of reciprocally
independent moves that can be applied to the current solution.

The example of Section 8.4.3 concerned edge swaps for the CMSTP, where swaps involving
edges in different branches are independent from each other. A less obvious example of this
behaviour is portrayed by 2-opt exchanges for the TSP. Figure 8.21 represents a solution that
starts from vertex u1 and after following a path to un goes back to the first (un+1 ≡ u1).

Figure 8.21: TSP instance with two optional exchanges.

Consider the exchange that replaces arcs (ui,ui+1) and (u j,u j+1) with arcs (ui,u j) and
(ui+1,u j+1) and reverts the intermediate subpath, and the exchange that replaces arcs (uk,uk+1)
and (ul,ul+1) with arcs (uk,ul) and (uk+1,ul+1) and reverts the intermediate subpath. Perform-
ing the first exchange leaves the second exchange feasible; the reverse is true, as well. The
cumulative effect of the two exchanges is the sum of the two simple effects: each effect is in-
dependent from the other, and both can be applied together. Consider, instead, the exchange
that replaces (ui,ui+1) and (uk,uk+1) with (ui,uk) and (ui+1,uk+1) and the exchange that re-
places (u j,u j+1) and (ul,ul+1) with (u j,ul) and (u j+1,ul+1), still reversing the intermediate
path. These two exchanges are not independent and are actually incompatible, because each

195

196 EXCHANGE HEURISTICS CHAPTER 8

one reverts an arc that should be removed by the other. The same holds for pairs of exchanges
where the second acts on the subpath reversed by the first one.

Improvement matrix How to compute the subsets of moves that are reciprocally compatible
and have the best total effect? One can build a matrix, called improvement matrix, whose rows
represent the components of the solution, while the columns represent the elementary moves.
The definition of component depends on the problem: for a CMSTP they will be branches, for
the VRP circuits, for the TSP paths. In general, they are the “parts” are effected by the moves.
The improvement matrix is binary: if a move j impacts on component i, then ai j = 1, otherwise
ai j = 0. Each column also has a value, that is equal to the improvement of the objective, −δ f .

The problem is to determine the optimum packing of the columns, that is a maximum value
subset of nonconflicting columns that is a Set Packing Problem. This is in general NP-hard,
but on special matrices it is polynomial. For example, if each move modifies at most two
components, the rows can be seen as vertices of an auxiliary graph, the columns as edges, and
each packing of columns becomes a matching: finding a maximum matching is a polynomial
problem. The improvement matrix generated by the TSP example described above does not
satisfy this property, but the corresponding Set Packing Problem is still polynomial. Even if the
problem is not polynomial, one may solve exactly in a reasonable time if its size is sufficiently
small, or heuristically, given that the solution is only used to improve the current solution of the
original problem in a heuristic method: it is not necessary to obtain exactly the optimum (this
can be seen as an application of the first-best strategy).

Complementary to the idea of performing one move and saving the other ones for the fol-
lowing iterations, Dynasearch uses the whole neighbourhood, making a lot of moves, finding a
much better solution, but of course has to reexplore the whole neighbourhood at every iteration,
to build the new improvement matrix from scratch. Notice that performing a single move is not
simply a heuristic way to compute many moves and postpone the execution of the other ones
to following iterations, since the following iterations will also introduce additional moves that
now are not feasible. So, it is not easy to determine which of the two complementary strategies
is better.

Cyclic exchanges

A second way to explore in polynomial time an exponential size neighbourhood is to define
it through cyclic exchanges. Once again, the ground set should be the Cartesian product of
elementary objects and components and the solutions should be structured into components
(vertices or edges divided into subtrees, nodes into circuits, objects into containers, and so on),
that is, made of pairs (i,Si). Quite often, the feasibility depends on each single component: a
given solution is feasible if each component satisfies suitable conditions. For example, in the
BPP the volume of each bin must respect the capacity, and the same holds for the CMSTP, the
VRP and so on. Often, the objective function is additive with respect to the components:

f (x) = ∑
S(i)∈x

f (S(i))

which is more general than requiring additivity with respect to the single elements. For example,
the value of the objective for the BPP is a sum of terms related to the single containers: the term
is 1 if the container is used, 0 otherwise.

It is natural to define for these problems the set of operations Tk that includes the transfer
of k elements from the current component to another one. The corresponding neighbourhood

196

CHAPTER 8 8.5. VERY LARGE SCALE NEIGHBOURHOOD SEARCH 197

is denoted as NTk . Quite often, a single transfer can be unfeasible: if the additional constraints
are tight, moving a single object without violating any constraint is frequently difficult. On the
other hand, moving k objects can be done in a really large number of ways, and computing the
objective function for each one is expensive, so that the overall complexity of the exploration
becomes too large. A good situation would be having a subset of NTk that is large, but efficient
to explore.

Improvement graph A possible solution to this problem is to find a sequence of k transfers
such that each element moved to a container takes the place of another one. In this way, it is
more likely that the container is able to host the new element. In particular, in case of capacity
constraints, the volume occupied by the incoming element can be compensated by the volume
left free by the outgoing one. If the sequence is cyclic, all constraints could be satisfied. The
problem to find the best cyclic sequence can be trasnformed into an optimisation problem on an
auxiliary graph, known as the improvement graph. This graph has the following features:

• each node i corresponds to an element (for example, in the CMSTP each node of the
improvement graph corresponds to a vertex of the original one);

• each arc (i, j) connects two nodes; this has a complex meaning, as it represents:

– the entrance of element i into the current component S j of element j
– the exit of element j from component its current component S j

• the cost of an arc, ci j, corresponds to the variation of the contribution that component S j
gives to the objective:

ci j = f (S j ∪{i}\{ j})− f (S j)

with ci j =+∞ if it is unfeasible to transfer i deleting j.

Notice that an arc does not represent the transfer of an element: it represents two complementary
half-transfers, referring to two elements. None of them is self-sufficient, because element i must
come from somewhere and element j must go somewhere. However, appending another arc
(j,k) to (i, j) provides the missing information for element j, creating a further problem for
element k. In the end, it is necessary to create a circuit, so that the overall sequence of arcs
represents a correct sequence of transfers. The cost of the circuit corresponds to the cost of the
sequence and the feasibility of all arcs corresponds to the feasibility of the sequence.

To be more precise, this is not exactly correct, because circuits that visit several nodes asso-
ciated to the same component imply a basic problem: it is no longer possible to simply add the
costs of the arcs and to combine conjunctively their feasibility. This is because two exchanges
involving the same component (for example, two swaps on the same branch of a CMSTP so-
lution) might both be feasible while their combination is not, or might imply a variation of the
objective different from the sum of the single variations. Therefore, the auxiliary problem must
be restricted to circuits that visit at most one node for each component.

Example: the CMSTP Figure 8.22 reports an example for the CMSTP. The solution on the
left is composed by four branches, represented in different colours. The picture on the righe
represents the corresponding improvement graph. The circuit (4,3),(3,11), (11,8),(8,4) in
this graph represents a compound cyclic move: vertex 4 moves into the blue subtree to replace
vertex 3, vertex 3 moves into the green subtree to replace vertex 11, vertex 11 moves into the
brown subtree to replace vertex 8 and, finally, vertex 8 moves into the red subtree to replace
vertex 4.

197

198 EXCHANGE HEURISTICS CHAPTER 8

(a) A solution with possible exchanges. (b) After the exchanges.

Figure 8.22: Moves on the solution for the CMSTP.

Is this solution feasible? From the structural point of view it is: all vertices remain assigned
to exactly one branch. From the point of view of the capacity constraint, the feasibility depends
on the single arcs, that is on the difference between the weights of the two extreme vertices:
if they are the same, the move is feasible; if they are different, one must compare with the
capacity the original weight of the subtree S j plus the weight wi of the new vertex minus the
weight w j of the displaced vertex. If all arcs are feasible, then the compound move is feasible.
If an arc corresponds to an unfeasible move, the arc must be forbidden, typically setting its cost
to +∞. The total cost of the circuit, that is the sum of the costs of the single arcs (c4,3 + c3,11 +
c11,8 + c8,4), is also the sum of the variations of cost incurred by the four subtrees involved
(cSblue + cSgreen + cSbrown + cSred). Each of these costs is computed comparing the minimum tree
spanning the new vertices with the one spanning the original vertices. This is not a trivial
task, but can be done in polynomial time, and updating the cost with some smart procedure is
certainly better than recomputing it from scratch.

Search for the minimum cost circuit The problem of finding the minimum cost circuit is
actually NP-hard, even neglecting the condition on visiting at most one node per component.
In fact, it generalises the TSP (if all costs are negative, the circuit necessarily visits all ver-
tices). However, several nice properties can be exploited to reduce the computational cost to a
manageable amount.

First of all, the constraint of visiting each component only once allows a rather efficient
dynamic programming algorithm, since the circuit has at most r arcs for solutions made of r
components.

A second property that strongly reduces the complexity is that we are looking for a circular
sequence of numbers with a negative sum. Now, such a sequence always admits a cyclic per-
mutation such that all its partial sums are negative. For example, given +1, +2, +3 and −10,
whose sum is negative, at least one of the four cyclic permutations (2+3−10+1, 3−10+1+2
or −10+ 1+ 2+ 3) has all partial sums smaller than zero: in this case, it is −10+ 1+ 2+ 3.
Since a cyclic permutation of a circuit is the same circuit with a different starting node, instead
of generating all circuits starting from a given node, we can generate all circuits starting from
each node, but immediately drop any path with a nonnegative partial sum. Such a path either is
not part of any negative cost circuit or it is part of a negative cost circuit which can be found in
another way.

Alternatively to the exact computation of the best circuit, one can adopt heuristic algorithms.
The Floyd-Warshall algorithm, for example, that finds all the point to point shortest paths in a
graph, but fails when the graph includes a negative circuit, returns anyway such a circuit: it
is a heuristic solution, because in general it is not the minimum one. The minimum average

198

CHAPTER 8 8.5. VERY LARGE SCALE NEIGHBOURHOOD SEARCH 199

cost circuit (computed as the total cost divided by the number of arcs) can be computed in
polynomial time: it is not the optimal solution of the auxiliary subproblem, but a heuristic
one. To be precise, in both cases we are ignoring the constraint on the components, which is a
relaxation of the auxiliary subproblem: if the result is anyway feasible, it can be used; if it is
not feasible, but has a nonnegative cost, it is a proof that negative circuits do not exist; if it is
infeasible, but negative, it could possibly be modified to obtain a feasible one.

Noncyclic exchange chains

Cyclic exchanges have the basic property that the number of elements in each component re-
mains the same. We have already seen this property in the case of swap neighbourhoods, that
keep the same number of elements in the solution, and we have seen that for some problems
this disconnects the search space. Keeping the same number of elements in each component
makes the problem more critical and concerning many more problems. If the optimal solutions
have different cardinalities in some components, they are impossible to obtain.

(a) CMSTP solution and possible exchanges. (b) After the exchanges.

(c) The extended noncylic exchange improvement graph.

Figure 8.23: CMSTP instance and its noncylic improvement graph.

In order to change the cardinality of each component, one can build a chain of transfer moves
such that is noncyclic: it starts by removing an element, putting it into another component,
possibly making a chain of transfers and, finally, putting the last element of the chain in a
component different from the first one. The improvement graph can be augmented to represent
also this kind of transfer chain simply adding:

• a source node, which is fictitious and doesn’t represent any node of the problem;

• a sink node associated with each component;

• arcs from the source node to the original nodes associated with the elements;

• arcs from the original nodes associated with the elements to the nodes associated with the
components.

The arcs from the source node represent the removal of an element, so they are always feasible
(for capacity constraints). The arcs from the original nodes to the component one represent the

199

200 EXCHANGE HEURISTICS CHAPTER 8

insertion of an element in a component: they are feasible only if the residual capacity of the
component allows the insertion of the element.

Figure 8.23 (c) shows the resulting graph: the subgraph in the middle is the original im-
provement graph, in which every node is connected to every other node, apart from the arcs
made infeasible by the capacity constraints; the node on the left is the new source node; the
nodes on the right are the new components nodes, one for each subtree. Consider now the path

(s,4),(4,3),(3,11),(11,S4)

This represents the transfer chain that takes node 4 out of the red branch (first arc), moves it
to replace node 3 in the blue branch (second arc), moves the latter to replace 11 in the green
branch (third arc), and finally moves 11 into the brown subtree. Every transfer chain can be
represented by a path going from nodes s to one of the component nodes Sk in the improvement
graph. Again, the feasibility of the transfer chain is guaranteed by the feasibility of the single
arcs and the total cost is the sum of the single arc costs provided that each component is visited
at most once (of course, using the component node counts as a visit of the component).

Order-first split-second

We consider once again problems in which the solutions are partitions of elements into compo-
nents. There is another way to build an auxiliary graph and use the shortest path problem as a
tool to find an optimal solution in an exponential neighbourhood. These methods are known as
order-first split-second methods.

The idea is the following: first, put the elements of the ground set in a suitable permutation.
Then, define the set of all partitions in which the elements of each component appear consecu-
tively in the permutation. Each partition is a subset of the ground set (feasible or not, according
to the other constraints of the problem). The overall set is an exponential collection of subsets.
The feasible ones can be seen as a neighbourhood, if the permutation is obtained from a starting
solution. It is not the whole solution set, because some solutions keep in the same component
elements that are not consecutive in the permutation.

An interesting problem is how to find the best solution in this exponential set. There is a
nice polynomial way to solve this problem, that is to explore this specific neighbourhood. This
can be integrated into a two-level method in which the upper level (i.e., an outer loop) generates
permutations and the lower level (i.e., an inner loop) finds the optimal partition for the current
permutation. The limitation of this method is that no smart way is known to select an effective
permutation. Moreover, different permutations can produce the same solution, since there are
many more permutations than solutions. The method risks, therefore, to be inefficient.

The auxiliary graph To find the optimal partition corresponding to a given permutation
(s1, · · · ,sn), one builds an auxiliary graph such that each node si corresponds to an element
si, with an additional fictitious node s0. Then, each pair (si,s j) with i < j corresponds to a
potential component Sℓ = (si+1, · · · ,s j), formed by the elements of the permutation from si ex-
cluded to s j included; each pair (s0,s j) corresponds to a potential component Sℓ = (s1, · · · ,s j),
formed by the elements of the permutation from s1 to s j, both included. If such a component is
unfeasible, the pair does not correspond to an arc; if it is feasible, the arc (si,s j) is added to the
graph, with a cost csi,s j equal to the cost of the component, f (Sℓ).

Given the graph, any path from the source node s0 to the last node sn corresponds to a solu-
tion, that is a partition of the elements: the arcs, in fact, identify disjoint components that overall
contain all elements. The cost of the path coincides with the cost of the solution. Therefore, the

200

CHAPTER 8 8.5. VERY LARGE SCALE NEIGHBOURHOOD SEARCH 201

optimal path from s0 to sn corresponds to the best solution that can be represented by the graph.
Since the graph is acyclic, finding the optimum path costs O(m), where m ≤ n(n−1)/2 is the
number of arcs.

Example: the VRP Consider the instance of the VRP represented in Figure 8.24, with a depot
node and five customer nodes. Each customer has an associated weight, each arc an associated
cost; the capacity of the vehicles is set to W = 10. The problem aims to find a set of vehicle to
service all customers at minimum total cost, without exceeding the capacity of each vehicle.

(a) VRP instance. (b) The order first split second graph.

(c) The optimal path.

Figure 8.24: VRP instance and its OFSS solution.

Figure 8.24 (b) reports the auxiliary graph associated with the permutation (a,b,c,d,e).
There are five nodes representing the customers and a fictitious node 0. The arcs go only
forward from nodes of smaller index to nodes of larger index. Arc (1,2) represents a component
(a circuit visited by a vehicle) that includes only customer 2; arc (1,3) represents a component
that includes elements 2 and 3 and so on. The costs of the arcs are the costs of such circuits.
Theoretically, in order to compute them, one sholud solve a TSP problem for each potential
component. This can be done exactly as long as the number of customers is small, as in this
case. When the arcs represent large components, one must use a heuristic. For example, arc
(0,2) has a cost equal to 20+10+25 = 55, because it represents a circuit visiting customers 1
and 2 (or 2 and 1), and this is the minimum cost to do it. Arc (0,3) does not exist, because it
would represent a circuit visiting customers 1, 2 and 3, but their total weight is 5+4+4, which
exceeds the capacity of the vehicles, making such a component unfeasible.

8.5.2 Heuristic visit of large neighbourhoods
So far, we have considered large neighbourhoods whose optimal solution is computed exactly,
at least theoretically and at the cost of having to solve an NP-hard problem. In other cases, the
neighbourhood is visited with a heuristic without even trying to find the best solution exactly.
This is in particular the case of neighbourhoods whose size is not even exactly defined a priori.

8.5.2.1 Variable depth search

The variable depth search method is based, once again, on the idea of parameterising an
elementary neighbourhood: given a set of operations O, a sequence of k operations from O

201

202 EXCHANGE HEURISTICS CHAPTER 8

generate a subset that, if feasible, belongs to a more general neighbourhood

NOk = {x′ ∈ X : ∀o1, · · · ,ok ∈ O x′ = ok(ok−1(· · ·(o1(x)))),}

If k is small, this neighbourhood contains only few solutions, probably not of high quality; if k
is large, the neighbourhood includes very good solutions, but exploring them takes a very high
computational cost. The idea is to build a composite move as a sequence of elementary moves.
Contrary to the case of Dynasearch the elementary moves are not required to be independent;
on the contrary, they will be bound to move further and further from the original solution at
each move.

Figure 8.25: Schematic of VDS search.

The basic idea is to visit a simple neighbourhood of the given solution. Instead of using
the value of the objective function in each neighbour solution to select the next current one, the
algorithm could run a whole local search procedure from each neighbour solution to determine
a locally optimal solution. This could be seen as a sort of rollout or lookahead algorithm, as
done in Section 6.4.4 to extend the basic constructive scheme. The rollout algorithms add each
potential element to a current subset and run the constructive heuristic to completion, using the
final result as a selection criterion to choose the best element to add.

In an exchange algorithm, one could try to run a local search algorithm to completion start-
ing from each neighbour of the current solution. This is not promising, because the local search
procedure could easily go back to the original solution, or stop immediately. However, the
scheme can be refined as follows:

• consider each neighbour solution obtained with an elementary move;

• make a sequence of moves optimizing each elementary step, forbidding backward moves
and also allowing worsening moves

• terminate when the sequence when the current solution becomes worse than the starting
one: this makes the length k not fixed a priori

• return the best solution found along the sequence.

So, referring to Figure 8.25, in each step the objective function can both improve and worsen
(after being improved), provided that it never gets above the original cost.

The rollout algorithm multiplied the complexity of the basic constructive heuristic by a
factor n2, because it made O(n) attempts for each of the O(n) steps, and this strongly affected
its efficiency. Using this technique for an exchange heuristic could be much worse, because
the number of neighbour solution can be much larger than O(n) and the number of steps of the
single local search procedures is usually not bounded by O(n) (first, they go on at least to a
local optimum, with an unknown number tmax of steps, then they proceed, because worsening
moves are allowed). So the idea in its basic form is inefficient.

202

CHAPTER 8 8.5. VERY LARGE SCALE NEIGHBOURHOOD SEARCH 203

In order to improve it, one applies a number of refinements. First, the auxiliary local search
procedures apply the first-best strategy, instead of the global-best strategy. Second, also the
visit of the neighbourhood of the initial solution stops at the first improvement. Third, the
original neighbourhood N is used to generate the starting solutions, but the auxiliary local search
procedures use a neighbourhood N̂ that is strictly smaller, so that they are comparatively faster.
Moreover, in order to guarantee that the initial solution is not regenerated, the neighbourhood N̂
forbids to reverse the moves performed in the previous steps of the sequence, by progressively
fixing part of the solution, so that it can no longer be modified. This increases the distance
from the starting and gradually restricts the neighbourhood at each step. It also guarantees a
maximum value of k of the order of O(n) for the length of the sequence of moves. Finally, the
local search procedures stop as soon as they find solutions not better than the starting one. If
this happens at the first step, the exploration stops immediately.

Algorithm 13 Variable Depth Search Pseudocode

1: procedure VDS(x′)
2: y := x′

3: y∗ := x′

4: Stop := f alse
5: while Stop = f alse do
6: ỹ := argminy∈N̂(x) f (y′)

7: if f (ỹ)≥ f (x(t)) then
8: Stop := true
9: else

10: y := ỹ
11: end if
12: if f (ỹ)< f (y∗) then
13: y∗ := ỹ
14: end if
15: end while
16: Compute f (y∗)
17: end procedure

Why stop as soon as a solution worse than the starting one is found? The reason is, once
again, the nice property concerning the cyclic permutations of numbers with negative sum dis-
cussed when presenting the cyclic exchanges: a sequence of moves that is improving can be
performed starting from a point such that all subsequences are also improving. Therefore, we
can require that all subsequences are improving with respect to the starting solution.

Lin-Kernighan’s algorithm for the symmetric TSP A classical application of VDS is the
Lin-Kernighan algorithm for the symmetric TSP, which is currently the best performing
heuristic algorithm for that problem (actually, in a variation that includes refinements of the
neighbourhood and exploits additional information).

The basic neighbourhood NRk consists in deleting k arcs from a solution x and adding other
k arcs so that the new solution is still a Hamiltonian circuit. The Lin-Kernighan algorithm
applies a composite moves that consist of sequences of 2-opt exchanges. Notice that every k-
opt exchange is equivalent to a sequence of 2-opt exchanges of length (k− 1): each exchange
deletes one of the two arcs added by the previous exchange.

203

204 EXCHANGE HEURISTICS CHAPTER 8

(a) State 1. (b) State 2. (c) State 3.

(d) State 4. (e) State 5. (f) State 6.

Figure 8.26: Chain of moves in Lin-Kernighan’s algorithm for the symmetric TSP.

Starting from solution x, the algorithm visits (with a first-best strategy) the whole neighbour-
hood NR2(x). For each solution x′, it runs a sequence of 2-opt exchanges as follows. Suppose
that x′ has been obtained working on indices (i, j) (delete (si,si+1) and (s j,s j+1), add (si,s j)
and (si+1,s j+1)). Evaluate the 2-opt exchanges that delete the added arc (si,s j) and each arc
of x∩ x′ to find the best exchange (i′, j′); if this improves upon x (not necessarily upon x′!),
perform the exchange and obtain x′′. Then, evaluate all the exchanges that delete (si′,s j′) and
each arc of x∩ x′′ and evaluate the best, and so on. Terminate when the current solution is not
better than x′ and return the best solution among x′,x′′, · · · . If this is better than x, the first-best
strategy accepts it; otherwise, consider the next neighbour of x in NR2(x).

Starting from the Hamiltonian circuit of Figure 8.26 (a), the algorithm the NR2 neighbour-
hood consists of n(n− 2) = 20 ∗ 18/2 = 180 solutions, associated with the pairs of nonadja-
cent arcs. The first exchange is (1,3), that removes arcs (s1,s2) and (s3,s4), reverses the path
(s2, · · · ,s3) and adds the arcs (s1,s3), (s2,s4), producing the solution reported in Figure 8.26
(b). The sequence of exchanges will start from this solution. It considers not all R2 exchanges,
but only the O(n) exchanges that remove (s1,s3) and one of the other original edges. The al-
gorithm explores, one by one, each possible solution: let us say that the best one is (1,7), that
is removing (s1,s3) and (s7,s8), adding (s1,s7) and (s3,s8) and reversing the path (s3, · · · ,s7)
(Figure 8.26 (c)). One can interpret this as the result of a 3-opt exchange applied on x, as well
as a sequence of two 2-opt exchanges with a constraint on the choice of the arcs.

The algorithm goes on with a third exchange that removes arc (s1,s7) and tries to remove one
of the remaining original arcs, keeping all those that have been added by the procedure (the blue
arcs in the pictures). Let us say that the best exchange is (1,10), so that (s1,s7), (s10,s11) are
removed, (s1,s10) and (s7,s11) are added and path (s7, · · · ,s10) is reversed (Figure 8.26 (d)). Let
us suppose, then, that the algorithm chooses exchange (1,14) (Figure 8.26 (e)), resulting in the

204

CHAPTER 8 8.5. VERY LARGE SCALE NEIGHBOURHOOD SEARCH 205

situation reported in Figure 8.26 (f), and suppose that the best exchange that removes (s1,s18)
yields an objective function value that is worse than that of x′. At this point, the algorithm stops
and returns the best solution found in the sequence. This is compared to x and replaces x if it is
better; otherwise, the following starting point in NR2(x) is considered.

Implementation details As mentioned above, the second arc deleted each time must belong
to the original solution x, in order to avoid destroying the moves already performed. This
implies an upper bound on the length of the sequence.

Stopping the sequence as soon as the exchanges no longer improve x′ does not impair the
result. In fact, the overall variation of the objective function is the sum of the variations due to
the single exchanges (of course, if the objective function is additive):

δ f (x,o1, · · · ,ok) =
k

∑
ℓ=1

δ f (x,oℓ)

and every sequence of numbers with a negative sum admits a cyclic permutation whose partial
sums are all negative. Therefore, a cyclic permutation of the same moves o1, · · · ,ok would
provide the same result and also have negative sum at each step.

8.5.2.2 Iterated greedy method (destroy and repair)

The iterated greedy method, also called destroy and repair or or ruin and recreate, is based
on the remark that all exchange heuristics consist in adding a subset A of elements and removing
a subset D of elements from the current solution. Performing an exhaustive visit of the neigh-
bourhood implies that A and D should have a small size, otherwise the number of subsets tested
would become huge. However, in this way, the result could be frequently unfeasible (as in the
transfer neighbourhood for the BPP) or nonimproving (as in the swap neighbourhood for the
MCP). On the other hand, enlarging the neighbourhood to exchanges of more elements quickly
becomes inefficient. The complexity of an exhaustive exploration, in fact, is O(n|A|n|D|γ(n)),
where

• the number of possible subsets to add is O(n|A|);

• the number of possible subsets to remove is O(n|D|);

• γ(n) is the complexity of evaluating feasibility and the objective function for a given
subset.

The problems in which solutions have variable cardinalities (such as the KP and the SCP) also
make it difficult to determine the correct sizes of A and D.

An alternative approach can be the use of heuristics to determine a subset D ⊂ x of elements
to delete and a subset A ⊂ B\x of elements to add. In particular, the deletion heuristic could be
(at least partly) random (and dependent on the costs of the elements, or other functions related
to the constraints of the problem), whereas the addition heuristic could be a simple constructive
heuristic. Complementarily, one could first add redundant elements with a random choice of
elements (depending on costs and constraints) and reduce it to a minimal one by applying a
simple destructive heuristic.

Even if it is possible to design perfectly deterministic schemes for this idea, randomisation
and/or memory are often used. These methods, therefore, generally fall under the class of
metaheuristics.

205

206 EXCHANGE HEURISTICS CHAPTER 8

8.6 Exercises

8.6.1 Exercise 1
Consider the following instance of the Knapsack Problem with capacity V = 10:

Objects a b c d e f g
Prize φ 10 3 5 12 7 6 8

Volume v 5 1 2 4 3 1 6

and the starting solution x(0) = {b,e,g}.
How many solutions are contained in neighbourhood NH1(x

(0)) (that is, Hamming distance
not larger than 1)?2

How many solutions are contained in neighbourhood NS1x(0) (that is, swap an element in
the solution with one out of it)?

How many solutions are contained in neighbourhood NH2x(0) (that is, Hamming distance
not larger than 2)?

Perform a single iteration of steepest descent with the global best strategy adopting neigh-
bourhood NS1 .

Perform a single iteration of steepest descent with the first-best strategy visiting neighbour-
hood NS1 in lexicographic order with respect first to the exiting object than to the entering one.

Solution Neighbourhood NH1 is obtained flipping a single bit of the incidence vector of the
starting solution x(0) = {b,e,g}, that is ξ (0) = [0 1 0 0 1 0 1]. The most approximate estimate
of the required number, therefore, is ∣∣∣NH1(x

(0))
∣∣∣ ∈ O(n)

Since n = 7 subsets can be generated in this way, a better estimate is∣∣∣NH1(x
(0))
∣∣∣≤ n = 7

The neighbourhood contains in general only the feasible solutions, unless the algorithm relaxes
this constraint (which we have never done in the course). The |x(0)| = 3 removals certainly
yield feasible solutions. The n−|x(0)|= 4 additions must be checked comparing the additional
volume vi with the residual capacity V = ∑i∈x vi = 10− (1+3+6) = 0: they are all unfeasible.
The most precise answer is, therefore: ∣∣∣NH1(x

(0))
∣∣∣= 3

Neighbourhood NS1 is obtained exchanging an object inside the starting solution x(0) =
{b,e,g} with one outside. The asymptotic estimate is∣∣∣NS1(x

(0))
∣∣∣ ∈ O

(
n2)

2In all answers, the starting solution x(0) is never counted in the definition and in the enumeration of the
neighbourhoods for the sake of simplicity and because it is totally useless for the algorithm. It is of course correct
to count it, increasing by 1 all answers.

206

CHAPTER 8 8.6. EXERCISES 207

The precise estimate of the number of subsets generated by these moves is∣∣∣NS1(x
(0))
∣∣∣≤ |x|(n−|x|) = 12

In order to check the feasibility, one needs to compute the additional volume occupied, that is
the difference between the volume of the added object and that of the removed one, v j − vi for
all i ∈ x, j ∈ E \ x and keep only the values that do not exceed the residual capacity (that is 0):

−vi + v j va = 5 vc = 2 vd = 4 v f = 1
vb = 1 4 1 3 0
ve = 3 2 -1 1 -2
vg = 6 -1 -4 -2 -5

The most precise answer is, therefore: ∣∣∣NS1(x
(0))
∣∣∣= 7

Neighbourhood NH2 is obtained flipping at most two bits of the incidence vector of the
starting solution x(0). The most approximate estimate of the required number, therefore, is∣∣∣NH2(x

(0))
∣∣∣ ∈ O

(
n2)

and the precise estimate of the number of subsets generated by these flips is∣∣∣NH2(x
(0))
∣∣∣≤ n+n(n−1) = 49

The precise neighbourhood is obtained, as before, comparing the variation of the total volume
of the solution, δv and keeping only the nonpositive values:

Flip j
i (vi) a (5) b (1) c (2) d (4) e (3) f (1) g (6)
a (5) - +5−1 =+4 +5+2 =+7 +5+4 =+9 +5−3 =+2 +5+1 =+6 +5−6 =−1
b (1) - - −1+2 =+1 −1+4 =+3 −1−3 =−4 −1+1 = 0 −1−6 =−7
c (2) - - - +2+4 =+6 +2−3 =−1 +2+1 =+3 +2−6 =−4
d (4) - - - - +4−3 =+1 +4+1 =+5 +4−6 =−2
e (3) - - - - - −3+1 =−2 −3−6 =−9
f (1) - - - - - - +1−6 =−5
g (6) - - - - - - -

to which one must sum the 3 feasible single flips, already evaluated above. The most precise
answer is, therefore: ∣∣∣NH2(x

(0))
∣∣∣= 12

The neighbourhood exploration requires to compute the variations of the objective function
for all swaps, which is done considering the differences in values, as done above with the
differences in volume:

−φi +φ j) φa = 10 φc = 5 φd = 12 φ f = 6
φb = 3 NF NF NF 3
φe = 7 NF -2 NF -1
φg = 8 2 -3 4 -2

207

208 EXCHANGE HEURISTICS CHAPTER 8

where NF stands for “not feasible” (the values exceeding the residual capacity in the matrix
above, that reported the variation of occupied volume for the swap moves).

The global-best strategy selects the best neighbour solution, that corresponds to the largest
increase in objective function, that is swap (g,d), with δ f = 4. The resulting solution is x′ =
{b,d,e} with value f (x′) = 3+12+7 = 22, that is obviously equal to f (x)+δ f = 18+4.

The first-best strategy scans the neighbourhood in lexicographic order, that is row by row.
It stops at the first improving swap, that is (b, f), with δ f = 3. The resulting solution is x′′ =
{e, f ,g} with value f (x′′) = 7+6+8 = 21, that is obviously equal to f (x)+δ f = 18+3. It is
worse than x′, but it has been obtained in one third of the time.

8.6.2 Exercise 2
Given the following instance of the symmetric Travelling Salesman Problem (TSP)

Cost a b c d e f
a 0 8 8 10 9 6
b 8 0 10 8 4 8
c 8 10 0 9 9 8
d 10 8 9 0 8 7
e 9 4 9 8 0 7
f 6 8 8 7 7 0

and the solution x = (a,b,c,d,e, f), how many solutions are contained in neighbourhood
NR2 (that is, the 2-opt exchange neighbourhood)?

Perform a single iteration of steepest descent with the global best strategy adopting neigh-
bourhood NR2 .

Perform a single iteration of steepest descent with the first-best strategy visiting neighbour-
hood NR2 in the order determined by the sequence of nodes (that is also the lexicographic order
in this case).

Solution Neighbourhood NR2 is obtained removing two nonconsecutive arcs, adding (in a
single possible way) two other arcs and reversing the sequence of nodes between the removed
arcs. In a complete graph, all the subsets thus obtained are feasible solutions. Therefore:

∣∣NR2(x)
∣∣= n(n−3)

2
= 9

The starting solution x=(a,b,c,d,e, f) has a cost equal to f (x)= 8+10+9+8+7+6= 48
The variations of the cost corresponding to all such exchanges are reported in the following
table, where rows and columns identify the removed arcs, while the added ones are implicitly
determined by the former:

δ f (a,b) (b,c) (c,d) (d,e) (e, f) (f ,a)
(a,b) - - −8−9+8+8 =−1 −8−8+10+4 =−2 −8−7+9+8 = 2 -
(b,c) - - −10−8+8+9 =−1 −10−7+4+8 =−5 −10−6+8+8 = 0
(c,d) - - −9−7+9+7 = 0 −9−6+8+10 = 3
(d,e) - - −8−6+7+9 = 2
(e, f) - -
(f ,a) -

208

CHAPTER 8 8.6. EXERCISES 209

where label “-” marks the exchanges that are impossible because they concern adjacent or iden-
tical arcs, and the lower part of the matrix is empty because the exchanges are symmetric.

The global-best strategy selects the best neighbour solution, that corresponds to the largest
decrease in objective function, that is remove arcs (b,c) and (e, f) and add arcs (b,e) and (c, f),
with δ f =−5. The resulting solution is x′ = (a,b,e,d,c, f) with value f (x′) = 8+4+8+9+
8+6 = 43, that is obviously equal to f (x)+δ f = 48−5.

The first-best strategy scans the neighbourhood in the indicated order, that is row by row.
It stops at the first improving swap, that is remove arcs (a,b) and (c,d) and add arcs (a,c)
and (b,d), with δ f = −1. The resulting solution is x′ = (a,c,b,d,e, f) with value f (x′) =
8+10+8+8+7+6 = 47, that is obviously equal to f (x)+δ f = 48−1. It is worse than x′,
but it has been obtained in one ninth of the time.

8.6.3 Exercise 3
Given the following instance of the Parallel Machine Scheduling Problem (PMSP) with 3 ma-
chines:

Task a b c d e
d 9 3 4 5 8

assume that the current solution x assigns tasks a and b to the first machine, tasks c and d to the
second machine and task e to the third one.

How many solutions are contained in neighbourhood NT1(x) (that is, the transfer of a task to
a different machine)? Does this number depend on solution x?

How many solutions are contained in neighbourhood NS1(x) (that is, the swap of two tasks)?
Does this number depend on solution x?

Perform a single iteration of steepest descent with the global best strategy starting from
solution x and adopting neighbourhood NT1 .

Perform a single iteration of steepest descent with the first-best strategy starting from solu-
tion x and visiting neighbourhood NT1 in lexicographic order first with respect to the tasks, then
to the machines.

Do the same adopting neighbourhood NS1 ; in the case of the first-best strategy, sort the
neighbour solutions in lexicographic order with respect to the first and then the second task
swapped.

Solution How many solutions are contained in neighbourhood NT1x (that is, the transfer of a
task to a different machine)? Does this number depend on solution x?

Neighbourhood NT1 is obtained trasferring a single task from the current machine to another
one. Since all transfers are feasible, the required number is∣∣NT1(x)

∣∣= |T | · (|M|−1) = 10

and it is independent from the solution.
Neighbourhood NS1 is obtained swapping two tasks, that is assigning each one to the ma-

chine currently assigned to the other. All swaps are feasible, but those that involve tasks cur-
rently assigned to the same machine yield the starting solution. Therefore, they are indistin-
guishable (and we are not counting them, even if counting them as a single solution is correct).

209

210 EXCHANGE HEURISTICS CHAPTER 8

Let Tm(x) denote the subset of tasks assigned to machine m ∈ M in solution x. The required
number is∣∣NS1(x)

∣∣= |T | · (|T |−1)
2

− ∑
m∈M

|Tm(x)| · (|Tm(x)|−1)
2

=
5 ·4

2
−
(

2 ·1
2

+
2 ·1

2
+

1 ·0
2

)
= 8

It depends on the solution: if all tasks were assigned to different machines, it would be |T |(|T |−
1)/2 = 10; it they were all assigned to the same one, it would be zero.

Considering neighbourhood NT1 , the effect of the possible moves is reported in the following
table, where label “-” marks the transfers of a task to the same machine.

Transfer M1 M2 M3
a - max(3,18,8) = 18 max(3,9,17) = 17
b - max(9,12,8) = 12 max(9,9,11) = 11
c max(16,5,8) = 16 - max(12,5,12) = 12
d max(17,4,8) = 17 - max(12,4,13) = 13
e max(20,9,0) = 20 max(12,17,0) = 17 -

Notice that some transfers are obviously not improving and one could avoid to compute them
when applying the steepest descent algorithm: all transfers to the machine with the largest
working time are strictly worsenings; all the transfers from a machine with a working time
smaller than the largest one are nonimproving. In the present case, only the 4 transfers from M1
(tasks a and b) to M2 or M3 are promising.

The global best strategy selects the best neighbour solution, that corresponds to transferring
task b to machine M3, with x′ = {(a,M1),(b,M3),(c,M2),(d,M2),(e,M3)} and f (x′) = 11.

The first best strategy scans the table by rows (lexicographic order with respect first to the
tasks, then to the machines) and finds the same solution, that is the only improving one with
respect to x.

Considering neighbourhood NS1 , the effect of the possible moves is reported in the following
table, which contains only swaps between tasks assigned to different machines and the first
index preceding the second (for symmetry).

Swap c d e
a max(7,14,8) = 14 max(8,13,8) = 13 max(11,9,9) = 11
b max(13,8,8) = 13 max(14,7,8) = 14 max(17,9,3) = 17
c - - max(12,13,4) = 13
d - - max(12,12,5) = 12

As above, some swaps are obviously not improving and one could avoid to compute them. In
particular, swaps not involving the machine with the largest working time are non improving.
Only the 6 swaps involving a and b are promising (and b is the task of minimum duration, so
swapping it only worsens the objective function).

Since none of the neighbour solutions is strictly better than the current one, both the global-
best and first-best strategy do not return any solution (or, equivalently, return the current solu-
tion, thus implying the termination of the algorithm).

8.6.4 Exercise 4
Given the instance of Maximum Weighted Satisfiability Problem (Max-WSAT) with

CNF = (x1 ∨ x4 ∨ x̄5)∧ (x2 ∨ x3 ∨ x5)∧ (x1 ∨ x2 ∨ x5)∧ (x̄1 ∨ x̄3 ∨ x5)

210

CHAPTER 8 8.6. EXERCISES 211

w = [5 8 2 11]

how many solutions are contained in neighbourhoods NF1 and NF2 (i.e., flip the value of one or
two variables) of solution x = (0,0,0,0,0)?

Perform a single iteration of steepest descent exploring neighbourhood NF1 with the global-
best strategy from solution x.

Perform a single iteration of steepest descent from solution x with the first-best strategy,
visiting neighbourhood NF1 in increasing index order with respect to the variables.

Do the same adopting neighbourhood NF2; in the case of the first-best strategy, sort the
neighbour solutions in lexicographic order with respect to the indices of the first and second
variable flipped.

Solution Neighbourhood NF1 includes all solutions obtained “flipping” one of the logical
variables (replacing its value by the complementary one). All such moves are feasible, so that
the required number is ∣∣NF1(x)

∣∣= |V |= 5

and it is independent from the solution x.
Neighbourhood NF2 includes all solutions obtained flipping two of the logical variables3.

All such moves are feasible, so that the required number is

∣∣NF1(x)
∣∣= |V |(|V |−1)

2
= 10

and it is independent from the solution x.
Considering neighbourhood NF1 , the effect of the possible moves is reported in the follow-

ing table: the clauses satisfied when flipping a variable are marked by a cross.

Single flip Clauses (w j)
Variables C1 (5) C2 (8) C3 (2) C4 (11) f (x′

x1 × × × 18
x2 × × × × 26
x3 × × × 24
x4 × × 16
x5 × × × 21

Since the current solution x has a value equal to f (x) = 5+11 = 16, the global-best strategy
selects the best neighbour solution, that corresponds to flipping variable x2, obtaining x′ =
(0,1,0,0,0) with f (x′) = 5+8+2+11 = 26. This is also optimal, as all clauses are satisfied.

The first best strategy stops at the first improving solution, that is obtained flipping variable
x1, and is x′′ = (1,0,0,0,0) with f (x′′) = 5+2+11 = 18. It is obtained much quicker, visiting
a single neighbour solution instead of five.

Considering neighbourhood NF2 , the effect of the possible moves is reported in the follow-
ing table: the clauses satisfied when flipping a pair of variables are marked by a cross.

3It is correct to replace “two” with “at most two”, thus including all elements of NF1 . In practice, algorithm
designers appreciate the possibility to tune the distance of the neighbour solutions from the current one, and often
adopt the restricted definition we follow here. This simply generalises the remark on whether to include x or not
in the neighbourhood.

211

212 EXCHANGE HEURISTICS CHAPTER 8

Double flip Clauses (w j)
Pairs C1 (5) C2 (8) C3 (2) C4 (11) f (x′

(x1,x2) × × × × 26
(x1,x3) × × × 15
(x1,x4) × × × 18
(x1,x5) × × × × 26
(x2,x3) × × × × 26
(x2,x4) × × × × 26
(x2,x5) × × × 21
(x3,x4) × × × 24
(x3,x5) × × × 21
(x4,x5) × × × × 26

The global-best strategy selects the best neighbour solution. There are many equivalent
ones. Assuming that they have been visited in lexicographic order (even if this is not specified),
we can choose to flip variables x1 and x2, obtaining x′′′ = (1,1,0,0,0) with f (x′′′) = 5+8+2+
11 = 26, that is optimal.

The first best strategy stops at the first improving solution, that is the same obtained with the
global-best strategy. Once again, the computational time required in this case is much smaller
(though this is not guaranteed to hold for any solution x and for any instance of the problem).

8.6.5 Exercise 5
Given the instance of the Capacitated Minimum Spanning Tree Problem, with root vertex a,
weight function wv = 1 for all v ∈V \{a} and wa = 0, capacity W = 2 and cost function:

Cost a b c d e f
a 0 10 5 4 9 8
b 10 0 9 8 11 7
c 5 9 0 12 15 3
d 4 8 12 0 2 13
e 9 11 15 2 0 7
f 8 7 3 13 7 0

consider the starting solution x = {(a,b),(a,d),(a, f),(b,c),(d,e)}.
How many solutions are contained in neighbourhood NH2(x), that includes all solutions with

a Hamming distance not larger than 2 from x? Does this number depend on x?
And what about neighbourhood NS1(x), that includes all solutions obtained swapping one

edge inside the solution with one outside?
Perform one step of the steepest descent algorithm from solution x, exploring neighbour-

hood NS1 with the global-best strategy.
Perform one step of the steepest descent algorithm from solution x, exploring neighbour-

hood NS1 with the first-best strategy and the following visit order: consider the removed edges
in lexicographic order with respect to the indices of the first and second extreme vertex; for
each removed edge, consider the added edges once again in lexicographic order4.

4From the computational point of view, it would be better to consider for each added edge the possible removals,
but that is more confusing if done by hand, as m−n+1 = 10 edges can be added, only 5 removed, and it is easier
to spot the best edge to reconnect the spanning tree than the best edge to remove to break a cycle. Of course, the
result is the same, apart from the effect of visiting the neighbour solutions in a different order.

212

CHAPTER 8 8.6. EXERCISES 213

Solution Neighbourhood NH2(x) includes all solutions obtained adding or removing at most
two edges with respect to x. Since the feasible solutions are all spanning trees, with exactly
n− 1 edges (where n = |V | is the number of vertices), the only feasible solutions are obtained
swapping an edge inside and with an edge outside the solution:

NH2(x) = NS1(x) for all x ∈ X

Not all swaps generate feasible solutions, first because the removed edge must belong to the
single cycle closed by the added edge (otherwise, the resulting subset is not a tree), second be-
cause the total weight of the branches appended to the root vertex must not exceed the capacity.
Therefore, it is possible to give an a priori asymptotic estimate of the number of neighbour
solutions:

NH2(x) = NS1(x) ∈ O(nm)

where m is the number of edges of the graph, and a more precise a priori overestimate:

NH2(x) = NS1(x)≤ (n−1)(m− (n−1)) = 50

which is correct when the capacity is very large and x has a single branch appended to the root
vertex (so that every swap yields a feasible solution).

A picture is certainly useful to keep track of the exchanges (see Figure 8.27).

a

b c

d e

f

Figure 8.27: A CMSTP instance with a starting solution for the steepest descent method

The capacity constraint strongly limits the feasible swaps. In fact, the first and second branch
cannot receive any additional subtree and the third one can receive at most one additional vertex,
while new branches can be built ad libitum. Therefore, no edges between the first two branches
can be added to solution x: only edges with at least one extreme in the third branch or coinciding
with the root. In detail:

• removing (a,b) allows to add only (a,c) (with δ f =−10+5 =−5), because the discon-
nected subtree is too weighty to be moved into another branch;

• removing (a,d) allows to add only (a,e) (with δ f = −4+ 9 = 5), because the discon-
nected subtree is too weighty to be moved into another branch;

• removing (a, f) allows no feasible swap, because the disconnected subtree is too weighty
to be moved into another branch;

• removing (b,c) allows to add (a,c) (with δ f =−9+5 =−4) or (c, f) (with δ f =−9+
3 = −6), because the disconnected subtree can be moved only to a new branch or to the
third one;

213

214 EXCHANGE HEURISTICS CHAPTER 8

• removing (d,e) allows to add (a,e) (with δ f =−2+9= 7) or (f ,e) (with δ f =−2+7=
5), because the disconnected subtree can be moved only to a new branch or to the third
one.

Therefore, the global-best strategy suggests to swap (b,c) with (c, f), obtaining x′= {(a,b),(a,d),
(a, f),(c, f),(d,e)} with f (x′) = 10+4+8+3+2= 27, that is obviously equal to f (x)+δ f =
33−6.

The first-best strategy stops at the first improving, that is also the first explored one: replace
(a,b) with (a,c), obtaining x′′ = {(a,c),(a,d),(a, f),(b,c),(d,e)} with f (x′′) = 5+4+8+9+
2 = 28, that is obviously equal to f (x)+δ f = 33−5.

8.6.6 Exercise 6
Given the instances of the Weighted Vertex Cover Problem represented in Figure 8.28, consider

1 2 4

5 4 3

5 2

a b c

d e f

g h

Figure 8.28: A WVCP instance with a starting solution for the steepest descent method

the starting solution x = {a,c,d,e,h}.
How many solutions are contained in neighbourhood NA1(x), that includes all solutions

obtained adding a single vertex to x? And in neighbourhood ND1(x), that includes all solutions
obtained deleting a single vertex from x? Do these numbers depend on x?

How many solutions are contained in neighbourhood NH2(x), that includes all solutions with
a Hamming distance not larger than 2 from x? Does this number depend on x?

Perform one step of the steepest descent algorithm from solution x, exploring neighbour-
hood NH2(x) with the global-best strategy.

Perform one step of the steepest descent algorithm from solution x, exploring neighbour-
hood NH2(x) with the first-best strategy and flipping the bits of the incidence vector of x in
lexicographic order (consider the single flips as a double flip with two identical indices, that is
represent a as (a,a)).

Solution Neighbourhood NA1(x) includes all solutions obtained adding a single vertex to x.
If x is feasible, any such solution is necessarily feasible. Therefore

|NA1(x)|= |V \ x|= 3

that necessarily depends on x.
Neighbourhood ND1(x) includes all solutions obtained deleting a single vertex to x. Such

solutions could be feasible or not, depending on whether x is redundant or not. Their number
can be overstimated as:

|ND1(x)| ≤ |x|= 5

214

CHAPTER 8 8.6. EXERCISES 215

In this particular case, all vertices of x are strictly required to cover at least one of the edges,
with the exception of vertex c, that is redundant and can be safely removed:

|ND1(x)|= 1

This number is clearly dependent on x.
Neighbourhood NH2(x) includes all solutions with a Hamming distance not larger than 2

from x. Its size can be asymptotically estimated as

|NH2(x)| ∈ O
(
n2)

where n = |V | is the number of vertices of the graph. A more precise overestimate is given by
the number of vertices plus the number of pairs of vertices, whose corresponding values in the
incidence vector can be reversed:

|NH2(x)| ≤ n+
n(n−1)

2
=

n(n+1)
2

= 36

The precise number needs to consider the incidence relation between vertices and edges.
Now let us list the possible exchanges for solution x = {a,c,d,e,h}. First the ones that

remove vertices from x:

• vertex a covers edges (a,b) and (a,g) and is essential for both: removing it requires to
add both b and g, which is impossible in NH2(x);

• vertex c is the only redundant vertex: no other vertex can be removed at the same time,
but any vertex can be safely added; hence, deleting c or swapping c with b, f and g is
feasible;

• vertex d covers edges (b,d), (c,d) and (d,g) and is essential for the first and the last one:
removing it requires to add both b and g, which is impossible in NH2(x);

• vertex e covers edges (b,e), (c,e), (e, f) and (e,g) and is essential for the first, the third
and the last one: removing it requires to add b, f and g, which is impossible in NH2(x);

• vertex h covers edges (f ,h) and (g,h) and is essential for both: removing it requires to
add f and g, which is impossible in NH2(x).

Then, let us consider the exchanges that only add vertices (those adding one and removing one
have been considered above): they are (n− |x|)(n− |x|+ 1)/2 = 6 (three add a single vertex
and three add a pair of vertices); they are all feasible and all worsening. In summary, we have a
single deletion (c), three swaps (c with b, f and g), three single additions (b, f and g) and three
double additions (b and f , b and g, f and g):

|NH2(x)|1+3+3+3 = 10

Out of these exchanges, only the single deletion and the three swaps could improve the value
of the objective. Since the three swaps involve the same vertex affected by the deletion, they
are dominated: deleting vertex c is the best possible move. The global-best strategy, therefore,
returns x′ = x\{c}= {a,d,e,h}, with f (x′) = 1+5+4+2 = 12, that is obviously f (x)−wc.

The first-best strategy takes into account the 10 moves in lexicographic order:

(b,b) (b,c) (b, f) (b,g) (c,c) (c, f) (c,g) (f , f) (f ,g) (g,g)

As already observed, the only possible improvements can be obtained from the single deletion
and the three swaps, so the list can be reduced to the following table:

215

216 EXCHANGE HEURISTICS CHAPTER 8

(b,c) (c,c) (c, f) (c,g)
δ f +2−4 =−2 −4 +3−4 =−1 +5−4 = 1

that suggests to swap c with b, obtaining x′′ = x \ {c}∪{b} = {a,b,d,e,h}, with f (x′) = 1+
2+5+4+2 = 14, that is obviously f (x)−wc +wb.

8.6.7 Exercise 7
Given the following instance of the Bin Packing problem (BPP):

Items a b c d e f g Bin capacity
Volumes 6 4 5 10 3 11 8 20

consider the starting solution x that puts objects a, c and e in the first container, objects b and f
in the second, objects d and g in the third one.

Build the auxiliary graph associated to permutation (a,b,c,d,e, f ,g) in the order-first split-
second method.

Solution The auxiliary graph used in the order-first split-second method has a node for every
object, plus a fictitious node 0, therefore n′ = n+1 = 8 nodes in this case. It is an acyclic graph,
with arcs going only from a node to node that follow it in the given permutation. There are
therefore at most n′(n′−1)/2 = 28 arcs. Each arc represents the subset of objects between the
one following the tail of the arc to the head of the arc. The arcs corresponding to unfeasible
subsets are removed. In this case, the feasibility of the subsets depends on the total volume
of the objects. Therefore, the arcs can be generated lexicographically: for each tail node, we
consider all possible head nodes increasing step by step the volume of the current subset, and
stopping as soon as the capacity is violated.

This generated the following arcs:

• from node 0:

– to node a, the total volume is feasible (6 ≤ 20): arc (0,a) exists;

– to node b, the total volume is feasible (6+4 ≤ 20): arc (0,b) exists;

– to node c, the total volume is feasible (6+4+5 ≤ 20): arc (0,c) exists;

– to node d, the total volume is unfeasible (6+4+5+10 > 20): move to the next tail
node;

• from node a:

– to node b, the total volume is feasible (4 ≤ 20): arc (a,b) exists;

– to node c, the total volume is feasible (4+5 ≤ 20): arc (a,c) exists;

– to node d, the total volume is feasible (4+5+10 ≤ 20): arc (a,d) exists;

– to node e, the total volume is unfeasible (4+5+10+3 > 20): move to the next tail
node;

• from node b:

– to node c, the total volume is feasible (5 ≤ 20): arc (b,c) exists;

216

CHAPTER 8 8.6. EXERCISES 217

– to node d, the total volume is feasible (5+10 ≤ 20): arc (b,d) exists;

– to node e, the total volume is feasible (5+10+3 ≤ 20): arc (b,e) exists;

– to node f , the total volume is unfeasible (5+ 10+ 3+ 11 > 20): move to the next
tail node;

• from node c:

– to node d, the total volume is feasible (10 ≤ 20): arc (c,d) exists;

– to node e, the total volume is feasible (10+3 ≤ 20): arc (c,e) exists;

– to node f , the total volume is unfeasible (10+ 3+ 11 > 20): move to the next tail
node;

• from node d:

– to node e, the total volume is feasible (3 ≤ 20): arc (d,e) exists;

– to node f , the total volume is feasible (3+11 ≤ 20): arc (d, f) exists;

– to node g, the total volume is unfeasible (3+ 11+ 8 > 20): move to the next tail
node;

• from node e:

– to node f , the total volume is feasible (11 ≤ 20): arc (e, f) exists;

– to node g, the total volume is unfeasible (11+8 > 20): arc (e,g) exists;

• from node f :

– to node g, the total volume is feasible (8 ≤ 20): arc (f ,g) exists;

Overall, there are 16 arcs. Notice that the 7 arcs connecting a node to the following one could be
given for granted, given that they represent singletons and the volume of a single object respects
the capacity, if the instance is feasible.

217

218 EXCHANGE HEURISTICS CHAPTER 8

218

CHAPTER 9

Exchange metaheuristics

9.1 Introduction to exchange metaheuristics

The basic scheme of exchange heuristic, the steepest descent algorithm, is characterised by
the starting solution, the definition of the neighbourhood and the termination condition. This
scheme finds only local optima. There are two possible ways to extend this scheme without
abandoning it completely. The first one is to repeat the search, starting from another point
and applying again the scheme of steepest descent. The problem here is to avoid falling into
the same local optimum. The second way is to prolong the search, accepting new solutions in
the neighbourhood of the local optimum. This requires to allow worsening the objective func-
tion, managing the strong risk that the algorithm “falls” back into the original local optimum,
immediately or after a small number of steps, and therefore starts cycling.

In Section 7.1, when introducing constructive metaheuristics, we proposed a single way to
extend the basic scheme, that was repeating the search. Prolonging the search beyond its natural
termination condition is impossible for constructive metaheuristics, because they are baesd on
the idea of augmenting a current subset of the ground set, and this is intrinsically limited by
reaching a size after which no feasible solution exists (in the worst case, by the size of the
ground set, |B|. This is no longer true for exchange metaheuristics, which add, but also remove
elements from the current subset.

In any case, the mechanisms used to design exchange metaheuristics are again randomisa-
tion and memory. They can be applied, possibly combined, to the elements of the basic ex-
change algorithm, that is, the starting solution x(0) (this will be the case of multi-start, Iterated
Local Search and Variable Neighbourhood Search), the neighbourhood (Variable Neighbour-
hood Descent), the selection criterion ϕ(x,A,D) (Dynamic Local Search) and the selection rule
(Simulated Annealing and Tabu Search).

9.1.1 Termination condition
Before discussing the techniques, it is necessary to address the issue that repeating or prolonging
the search removes the intrinsic termination condition of the algorithm. This has already been
observed with respect to the constructive metaheuristics.

A new termination condition must be introduced. There are two general ways to define one.
It is possible to use an “absolute” termination condition, fixed a priori at the beginning of the
search:

• a given total number of exploration of the neighbourhood (i.e., loops in the basic scheme)
or a given total number of repetitions of the local search, that is how many times the basic

219

220 EXCHANGE METAHEURISTICS CHAPTER 9

overall scheme is applied from a starting solutions to a final local optimum;

• a given total execution time;

• a given target value of the objective;

or a “relative” termination condition, which is triggered by some event that happens during the
search, so it is not perfectly controlled by the user of the algorithm:

• a given number of explorations of the neighbourhood or repetitions after the last improve-
ment of f ∗: for example, after 1000 iterations with no improvements, the algorithm might
decide that better solutions will not be found in a reasonable time, and therefore stop;

• a given execution time after the last improvement;

• a given minimum value of the ratio between the improvement of the objective and a given
number of explorations or execution time.

Absolute conditions are commonly adopted in algorithmic comparisons, because they guaran-
tee fairness between the competing algorithms. They are also used when a given resource is
available and employed to get the best possible result. For example, the total execution time is
used when the time is limited, but it makes little sense to save it. A problem of fixing the total
execution time in algorithmic comparisons is that running several times the same algorithm with
the same limit could yield different results, due to small variations in the speed of the machine:
a machine could perform 1002 iterations in the first run, 999 in the second, and so on, yield-
ing different results if the best one is found in one of the last iterations. This is avoided when
the number of iterations is fixed, even for randomised algorithms (if the random seed is also
fixed). Fixing a target value implies the risk that the algorithm never finds that value, because
it is better than the best value the algorithm is able to find (e.g., than the optimum). Relative
conditions typically aim to find a compromise between efficiency and effectiveness, between
computational effort and the quality of the result.

9.2 Repeating the search
How to generate different starting solutions in order to obtain different results when repeating
the search? There are three possible main strategies: the first is to generate them at random, the
second one is to obtain them with different constructive heuristics, the third one is to modify
solutions generated by the exchange algorithm using some neighbourhood.

9.2.1 Random generation
The use of random generation has some advantages. First of all, it is conceptually simple. Sec-
ond, it is usually quick. This mainly depends on how easy it is to guarantee feasibility, which
strongly depends on the single problem: if it is hard, most of the subsets generated will be
infeasible, leading to a waste of time. Third, the user could have control on the probability dis-
tribution. Some elements could be favoured with respect to other ones. For example, favouring
low cost elements is somehow similar to constructive metaheuristics with a random compo-
nent. Favouring elements that during the past repetitions were frequent intensifies the search,
whereas favouring the rare ones diversifies the search. Finally, random generation guarantees
asymptotic convergence to the optimum in infinite time, because every combination of elements
has a nonzero probability of being generated.

220

CHAPTER 9 9.2. REPEATING THE SEARCH 221

Of course, there are some disadvantages, as well. The starting solution generated is typi-
cally of very scarse quality (this does not necessarily mean that the final solution will be bad).
Reaching a good solution from a very bad one typically requires many iteations, and therefore
a long time (depending also on the complexity of the neighbourhood exploration). The same
holds for feasibility if the decision problem is NP-complete, as the TSP on general graphs.

9.2.2 Multi-start methods

The multi-start methods have already been introduced in Section 7.1.1 as constructive meta-
heuristics, designing and applying different constructive heuristics and returning the best result
found in all applications. Of course, each solution generated by a constructive heuristic can
be improved with the use of an exchange heuristic. The advantage of these method is that the
method used to build the starting solutions can be chosen ad libitum, but there are several dis-
advantages. The first is that choosing the method gives little control on the solution obtained:
even applying similar ideas does not guarantee to generate similar solution. A second big prob-
lem is that a multistart algorithm cannot go on proceed indefinitely: its number of repetitions is
given by the number of constructive heuristics designed. For times longer than the maximum
total time of all heuristics, the algorithm does not improve further the solution. The termination
condition is intrinsic. They also requires a high design effort, as several different algorithms
must be designed and, furthermore, they usually give no guarantee of convergence, not even
in infinite time. To be strict, multistart heuristics are not real metaheuristics, unless they have
a component that is randomised or based on memory. Indeed, multistart methods tend to be
replaced by combining a constructive metaheuristic with an exchange heuristic (the standard
GRASP or Ant System approach always includes an exchange phase, which was not discussed
in Sections 7.4 and 7.5 to focus on the relevant aspects of the two methods).

What is the difference between a constructive metaheuristic with an exchange procedure and
an exchange metaheuristics with a randomised initialisation procedure? The difference is small
and mainly conventional. As we only presented the constructive phase in the previous chapter,
so we consider only the exchange phase in this chapter. All methods can be hybridised. If a
taxonomy is required, one can consider an algorithm as a constructive metaheuristic, if its con-
structive phase is highly refined with respect to the exchange one, as an exchange metaheuristic
if its exchange phase is highly refined with respect to the constructive one.

Influence of the starting solution

The choice between a random procedure or a constructive one to initialise the search is based
on the length of the influence exerted by the starting solution on the current one. A very good
exchange heuristic should be able to cancel very quickly this influence, so that while the value of
x(0) can be strongly different, the value of x(t) tend to coincide as iterations elapse. A bad starting
solution could take some more steps, but in the end it will reach the same values obtained from
a good one.

Figure 9.1 shows a case in which the difference between a bad and a good initialisation
is progressively reduced, but is still perceivable after one hour or computation. If the good
constructive procedure takes a short time (even if longer than the random one), it anyway pays
in the subsequent process. In other cases, the two diagrams could converge quickly, and even
reverse (a good initialisation is not guarantee of a good final result).

221

222 EXCHANGE METAHEURISTICS CHAPTER 9

Figure 9.1: Greedy vs random start for a bad exchange heuristic.

9.2.3 Exploiting previous solutions

A third way to restart the search is to exploit the information gathered by previously visited
solutions, saving reference solutions and generating new starting ones based on them. Typical
reference solutions are the local optima found previously.

These methods give the user a good deal of control on the starting solution: the user can
choose the reference solution, how to modify it and how much, so that the search can be inten-
sified or diversified ad libitum. Typically, if the modification is not too large and the reference
solution is good, the starting solution is also very good!

The method is simple conceptually, as the user does not have to design new algorithms, but
only a modification of the starting solution: such modifications are often easy, as they can be
based on operations like the ones used to define the neighbourhood of the exchange heuristic
(not the same, but similar ones). Finally, under suitable conditions, these methods guarantee
asymptotic convergence to the optimum in infinite time: the user should be able to control the
distance of the new solution from a given one so as to potentially reach any feasible solution.

Two methods are here proposed: the Iterated Local Search and the Variable Neighbourhood
Search. Both have a rich literature and there are discussions on the relative differences. In these
notes, we adopt the opinion that they are the same method with minor differences.

9.2.4 Iterated Local Search

The Iterated Local Search (ILS) iteratively the classical steepest descent algorithm (from
which “local search”), generating the new starting solution every time with a perturbation
procedure that operates on a reference solution that is a locally optimal solution returned by
steepest descent in the previous iterations. An acceptance condition decides whether the refer-
ence solution changes, becoming the last locally optimal solution found, or remains the same.
Of course, a termination condition must be given, as already explained.

Algorithm 14 starts from a feasible solution x(0) and improves it with steepest descent, as
in the basic exchange heuristics. Instead of terminating after steepest descent, the result is
saved and, as long as the termination condition is not satisfied, a perturbation is operated on the
current solution x, obtaining a new solution x′, which is in turn improved again, finding a new
local optimum. This is compared with the overall optimum x∗, in order to update it, but also

222

CHAPTER 9 9.2. REPEATING THE SEARCH 223

Algorithm 14 Iterated Local Search Pseudocode

1: procedure ILS(ℓ,x(0))
2: x := SteepestDescent(x(0))
3: x∗ := x;
4: for l := 1 to ℓ do
5: x′ := Perturbate(x)
6: x′ := SteepestDescent(x′)
7: if Accept(x′,x∗) then
8: x := x′

9: end if
10: if f (x′)< f (x∗) then
11: x∗ := x′

12: end if
13: end for
14: return (x∗, f (x∗))
15: end procedure

to decide if it is accepted or not as the new reference solution. If it is accepted, the reference
solution becomes x′.

The basic idea is that the exchange heuristic quickly explores an attraction basin, terminating
into a local optimum. Then, the perturbation procedur moves the starting solution to another
attraction basin. The acceptance condition evaluates if the most promising starting point for the
following perturbation is the new local optimum or the previous one (see Figure 9.2).

Figure 9.2: Schematic representation of the Iterated Local Search algorithm.

Example: ILS for the TSP A classical example is the application of ILS to the TSP. The per-
turbation procedure in this case uses as exchange heuristic the steepest descent with neighbour-
hood NR2 or NR3 . The perturbation procedure is based on a double-bridge move, represented
in Figure 9.3. It consists in removing 4 arcs from the current solution and replacing each one
with another arc so that the direction of the remaining subpaths is not reversed (which makes
it simple to use also for the asymmetric TSP). This is a particular kind of 4-opt exchange. It
generates, therefore, a solution in a neighbourhood of x, but different from the ones explored in
NR2 or NR3 .

223

224 EXCHANGE METAHEURISTICS CHAPTER 9

Figure 9.3: Representation of a double-bridge move.

The new solution can be better or worse than the current one (in general, it is worse). The
relevant point is that it is feasible and out of the original neighbourhood. This makes it a
reasonable starting point for a new exploration. The computation then goes on with the steepest
descent algorithm on the original neighbourhood until it finds a local optimum. This could be
the same as before (an unlucky case), a worse one or a better one. This particular application
of ILS adopts an acceptance condition that requires the new solution to be better than the best
known one:

f (x′)< f (x∗)

If this is true, the new local optimum is used for the following perturbation; otherwise, the old
local optimum is used once again to generate a different random starting point.

The perturbation procedure Let O be the operation set that defines the neighbourhood NO.
The perturbation procedure performs a random operation o chosen in a different set (o ∈ O′ ⊈
O), to avoid that the exchange heuristic drives the solution x′ back to the starting local optimum
x. Two typical definitions of O′ are:

• sequences of k > 1 operations of O if generating a random sequence is cheap;

• conceptually different operations, for example vertex exchanges instead of arc exchanges.

The main difficulty of ILS is in tuning the perturbation: if it is too strong, it turns the search
into a random restart, but if it is too weak, it guides the search back to the starting optimum,
wasting time and possibly losing the asymptotic convergence. Ideally, one would like to tune
the perturbation so that is is able to enter, but also to get out of any basin of attraction.

9.2.4.0.1 The acceptance condition The acceptance condition of the previous example is
rather reasonable: when the algorithm finds a new best known solution, it is wise to move there
and explore its surroudings. If the new local optimum is worse than the given one, should the
algorithm accept it or not? This depends on how the balance between intensification and di-
versification should be tuned: accepting only improving solutions favours intensification, while
accepting any new solution favours diversification. Between these two options, there are lot of
situations, which can be defined on the basis of δ f = f (x′)− f (x). The typical scheme adopted
by ILS is randomised: if δ f < 0, the algorithm always accepts x′; otherwise, it accepts x′ with
a certain probability π(δ f), that is a nonincreasing function of the worsening δ f .

There are, of course, many distribution schemes. The simplest ones are using a fixed proba-
bility π(δ f)= π̄(δ f)∈ (0,1) for each δ f ≥ 0 (see Figure 9.4 (a)), and a monotonically decreas-
ing probability with π(0) = 1 and limδ f→+∞ π(δ f) = 0. Among the monotonically decreasing
functions, the most common are the exponential and the linear one, with a single parameter that
measures the slope, as represented in Figure 9.4 (b).

A different possibility is to introduce a memory mechanism, accepting x′ if many iterations
have passed since the last improvement of x∗, in order to diversify the search.

224

CHAPTER 9 9.2. REPEATING THE SEARCH 225

(a) Uniform probability. (b) Monotonically decreasing probability.

Figure 9.4: Different probabilistic schemes for the acceptance condition.

9.2.4.1 Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) was proposed by Hansen and Mladenović in 1997. It is
based on the same concept as ILS, but it is, in a sense, complementary. ILS perturbates each
local optimum found with a simple move, and manages the acceptance of the new local optimum
with a sophisticated probabilistic mechanism. VNS uses a refined perturbation mechanism, but
has a very simple acceptance condition that accepts only improving new local optima.

In fact, VNS adopts an adaptive perturbation mechanism. It requires a hierarchy of neigh-
bourhoods, that is a family of parametrically defined neighbourhoods with an increasing size
s

N1 ⊂ N2 ⊂ ·· · ⊂ Ns ⊂ ·· · ⊂ Nsmax

For the sake of simplicity, typically one uses the parameterised neighbourhoods NHs , based on
the Hamming distance between subsets, or NOs , based on the sequences of operations from a ba-
sic set O. This technique is called variable neighbourhood because the neighbourhood used to
randomly extract x(0) to reinitialise the basic exchange heuristic varies along the hierarchy based
on the results of the exchange heuristic. If a worse local optimum is found, the algorithm uses
a slightly larger neighbourhood to generate a starting solution slightly farther from x∗, diversi-
fying the search. If the local optimum is better, the algorithm uses the smallest neighbourhood
in the hierarchy, to generate a starting solution very close to x∗, intensifying the search.

The method has three parameters:

• smin identifies the smallest neighbourhood to generate new solutions,

• smax identifies the largest neighbourhood to generate new solutions,

• δ s identifies the increase of k between two subsequent attempts.

The basic exchange heuristic adopts the smallest neighbourhood in the hierarchy, for the sake
of efficiency: Ne with e ≤ smin.

Parameter tuning The value smin, the minimum neighbourhood in which new starting solu-
tions are generated, should be not too small, as that would forbid or make it harder to exit the
current attraction basin. It must not be too large, in order to avoid “jumping over” promising
basins of attraction. In general one sets smin = 1 and increases it if the experiments show that it
is profitable (avoiding useless iterations of the original basin of attraction).

The value smax must be large enough to reach any useful attraction basin, but small enough
to avoid reaching useless regions of the solution space. The diameter of the search graph is a
value of smax that allows to reach any solution from any other solution.

225

226 EXCHANGE METAHEURISTICS CHAPTER 9

Algorithm 15 Variable Neighbourhood Search Pseudocode

1: procedure VNS(ℓ,x(0))
2: x := SteepestDescent(x(0))
3: x∗ := x;
4: s := smin;
5: for l := 1 to ℓ do
6: x′ := Shaking(x∗,k)
7: x′ := SteepestDescent(x′)
8: if f (x′)< f (x∗) then
9: x∗ := x′

10: s := smin
11: else
12: s := s+δ s
13: end if
14: if s > smax then
15: s = smin
16: end if
17: end for
18: return (x∗, f (x∗))
19: end procedure

The value of δ s must be large enough to bridge the gap between smin and smax in a reasonable
number of steps, but small enough to allow every reasonable value of s. Typically, δ s = 1.

Skewed VNS We have seen that accepting also worsening local optima can improve diversi-
fication when discussing the ILS approach. This was noticed also by the proposers of VNS, who
introduced a variant known as skewed VNS. The basic acceptance criterion is generalised as

f (x′)< f (x∗)+α ·dH(x′,x∗)

where dH(x′,x∗) is the Hamming distance between x′ and x∗ and α ≥ 0 is a suitable parameter.
With α = 0, we have the classical VNS, wherease α > 0 allows to accept worsening solutions,
provided that they are at a certain distance from the original solution: the farther the better.
With α ≫ 0, the algorithm tends to accept any solution. The value of α must be tuned taking
into account also the fact that the two terms (Hamming distance and variation of the objective)
are measured in different units.

Of course, the random strategies used by the ILS can also be adopted: the two approach
can be trivially merged using both the sophisticated perturbation of VNS and the sophisticated
acceptance condition of ILS.

9.3 Extending the local search

Instead of repeating the search, it is possible to prolong it after a local optimum has been found,
modifying the choice mechanism. As long as, the basic selection rule (choose the neighbour
solution which minimises the selection criterium in the neighbourhood) remains the same, this
can be achieved in two ways:

226

CHAPTER 9 9.3. EXTENDING THE LOCAL SEARCH 227

• the Variable Neighbourhood Descent (VND) changes the neighbourhood N; this guar-
antees an evolution with no cycles, since the objective strictly improves at each step; the
method terminates in a finite time, when the current solution is a local optimum for all
neighbourhoods considered;

• the Dynamic Local Search (DLS) changes the objective function f : the new solution x̃ is
better than x for the new objective function, but possibly worse for the old one; since the
objective changes over time, the method can proceed indefinitely, but also be “trapped”
in loops.

9.3.1 Variable neighbourhood descent
Variable Neighbourhood Descent is strictly related to Variable Neighbourhood Search. In
fact, they were proposed in the same papers by Hansen and Mladenović. They are both based
on the idea of exploiting several neighbourhoods. The difference is that, the neighbourhoods
are used to apply the classical steepest descent algorithm, instead of to restart the search.

VND requires a sequence of neighbourhoods N1, · · · ,Nsmax (not necessarily a hierarchy). It
starts applying the classical steepest descent algorithm with the first neighbourhood, finding
a local optimum with respect to it. Then, the algorithm moves to the next neighbourhood in
the sequence and checks if the current solution can be improved by steepest descent. A flag
f lags marks the indices s of the neighbourhoods with respect to which the current solution
is locally optimal. The algorithm stops when the current solution is locally optimal for all
neighbourhoods.

The fundamental difference between the VND and VNS is that the VND explores systemati-
cally the neighbourhoods, instead of using them just to extract random solutions. Therefore, at
each step the current solution is the best known one. Moreover, all neighbourhoods used must
be fairly small (otherwise, they could not be visited), and it is not required that they form a
hierarchy of increasing size and distance. Finally, when a local optimum for every Ns has been
reached, the algorithm terminates, so VND is deterministic. Randomisation could be used in
the selection of the next neighbourhood. Memory mainly concerns the neighbourhoods already
used, not the selection of solutions. As these are minor points, VND can also be seen as not
strictly a metaheuristic.

Neighbourhood scan strategies in the VND

There are two main classes of VND “implementations”: methods with heterogeneous neigh-
bourhoods and methods with hierarchical neighbourhoods. The former are based on the defini-
tion of topologically different neighbourhood. For example, when solving the CMSTP, one can
transfer vertices between subtrees or swap edges. These two neighbourhoods are intrinsically
different and in general a local optimum for one is not a local optimum for the other. The cur-
rent neighbourhood can alternate between them. If more neighbourhood of this kind are used, s
can periodically scan them, or be extracted at random.

The methods with hierarchical neighbourhood have larger neighbourhoods that typically in-
clude the smaller ones. In this case, one generally exploits the small and fast neighbourhoods,
resorting to the large and slow ones only to get out of the local optima. Differently from Algo-
rithm 16, the steepest descent is applied for small values of s, but with large values the exchange
heuristic can be terminated in advance, performing only some moves to guarantee that the al-
gorithm gets far away from the original local optimum, and then the search goes back to the
first and smallest neighbourhood. Therefore the neighbourhoods are not scanned periodically,

227

228 EXCHANGE METAHEURISTICS CHAPTER 9

Algorithm 16 Variable Neighbourhood Descent Pseudocode

1: procedure VND(x(0))
2: ∀s f lags := f alse;
3: x̄ := x(0);
4: x∗ := x(0);
5: s := 1;
6: while ∃s : f lagk = f alse do
7: x̄ := SteepestDescent(x̄,Nk)
8: if f (x̄)< f (x∗) then
9: x∗ := x̄

10: ∀s′ ̸= s f lags′ := f alse
11: else
12: f lags := true
13: end if
14: s :=U pdate(s)
15: end while
16: return (x∗, f (x∗))
17: end procedure

but focusing on the first elements of the hierarchy. When the algorithm finds a local optimum
for a neighbourhood Ns, s must increase k and the flags for the previous values are all marked.
When the maximum value smax is reached, it makes no sense to go back to smin: the algorithm
can terminate directly.

(a) Solution 1. (b) Solution 2.

Figure 9.5: Two different solutions for the CMSTP

Example: the CMSTP Consider the instance of CMSTP reported in Figure 9.5: there are
n = 9 vertices with uniform weights wv = 1, the capacity is W = 5; the graph is complete and
the edge not depicted for the sake of clarity have cost ce ≫ 3. Consider the neighbourhood
NS1 for the solution in Figure 9.5 (a): no edge in the right branch can be deleted because the
disconnected subtree cannot be appended to the left branch (there is no residual capacity) and
to the root (the required edge has a large cost). On the other hand, deleting any edge in the left
branch increases the total cost. So, the solution is a local optimum for NS1 .

Consider, now, the neighbourhood NT1 (transfers of single vertices between branches): mov-
ing vertex 5 to the right branch yields the solution represented in Figure 9.5 (b), that improves
the objective function.

228

CHAPTER 9 9.3. EXTENDING THE LOCAL SEARCH 229

9.3.2 Dynamic local search
Dynamic local search (DLS), also known as Guided Local Search (GLS) is, in a sense, com-
plementary to VND, as the object to be modified is not the neighbourhood, but the objective
function. This is typical of problems in which the objective function is not very informative,
because it is “flat”, that is, it has wide plateaus.

The idea is to introduce an additional penalty function w : X → N, defined on the solutions,
usually with integer values, and build an auxiliary function f̃ (f (x),w(x)) that combines the
original objective value f (x) and the penalty value w(x). Then, the steepest descent algorithm
is applied to the combined function f̃ , instead of the objective. This means that the steepest
descent algorithm may take some step in a direction where f worsens, as long as f̃ improves.
Furthermore, at each iteration the penalty w is updated based on the results obtained, and conse-
quently also f̃ changes. These updates allow the search to go on, possibly for an indefinite time,
but they also could get stuck in a cycle, repeatedly visiting the same solutions: this situation is
obviously to be avoided.

Algorithm 17 Dynamic Local Search Pseudocode

1: procedure DLS(I,x(0))
2: x := SteepestDescent(x(0))
3: w := StartingPenalty(I)
4: x∗ := x;
5: while Stop() = f alse do
6: (x̄,x f) := SteepestDescent(x̄, f ,w)
7: if f (x f)< f (x∗) then
8: x∗ := x f
9: end if

10: w :=U pdatePenalty(w, x̄,x∗)
11: end while
12: return (x∗, f (x∗))
13: end procedure

The general idea, represented in Algorithm 17, is quite abstract, as it can be developed and
adapted in many different ways to different problems. The steepest descent algorithm optimises
f̃ and returns two solutions: the current solution x̄ is locally optimal with respect to f̃ and is
used to update w, while x f is the best solution found with respect to f .

Penalty functions

Two classical families of penalty functions are the additive penalty:

f̃ (x) = f (x)+∑
i∈x

wi

which is defined on the ground set and simply summed on the elements of the solution, and the
multiplicative penalty

f̃ (x) = ∑
j

w jφ j(x)

which is associated to “components” of the solution, and requires f (x) = ∑ j φ(x), so that the
penalties are multiplied by the components of the objective. We have seen many cases of prob-
lems in which the solution is formed by structures, and the objective is a sum of values associ-
ated with these structures. All problems with additive objective functions fall in this category,

229

230 EXCHANGE METAHEURISTICS CHAPTER 9

but many other ones also do. The objective of the BPP (number of containers) is a sum of uni-
tary terms associated with containers, the objective of Max-SAT is a sum of weights associated
with satisfied clauses. Of course, there are also cases in which this does not hold: the objective
of the PMSP is the maximum of several values associated to machines, instead of the sum (and
yet, one could think of penalties associated to the machines and combined somehow with the
objective).

The penalty can be modified with simple deterministic rules or “noisy” randomised pertur-
bations of the costs, aiming to avoid cycles, or based on memory, to favour the most frequent
elements for intensification or the less frequent ones for diversification.

The update can be performed at each iteration (neighbourhood exploration), or when a local
optimum for f̃ is reached or when the best known solution x∗ remains unchanged for a certain
amount of time. The number of possible schemes is huge.

Additive example: DLS for the MCP An example of additive penalty is given by the MCP,
that is the search for a subset of vertices of maximum cardinality that are reciprocally adjacent
in an undirected graph.

Figure 9.6: MCP instance.

Consider the instance reported in Figure 9.6. Vertices C and E form a clique, since they are
reciprocally connected, but not a maximal or a maximum cardinality one. A natural definition
of neighbourhood for this problem could be NA1 , that is the neighbourhood built adding a single
vertex to the current subset. Most of the time, the newly added vertex is not adjacent to all of the
original ones, and therefore the resulting subset is not a feasible solution: they neighbourhood
is often empty. Moreover, if there are feasible additions, the objective function is the same for
all of them (e. g., add C or F to x = {E}: the value of the result is 2 in both cases). A flat
objective is typical of this neighbourhood.

Wide plateaus are also typical of the single-swap neighbourhood NS1: given x = {B,C,D},
one can remove C and add A, or remove D and add E. Both moves give the same final value of
the objective function. Moreover, all feasible solutions obtained have exactly the same value of
the original solution, and therefore are non improving. How to guide the search in neighbour-
hoods such as these ones?

In the following example, we use as a basic exchange heuristic a VND using the NA1 and NS1

neighbourhoods, that is trying to add vertices as long as possible, switching to swaps when this
is no longer possible, and going back to additions as soon as it becomes again possible. In order
to design a DLS approach, we change the objective function, associating with each vertex i a
penalty wi, that is initially set equal to 0. Since in both neighbourhoods the objective function
is completely flat, the steepest ascent heuristic will simply select the neighbour solution with
minimum penalty. When the exploration of NS1 terminates, the penalty is updated, increasing
by 1 its value on the vertices of the current clique. To avoid an indefinite increase, after a given
number of neighbourhood explorations all the nonzero penalties decrease by 1. The rationale

230

CHAPTER 9 9.3. EXTENDING THE LOCAL SEARCH 231

of the method is to try and expel the internal vertices, in particular the oldest internal vertices,
in order to diversify the search, exploiting a form of memory.

Given the starting solution x(0) = {B,C,D}, with w = [0 1 1 1 0 0 0 0 0], the algorithm
performs the following steps:

1. NA1 is empty, so we must explore NS1 . There, we have w({B,C,E}) = w({A,B,D}) = 2
but {A,B,D} wins lexicographically, so x(1) = {A,B,D} with w = [1 2 1 2 0 0 0 0 0].

2. x(2) = {B,C,D} with w = [1 3 1 3 0 0 0 0 0] is the only neighbour in NS1 (NA1 is empty.)

3. NA1 is empty. w({B,C,E})= 5< 7=w({A,B,D}), so x(3)= {B,C,E} with w= [1 4 3 3 1 0 0 0 0]

4. NA1 is empty. w({C,E,F}) = 4 < 10 = w({B,C,D}), so x(4) = {C,E,F} with w =
[1 4 4 3 2 1 0 0 0]

5. NA1 is empty. w({E,F,G}) = 3 < 11 = w({B,C,E}), so x(5) = {E,F,G} with w =
[1 4 3 3 1 0 0 0 0]

6. NA1 is empty. w({F,G,H}) = w({F,G, I}) = 3 < 9 = w({C,E,F}), so x(6) = {F,G,H}
with w = [1 4 4 3 3 3 2 1 0]

Now, neighbourhood NA1 is not empty, and the following solution is found exploring it: x(7) =
{F,G,H, I}.

Multiplicative example: DLS for the Max-SAT The Max-SAT problem requires to find a
truth assignment for n logical variables to satisfy the maximum number of clauses in a set of
m given ones. The classical single-flip neighbourhood, NF1 , is generated by complementing the
value of a single variable.

A possible way to apply DLS is to associate a penalty with each logical clause and modify
the original objective function, that sums a unitary value for each satisfied clause

f (x) = ∑
j∈C

φ j(x) with φ j(x) =

{
0 for j ∈U(x)
1 for j ∈C \U(x)

where U(x) = { j ∈C : C j(x) = false} is the subset of clauses not satisfied by truth assignment
x. In this case, the components of the solution are the logical clauses. They can be modified
multiplying the binary contribution of each one by the penalty:

f̃ (x) = ∑
j

w j ·φ j(x)

At the beginning, the multipliers are uniformly set to w j = 1. The basic exchange heuristic
maximizes the weight of the satisfied formulae, working on the combination of the penalty and
objective function. The solution returned is not necessarily the one with the maximum number
of satisfied clauses. Once a solution is found, DLS updates the penalty as follows:

• every time a local optimum is found (at the end of inner loops) increase the weight of
unsatisfied formulae

∀ j ∈U(x) w j := αusw j

with αus > 1, so that the algorithm will prefer to satisfy them in the following iterations;

231

232 EXCHANGE METAHEURISTICS CHAPTER 9

• after a certain number of updates, or with a certain probability, reduce the penalty towards
1

∀ j ∈C w j := (1−ρ)w j +ρ ·1

with ρ ∈ (0,1).

The rationale of the method consists in aiming to satisfy the currently unsatisfied clauses, fo-
cusing in particular on those that have remained unsatisfied for a longer time and more recently.
This is a form of diversification based on memory.

The parameters tune intensification and diversification: small values of αus and ρ preserve
the current penalty (intensification), whereas large values of αus and ρ cancel the current penalty
(diversification).

9.4 Modifying the selection rule
The last way to modify the basic exchange scheme is to operate on the selection rule. While
keeping the initial solution, the neighbourhood and the objective function, it is possible to mod-
ify the mechanism used to determine the incumbent solution. Instead of determining the best
neighbour solution, other solutions may be considered, possibly even nonimproving ones. In
fact, this is a basic point, since all methods that choose only improving solutions (such as the
first-best strategy) still terminate the search in a local optimum.

The main problem that arises in these algorithms is the risk of cyclically visiting the same
solutions. The two main strategies that allow to control this risk are:

• Simulated Annealing (SA), which uses randomisation to make repetitions unlikely;

• Tabu Search (TS), which uses memory to forbid repetitions (or make them unlikely).

9.4.1 Simulated Annealing
The Simulated Annealing algorithm has a long history: it derives from an algorithm proposed
by Metropolis in 1953, not to solve an optimisation problem, but to simulate the behaviour
of metals in the annealing process. This process consists in heating a block of metal up to a
temperature close to its fusion point, allowing the particles of metal not only to oscillate, but
to move in the volume of the metal, and possibly redistribute nearly at random. Then, the
metal is cooled very slowly, so that the energy of the metal decreases, but converges to thermal
equilibrium. In this way, all different parts of the metal have the same temperature. This means
that the probability of every single particle of the metal to go in any direction is, more or less,
the same.

The technological objective of the process is to guarantee that the thermal equilibrium dis-
tributes all particles in an even and regular way, obtaining a defectless crystal lattice, that corre-
sponds to the minimum energy configuration, denoted as base state. This yields a material with
useful physical properties.

Quite soon, the scholars realised that continuous optimisation problems and simulation
problems have similar aspects. Then, this similarity was extended to combinatorial optimi-
sation. In both cases, the idea is that, as physical systems have different states, so problems
have different solutions. As each state of a physical system is characterised by a value of the
energy function, each solution is characterised a value of the objective function. The base state,
that has the minimum energy, corresponds to the globally optimal solution. A state transition in

232

CHAPTER 9 9.4. MODIFYING THE SELECTION RULE 233

(a) Slow annealing. (b) Fast annealing.

Figure 9.7: Different result of annealing procedures.

physics describes the movements of particles; the state of a metal block is not fixed, but changes
in time, with transitions from state to state. In combinatorial optimisation, this corresponds to
moves from solution to solution, as in exchange algorithms. Finally, the overall process is ruled,
in physics, by a numerical coefficient, that is the temperature. This corresponds to a numerical
parameter in the resolution of combinatorial optimisation problems.

9.4.1.1 The details of Metropolis simulation algorithm

According to thermodynamics, at the thermal equilibrium the probability of observing each
state i depends on its energy Ei

π
′
T (i) =

e
Ei
kT

∑ j∈S e
−E j
k T

where S is the state set, T is the temperature and k is Boltzmann’s constant. The denominator
of this expression just normalises the probability. The numerator shows that states of higher
energy have smaller probabilities, whereas states of very low energy have larger and larger
probabilities. Therefore, at thermal equilibrium states of low energy are more likely than states
of high energy.

Boltzmann’s constant k is only a value to relate the units of measure of energy and temper-
ature. The temperature T , on the contrary, plays an interesting role: very large temperatures
push the exponent of the numerator down to zero, the numerator towards 1 and the denominator
towards the number of states. In other words, all states tend to be equiprobable. If the tem-
perature is small, on the contrary, the role of energy becomes very important to distinguish the
probabilities of different states.

Given a set of states with different energy levels, the Metropolis algorithm generates a ran-
dom sequence of states, starting from a state chosen in some way. It iteratively perturbs the
current state, generating another one at random, and decides whether to move from the current
state to the perturbed one or not. The choice is done with probability:

πT (i, j) =

1 E j < Ei

exp
(

Ei −E j

k T

)
=

π ′(j)
π ′(i)

E j ≥ Ei

The acceptance is deterministic if the perturbed state is improving, as decreasing the energy is
the final purpose of the process; it is based on the conditional probability if the pertubed state is

233

234 EXCHANGE METAHEURISTICS CHAPTER 9

worsening. In the probabilistic case, we have

exp
(

Ei −E j

k T

)
=

e
−E j
kT

∑n∈S e
−En
kT

· ∑n∈S e
−En
kT

e
−Ei
kT

=
e
−E j
kT

e
−Ei
kT

= e
−E j
kT −−Ei

kT

= e
Ei−E j

kT =
π ′

T (j)
π ′

T (i)

which means that the probability that the current state is j is equal to the product of the prob-
ability that the previous state was i, multiplied by the probability of the transition from i to j,
that is

π(j) = π(i, j) ·π(i)

This is the classical property of conditional probability. Since in this case E j−Ei is nonpositive,
the move is accepted with low probability when the difference is very large (the transition
increases the energy very much), with high probability when the difference is very small.

9.4.1.2 The algorithm

Simulated Annealing applies a similar process to the resolution of an optimisation problem.
The pseudocode is presented in Algorithm 18.

Algorithm 18 Simulated Annealing Pseudocode

1: procedure SA(I,x(0))
2: x := x(0);
3: x∗ := x(0);
4: T := T [0];
5: while Stop() = f alse do
6: x′ := RandomExtract(N,x) ▷ random uniform extraction
7: if f (x′)< f (x∗) or U [0,1]≤ exp(f (x)− f (x′)

T) then
8: x := x′

9: end if
10: if f (x′)< f (x∗) then
11: x∗ := x′

12: end if
13: T :=U pdate(T)
14: end while
15: return (x∗, f (x∗))
16: end procedure

The algorithm starts from a given solution x(0), that is also the best known one. As long as
a termination condition is not reached, it randomly generates a single solution x′ in a suitable
neighbourhood N of the current solution x. The neighbourhood is not fully explored; it is
only used to generate a solution, which could be worse than the current one even if improving
neighbour solutions exist. The neighbour solution is then compared with the current one. If
it is better, it becomes the incumbent, and replaces the current solution; otherwise, a random

234

CHAPTER 9 9.4. MODIFYING THE SELECTION RULE 235

number is extracted between [0,1] from a uniform distribution of probability and compared
to the already considered exponential expression to decide whether to accept or not the new
solution. This implements the randomised choice. Since the generation of x′ is typically fast,
the computation of exp(δ f/T) is not negligible. It has therefore been proposed to precompute
a table of possible values in order to speed up this instruction (since T is a real number, there
are infinitely many such values, but a sample of approximate values is acceptable, given that
they are used to compute probabilities for randomised choices.

Since the algorithm does not explore completely the neighbourhood, the quality of the so-
lution obtained is on average much worse, but the single iteration is also much faster (typically,
it takes constant time, instead of a time proportional to the number of neighbour solutions).
Therefore, the algorithm may perform many more steps to reach good solutions, but the steps
are much quicker. There is a tradeoff, as usual, between the efficiency and the effectiveness
of the approach. Notice also that, since the neighbourhood is not systematically explored, the
methods that compute in constant time the feasibility and cost of a solution based on local in-
formation, that is on the previous neighbour solutions, cannot be applied. The computational
advantage is then smaller than in other cases.

The acceptance criterion The profile that relates the probability of accepting a solution with
the variation of the objective function is reported in Figure 9.8. If the new solution is improving,
the exchange is always accepted (πT (x,x′) = 1); otherwise, the choice depends on the temper-
ature T : large temperatures favour diversification, because nearly all solutions are accepted (in
the extreme case, it becomes a random walk); small temperatures (T ≈ 0) reject nearly all solu-
tions (in the extreme case, it becomes a steepest descent algorithm). This profile is very similar
to the one used by ILS, which actually derived it from SA.

Figure 9.8: Probability distribution for different temperature values.

Asymptotic convergence to the optimum

SA enjoys a fundamental property of asymptotic convergence to the optimum. As all such re-
sults, it requires infinite time (while combinatorial optimisation problems can be solved exactly
in finite time by the exhaustive algorithm). It is anyway important because it provides insights
on the tuning of the temperature parameter.

The basic idea is that, since the algorithm performs random steps, the current solution x
is a random variable. The state probability π ′(x) for a given step t combines, on all possible

235

236 EXCHANGE METAHEURISTICS CHAPTER 9

predecessors x(t−1), the state probability π ′(x(t−1)) of the predecessor with the probability to
choose the move from x(t−1) to x (that is uniform) and the probability to accept the move, that
is πT (x(t−1),x).

Since the state probability depends only on its value at the previous step (and not on the
previous ones), the sequence of solutions is a Markov chain. For a fixed temperature T , the
transition probabilities are stationary, and the process is a homogeneous Markov chain. Finally,
if the search space for neighbourhood N is strongly connected, the probability to reach every
state from every other state is strictly positive, and the process is an irreducible Markov chain.

Under all these assumptions, the state probability asymptotically converges to a stationary
distribution that is independent from the starting state. This has the immediate practical conse-
quence that the starting solution is irrelevant: for any solution x(0), after a sufficiently long time
the probability that the current solution is x tends to be the same. It also tends to be higher for
“good” solutions with respect to bad ones: the law is the same imposed by thermodynamics on
physical systems at thermal equilibruim:

∀x ∈ X πT (x) =
exp(− f (x)

T)

∑x∈X exp(− f (x)
T)

where X is the feasible region and T the temperature parameter.
The previous property holds for any fixed temperature T . The equilibrium distribution also

converges to a limit distribution as T → 0:

π(x) = lim
T→0

πT (x) =

{
1
|X | x ∈ X∗

0 x ∈ X \X∗

which corresponds to a convergence to a certain globally optimal solution. This suggests to use
very low values for T (setting T = 0 is not possible because it would give an indeterminate form
0/0).

This results, however, holds at the equilibrium, after an infinite time. In practice, low values
of T imply a high probability to visit a global optimum, but a slow convergence, as well. In
any given finite time, the result can be far from optimal. The convergence becomes slower and
slower as the temperature decreases.

The way out used by SA is to adopt a dynamic profile of temperature, simulating the anneal-
ing process: the algorithm starts from a high temperature value, which favours diversification,
and decreases the temperature iteratively, waiting for the equilibrium at each update. The start-
ing value T [0] should be high enough to allow to reach any solution quickly, but small enough
to discourage visiting very bad solutions. A classical tuning for T [0] is obtained sampling the
neighbourhood of the starting solution, N(x(0)), and setting T [0] so that the expected value of
the sampled solutions accepted reaches a given fraction α of the overall sample.

Updating the temperature The temperature update scheme must keep the temperature fixed
for a number of iterations sufficient to reach a good approximation of the equilibrium. This is
generally obtained going through subsequent phases r = 0, · · · ,m: each phase applies a constant
value T [r] for ℓ[r] iterations. The value of T [r] decreases exponentially from phase to phase:

T [r] := αT [r−1] = α
rT [0], α ∈ (0,1)

while the length of the phases ℓ[r] increases linearly from phase to phase, with values related to
the diameter of the search graph (since it must be possible to move from every solution to every
other solution with a reasonable probability).

236

CHAPTER 9 9.4. MODIFYING THE SELECTION RULE 237

If T is variable, the Markov chain x is no longer homogeneous. However, the aymptotic con-
vergence property can be extended if the temperature decreases are slow enough. Theoretical
results suggest that good parameters to tune the decrease depend on the instance. In particular,
they depend on f (x̃)− f (x∗), where f (x̃) is the second-best value of f . These values, however,
are not known a priori.

Adaptive simulated annealing variants combine the randomisation mechanism with mem-
ory. In fact, they tune the temperature T based on the results: the value of T is decreased only
if the solution has improved recently; otherwise, it is increased to favour diversification.

9.4.2 Tabu search
The Tabu search (TS), proposed by Glover in 1986, is one of the most powerful heuristics in
use. Its basic idea is to keep the starting solution, neighbourhood and objective function of
steepest descent, and also its selection rule (that is, choosing the best solution in the neighbour-
hood), but imposing a tabu (or prohibition) on solutions that have already been visited. This
is done to avoid cycling behaviours, due to the “attraction” of known locally optimal solution.
It is a sort of neighbourhood tuning, based on a memory mechanism, but allowing the visit of
worsening solutions. Instead of setting

x(t) = arg min
x′∈N(x(t−1))

f
(
x′
)

each neighbourhood exploration returns

x(t) = arg min
x′∈N(x(t−1))\V

f
(
x′
)

where V = {x(0), . . . ,x(t−1)} ⊆ X is the set of solutions visited in the previous iterations.
It is a simple idea, but in its basic form it poses several problems concerning the efficient

and effective management of the tabu mechanism.

Efficiency

The main efficiency concern is how to keep track of tabu solutions. A basic exchange heuristic
evaluates the feasibility of every subset generated by the operations that define the neighbour-
hood and (in the positive case) its cost. We have seen that both evaluations must be efficient,
possibly taking constant time. Adding the tabu mechanism means that also the tabu status of
the neighbour solutions (at least of those that improve the best one found so far) must be eval-
uated. The algorithm, in fact, selects as the incumbent the best feasible nottabu solution. Three
conditions must be checked, instead of two.

The straightforward way to implement the evaluation of the tabu is to save each visited
solution (i. e., solutions chosen as incumbent in some iteration) in a suitable structure, called
tabu list, and checking each explored solution (i. e., neighbour solution in some iteration) to
verify whether it matches a tabu one by making a query on the tabu list. The query must be as
quick as possible, as it is performed very frequently; the update of the list occurs only once per
iteration.

Using a real list, however, makes the query very inefficient: at iteration t, it requires time
O(tγ(n)), if γ(n) is the time required to compare the explored solution to each tabu one. Notice
that the iteration index t can easily be of the order of millions. The factor t can be reduced using

237

238 EXCHANGE METAHEURISTICS CHAPTER 9

hash tables or search trees. However, as the number of iterations and visited solutions grows,
the memory occupation grows correspondingly. These methods are rarely used in practice1.

Tabu mechanisms using variations The cancellation sequence method and the reverse elim-
ination method tackle these problems, exploiting the fact that, in general, the solutions visited
form a chain with small variations between subsequent elements and that only few visited so-
lutions are neighbours of the current one. As these techniques are quite sophisticated, we shall
just summarise the gist of the methods. Since subsequent solutions in the tabu list are neigh-
bours, they are very similar to each other, and instead of saving them completely it is possible
to only save the modifications performed on them (in short, the move). This makes it easier to
understand when a chain of moves cancel each other.

Consider, for example, a MDP instance, and a solution containing point 1, while points 2
and 3 are outside. Swapping 1 and 2 yields a solution including 2, while 1 is outside. Then,
swap 2 and 3: the resulting solution includes 3, while 1 and 2 are outside. Now, the swap
of 3 and 1 would go back to the original solution. This can be checked building the whole
solution (possibly huge) or simply verifying that the chain of swaps (1,2), (2,3), (3,1) is self-
destroying. In other words, we need not save each solution, but only lists of moves, verifying
whether there are chain of moves that eliminate each other, or that reduce to the opposite of one
of the currently available moves (as (1,2), (2,3) reduces to (1,3), that is the opposite of (3,1)).

Effectiveness

Even assuming that the tabu status can be checked efficiently, there are reasons against an
explicit definition of the tabu list. In fact, forbidding solutions sparsifies the search graph:
nodes are removed, together with the incident arcs, and consequently the graph becomes less
connected. In extreme cases, the search graph can become disconnected, when the visited
solutions create unavoidable “iron curtains” that block the search. At that point, the search is
prisoner of one of the remaining connected components, possibly barred away from all optimal
solutions.

Forbidding the visited solutions has another negative effects: it slows down the exit from
attraction basins. In fact the selection rule always favours good solutions, that tend to be closer
to the already visited local optimum. This implies that the search moves “spiralling”, through
the second best solution of the basin, the third and so on, with a “gradual filling” effect that
takes a long time before a solution on the border of the basin is reached and allows to definitely
leave. It would be much better to keep into account that the local optimum was reached from
a certain direction, and that the search should move on in the same direction to leave it as
quickly as possible, without ever coming back. This implies worser solutions, but a smaller
number of iterations before the current solution reaches and trespasses the frontier of the basin
of attraction.

The two issues described above suggest two modifications to the basic tabu search scheme.
The need to avoid disconnecting the search graph suggests to avoid permanent prohibitions.
The need to leave quickly the basin of attraction whose local optimum has already been found
suggests to forbid not only the already visited solutions, but also solutions that are similar.
These two suggestions seem to point in opposite direction: the former weakens the prohibition,
the latter extends it. How to combine them?

1It must be mentioned that the current best performing algorithm for the MDP, proposed by Glover himself, is
a TS using a hash table with three different hash functions to manage the tabu list limiting (but not avoiding) the
probability of false positives (“collisions”), that is, of solutions falsely recognised as tabu.

238

CHAPTER 9 9.4. MODIFYING THE SELECTION RULE 239

Limits of the solution-based tabu mechanism

The following toy problem gives a very degenerate example of the two phenomena described
above. Let the ground set be B = {1, · · · ,n} and the feasible region include all subsets: X = 2B.
The objective function sums a nearly uniform additive term

φi = 1+ εi 0 < ε ≪ 1

(each element has a slightly different cost), except for a single subset x∗, where a strong negative
term is also introduced:

f (x) =

∑
i∈x

φi x ̸= x∗

∑
i∈x

φi −n−1 x = x∗

This term allows to choose arbitrarily the globally optimal solution x∗.
Considering the neighbourhood of all solutions at Hamming distance ≤ 1

NH1(x) = {x′ ∈ 2B : dH(x,x′)≤ 1}

the problem has a global optimum in x∗ with f (x∗) = n(n+1)ε/2−1 < 0 and a local optimum
in x̄ = /0 with f (x̄) = 0, provided that the Hamming distance between the two solutions is at
least 2. The attraction basin of x∗ includes only the n solutions with a single different bit, the
attraction basin of x̄ includes all other 2n −n−1 solutions.

Starting from x0 = /0 = x̄ and forbidding all the solutions visited, the algorithm visits me-
thodically most of 2B, with the value of the objective (f (x)) and the Hamming distance from
the starting local optimum (d(x, x̄)) going up and down. For 4 ≤ n ≤ 14, the search graph is
disconnected and the search gets stuck before visiting all solutions, but all solutions are at least
explored, visiting a neighbour one. Therefore, the global optimum is actually found. For n≥ 15,
the search gets stuck and some solutions are neither visited nor explored, possibly missing the
global optimum.

t f x d(x, x̄)
1 0 0000 0
2 1+ ε 1000 1
3 2+3ε 1100 2
4 1+2ε 0100 1
5 2+5ε 0110 2
6 1+3ε 0010 1
7 2+4ε 1010 2
8 3+6ε 1110 3
9 4+10ε 1111 4

10 3+9ε 0111 3
11 2+7ε 0011 2
12 1+4ε 0001 1
13 2+5ε 1001 2
14 3+7ε 1101 3
15 2+6ε 0101 2

Table 9.1: Execution of tabu for n = 4.

239

240 EXCHANGE METAHEURISTICS CHAPTER 9

Table 9.1 reports the execution for n = 4 with the simple additive objective function (no
corrective term applied to introduce a globally optimal solution different from the starting solu-
tion x̄ = 0000. At iteration t = 1, the algorithm chooses the incumbent solution as the one with
minimum cost in the neighbourhood, that is 1000. Its best neighbour is solution x = {0000},
that is forbidden, so the algorithm chooses x = {1100}. Then, items are progressively removed
and added, with the objective moving down and up and the solution closer and farther from the
starting solution until, at iteration t = 15, no move is feasible. Yet, solution 1011 has not been
visited, so the graph is disconnected. It must be remarked that at iteration t = 7 solution 1011 is
in the neighbourhood, so if it were the optimal solution it would be be selected and the global
optimum would be found.

Figure 9.9: Objective function value for the previous example.

The objective function profile, shown in Figure 9.9, shows the limitations of the method.
The solution x repeatedly gets far from x(0) = x̄ and close to it: it visits nearly the whole attrac-
tion basin of x̄. For larger values of n, it does not get out of it, but gets stuck in a solution whose
neighbourhood is fully tabu.

One could think of standing still, waiting for the oldest tabu to expire. In this case, the
exploration proceeds, but the risk of looping is again to be taken into account.

Attribute-based tabu

The idea of attribute-based tabu is to forbid not only the visited solutions, but also those that
share something with them. An attribute is an abstract concept, that we shall first introduce as
such, giving examples later.

The method defines a finite set of attributes A. A subset Ā⊆A, that is empty at the beginning,
identifies tabu attributes. Every feasible solution y ∈ X is associated with a subsets of attributes
Ay. A solution with a tabu attribute is a tabu solution, and it is forbidden

y is tabu ⇐⇒ Ay ∩ Ā ̸= /0

A move from solution x to solution x′ is acceptable only if x′ is not tabu. After the move, the
algorithm adds to Ā the attributes possessed by x and not possessed by x′:

Ā := Ā∪ (Ax \Ax′)

so that x becomes tabu, while x′ is not. This forbids to go back to x and to the previous solutions,
but also avoids solutions similar to them. In this way the search get more quickly far away from

240

CHAPTER 9 9.4. MODIFYING THE SELECTION RULE 241

the visited local optima. However, it also strengthens the prohibition and, consequently, the
problem of disconnecting the search graph. To deal with ths problem, the prohibition becomes
temporary.

Temporary tabu and aspiration criterium The second basic idea is to give a limited persis-
tence to the tabu, that is a limited number of iterations L, called the tabu tenure, so that “old”
tabu attributes will no longer be tabu. Each attribute in Ā is removed from Ā when the tabu has
expired, that is when L iterations have elapsed after its entrance in Ā. This makes some previ-
ously tabu solutions eligible again. Visiting old solutions in a steepest descent algorithm would
deterministically imply an infinite loop in the execution. Visiting old solutions with a different
tabu list Ā could escape loops, even though it does not guarantee to avoid them. The tabu list
Ā enriches the algorithm with memory. Tuning the tabu tenure is therefore fundamental for the
effectiveness of the method.

Before discussing the tuning of L, it is worth pointing out two additional mechanisms. First,
the tabu mechanism could forbid a globally optimal solution, provided that it is similar to an
already visited one. To avoid this, one may introduce an aspiration criterion, such as declaring
nontabu a solution that is better than the best known one, even if it has tabu attributes. If a
solution is better than the best known one, of course, it does not induce any loop. Looser
aspiration criteria have been proposed in the literature, but are not commonly used.

Second, if all neighbouring solutions are tabu, instead of terminating the algorithm, or keep-
ing it still until some tabus expire, the algorithm may directly select the move with the oldest
tabu (that would be performed anyway waiting for the expiration, but without wasting precious
time). This can also be interpreted as another aspiration criterium, which overcomes a tabu
status.

Algorithm 19 Tabu Search Pseudocode

1: procedure TABUSEARCH(I,x(0),L)
2: x := x(0);
3: x∗ := x(0);
4: Ā := /0;
5: while Stop() = f alse do
6: f ′ :=+∞

7: for y ∈ N(x) do
8: if f (y)< f ′ then
9: if Tabu(y, Ā) = f alse or f (y)< f (x∗) then x′ := y f ′ := y

10: end if
11: end if
12: end for
13: Ā :=U pdate(Ā,x′,L)
14: if f (x′)< f (x∗) then
15: x∗ := x′

16: end if
17: end while
18: return (x∗, f (x∗))
19: end procedure

Algorithm 19 reports the abstract scheme of attribute-based TS algorithms. The practical
implementation differs in that the management of the tabu list is not performed adding and

241

242 EXCHANGE METAHEURISTICS CHAPTER 9

deleting elements from a real list of attributes. Before discussing this point, let us provide
concrete examples of tabu attributes.

Tabu attributes The simplest (and yet very common) implementation of the concept of “at-
tribute” is the inclusion of an element in the solution. The practical idea is that, when a move
from x to x′ expels an element i from the solution, the reinsertion of i in the solution is forbid-
den. This can be easily represented by defining Ax = x. Solution x has the attribute “presence
of i” and x′ hasn’t got it. Therefore, the update rule includes i in the tabu attribute set Ā, and
automatically every solution including i becomes tabu.

A complementary definition of attribute is to focus on the added elements: when the move
from x to x′ inserts an element i into the solution, the tabu forbids the removal of i. This can be
represented defining Ax = B\ x. Solution x has the attribute “absence of i”, while x′ has not got
it. The update rule includes the i in Ā and every solution devoid of i becomes tabu.

Different attributes sets can be combined, each with its tenure and list: a common case is,
when swapping i with j, to forbid the removal of j for Lout iterations and the insertion of i for
Lin steps, with Lout ̸= Lin.

Other attributes, less frequently adopted, are the value of the objective function, or of other
auxiliary functions of the solution. Such tabus forbid solutions in which the considered function
assumes a certain value, assumed by other previous solutions.

Complex attributes can be obtained combining simple attributes: the tabu can forbid the
coexistence of two elements in the solution, or their separation (being one in and one out of it).
Another example is to, after replacing element i with element j, to forbid the removal of j to
include i, but allow the simple removal of j and the simple inclusion of i.

Efficient evaluation of the tabu status

The evaluation of the tabu status is performed for each neighbour solution, and therefore must be
as efficient as possible, possibly taking constant time. Attribute-based tabu search does it with
a simple data structure that associates with each attribute the information about when it became
tabu (if ever). The data structure is a simple vector, with elements associated to the attributes2.
In this way, when testing a move, one does not consider the whole resulting solution, but only
the attributes removed from the old one.

If the tabu is on insertions, at iteration t the algorithm forbids the moves that add i when the
tabu on i started at most Lin iterations ago. This corresponds to testing whether t ≤ T in

i +Lin,
where t is the current iteration index. After choosing and performing the best move, the vector
is updated setting T in

i := t for each attribute i ∈ Ax \Ax′ , that is for each element i removed (the
set difference is not actually computed).

If the tabu is on deletions, at iteration t the algorithm forbids the moves that delete i ∈ x
when t ≤ T out

i +Lout and, after choosing and performing the best move, it updates the vector,
setting T out

i := t for each attribute i ∈ Ax \Ax′ , that is for each element i added.
Notice that, the two attributes are complementary, since either i ∈ x or i ∈ B\ x. This means

that, if one wants to combine them, a single vector T is enough for both. In fact, when using Ti,
we know from other data structures whether i is in or out of the solution.

Example: the TSP Consider the neighbourhood NR2 generated by 2-opt exchanges, and sup-
pose that we adopt as attributes both the presence and the absence of arcs in the solution. In

2Of course, if the attributes are multidimensional, such as pairs, the vector will become a matrix, and so on.

242

CHAPTER 9 9.4. MODIFYING THE SELECTION RULE 243

other words, we forbid both the insertions of arcs that are currently out of the solution for Lin
iterations and the removal of arcs that are currently in the solution for Lout iterations.

Since arcs are naturally defined by an adjacency matrix, a matrix T naturally replaces the
auxiliary vector used to save the tabu status information. Each elements Ti j of the matrix is
initialised to −∞, so that every arc (i, j) ∈ A is nontabu. In practical terms, the initial value
must guarantee that t is strictly larger than both Ti j +Lin and Ti j +Lout : such a value is Ti j =
−max(Lin,Lout)−1.

At each step t, the algorithm explores n(n− 3)/2 pairs of arcs from the current solution
and the corresponding pairs of arcs that would replace them. Each move (i, j), which replaces
(si,si+1) and (s j,s j+1) with (si,s j) and (si+1,s j+1) is tabu if any of the following conditions
holds:

t ≤ Tsi,si+1 +Lout the removal of (si,si+1) is tabu
t ≤ Ts j,s j+1 +Lout the removal of (s j,s j+1) is tabu
t ≤ Tsi,s j +Lin the removal of (si,s j) is tabu
t ≤ Ts j+1,si+1 +Lin the removal of (s j+1,si+1) is tabu

At the beginning, therefore, all moves are legal.
Once the move (i∗, j∗) is selected, the algorithm updates the auxiliary matrix, setting

Ts j∗ ,si∗+1 := t

Ts j∗ ,s j∗+1 := t

Tsi∗ ,s j∗ := t

Ts j∗+1,si∗+1 := t

An interesting remark is that, when tuning the values of Lin and Lout , it is reasonable to set
Lout ≪ Lin for all problems in which the solution is small with respect to the ground set (that is
a frequent case). This is because, the length of the prohibition to remove an alement from a set
(be it x or B\ x) should be proportionate to the cardinality of that set.

Example: the Max-SAT Consider the neighbourhood NF1 , which includes the solutions ob-
tained complementing the value of a variable: all n subsets thus obtained are feasible. This is
equivalent to using both the existence and the absence of a pair (variable,value) in the solution.
Since |x| = |B \ x| for every x ∈ X , as each variable has exactly one of the two possible values
in each feasible solution, the tabu mechanism can adopt the same tenure value L for both. This
corresponds to forbidding the change of value of a variable. The attribute can be defined as the
variable itself.

The algorithm proceeds as follows:

• at first set Ti =−∞ for each variable i = 1, . . . ,n;

• at each step t explore the n solutions obtained complementing each variable;

• the move i, which assigns xi := x̄i, is tabu at step t if t ≤ Ti +L, so that at first all moves
are non-tabu;

• perform the best move i∗ and set Ti∗ := t.

243

244 EXCHANGE METAHEURISTICS CHAPTER 9

Example: the KP Consider the neighbourhood NH1 , which includes all solutions at Hamming
distance ≤ 1 from the current solution. This corresponds to adding or deleting a single element.
We adopt as attribute the index of an element, and (for the sake of simplicity) forbid both the
insertion and the removal of an element for the same time L. The tabu list is managed through a
vector T which saves for each element i ∈ B the iteration at which the last move was performed
on it.

(a) Initial state. (b) Neighbouring solutions.

(c) Second iteration. (d) Third iteration.

Figure 9.10: Example of tabu on KP.

The example reported in Figure 9.10 considers an instance with n = 4 objects and capacity
V = 20. We set the tabu tenure to L = 3. The starting solution x(0) = 0100 (see Figure 9.10 (a))
has 4 neighbour solutions, represented in Figure 9.10 (b). They are all feasible and nontabu,
and the best one is x(1) = 0110. After moving to it, the algorithm sets T = [−∞,−∞,1,−∞],
assigning to the modified element 2 the index of the iteration in which it was modified. At
iteration t = 2, half of the the neighbour solutions are feasible and half unfeasible; the feasible
solution 0100 is tabu, because it is obtained modifying the third bit and t +T3 = 3 ≤ L = 3. In
fact, it is once again the starting solution x(0). The algorithm is forced to chose x(2) = 0010,
even though it is worsening. At iteration t = 3, all neighbour solutions are feasible, but two are
tabu. One of them is last solution visited, whereas the other is tabu as t = 3≤ T3+L= 1+3= 4,
even if it was never visited.

Tuning the tabu tenure

The value of the tabu tenure L is a crucial parameter. If it is too large, it could conceal the global
optimum by forbidding moves and disconnecting the graph. If the tabu tenure is too small, it
can hold the exploration back in useless regions and, in the worst case, even produce cyclic
behaviours. These can detected in practice by plotting the values of the solutions and observing
a periodic behaviour of the plot.

Some general rules help to find the correct range of values: in general, the value of the
tenure should grow as the instance size grows, but not proportionally. Glover suggested that
L ∈ O(

√
|A|) where A is the number of attributes. Quite often, if the size of the instances

considered is not too different, a single value can be used with reasonable results.

244

CHAPTER 9 9.4. MODIFYING THE SELECTION RULE 245

Sometimes, no value can be found that is good overall, because in different regions of the
solution space different values should be adopted. In this case, a common trick to break loops
due to insufficient tenures is to extract the value of the tenure at random in a given range. The
idea is that, instead of using always values too large or too small, one breaks the loop induced
by a small tenure by randomly using, now and then, a large tenures, thus forbidding to repeat
deterministically the same choices. On the other hand, instead of crippling the search with a
large tenures, one randomly use a small one, now and then, exploiting it to intensify the search.

Another way to modify the tenure during the execution is to do it adaptively, that is taking
into account the results obtained in the previous iterations. If a move improves the current
solution, this is interpreted as moving towards a local optimum, and L is decreased (typically
by 1) to favour intensification. If a move worsens the current solution, this is interpreted as
moving away from an already visite local optimum, and L is increased (typically by 1) to favour
diversification. Both variations occur remaining within a user-defined range [Lmin,Lmax], to
avoid unreasonably large or small tenure values.

Tabu search variants

Other adaptive strategies work in the long term, modifying the range in which the previous
adaptive strategy is applied. The reactive tabu search, for example, saves the solutions visited
in suitable data structure, as in the solution-based TS, with the aim to detect cyclic behaviours.
Once a cycle is detected, the range [Lmin,Lmax] is moved upwards. After a while, it is moved
back downwards.

A very similar idea is the so called frequency-based tabu search, which saves in an aux-
iliary vector the frequency of each attribute (the number of iterations in which each attribute
appeared in the visited solutions. If the frequency is too large, in order to diversify, the move
could be declared tabu or the objective function could be modified as in the DLS. Vice versa,
the search could also intensify, favouring the moves that introduce more frequent attributes.

The exploring Tabu Search applies a restart strategy different from that of VNS. The idea
is that, after a suitable number of iterations in which the best known result has not improved
the search can be reinitialised. Instead of doing it with a random modification of a reference
solution, this can be done retrieving one of the solutions previously explored, but not chosen.
In particular, the “second-best solutions” of each neighbourood can form a pool and the search
can be restarted from one of these solutions.

A final idea extends the fine neighbourhood tuning techniques. The idea is to heuristically
limit the size of the neighbourood (more or less, depending on suitable parameters), start the
exploration working in a reduced neighbourhood and periodically enlarge the neighbourhood,
so that new solutions become reachable.

245

246 EXCHANGE METAHEURISTICS CHAPTER 9

9.5 Exercises

9.5.1 Exercise 1
Given the following instance of the Vertex Cover Problem (VCP):

a b c

d e f

g h

start from solution x = {b,c,e,g,h} and perform two moves of a Dynamic Local Search (DLS)
approach with the neighbourhood NO based on the following moves: for every vertex v ∈ V
(external, but possibly also internal to the current solution x), move ov adds v to the solution and
removes all vertices that are redundant (nonnecessary to cover edges), keeping the added vertex
last and considering the other ones in increasing degree order, and increasing index in case of
ties. Use an additive penalty function w(x) = ∑v∈x wv defined on the vertices and initialise it to
0 for the external vertices and 1 for the internal ones. After each move, increase by 1 the penalty
of the vertices in the solution. The combined objective function is, therefore, f (x)= |x|+ ∑

v∈x
wv.

Solution Neighbourhood NO consists of at most n = |V | solutions for all solutions x, as all
moves are feasible, but different moves can generate the same solution. The current solution
x = {c,h,b,e,g} (with vertices sorted in increasing degree and increasing index order) has cost
f (x) = |x|= 5 and w= [0 1 1 0 1 0 1 1], so that w(x) = 5, and f̃ (x) = f (x)+w(x) = 5+5= 10.
Since x is nonredundant, all moves concerning the vertices in x simply return x. The other moves
are:

• add a and remove a: f̃ = f +w = 5+5 = 10;

• add d and remove c: f̃ = f +w = 5+4 = 9;

• add f and remove h: f̃ = f +w = 5+4 = 9.

The best ones are od and o f ; we select od lexicographically, obtaining x′ = {b,d,e,g,h}. Now
the penalty function is w = [0 2 1 1 2 0 2 2], so that w(x′) = 9, and f̃ (x′) = f (x′)+w(x′) =
5+9 = 14.

The current solution is still nonredundant, so all moves associated to its vertices regenerate
x′. The other moves are:

• add a and remove b and g: f̃ = f +w = 4+5 = 9;

• add c and remove d: f̃ = f +w = 5+9 = 14;

• add f and remove h: f̃ = f +w = 5+7 = 12.

The best one is oa, that generates x′′= {a,d,e,h}. Now the penalty function is w= [1 2 1 2 3 0 2 3],
so that w(x′) = 8, and f̃ (x′) = f (x′)+w(x′) = 4+8 = 12.

246

CHAPTER 9 9.5. EXERCISES 247

9.5.2 Exercise 2

Consider the following instance of the symmetric Vehicle Routing Problem (VRP)3

Cost 0 a b c d e
0 0 4 4 2 3 3
a 5 0 3 4 6 7
b 3 3 0 1 3 6
c 2 4 1 0 2 6
d 5 6 3 2 0 3
e 3 7 6 5 4 0

where 0 is the depot node, all other nodes have weights vi = 1 and two vehicles of capacity V = 3
are available, so that no other vehicle can be added. Apply a Variable Neighbourhood Descent
algorithm that starts from solution x(0) = {(0,a),(a,b),(b,0),(0,d), (d,c),(c,e),(e,0)} and
applies first the 2-opt exchange neighbourhood NR2 inside each circuit (not between different
circuits!4), then the single-node transfer neighbourhood NT1 .

Solution The 2-opt exchange neighbourhood NR2 removes two nonconsecutive arcs from the
current solution and add other two arcs so as to obtain a feasible solution. In general, the
two removed arcs could belong to different circuits, but the text of the exercise limits the
neighbourhood to exchanges within each single circuit. The cost of the starting solution is
f (x(0)) = 4+3+3+3+2+6+3 = 24. Only two exchanges are possible in solution x:

• remove (0,d) and (c,e), add (0,c) and (d,e), reverse arc (d,c): the cost of the new
solution is f = 4+3+3+2+2+3+3 = 20;

• remove (d,c) and (e,0), add (d,e) and (c,0), reverse arc (c,e): the cost of the new
solution is f = 4+3+3+3+3+5+2 = 23.

The best neighbour solution is x(1) = {(0,a),(a,b),(b,0),(0,c), (c,d),(d,e),(e,0)} with cost
f (x(1)) = 20.

Now, once again, NR2 includes only two solutions:

• remove (0,c) and (d,e), add (0,d) and (c,e), reverse arc (c,d): the solution is once again
x(0) and costs f

(
x(0)
)
= 27;

• remove (c,d) and (e,0), add (c,e) and (d,0), reverse arc (d,e): the cost of the new
solution is f = 4+3+3+2+6+4+5 = 27.

Therefore, x(1) is locally optimal for NR2 . The VND algorithm switches to NT1 .
Since no additional vehicle is available, the nodes assigned to each vehicle can only be

transferred to the other one. The two nodes of the first circuit, however, cannot be moved due
to the capacity constraint. Only the three nodes of the second can be moved to the first. After
each transfer, the optimal route for both circuits should be recomputed (exactly or heuristically).
Their small size allows to make it exactly:

3This exercise is rather an experiment, to see what an exercise on VND would look like. I am still trying to find
a balance between significance and complexity.

4This restriction, as well as the previous one on the number of vehicles are meant to simplify the exercise: in a
practical application they could be relaxed.

247

248 EXCHANGE METAHEURISTICS CHAPTER 9

• transferring c to the first circuit requires to compute the best circuits to service nodes
{a,b,c} and {d,e} from the depot; the former is (0,a,b,c,0), the latter is (0,d,e,0); their
total cost is 19;

• transferring d to the first circuit requires to compute the best circuits to service nodes
{a,b,d} and {c,e} from the depot; the former is (0,d,b,a,0), the latter is (0,e,c,0); their
total cost is 24;

• transferring e to the first circuit requires to compute the best circuits to service nodes
{a,b,e} and {d,e} from the depot; the former is (0,a,b,e,0) (or (0,e,a,b,0)), the latter
is (0,d,e,0); their total cost is 26.

The best move is to transfer c, and the best neighbour solution is x(2)= {(0,a),(a,b),(b,c),(c,0),
(0,d),(d,e),(e,0)} with cost f (x(2)) = 19.

Now we should either go on with neighbourhood NT1 testing the transfer of nodes a, b and
c from the first to the second circuit or (if we consider the exploration of this neighbourhood
too computationally expensive) switch back to neighbourhood NR2 . The exercise, however, is
already too long.

Note: if one computes exactly the best circuit to visit a subset of nodes from the depot,
obviously the 2-opt exchanges cannot improve further the solution. It would make more sense
to transfer nodes heuristically (possibly testing the insertion without modifying the circuit, as in
the TSP heuristics that augment circuits (the Cheapest Insertion, Nearest Insertion and Farthest
Insertion algorithms). In this way, applying 2-opt exchanges could make sense, to reoptimise
the single circuits (of course, only the two modified ones) after a node transfer.

9.5.3 Exercise 3
Consider the following instance of the Parallel Machine Scheduling Problem (PMSP) with 3
machines:

Task a b c d e
d 9 3 4 5 10

Solution x, which assign tasks a and b to the first machine, tasks c and d to the second
machine and task e to the third one is locally optimal for the single-transfer neighbourhood NT1 .
Generate a new starting solution for the VNS metaheuristic with a shaking procedure based on
neighbourhood NTs , setting s = 3. For the sake of simplicity, select the s moves sequentially.
Sort the moves first by increasing task index, then by increasing machine index. Assume that
the pseudorandom number generator provides the following sequence: 0.15, 0.32, 0.17, 0.94,
0.52, . . . The shaking procedure must avoid generating moves that overlap with previous ones
(i. e., concern the same task), either filtering such moves and rescaling the probabilities at each
step, or ignoring the overlapping moves and extracting additional random numbers.

Solution Solution x = {(a,1),(b,1),(c,2),(d,2),(e,3)} is by assumption locally optimal for
the neighbourhood NT1 obtained transferring a single task from its current machine to a different
one. Each task has m−1 possible moves (where m = |M| is the number of machines), and they
are all feasible, so that |NT1(x)|= n(m−1) for every solution x.

There are several ways to iterate these moves s = 3 times. One way is to enumerate the dif-
ferent triplets of transfers, generate a single pseudorandom number and select the corresponding

248

CHAPTER 9 9.5. EXERCISES 249

triplet. This is far too complex for a hand-made exercise, and remains quite complex even for a
computer implementation, since the problem must be solved for several different values of s.

The more sophisticated way described in the text of the exercise enumerates the single
transfers filtering away those that overlap with previous ones, then generates a pseudorandom
number, selects and performs the corresponding move, repeating the process until s transfers
are performed. This requires takes to mark the transferred tasks and rescale the probabilities in
the subsequent steps:

1. at the first step, the set of single transfers, ordered first by task and then by machine, is:

(a,2) ,(a,3) ,(b,2) ,(b,3) ,(c,1)(c,3) ,(d,1) ,(d,3) ,(e,1) ,(e,2)

each one with a probability equal to 1/10. Pseudorandom number 0.15 corresponds to
the second transfer, (a,3).

2. now all transfers involving task a are removed from the set, that reduces to (n− 1)(m−
1) = 8 moves, with probability 1/8. Pseudorandom number 0.32 corresponds to the third
remaining transfer (c,1).

3. also the transfers involving task c are removed from the set, that reduces to (n−2)(m−
1) = 6 moves, with probability 1/6. Pseudorandom number 0.17 corresponds to the first
remaining transfer (b,2).

The shaking procedure, therefore, modifies:

x = {(a,1) ,(b,1) ,(c,2) ,(d,2) ,(e,3)}

into
x′ = {(a,3) ,(b,2) ,(c,1) ,(d,2) ,(e,3)}

that assigns task c to the first machine, tasks b and d to the second one, tasks a and e to the
third.

The simpler shaking procedure described in the text enumerates the single transfers, gen-
erates a pseudorandom number, selects the corresponding move and performs it only if it does
not overlap with the previous ones, repeating the process until s transfers are performed. This
also requires takes to mark the transferred tasks, but not to rescale the probabilities:

1. at the first step, the set of single transfers, ordered first by task and then by machine, is:

(a,2) ,(a,3) ,(b,2) ,(b,3) ,(c,1)(c,3) ,(d,1) ,(d,3) ,(e,1) ,(e,2)

each one with a probability equal to 1/10. Pseudorandom number 0.15 corresponds to
the second transfer, (a,3).

2. now pseudorandom number 0.32 corresponds to the fourth transfer (b,3).

3. pseudorandom number 0.17 corresponds to the second transfer, (a,3), that has already
been selected, so we ignore it;

4. pseudorandom number 0.94 corresponds to the tenth transfer: (e,2).

249

250 EXCHANGE METAHEURISTICS CHAPTER 9

The shaking procedure, therefore, modifies:

x = {(a,1) ,(b,1) ,(c,2) ,(d,2) ,(e,3)}

into
x′ = {(a,3) ,(b,3) ,(c,2) ,(d,2) ,(e,2)}

that assigns tasks c, d and e to the second machine, tasks a and b to the third.

The second procedure is less efficient, as the number of additional extractions due to “col-
lisions” with overlapping moves is in principle unbounded (its expected values depend on the
values of s and n).

9.5.4 Exercise 4
Consider the instance of Maximum Weighted Satisfiability Problem (Max-WSAT) with

CNF = (x1 ∨ x4 ∨ x̄5)∧ (x2 ∨ x3 ∨ x5)∧ (x1 ∨ x2 ∨ x5)∧ (x̄1 ∨ x̄3 ∨ x5)

w = [5 8 2 11]

Solution x∗ = (0,1,0,1,0) is locally optimal for the single-flip neighbourhood NF1 (i.e., re-
place the value of one of the variables with the complementary one). Generate a new starting
solution for the VNS metaheuristic with a shaking procedure based on neighbourhood NFs ,
setting s = 2. For the sake of simplicity, select the s moves sequentially. Sort the moves
first by increasing variable index. Assume the following sequence of pseudorandom numbers:
r = 0.90,0.28,0.52,0.06, . . . The shaking procedure must avoid generating moves that overlap
with previous ones (i. e., flip the same variable), either filtering such moves and rescaling the
probabilities at each step, or ignoring the overlapping moves and extracting additional random
numbers.

Solution The neighbourhood NF1 obtained flipping a single variable contains n solutions, that
are all feasible for every given solution x.

Both shaking procedures enumerate n = 5 possible moves, with probability 1/5 each. The
pseudorandom number 0.90 corresponds to the fifth one (flip x5). Now, the first procedure
updates the probabilities forbidding any further flip of x5 and assigning probability 1/4 to all
other variables. Pseudorandom numbe 0.28 corresponds to the second remaining move, that is
to flip x2. Therefore, solution x = (0,1,0,1,0) becomes x′ = (0,0,0,1,1).

The second procedure also flips x5, but does not rescale the probabilities. Pseudorandom
number 0.28, however, still corresponds to the second move, that is to flip x2. Therefore, solu-
tion x = (0,1,0,1,0) becomes x′ = (0,0,0,1,1) also in this case.

9.5.5 Exercise 5
Consider the following instance of the Knapsack Problem (KP) with capacity V = 10:

Task a b c d e f g
φ 6 4 5 10 3 1 8
v 6 1 3 4 2 1 5

250

CHAPTER 9 9.5. EXERCISES 251

A Tabu Search (TS) metaheuristic exploits neighbourhood N = NH1 ∪NS1 , where NH1 in-
cludes the feasible solutions at Hamming distance ≤ 1 and NS1 those obtained with a single
swap of elements. The tabu tenures are Lin = Lout = 1 for the insertion and the removal of
elements. At iteration t = 5, the current solution is x(5) = {a,c, f} and the tabu list is:

a b c d e f g
T 4 4 3 2 −∞ 1 2

Assume that the moves in NH1 precede those in NS1 , that the former are sorted by increasing in-
dices and those of the latter are sorted in lexicographic order with respect to the exiting element
first and the entering element then.

Perform a single iteration, listing the nontabu solutions, selecting the best one, performing
the corresponding move and updating the tabu list.

Solution Neighbourhood NH1(x
(5)) includes the feasible solutions at Hamming distance ≤ 1

from the current solution x(5). Neglecting x(5) itself, that is useless, its cardinality is |NH1|(x(5))≤
n = 7. To be more precise, the |x(5)| = 3 deletions are feasible, whereas the feasibility of the
n− |(x(5))| = 4 additions must be checked comparing the volume of the added element with
the residual capacity. Since v(x(5)) = 6+ 3+ 1 = 10 = V , the residual capacity is zero, and
no addition is feasible. The following table reports the feasible moves and the corresponding
variations of the objective:

NH1(x
(5)) a b c d e f g

δ f -6 NF -5 NF NF -1 NF

The tabu deletion moves have t ≤ Ti +Lout, that is Ti ≥ t −Lout = 4: hence, deleting a is
tabu, deleting c and f is legal.

Neighbourhood NS1(x
(5)) includes the feasible solutions obtained swapping an internal ele-

ment with an external one. The cardinality |NH1|(x(5))≤ |x(5)|(n−|x(5)|)= 12 must be evaluated
comparing the volume variation δv with the residual capacity. The following table reports the
feasible moves and the corresponding variations of the objective:

NS1(x
(5)) b d e g

a -6+4 = -2 -6+4 = -2 -6+3 = -3 -6+5 = -1
c -5+4 = -1 NF -5+3 = -2 NF
f -1+4 = +3 NF NF NF

The tabu swap moves (i, j), with i exiting and j entering, have t ≤ Ti +Lout or t ≤ Tj +Lin,
that is Ti ≥ 4: hence, all moves involving a or b are tabu, whereas the other ones are legal. The
only remaining moves are:

• delete c (with δ f =−5) or delete f (with δ f =−1),

• swap c and e (with δ f =−2).

The best one is to delete f , obtaining x(6) = {a,c}.
After performing the move, the tabu list is updated marking the deleted element with the

iteration index:

a b c d e f g
T 4 4 3 2 −∞ 5 2

251

252 EXCHANGE METAHEURISTICS CHAPTER 9

9.5.6 Exercise 6
Given the following instance of the symmetric Travelling Salesman Problem (TSP)

Cost a b c d e f
a 0 10 8 8 9 6
b 10 0 9 8 8 7
c 8 9 0 10 9 8
d 8 8 10 0 4 8
e 9 8 9 4 0 7
f 6 7 8 8 7 0

consider a Tabu Search metaheuristic exploiting neighbourhood NR2 (that is, the 2-opt ex-
changes). The solution obtained at iteration t = 5 is x(5) = (a,b, f ,c,d,e).

The following table reports the iteration at which each arc entered its current status (in or
out of the current solution). Let the tenures be ℓin = 2 and ℓout = 0 (the inserted arcs can be
immediately removed).

T a b c d e f
a -3 1 -3 4 -3 -3
b -3 -3 5 -3 4 -3
c -3 2 -3 -3 -3 -3
d 1 -3 3 -3 -3 -3
e -3 -3 -3 -3 -3 2
f -3 3 -3 5 -3 -3

List the nontabu moves at iteration t = 6, perform the best one and update the table.

Solution The neighbourhood NR2(x) contains n(n−3)/2 = 9 solutions for every given solu-
tion x, as the two removed arcs must be different and nonadjacent. Exchange (i, j) removes arcs
(i,s(i)) and (j,s(j)), and adds arcs (i, j) and (s(i),s(j)), where s(i) is the node following i in
the current solution. The solution obtained with this exchange at iteration t = 6 is tabu when
t ≤ Ti,s(i)+Lin or t ≤ Tj,s(j)+Lin, that is when max

(
Ti,s(i),Tj,s(j)

)
≥ t −Lin = 4. Consequently,

all moves reinserting arcs (a,d), (b,c), (b,e), (f ,d) are tabu.
The following table lists the exchanges, marking the tabu ones and reporting the variation

of the objective function for the legal ones.

(j,s(j))
(i,s(i)) (a,b) (b, f) (f ,c) (c,d) (d,e) (e,a)
(a,b) - - Tabu -10-10+8+8 = -4 Tabu -
(b, f) - - - Tabu -7-4+8+7 = +4 Tabu
(f ,c) - - - - Tabu -8-9+7+8 = -2
(c,d) - - - - - -10-9+9+8 = -2
(d,e) - - - - - -
(e,a) - - - - - -

Only 4 of the 9 exchanges are legal. The best one removes (a,b) and (c,d) and adds
(a,c) and (b,d), turning x = (a,b, f ,c,d,e) with f (x) = 10 + 7 + 8 + 10 + 4 + 9 = 48 into
x′ = (a,c, f ,b,d,e) with f (x′) = 8+8+7+8+4+9 = 44, confirming that δ f =−4. The new
table is the following.

252

CHAPTER 9 9.5. EXERCISES 253

T a b c d e f
a -3 6 6 4 -3 -3
b -3 -3 5 6 4 -3
c -3 2 -3 6 -3 -3
d 1 -3 3 -3 -3 -3
e -3 -3 -3 -3 -3 2
f -3 3 -3 5 -3 -3

9.5.7 Exercise 7
Consider the following instance of the Parallel Machine Scheduling Problem (PMSP) with 3
machines:

Task a b c d e
d 8 13 7 12 6

Let the starting solution x(0) assign tasks a and b to the first machine, tasks c and d to the
second machine and task e to the third one. Apply a Tabu Search metaheuristic exploiting the
single-transfer neighbourhood NT1 , visited with the global-best strategy. In case of ties, select
the task with the smallest index; in case of further ties, select the machine with the smallest
index. Set the tabu attribute as the index of the moved task and fix the tenure to L = 2.

Apply two iterations of the method, showing the moves performed and the update of the
data structure to manage the tabu.

Solution The single-transfer neighbourhood NT1 includes n(m−1) = 10 solutions, where n =
|T | is the number of tasks and m = |M| the number of machines. Since the tabu attribute is the
index of the task transferred, the tabu status is determined by a vector reporting for each task
the last iteration in which the task was moved. At the beginning, this vector is initialised with
−∞, that is, −L−1 =−3.

T = [−3 −3 −3 −3 −3]

and all transfers are legal.
The following table represents the values of all possible exchanges:

Machine
Task 1 2 3

a - max(13,8+7+12,6) = 27 max(13,7+12,8+6) = 19
b - max(8,13+7+12,6) = 32 max(8,7+12,13+6) = 19
c max(8+13+7,12,6) = 28 - max(8+13,12,7+6) = 21
d max(8+13+12,7,6) = 33 - max(8+13,7,12+6) = 21
e max(8+13+6,7+12,0) = 27 max(8+13,7+12+6,0) = 25 -

The best ones are (a,3) and (b,3): we select the first, lexicographically. Now the current
solution is x(1) = {(a,3),(b,1),(c,2),(d,2),(e,3)} and the tabu attributes are:

T = [1 −3 −3 −3 −3]

The following table represents the values of all possible exchanges, marking the ones that
are tabu at iteration t = 1. These exchanges have t ≤ Ti+L, that is Ti ≥ t −L = 0. In short, they
are the transfers of task a:

253

254 EXCHANGE METAHEURISTICS CHAPTER 9

Machine
Task 1 2 3

a Tabu Tabu -
b - max(0,13+7+12,8+6) = 32 max(0,7+12,8+13+6) = 27
c max(13+7,12,8+6) = 20 - max(13,12,8+7+6) = 21
d max(13+12,7,8+6) = 25 - max(13,7,8+12+6) = 26
e max(13+6,7+12,8) = 19 max(13,7+12+6,8) = 25 -

The best one is (e,1). Now the current solution is x(1) = {(a,3),(b,1),(c,2),(d,2),(e,1)} and
the tabu attributes are:

T = [1 −3 −3 −3 2]

9.5.8 Exercise 8
Given the following instance of the Knapsack Problem with capacity V = 12:

Objects a b c d e f g
Prize φ 11 2 4 9 8 4 9

Volume v 5 1 2 4 3 1 6

consider the starting solution x(0) = {a,b,d}. Perform two steps of Simulated Annealing, as-
suming neighbourhood NH2 \NH1 (that is, Hamming distance exactly equal to 2).

Select the moves by considering in lexicographic order the pairs of elements whose bit in
the incidence vector is complemented. Let the temperature parameter be T = 1/ ln2, so that
e−∆ f/T = 2−∆ f , and the pseudorandom numbers generated be 0.3, 0.4, 0.7, 0.2, 0.8, 0.1.

Solution The neighbourhood NH2 \NH1 includes the feasible solutions obtained complement-
ing the bits of two elements of the ground set in the incidence vector representation. For x(0) =
{a,b,d}, this representation is ξ (0) = [1 1 0 1 0 0 0]. The pairs of elements are n(n−1)/2= 21,
but many of them are unfeasible.

The abstract scheme of SA requires to extract a neighbour solution at random with uniform
probability, compute its value and decide probabilistically whether to accept it or not. This
requires, in theory, to know the number of neighbour solutions, that is the number of feasible
exchanges. There are several possible ways to manage this problem.

The first one is to explore the exchanges and list the feasible ones. The following table lists
them, marking the unfeasible exchanges with label NF and the feasible ones with F. The lower
half is empty for symmetry.

i (vi) a (5) b (1) c (2) d (4) e (3) f (1) g (6)
a (5) F F F F F F
b (1) F F F F NF
c (2) F NF NF NF
d (4) F F F
e (3) NF NF
f (1) NF
g (6)

254

CHAPTER 9 9.5. EXERCISES 255

This approach requires a full neighbourhood exploration, even if it avoids the computation of
the objective function. From this point of view, it is rather contrary to the spirit of SA. Since
there are |NH2 \NH1 |= 14 neighbour solutions, pseudorandom number 0.3 selects the fifth, that
is (a, f). Removing a and adding f yields x′ = {b,d, f} with value f (x′) = 2+9+4 = 15. The
value of the starting solution was f (x(0)) = 11+2+9 = 22. The new solution is worse and the
probability to accept it is e−∆ f/T = 2−∆ f = 2−7, that is very small. Pseudorandom number 0.4
is larger, and the move is rejected.

A second way to manage the existence of unfeasible exchanges is to generate the exchange
at random and estimate its feasibility a posteriori, generating another exchange if the first is
unfeasible. This is more in line with the spirit of SA, but it can be very inefficient if the
probability of generating an unfeasible exchange is large. In this case, it is neither large nor
small: the advantage of avoiding a full exploration is probably strong enough. In this case, we
have 21 exchanges and the first pseudorandom number (0.3) suggests to select the seventh in
lexicographic order, that is (b,c). Removing b and adding c yields x′ = {a,c,d} with value
f (x′) = 5+2+4 = 11.5 The value of the starting solution was f (x(0)) = 11+2+9 = 22. The
new solution is worse and the probability to accept it is e−∆ f/T = 2−∆ f = 2−11, that is very
small. Pseudorandom number 0.4 is larger, and the move is rejected also in this case.

A third approach, that we just mention, could be to try and find classes of moves that are
unfeasible by construction, so as to reduce the number of exchanges approximating the actual
number of neighbour solutions. For example, one could exploit the fact that the |V \ x| · (|V \
x|−1)/2 = 6 pairs that only add elements are all unfeasible because the residual capacity of the
current solution is V −∑i∈x vi = 12− 5− 1− 4 = 2 and the volume of all pairs of elements in
V \ x exceed it. Therefore, there are 21− 6 = 15 candidate exchanges, which is a much better
approximation of the correct number. With the given pseudorandom numbers, this approach
would lead to the same result as the first one (mind that the extraction is made only on the 15
exchanges with at least a deletion).

Since all approaches yielded the starting solution, let us consider the second move with
pseudorandom number 0.7. In this case, the three approaches suggest different exchanges. The
first one suggests the tenth move, that is (b, f), feasible by construction: removing b and adding
f yields x′ = {a,d, f} with value f (x′) = 11+ 9+ 4 = 24, that is better than the current one,
and is therefore directly accepted.

Based pseudorandom number 0.7, the second approach suggests the fifteenth move, that is
unfeasible. The following pseudorandom number, 0.2, suggests the fifth move, that is (a, f) and
is feasible. Removing a and adding f yields x′ = {b,d, f} with value f (x′) = 2+ 9+ 4 = 15,
that is worse than the current one. We have already met it, and seen that the probability to
accept it is e−∆ f/T = 2−∆ f = 2−7, that is very small. The pseudorandom number used to decide
is changed (it is 0.8), but, still, the move is rejected.

Based pseudorandom number 0.7, the third approach suggests the eleventh exchange, that
is (a,g). Since we have not explored the neighbourhood, we have to test its feasibility, and
find that it is unfeasible. Pseudorandom number 0.2 suggests the third exchange, that is (a,d).
Removing both a and d yields x′ = { f} with value f (x′) = 4, that is much worse than the current
one, and the probability to accept the is e−∆ f/T = 2−∆ f = 2−18, so small that pseudorandom
number 0.8 suggests to reject the move.

5ATTENZIONE: no, questi sono i volumi, non i premi, per cui la soluzione non e’ migliore. L’esercizio va
rivisto.

255

256 EXCHANGE METAHEURISTICS CHAPTER 9

9.5.9 Exercise 9
Given the instance of the Capacitated Minimum Spanning Tree Problem, with root vertex a,
weight function wv = 1 for all v ∈V \{a} and wa = 0, capacity W = 2 and cost function:

Cost a b c d e f
a 0 10 5 4 9 8
b 10 0 9 8 11 7
c 5 9 0 12 15 3
d 4 8 12 0 2 13
e 9 11 15 2 0 7
f 8 7 3 13 7 0

Starting from solution x = {(a,b),(a,d),(a, f),(b,c),(d,e)}, apply one step of Simulated
Annealing with neighbourhood NS1 . Since most swaps yield unfeasible solutions, split the se-
lection of the move in two parts: first select the added edge, then enumerate the edges whose
removal yields feasible solutions and select one. In both steps, sort the candidate edges lexico-
graphically. Set the current temperature to T = 5 and use the following pseudorandom number
sequence: r = 0.95,0.21,0.45 . . .

Solution Neighbourhood NS1(x) includes all feasible solutions obtained adding an edge to the
current tree and breaking the loop thus formed by removing another edge in the loop. Since the
graph has |V | · (V |−1) = 15 edges and |V |−1 = 5 belong to the current solution, the external
edges are 10, namely (a,c), (a,e), (b,d), (b,e), (b, f), (c,d), (c,e), (c, f), (d, f) and (e, f).
Pseudorandom number 0.95 suggests to select the last one, that is (e, f). Adding edge (e, f)
closes the loop (a,d,e, f ,a), which can be broken in three ways (keeping the new edge), but
only one yields a feasible solution, since the others produce a single branch of three vertices,
exceeding the capacity constraint. Therefore, we remove (d,e). It is not necessary, but also
not forbidden, to use a pseudorandom number for this decision. The variation of the objective
function is δ f = ce f −cde =+7−2=+5. The probability to accept the move is e−δ f/T = e−1 =
1/e. Pseudorandom number 0.21 suggests to accept the move (of course, if one used 0.21 to
select the removed edge (d,e), one has to apply pseudorandom number 0.45, that suggests to
reject the move.

For the sake of completeness, one could consider the approach in which all neighbour solu-
tions are enumerated before selecting one. In this case:

• adding edge (a,c) would require to remove either (a,b) or (b,c);

• adding edge (a,e) would require to remove either (a,d) or (d,e);

• adding edge (b,d) would require to remove either (a,b) or (a,d), but both solutions would
be unfeasible;

• adding edge (b,e) would require to remove (a,b), (a,d) or (d,e), but all solutions would
be unfeasible;

• adding edge (b, f) would require to remove either (a,b) or (a, f), and only the second
removal would be feasible;

• adding edge (c,d) would require to remove (a,b), (a,d) or (b,c), but all solutions would
be unfeasible;

256

CHAPTER 9 9.5. EXERCISES 257

• adding edge (c,e) would require to remove (a,b), (a,d), (b,c) or (d,e), but all solutions
would be unfeasible;

• adding edge (c, f) would require to remove (a,b), (a, f) or (b,c), and only the last re-
moval would be feasible;

• adding edge (d, f) would require to remove either (a,d) or (a, f) but both solutions would
be unfeasible;

• we have already analysed the addition of (e, f) and its only feasible removal.

Therefore, overall 6 solutions are feasible. Pseudorandom number 0.95 suggests the last one,
and the exercise proceeds accepting the move with pseudorandom number 0.21.

257

258 EXCHANGE METAHEURISTICS CHAPTER 9

258

Part V

Recombination algorithms

259

CHAPTER 10

Recombination metaheuristics

The last class of solution-based heuristics for combinatorial optimisation problems is composed
by the recombination heuristics. In general, they adopt memory or random steps, so that
they can be straighforwardly defined metaheuristics. Moreover, contrary to constructive and
exchange algoritms, this class of methods has no basic scheme to discuss and extend, but only
the general idea of handling many solution at a time to generate other solutions.

10.1 Introduction to recombination metaheuristics
Recombination heuristics manage a set of solutions, which is generally called the population,
whereas the single solutions are often called individuals. This strongly differs from the case of
constructive and exchange algorithms, that most of the time manipulated only a single solution
(or subset) at a time. The only exception is provided by the Ant System, that actually shares an
important aspect with many recombination algorithms: it is based on a natural metaphor. The
words “population” and “invidivual”, in fact, are commonly used due to the same reason (even
if not all recombination algorithms have such an origin).

Recombination algorithms manipulate several “individuals” at a time, recombining them
in order to generate new ones. During this process, they often adopt other elements taken
from constructive and exchange algorithms, sometimes renaming them (in particular, when the
natural metaphor is kept as a guide for the design).

In the following, we present two main families of recombination heuristics: the first one has
a mainly deterministic structure, adopting random steps only as a last resort. In some cases,
a purely deterministic version, which could be classified as a heuristic, clearly exists. They
mainly derive from scholars interested in developing effective optimisation heuristics. The main
examples of this family are Scatter Search and Path Relinking. The second family is based on
a strong use of randomisation, which sometimes derives from a biological metaphor, referring
to evolutionary mechanisms or the behaviour of living creatures. The randomicity is originally
meant to simulate the behaviour of these agents, and the application to optimisation is more of a
second thought. Examples are the genetic algorithms, the memetic algorithms and the evolution
strategies.

10.1.1 General concepts
The recombination algorithms are based on the idea that many nonoptimal solutions share sub-
sets with the optimal ones: some components of these solutions are identical, or very similars,
to components of an optimal solution. The concept of component is vague on purpose: in gen-
eral it is a subset of elements of the ground set, but more specifically it could be a circuit in the

261

262 RECOMBINATION METAHEURISTICS CHAPTER 10

VRP, a truth assignment for a subset of variables in a Max-SAT, and so on; in general, it is a
part of the solution whose quality can be measured somehow.

Since different solutions, in general, share different components with the optimal ones, in-
stead of trying to correct the “bad” components of a single solution, one could take several
solutions, extract the “good” components from each one and combine them into a better final
solution. If one could identify the good components and combine them correctly, one could ob-
tain the optimal solution in a much more efficient way than just manipulate each single solution
until it coincides with the optimal one.

A general scheme of recombination heuristics, therefore, consists in building a starting pop-
ulation of solutions and repeatedly modify its elements until a suitable termination condition is
satisfied. Each iteration is usually called a generation, for the usual metaphorical reason. At
each generation, the algorithm extracts a collection of subsets of individuals and applies to each
subset some operator to generate new subsets of individuals. Sometimes, the subsets are single-
tons, and the operator just modifies a single individual, as in exchange heuristics (but working in
parallel on a population). In other cases, and this is characteristic of recombination algorithms,
the operators work on a subset of more than one individual and produce a new individual or
a new subsets of individuals. At the end of the generation, all the generated individuals are
collected, and the algorithm applies a selection rule to choose those that are worthy of being
included in the population at the next generation. According to the algorithm, the individuals
of the original population can be admitted or not to the selection. According to the algorithm,
if different operators generate identical solutions, these can be admitted to the selection step or
reduced to a single one. Usally, the class of more deterministic heuristics keeps the old solutions
and avoids generating multiple copies, since losing information or keeping redundant informa-
tion is seen as a waste of space and time; the more simulation-oriented algorithms usually allow
copies and the removal of old solutions (of course, always saving the best known one.

The starting population can be obtained, as the starting solution of an exchange algorithm,
randomly or using contrustive (meta)heuristics; of course, they can also be obtained using ex-
change (meta)heuristics.

Except for the few purely deterministic heuristics that we shall discuss in the following,
the termination condition is one of the absolute or relative conditions already discussed for
constructive and exchange metaheuristics.

10.2 Scatter search

Scatter search (SS) was proposed by Glover, the creator of TS and many other optimization
methods, in 1977. Its general idea is to recombine solutions drawn from a population, as in
all recombination heuristics. The solutions are, however, all locally optimal, since they are
the result of an auxiliary exchange procedure. More in detail, the population called reference
set, R = B∪D, consists of two parts that play complementary roles. Subset B includes the
best locally optimal solutions found during the search. Subset D includes the locally optimal
solutions that are “farthest” from B and from each other, according to a suitable definition of
distance, that typically is the Hamming distance.

The pseudocode of SS is provided in Algorithm 201. The algorithm starts with a given
population P of solutions (generated as usual, randomly or with constructive heuristics). It
applies a suitable steepest descent procedure to each solution in the current population, so as
to find a locally optimal solution z. These solutions build the reference set with the following

1The pseudocode and its description must be updated with those provided in the slides.

262

CHAPTER 10 10.2. SCATTER SEARCH 263

process. First, we try and add z to the subset B of the best solutions, if it has not already been
included in a previous step (duplicate solutions are forbidden). If |B| has not yet reached the
required cardinality, z is added to B; otherwise, z is compared to the worst solution of B (yB) and,
if it is better, it replaces that solution. If it is not better, and it has not already been included in
the subset D of the most diverse solutions in a previous step (duplicate solutions are forbidden
also in this case), we try and add it to D. If |D| has not yet reached the required cardinality,
we simply add z to D. Otherwise, we determine the less diverse solution in D, yD, that is the
solution with minimum total Hamming distance from all solutions in B∪D, d(yD,B∪D\ yD).
Then, we compute the vaule of that distance for z, that is d(z,B∪D\ yD), and compare the two
values. If z is better, it replaces yD; otherwise, it is definitively rejected. Adding z to B or D is
an update of the reference set. The values of |B| and |D| are parameters defined by the user. The
number of starting solutions required to build R is at least |B|+ |D|, but it could be much larger,
due to the removal of duplicates.

At each iteration, the algorithm scans all pairs of solutions (x,y) ∈ B× (B∪D) and recom-
bines x and y. The purpose is to build new starting points for the exchange heuristic that either
combine best solutions (B×B) to intensify the search or best and diverse solutions (B×D) to
diversify the search without losing too much quality. The pairs of solutions from D×D are
not considered: the quality would probably be bad and combining distant solutions does not
guarantee to generate a distant one. All recombined solutions z are immediately improved with
the exchange procedure, to obtain locally optimal solutions that form a new population. Finally,
the population undergoes the process described above to update the reference set.

The algorithm iterates on the reference set until a termination condition is verified. If the
recombination procedure (and the exchange procedure) are deterministic, a natural termination
condition is that the reference subset R did not change in the last iteration. In this case, in fact,
it will no longer change, and any further computation is useless. Additional mechanisms can,
however, turn this heuristic into a metaheuristic, allowing to apply the usual general termination
conditions.

10.2.1 The algorithm

10.2.2 Recombination procedure
The recombination procedure, that is a fundamental element of SS, depends on the specific
problem considered. However, it is usually based on the manipulation of the two subsets x
and y. Recombination procedures with more than two solutions are possible, but much less
common.

The basic idea is that the elements included in both x and y are likely to be good. Therefore,
in general, the recombined solution z is initialised with such elements:

z := x∩ y

Then, z is augmented adding elements from x \ y or y \ x. This can be done at random or with
a greedy selection criterion (that is limited to x \ y or y \ x, instead of working on the whole
of B \ z). The random approach turns the method into a metaheuristic, and allows to proceed
the search also in the case in which an iteration does not update the reference set (even if
relying only on this randomisation is not very promising: other diversification mechanisms are
advisable). The greedy approach is more likely to provide better solutions, but also more likely
to generate duplicates. As well, the augmentation step can draw elements alternatively from the
two sources (one from x, one from y, etc. . . and deciding where to start from is also a parameter)

263

264 RECOMBINATION METAHEURISTICS CHAPTER 10

Algorithm 20 Scatter Search Pseudocode
1: procedure SCATTERSEARCH(I,P)
2: B := /0
3: D := /0
4: repeat
5: Stop = true
6: for each x ∈ P do
7: z := SteepestDescent(I,x)
8: yB := argmax

y∈B
f (y)

9: yD := argmin
y∈D

dH(y,B∪D\{y})

10: if f (z)< f (yB) then
11: B := B\{yB}∪{z}
12: Stop := f alse
13: if f (z)< f (x∗) then
14: x∗ := z
15: end if
16: else
17: if d(z,B∪D\{yD})> d(yD,B∪D\{yD}) then
18: D := D\{yD}∪{z}
19: Stop := f alse
20: end if
21: end if
22: end for
23: P := /0
24: for each (x,y) ∈ B× (B∪D) do
25: P := P∪Recombine(x,y, I)
26: end for
27: until Stop = True
28: return (x∗, f (x∗))
29: end procedure

264

CHAPTER 10 10.2. SCATTER SEARCH 265

or freely from their union (x∪y)\ z. The alternate mechanism is probably appropriate when all
solutions have the same cardinality, but limit the search in the opposite case. The free approach
has a stronger risk to regenerate one of the two solutions, instead of a proper recombination. At
the end of the augmentation phase, in particular (but not only) if z is unfeasible, an auxiliary
constructive heuristic can be used to complete the solution with elements drawn from B\(x∪y)
or B \ z. If this is still insufficient to find feasible solutions, an auxiliary exchange heuristic,
called repair procedure, can be applied to modify z minimising the infeasibility, in an attempt
to obtain a feasible solution.

The definition of the auxiliary procedures and the different choices in the basic steps iden-
tifies several possible variants of the method. Let us consider some examples of recombination
procedures for different problems.

MDP The recombination might start setting z as the intersection of two given solutions

z := x∩ y

Since feasibility only requires to include k elements in the final solution, the recombination
procedure could augment z with k − |z| points chosen randomly or greedily, alternatively or
freely from x\ z and y setminusz. This is always possible: no repair procedure is required.

Max-SAT Given two solutions, that assign a value to each of the n logical variables, the
recombined solution z could be initialised as

z := x∩ y

and augmented with n− |z| truth assignments, chosen randomly or greedily, alternatively or
freely from x\ z and y\ z. No repair procedure is required.

KP Given two solutions, that are subsets of objects, the recombined solution z could be ini-
tialised as

z := x∩ y

and augmented choosing objects from x \ z and y \ z, randomly or greedily, alternatively or
freely, but always respecting the capacity constraint. Therefore, at some point one of the two
subsets could still contain potential elements while the other does not. No repair procedure is
required, but the final solution could still be improved adding objects taken from B\ (x∪ y).

SCP Given two solutions, that are subset of columns, the recombined solution z could be
initialised as

z := x∩ y

and augmented choosing columns from x \ z and y \ z, randomly or greedily, alternatively or
freely. It makes sense to avoid choosing redundant columns. At some point, it is possible
for one of the two subsets to contain potential elements while the other does no longer. No
repair procedure is necessary, but some redundant columns could be removed with a destructive
procedure.

265

266 RECOMBINATION METAHEURISTICS CHAPTER 10

10.3 Path relinking
The Path Relinking procedure, proposed again by Glover in 1989, is generally used as a final
intensification procedure, more than as a standalone method. The idea is to take pairs of solu-
tions and try to combine them, in a way that is intrinsically different from Scatter Search, using
exchanges moves, instead of construction moves.

Given an exchange heuristic and a neighbourhood N, a reference set R is built by collecting
the best solutions generated by the auxiliary heuristic. These promising solutions are called
elite solutions. For each pair of solutions x and y in the reference set R, a path from x to y is
built in the search space using the neighbourhood N applying to z(0) = x the auxiliary heuristic.
Instead of choosing at each step the best neighbour solution, the heuristic chooses the closest
one to the destination y:

z(k+1) := arg min
z∈N(z(k))

d(z,y)

where d is a suitable metric function on the solutions (usually, the Hamming distance); in case
of equal distance, the choise optimises the objective function f . Starting from the obtained
solution z(1), the process is repeated, exactly as in a local search algorithm: the neighbourhood
of the current solution is explore to select the element that is closest to the final solution. In
a connected search graph, a path x⇝ y certainly exists. In particularly complex cases, it is
possible, however, that no path from x to y allows to decrease the Hamming distance from y at
each step. In these cases the method fails (actually, such a path always exists visiting unfeasible
subsets: whether this makes sense must be discussed case by case). While building this path,
the best solution found is saved:

z∗xy := argmin
k

f (z(k))

possibly improved by an exchange heuristic and, if the result is not already in the reference set
R and is better than the worst reference solution, R is updated. As in SS, duplicate solutions are
forbidden.

Notice that the path thus built explores worsening solutions without the risk of a cyclic
behaviour, because the Hamming distance of z(k) from the final solution y is strictly decreasing
step by step. The length of each path is also clearly limited. Moreover, if we decide to visit also
unfeasible subsets, the monotone decrease of the Hamming distance guarantees that there is no
risk of getting lost in the unfeasible region: sooner or later feasibility will be regained (in the
worst case, when reaching the final solution). The unfeasible solutions visited are not useful in
themselves, but allow to open the way to improvements.

10.3.1 General scheme of Path Relinking
The general scheme of path relinking is reported in Algorithm 21. Given a starting population
of locally optimal solutions (generated as in SS), the algorithm checks all the pairs of solutions
(x,y), starting from x and building a path to y exploring the neighbourhood of the current solu-
tion z, finding the neighbour with smallest distance from y (and best objective value, to break
ties), and moving to that solution. The best solution found along the path is improved with
steepest descent and saved. If the result is not in the reference set, it is tested for insertion in the
reference set.

The paths explored in this way clearly intensify the search, because they connect good
solutions (as shown in Figure 10.1 (a)). Since, in general, they are different from the path
followed by the exchange heuristic, they can also diversify the search. This is especially true

266

CHAPTER 10 10.3. PATH RELINKING 267

Algorithm 21 Path Relinking Pseudocode
1: procedure PATH RELINKING(I,P)
2: while P ̸= /0 do
3: R := /0
4: for each x ∈ P, y ∈ P\{x} do ▷ Recombine to build new population
5: z := x
6: z∗ := x
7: while z ̸= y do ▷ Build a path from x to y
8: Z := arg min

z′∈N(z)
d(z′,y)

9: z̃ := argmin
z′∈Z

f (z′)

10: if f (z̃)< f (z∗) then
11: z∗ := z̃
12: end if
13: z := z̃
14: end while
15: if z∗ /∈ P then
16: z∗ := SteepestDescent(I,z∗) ▷ Improve the best solution from the path
17: R := R∪{z∗}
18: end if
19: end for
20: P := Rk ▷ Update the population
21: end while
22: return (x∗, f (x∗))
23: end procedure

when the extreme solutions x and y are far away, as shown in Figure 10.1 (b). The method does
not provide a clear tuning parameter to control these aspects.

(a) Intensification of the search. (b) Diversification of the search.

Figure 10.1: Execution of Path Relinking.

Variants of Path Relinking

There are several variants of Path Relinking. They usually modify rather secondary aspects of
the method: each other:

• backward path relinking: the path is not built from x to y, but from y to x (of course, if
all ordered pairs are considered, the method applies both the forward and the backward
path relinking algorithm).

267

268 RECOMBINATION METAHEURISTICS CHAPTER 10

• back-and-forward path relinking: this variant builds both paths, as in Algorithm 21.

• mixed path relinking: the path is built making alternate steps from each extreme, and
updating the destination: the first step moves from x towards y, finding z(1); the second
step moves from y towards z(1), finding z(2); the third step moves from z(1) towards z(2),
finding z(3); and so on.

• truncated path relinking: instead of building the whole path, the exploration terminates
after a few steps (this happens when knowledge about the problem suggests that solutions
far away from x and from y will not be promising);

• external path relinking: instead of moving from x to y, the algorithm still uses y as a
reference solution, but moves in the opposite direction, from x far away from y, max-
imising the distance (this happens when knowledge about the problem suggests that good
solutions tend to be far away from each other).

10.4 Genetic algorithms
The Genetic Algorithms (GA) were originally proposed by Holland in 1975, but they now
form a wide family of methods. Such methods belong to the class of recombination algorithms
that make a heavy use of randomisation. A basic feature of genetic algorithms is that they are
encoding-based, meaning that they replace solutions with encodings.

10.4.1 Encodings
The idea of encoding-based algorithms is to define a function that transforms each solution
in a given solution space into a more compact object, named encoding or representation, that
belongs to a suitable space, through a procedure known as encoding operation. Figure 10.2
shows a typical case in which the encodings are strings of bits.

Figure 10.2: Representation of solution encoding.

The recombination algorithms of this family manipulate encodings, instead of solutions.
This means that after applying their operators have, the representation has to be decoded, in
order to retrieve the subset represented by each encoding, and determine whether it is a feasible
solution and what is its objective function value.

The distinction between solutions and encodings is not actually clear-cut. Any algorithm
that manipulates solutions must represent them with a suitable data structure. These data struc-
ture can obviously be considered as encodings themselves. So, the difference between solution
and encoding is often vague.

We know from Section 2.5.4 that problems have relations, that can be exploited to solve one
by attacking another. Historically, the original purpose of the encoding-decoding process was to

268

CHAPTER 10 10.4. GENETIC ALGORITHMS 269

introduce a level of abstraction that would allow to transform several different problems into a
more general one, that could be attacked by simple and general techniques, instead of studying
and solving each problem separately. It was a really ambitious idea that, unfortunately, does not
work, at least in its basic form.

10.4.2 General scheme of the genetic algorithm
The genetic algorithm (see the pseudocode in Algorithm 22) is based on the typical idea of
all recombination heuristics, to manipulate a population of solutions. The initial population
X (0) is obtained, as in the other recombination algorithms, randomly, with constructive heuris-
tics or metaheuristics, possibly improved by exchange heuristics or metaheuristics. Then, it is
iteratively subjected, generation after generation, to three fundamental steps:

1. selection: generate a new population starting from the current one;

2. crossover: recombine subsets of two or more individuals to generate new individuals;

3. mutation: modify single individuals.

Each phase can be implemented in different ways, that characterise the specific algorithm. An-
other fundamental feature that characterises the specific genetic algorithm is the encoding that
generates the objects manipulated by the three basic phases.

Algorithm 22 Genetic algorithm Pseudocode

1: procedure GENETICALGORITHM(I,X (0))
2: x∗ := arg min

x∈X (0)
f (x)

3: for g = 1 to ng do
4: X (g) := Selection(X (g−1))
5: X (g) :=Crossover(X (g))
6: xc := arg min

x∈X (g)
f (x)

7: if f (xc)< f (x∗) then
8: x∗ := xc
9: end if

10: X (g) := Mutation(X (g))
11: xm := arg min

x∈X (g)
f (x)

12: if f (xm)< f (x∗) then
13: x∗ := xm
14: end if
15: end for
16: return (x∗, f (x∗))
17: end procedure

10.4.3 Features of a good encoding
The performance of a genetic algorithm critically depends on the encoding adopted to represent
the solutions of the problem. The following properties should be satisfied by a good encoding
(with decreasing importance):

269

270 RECOMBINATION METAHEURISTICS CHAPTER 10

1. each solution should have at least an encoding, different from that of any other solution,
in a one-to-many, or at least one-to-one, relation (otherwise, there would be unreachable
solutions);

2. vice versa, each encoding should correspond to a feasible solution (otherwise, the popu-
lation would include useless individuals, that do not represent solutions, wasting time and
space);

3. each solution should correspond to the same number of encodings (otherwise, some so-
lutions would be unduly favoured: since mutation and crossover are stochastic operators,
the number of associated cases affects the probability to obtain each solution);

4. the encoding and decoding operations should be efficient procedures (otherwise, the over-
all algorithm will be inefficient);

5. small modifications to the encoding should induce small modifications to the solutions;
this property is known as locality: it allows to tune the operators controlling the amount
of intensification and diversification associated to the mutation and crossover operators
(otherwise, one cannot control whether they are “strong” or “weak”).

These conditions depend very much on the specific problem considered. Farewell, abstraction!
The first property listed above is nearly fundamental: unless a solution is clearly dominated,

it must have an encoding. The second property (all encodings should represent a solution), on
the contrary, is far from being general. On the contrary, it is quite typical that encodings produce
unfeasible subsets.

We remind that the feasible region X consists of subsets of the ground set B. Therefore,
it is a subset of its power set 2B, that contains all subsets of B. The subsets that are not in
X are unfeasible. More specifically, they can be unfeasible because they violate quantitative
constraints, or structural constraints. For example, a solution of the KP is unfeasible because
its volume exceeds the capacity of the knapsack; this is a quantitative constraint. A solution of
the BPP can be unfeasible for the same reason (the volume of the objects assigned to a con-
tainer exceeds its capacity) or because an object is assigned to multiple containers; this is a
structural violation. Quite often, the quantitative constraints are easier to repair when violated
(for example, removing some objects from the knapsack or moving them to another container).
Therefore, they can be relaxed, and the corresponding subsets can be considered acceptable dur-
ing the execution of an algorithm. Figure 10.3 shows the distinction between the feasible region
X , denoted as “feasible solution space”, a larger solution space that includes both the feasible
solutions and subsets that violate only the simpler quantitative constraints (often called “unfea-
sible solutions”), and the remaining part of 2B, that includes the strictly unfeasible subsets, not
denoted as solutions. For example, in the BPP, an assignment of objects to containers can be a
feasible solution (if it respects the capacities of the containers and assigns each object exactly
to one container), an unfeasible solution (if it assigns each object exactly to one container, but
exceeds some capacities) or an unfeasible subset (if some objects are not assigned, or assigned
to multiple containers).

The concept of unfeasible solution is an abuse of expression, but it makes sense, because
it is possible to build encodings that guarantee to respect some constraints, but not all of them.
The corresponding subsets will be solutions, even if not necessarily feasible solutions.

It must be noticed that the distinction between quantitative and structural constraints is
largely conventional. In fact, structural constraint can always be reinterpreted as quantitative
by introducing suitable auxiliary functions. For example, the number of containers to which

270

CHAPTER 10 10.4. GENETIC ALGORITHMS 271

Figure 10.3: Representation of the map between encoding space and power set of the ground
set.

each object is assigned is a function that should always assume value 1: if it is too small or
too large, the constraint is violated. However, there is usually an intuitive distinction between
a constraint that is naturally described as quantitative and a constraint that is modelled as such
with some additional function.

In the following, we consider the three most common ways to define an encoding for the
solutions of a combinatorial optimization problem.

Encodings: the incidence vector

Since the solutions of a combinatorial optimization problem are subsets of a ground set, the
most natural kind of encoding is the incidence vector, that is a binary vector ξ ∈ B|B| defined as{

ξi = 1 i ∈ x
ξi = 0 i /∈ x

Let us consider some examples, and briefly discuss whether in each case the basic properties
listed above are satisfied.

In the KP, a generic binary vector corresponds to a set of objects. It is not necessarily
feasible, because its total volume could exceed the capacity. One could define it as an unfeasible
solution, anyway.

In the SCP a generic binary vector corresponds to a set of columns. In general, it could leave
uncovered rows. This looks more like the violation of a structural constraint, even if the number
of columns covering a row can, of course, be measured to check if it is violated by defect.

In the PMSP and in the BPP, a generic binary vector corresponds to a set of assignments of
tasks (objects) to machines (containers). In both problems, the structural constraint that exactly
one assignment must be made for each task, or object, could be violated. In the BPP, also the
quantitative constraint related to the capacity of each container could be violated.

In the TSP, a generic binary vector corresponds to a subset of arcs. In general, it is quite
unlikely that such arcs form a Hamiltonian circuit, so most vectors will not correspond to solu-
tions.

In the CMSTP (VRP) a generic binary vector corrsponds to a set of edges (arcs), but most of
the time it will not form a spanning tree (spanning set of disjoint circuits based on the depot); if
it does, it will probably exceed the capacity of some branch, or vehicle.

Encodings: symbol strings

In many problems, the ground set is partitioned into disjoint components

B =
⋃
c∈C

Bc with ∀c ̸= c′ Bc ∩Bc′ = /0

271

272 RECOMBINATION METAHEURISTICS CHAPTER 10

and the feasible solutions must contain exactly one element from each component

∀c|x∩Bc|= 1

The components can correspond to objects, tasks, Boolean variables, vertices, nodes, etc. . . so
that the solution must contain one assignment for each object, task, etc. . .

An encoding for the solutions of these problems can be obtained defining, for each index
c ∈ C, an alphabet of symbols describing the possible elements of each component Bc. For
example, in the BPP, the components can be associated to the objects and for each object i a
symbol can be defined to describe each possible container in which the object can be put. In
this case, all components have the same alphabet, but if an object were compatible only with
some containers, the alphabets could be different from each other. Given the alphabets, a string
of symbols ξ can be built including a symbol from each alphabet: ξ ∈ B1 ×·· ·×B|b|, such that

∀c,ξc = α =⇒ x∩Bc = {(c,α)}

In other words, each symbol in the string describes an element of the solution. A solution
for the BPP, for example, can be represented by the sequence of names of the containers that
include the various objects, in the same order of the objects. For other examples, see the solved
exercises at the end of the chapter.

Encodings: permutations of a set

Another possible encoding for solutions is given by permutations of a given set (that is not nec-
essarily the ground set). In the TSP, for example, the feasible solutions are Hamiltonian circuits
(that is, subsets of arcs), but they can also be seen as permutations of nodes. A permutation of
the node set, therefore, is a natural encoding for the solutions of this problem.

Permutations can be used for every problem whose solution is a partition, by applying the
order-first split-second method described in Section 8.5. This representation is often biased, in
that different solutions correspond to different numbers of encodings, so that some are favoures
with respect to other ones.

Permutations can be used also for general problems, in which solutions are not explicitly
ordered, by using an auxiliary constructive algorithm. Each step of the algorithm selects an
element of the ground set that is an acceptable extension of the current set. The selection rule
can be based on the given partition. In the simplest case, given a permutation of the ground
set, the algorithm selects the first acceptable extension in the partition. For example, in the KP
a given permutation of objects can be used to decide which objects to insert in the knapsack,
skipping those that exceed the residual capacity. Every feasible solution has such an encoding
(actually, many). Each encoding corresponds to a feasible solution. The number of encodings
that correspond to the same solution is in generally not uniform. Just permute the objects in a
given solution and the objects out of it: the number of encodings is |x|! · (|O\ x|)!, that favours
the solutions with cardinality closer to |O|/2.

In more refined cases, the selection rule can combine a greedy criterium and a permutation.
For example, several constructive heuristics for the TSP first chose a node to insert, and then a
position in the circuit. The first choice can be based on a given permutation, while the second is
based on the objective function, as usual. In this case, each encoding corresponds to a feasible
solution, though probably some encodings correspond to the same solution, and their number is
not uniform. Moreover, it is not guaranteed a priori that all solutions have an encoding. On the
other hand, combining the representation of solutions with the selection could be an advantage,
focusing the search on better solutions. If we could prove (or at least reasonably assume) that

272

CHAPTER 10 10.4. GENETIC ALGORITHMS 273

at least one globally optimal solution have such an encoding, that could be justify the adoption
of this encoding. In these cases, the choice of the set to permute is not obvious: when there is
more than one, we could permute each of them (for example, in the BPP objects or containers).

10.4.4 Selection
We now consider the first of the three phases of the method. At each generation, the previous
population X (g−1) must be transformed in the current population X (g). This is done by extracting
np = |X (g)| individuals from the current population X (g−1):

X (g) := Selection(X (g−1))

The extraction is based on a random mechanism following two basic principles:

1. an individual can be extracted more than once;

2. better individuals are extracted with higher probability.

ϕ(ξ)> ϕ(ξ ′) =⇒ πξ ≤ πξ ′

where ϕ(ξ) is the quality of a solutions (called fitness).

Let us represent the decoding process, that turns an encoding back into the original solution
as a function x(ξ). For a maximization problem, commonly

ϕ(ξ) = f (x(ξ))

while for minimization problems

ϕ(ξ) =UB− f (x(ξ))

where UB≥ f ∗ is a suitable upper bound on the optimum. Of course, the choice of UB can influ-
ence the values of the probabilities. Notice that it is also possible to define ϕ(ξ) =UB/ f (x(ξ))
(as in the Ant System), but this produces numerical issues for problems in which f has large
values and distorts in a nonlinear way the relation between objective value and fitness.

Three main mechanisms have been proposed to map fitness to probability.

Proportional selection

The original scheme proposed by Holland in 1975 assumed a probability proportional to the
value of fitness:

πξ =
ϕ(ξ)

∑

ξ∈X (g−1)
ϕ(ξ)

This is named roulette-wheel selection (or spinning wheel selection). In order to implement
this scheme, one must compute the fitness for every individual in the population, build the
partial sums

Γi =

(
i−1

∑
k=1

πξi,
i

∑
k=1

πξi

]
which takes O(np) time, then extract a random number r ∈U(0,1] and choose an individual i∗

such that r ∈ Γi∗ , which takes O(lognp) time. The idea is that number r “lands” in one of the
intervals, that is selected.

Figure 10.4 shows an example in which 4 individuals compose a population and random
number r = 0.78 points to the interval containg r, that is A4.

273

274 RECOMBINATION METAHEURISTICS CHAPTER 10

Figure 10.4: Roulette wheel selection.

Rank selection

The proportional selection mechanism has two problems. The first one is stagnation: in the
long term all individuals tend to have a good fitness, and therefore similar selection probabili-
ties. The second problem is that when the population contains some bad individuals and a lot
of very bad individuals (for example, in the first generations after a random initialisation), the
difference between the two is so large that the selection quickly removes the very bad individ-
uals getting stuck with a bad population. In other words, sometimes the differences between
probabilities are too small, and sometimes too large. The scheme gives no control on this aspect.

A way to avoid these problems is to introduce a scheme guaranteeing that two probabilities
are neither too similar nor too different from each other. This is obtained creating a fixed
profile of decreasing probabilities, exactly as for the selection mechanism in GRASP. The rank
selection method consists in sorting the individuals by nondecreasing fitness

X (g) = {ξ1, · · · ,ξnp} with ϕ(ξ1)≤ ·· · ≤ ϕ(ξnp)

and assigning to each individual a probability linearly increasing with its position

πξ j =
k

n
∑

k=1
k
=

2k
np(np −1)

This can be computed in O(np) time, as sorting the values of fitness is not actually required:
given a random number r, one can compute the corresponding selected index k(r) and apply
the linear-time algorithm that finds the k-th element in a set of numbers. The method is slower
than proportional selection (due to the multiplying constants), but has the advantages described
above. In addition, it does not require to define a fitness function: only a total order relationon
solutions must be introduced.

Tournament selection

An efficient scheme consists in extracting np random subsets X̄1, · · · , X̄np of size α , and select
the best individual from each subset:

ξk := argmax
ξ∈X̄k

ϕ(ξ),k = 1, · · · ,np

This is done in time O(npα). The parameter α tunes the strength of the selection: α ≈ np it
favours the best individuals, while α ≈ 2 leaves large chances to the bad individuals, always
removing only the worst.

274

CHAPTER 10 10.4. GENETIC ALGORITHMS 275

All selection schemes discussed above admit an elitist variant, which includes in the new
population the best individual of the current one. Of course, also the nonelitist variants save the
best individual to return it in the end, but they do not feed it to the other operators.

10.4.5 Crossover

The crossover operator derives from a biological methaphor: the chromosomes of living beings,
that are sequences of DNA encoding the features of the individual, sometimes cross each other
and “exchange” part of their material during reproduction. In the end, this gives rise to two
different individuals that possess part of the genetic code of each of the two parents. This can
be easily simulated with the encoding of solutions, and implements the characteristic concept of
recombination algorithms, that solutions should be recombined, taking the good parts of several
ones in order to build better solutions.

The crossover operator combines k ≥ 2 individuals generating other k individuals. Most of
the time, k = 2, but this is not required. Its basic variant (simple crossover) extracts a random
position p in the encoding, usually with uniform probability, splits the encodings of the two
individuals in two parts corresponding to position k, and switches the parts. In Figure 10.5 (a),
the two parents are split between the fifth and sixth symbol and two children encoding are built
merging the first part of the black individual with the second part of the red individual and the
first part of the red individual with the second part of the black individual.

(a) Simple crossover (b) Double crossover

Figure 10.5: Crossover.

This behaviour can be generalized introducing multiple splits. For example, the double
crossover randomly extracts two positions, splits the encodings into three parts and exchange
the extreme parts of the encodings of the two parents individuals, generating two children as
shown in Figure 10.5 (b).

Generalizing, the α-points crossover extracts α points at random with uniform probability
and splits the two encodings into α+1 parts, exchanging the odd parts of the encodings between
the two individuals.

Bias

For small values of α , this kind of crossover suffers from a positional bias: symbols that are
close in the encoding tend to remain close. For example, consider a KP with the incidence
vector representation (strings of n bits equal to 1 if the object is inside the knapsack, 0 if it is
outside). Suppose that one individual includes objects i and j, whereas another does not include
them. The children generated by crossover can include both objects, none of them, or only
one. The children of this last group, however, require some of the α positions selected (an odd
number, to be precise) to fall between indices i and j. If j = i+ 1, this is very unlikely; if, on
the contrary, j = n and i = 1, this is very likely. Therefore, some pairs of objects tend to stay
together, whereas other pairs tend to be separated. Since the indices of objects are arbitrary, this
is not justified.

275

276 RECOMBINATION METAHEURISTICS CHAPTER 10

To cancel this bias, one can adopt the uniform crossover scheme, that is less influenced by
the biological analogy. This scheme first builds a random binary vector m, called mask, made
of bits uniformly extracted from {0,1} (so m ∈ U(Bn)). Then, the mask is applied to the two
parent individuals: if mi = 1, the symbols in position i of the two individuals are exchanged; if
mi = 0, they remain unchanged.

Figure 10.6: Uniform crossover.

Figure 10.6 represents this mechanism: the first position of the mask contains a 1, so the
black and red bits in the first position are exchanged (in this case, they are both equal to 1, so
nothing changes). The second position of the mask contains a 0, so no exchange occurs and
the symbol in the second position of the two children is the same as in their parents, and so on.
This destroys the positional bias because the fact of keeping two elements together or separated
depends on the values of two random bits in the mask, and on their positions in the encodings.

Crossover versus Scatter Search and Path Relinking

The crossover operator is strictly related to the recombination phase of SS and PR. It certainly
plays the same role as the characterising element of the recombination algorithms. There are,
however, important differences:

1. the crossover recombines the symbols of the encodings, instead of

• recombining elements of the solutions (SS)

• exchanging elements in and out of intermediate solutions (PR)

2. the crossover operates on the whole population of current solutions, instead of a selected
reference set R;

3. the crossover operates on random pairs of individuals, instead of methodically scanning
all pairs of solutions of R;

4. the crossover generates a pair of new individuals, instead of

• generating a single intermediate solution (SS)

• visiting intermediate solutions and choosing one (PR)

5. the new individuals enter the new population, instead of becoming candidates for the
reference set.

These differeces can be more or less pronounced, based on the encoding used and the imple-
mentation of the crossover.

276

CHAPTER 10 10.5. THE FEASIBILITY PROBLEM 277

10.4.6 Mutation
The mutation operator modifies an individual to generate a similar one by scanning the encoding
ξ one symbol at a time and deciding, with probability πm, whether and how to modify that
symbol. Small values of probability πm intensify the search, while large values diversify it.

The kind of modification depends on the encoding. For binary encodings, the only possible
modification is a flip, replacing ξi with its complementary value ξ ′

i := 1 − ξi, as shown in
Figure 10.7.

Figure 10.7: Mutation.

When the encoding is a string of symbols, usually each modified symbol ξc is replaced by
another one, ξ ′

c, uniformly chosen at random in Bx \ {ξc}. In the case of permutations, things
are more complex, because the basic structure of the permutation (one different element for
each position) must be preserved. A typical approach is to select two random elements in the
permutation and exchange them (swap), possibly reversing (or not) the stretch between them.

Mutation and exchange heuristics

The mutation operator are strong similarities with the moves of exchange heuristics. They
play a similar role: applying minor modifications to a single solution. In fact, quite often
mutation operators coincide with the operations used to define neighbourhoods. For example,
if a TSP solution is represented by a permutation of nodes, exchanging two random positions
and reversing the entire stretch inbetween is equivalent to a 2-opt exchange. Not reversing the
stretch is equivalent to a swap of two nodes.

Also in this case, the relation can be more or less strict, based on the encoding used and the
implementation of mutation, but some basic differences remain:

1. the mutation modifies an encoding, instead of a solution;

2. the mutation operates on random positions in random ways, instead of systematically
exploring a set of moves;

3. the mutation operates on a random number of symbols, instead of a fixed number of
elements in the solution.

10.5 The feasibility problem
So far, we have always avoided to operate on unfeasible subsets. Even in constructive heuristics,
that usually require to handle such subsets in order to reach a final feasible solution, we have
introduced the basic concept of acceptable extension, based on the principle that the current
subset should not forbid (and possibly should guarantee) to reach a feasible solution. Checking
whether or not a subset is feasible, or at least a step towards a feasible solution is a decision
problem, that can be called the feasibility problem.

This basic requirement could actually be relaxed, provided that the possibility to get back
to feasible solutions is not completely destroyed, but doing that implies facing a number of
complex problems.

277

278 RECOMBINATION METAHEURISTICS CHAPTER 10

In recombination algorithms, in particular those that make heavy use of randomisation, the
existence of unfeasible subsets becomes so important that one can no longer ignore it. We
now discuss the problems that derive from accepting in a population what we have already
defined as “unfeasible solutions”, that is unfeasible subsets that satisfy some basic structural
constraint, but violate easier quantitative constraints (keeping in mind that this distinction is
largely conventional). The discussion can be applied also to exchange heuristics, relaxing the
definition of neighbourhood to include unfeasible solutions and allow the algorithm not only to
explore, but also to visit them.

The encoding functions of genetic algorithms are often not invertible, meaning that there are
feasible encodings, that correspond to feasible solutions, and unfeasible encodings, that cor-
respond to legal, but unfeasible solutions. The crossover and mutation operators often generate
unfeasible encodings.

This implies several disadvantages:

1. inefficiency: computational time is lost handling useless subsets;

2. ineffectiveness: the algorithm explores less solutions;

3. design problems: the fitness function must be defined on unfeasible subsets, as well.

There are three main approaches to face these problems. The first one is to use special
encodings and operators that allow to avoid or, at least, limit the problem. The second approach
is to use repair procedures. The third one is to use penalty functions to accept infeasibility, but
heavily discourage it.

10.5.1 Special encodings and operators
The idea is to investigate encodings that nearly always yield feasible solutions. This was already
discussed while introducing the families of encodings. The incidence vector, for example, often
yields unfeasible encodings, whereas the strings of symbols avoid some structural infeasibili-
ties. Permutation encodings, using the order-first split-second approach as a decoding procedure
for partition problems such as CMSTP and VRP guarantee feasibility. Permutation encodings
with an auxiliary constructive heuristic to decode them is common in scheduling problems, such
as the PMSP.

Alternatively, crossover and mutation operators can be designed so as to maintain feasibility.
For example, in the TSP mutation operators can simulate k-opt exchanges. These methods tend
to closely approximate the operators on which the concept of neighbourhood is based. This
has clear advantages, as it focuses on the specific problem, while giving up the original idea of
abstraction purported by classical genetic algorithms.

10.5.2 Repair procedures
A repair procedure xR(ξ) is an algorithm that receives an encoding ξ such that the decoding
procedure yields an unfeasible subset x(ξ) /∈ X , and returns a feasible solution xR ∈ X . Such
a procedure can be applied to each unfeasible encoding ξ ∈ X (g). In some approaches, the
repaired solution is encoded again, obtaining ξ (xR(x(ξ))), that replaces ξ in X (g): thus, the
population is maintained fully feasible.

In other approaches, the unfeasible encoding ξ is kept in the population and the repaired
solution xR(ξ) is used only to update the best known result, not to modify the population, that
includes both feasible and unfeasible encodings.

278

CHAPTER 10 10.5. THE FEASIBILITY PROBLEM 279

The first family of approaches introduces a strong bias in favour of feasible encodings, in
particular of the specific feasible solutions that are easier to obtain with the repair procedure.
This probably reduces the diversity of the population, possibly generating many duplicate indi-
viduals. On the other hand, it intensifies the search.

10.5.3 Penalty functions
The third approach to deal with unfeasibility is to introduce penalty functions. In this case,
instead of avoiding unfeasibility or translating it into feasibility, one simply accepts unfeasibility
while highly discouraging it through the selection operator. If the objective function is extended
to unfeasible subsets x ∈ 2B \X (a point already discussed in Section 2.1.3), the fitness function
ϕ(ξ) automatically extends to any encoding. The problem is that many unfeasible subsets have
a fitness larger than the optimal solution. For example, a solution of the KP that exceeds the
capacity of the knapsack often has a value higher than a solution that respects it. Hence, the
selection operator tends to favour such unfeasible subsets!

To avoid this situation, the fitness function must combine the objective value f (x(ξ)) with
a measure of unfeasibility ψ(x(ξ)) such that{

ψ(x(ξ)) = 0 x(ξ) ∈ X
ψ(x(ξ))> 0 x(ξ) /∈ X

Quite frequently, the constraints of a problem are expressed by equalities or inequalities. In
these cases, ψ(x) can be defined as a weighted sum of the violations of such constraints. The
problem now is how to tune the weights, in particular whether to make them fixed, variable
according to a fixed profile, or adaptively variable depending on the results of the algorithm.

Definition of the fitness function

The simplest way to combine objective and penalties is the absolute penalty, that is mainly
suitable for the rank and tournament selection schemes, since they only require to compare
pairs of solutions (and possibly sort them). Given two encodings, ξ and ξ ′, if both are feasible,
the one with smaller f is better; if exactly one is feasible, the feasible one is better than the
other; finally, if none is feasible, the one with the smaller value of the penalty ψ is better than
the other. The proportional selection, that requires to assign a numerical value to the penalty,
can be implemented considering only the feasible encodings and their objective values. If none
exists, it can be implemented using the values of the penalty function.

Another approach is the use of a proportional penalty, where the fitness is a linear combi-
nation of the objective (with a positive sign for maximisation problems and a negative sign for
minimisation ones) and the penalty (with a negative sign):

ϕ(ξ) =

{
f (x(ξ))−αψ(x(ξ))+UB for maximisation problems
f (x(ξ))−αψ(x(ξ))+UB for minimisation problems

where the offset UB guarantees that ϕ(ξ) ≥ 0 for all encodings. Of course, its specific value
influences the results: the larger it is, the smoother the difference of probabilities between good
and bad solutions.

Since objective and penalty have different units of measure, the coefficient α is a conversion
coefficient, which must be tuned somehow, beside being a relative weight of the unfeasibility
with respect to the cost. Moreover, since several constraints can be given, the penalty function

279

280 RECOMBINATION METAHEURISTICS CHAPTER 10

ψ(·) itself can be a linear combination of specific terms, with weights that describe both the
conversion between units of measure and the relative importance of the different terms.

A third approach, that does not require coefficients, adopts a penalty based on repair:
the fitness of an unfeasible encoding is given by the fitness of the feasible solution obtained
repairing the unfeasible set that corresponds to the encoding:{

f (xR(ξ) for maximisation problems
UB− f (xR(ξ)) for minimisation problems

In general, in fact, f (xR(x(ξ)))≥ f (x(ξ)).

Proportional penalty functions: weight tuning

Experimentally, it is better to assign penalties the smallest effective value. If the penalty is too
large, in fact, the search is confined within a part of the feasible region. On the other hand, if
the penalty is too small, once the search enters the unfeasible region of the solution space, it
might never get out of it, because many unfeasible subsets have very good values of fitness. So,
too few feasible solutions are found.

A method proposed by Glover, called strategic oscillation, suggests that the search should
repeatedly cross the boundary between the feasible and the unfeasible region, oscillating be-
tween feasible and unfeasible solutions. This is thought for problems whose search space has
a complex shape, with many adjacent feasible and unfeasible solution, so that visiting the un-
feasible ones can be the quickest and easiest way to to reach other feasible solutions, whereas
paths fully made of feasible solutions should be long and devious.

The problem is deciding how much to step inside the unfeasible region: this requires a good
tuning of parameter α (and of the different weights of the components of the unfeasibility ψ(x),
if there are many).

The dynamic methods modify parameter α during the execution obeying a fixed rule in
time, as the temperature decrease in SA. In that case, the aim was to diversify the search initially
and intensify it later. The same aim can be obtained progressively increasing α , so that at first
the search can freely visit the unfeasible region, and, as time goes by, it gets back to the feasible
region.

The adaptive methods tune α adaptively depending on the current situation and the recent
results, as the tenure in the adaptive TS. The parameter, could be increased when unfeasible
encodings dominate the current population, in an attempt to reduce them and avoid losing time;
α could be decreased when feasible encodings dominate, and the visit of unfeasible encoding
could introduce a useful diversification.

Finally, the evolutionary methods encode the value of α in each individual, so that dif-
ferent individuals behave in different ways with respect to unfeasibility and evolve different
behaviours generation after generation. The method, then, does not refine only the solutions,
but also the parameters of the algorithm. The capacity of evolving is sometimes called evolv-
ability).

10.6 Other recombination metaheuristics approaches

10.6.1 Memetic algorithms
An approach strongly related to genetic algorithms is provided by the memetic algorithms.
These are inspired by the concept of meme, coined by Richard Dawkins in 1976 and extended

280

CHAPTER 10 10.6. OTHER RECOMBINATION METAHEURISTICS APPROACHES 281

to algorithmics by Moscato in 1989. The idea is that the cultural evolution of ideas follows,
somehow, lines similar to the evolution of genetic characters, with operators similar to selection,
crossover and mutation, but with a basic difference: individuals can change their ideas, besides
inheriting them. This yields a sort of Lamarckian evolution in which the memes are not only
selected, destroyed or modified blindly, but can also be modified with a purpose some reason
inside the individuals who propagate them.

Outside the metaphor, memetic algorithms combine genotypic operators that manipulate the
encodings, such as crossover and mutation, and phenotipyc operators that manipulate the solu-
tions, such as local search. In short, the solutions are improved with exchanges and reencoded.
Of course, this can be done in many different ways, with parameters that determine how to
apply local search, how often (at every generation or after a while), to which individuals (all
of them, the best ones, the most diverse ones), for how long (until a local optimum is found,
stopping in advance, proceeding after local optima) and with what method (steepest descent,
VNS, TS, and so on).

10.6.2 Evolution strategies
The evolution strategy, proposed by Rechenberg and Schwefel in 1971, was not originally
designed for combinatorial optimization problems, but to engineering design problems, such as
the design of engines. These problems have a number of real parameters and are really hard to
solve using optimization algorithms. The idea was to start from a possible design, estimate by
simulation how good it is, and modify it slightly to see if a better model could be found. This
can be done not necessarily with a steepest descent algorithm, and even allowing worse designs
to get out of local optima. The idea was later extended to combinatorial optimisation.

The evolution strategy encodes solutions into real vectors (vectors of real numbers). It
maintains a population of µ such individuals (typically of a smaller size than the typical popu-
lation of genetic algorithms; in fact, originally, µ = 1). These individuals generate λ candidate
descendants with a mutation operator that adds to each real number in the given encoding a
disturbance, that is a random value distributed according to a normal distribution with average
0 and variance σ :

ξ
′ := ξ +δ with δ ∈ N(0,σ)

The new vectors ξ ′ form a population of descendants; the original individuals and the descen-
dants compete to build the population of the next generation:

• in the (µ,λ) strategy the best µ descendants replace the original population, even if some
are dominated;

• in the (µ +λ) strategy the best µ individuals overall (predecessors or descendants) sur-
vive in the new population.

The crossover operator was not used in the original method, but it can be added as a postpro-
cessing procedure.

281

282 RECOMBINATION METAHEURISTICS CHAPTER 10

10.7 Exercises

Note: Some of the following exercises require to propose an encoding for combinatorial op-
timisation problems, and to discuss its possible advantages and disadvantages, along the lines
introduced in Section 10.4.3. In principle, the binary encoding, that is a vector of bits associ-
ated with the elements of the ground set B, is always possible. Proposing it and showing it is
a good encoding is an acceptable answer. It is insufficient to simply propose it and state that it
is bad, even explaining why, because the reason is nearly always the same: most encodings are
unfeasible. In the following answers, however, we will discuss all the available options, for the
sake of completeness and to show that in general different answers are acceptable.

10.7.1 Exercise 1

Propose an encoding for the SCP problem, discussing whether it satisfies well or not the basic
requirements listed in the lecture notes.

Solution Given an instance of the SCP, with m rows and n columns, the binary encoding is,
of course, always possible for any solution. Most of the time, a binary vector corresponds to
an unfeasible solution, because it leaves uncovered rows. It is therefore not a very promising
encoding.
Strings of symbols do not seem to be a particularly natural encoding.
A permutation of columns could be used with the following encoding, based on an auxiliary
constructive heuristic: instead of selecting at each step the column that minimises the ratio
of the cost and the number of additional covered rows, we can select the first column in the
partition that covers at least one additional row. This is equivalent to select the first column in
the partition and add it to the solution if it covers additional rows or simply removing it, if it
does not. This always provides a feasible solution (if any exists). It could produce redundant
solutions, that could be processed by a destructive postprocessing algorithm. The number of
solutions that correspond to each encoding is probably different (proving it would require an
example, but solutions of a size closer to n/2 tend to correspond to more encodings, thanks to the
permutations of the internal and the external columns). The encoding of a solution takes O(n)
time. The decoding procedure take O(mn) time, because each column is evaluated marking the
covered rows and, if accepted, updating the marks.

10.7.2 Exercise 2

Propose an encoding for the Max-SAT problem, discussing whether it satisfies well or not the
basic requirements listed in the lecture notes.

Solution A binary vector on the pairs (variable,value) is not reasonable, as most of the encod-
ings correspond to unfeasible solutions, violating the structural constraint that the assignment
must be complete and consistent.
A string of n Boolean values, one for each logical variable, providing the corresponding logical
value creates a one-to-one correspondence between solutions and encodings. It can be equiva-
lently seen as a binary vector, or a string of binary symbols. Both the encoding and decoding
procedures take linear time in the number of variables.

282

CHAPTER 10 10.7. EXERCISES 283

Permutations do not seem to be a particularly natural encoding.

10.7.3 Exercise 3

Propose an encoding for the PMSP problem, discussing whether it satisfies well or not the basic
requirements listed in the lecture notes.

Solution A binary vector on the pairs (task,machine) is not reasonable, as most of the encod-
ings correspond to unfeasible solutions, violating the structural constraint that each task must
be assigned to exactly one machine.
A string of n machine labels, one for each task, provides a one-to-one correspondence between
solutions and encodings. Both the encoding and decoding procedures take linear time in the
number of elements.
A permutation of tasks can be used with the following encoding, based on an auxiliary con-
structive heuristic: each task is assigned to the machine that yields the smallest completion time
(with some additional rule to manage ties). This always provides a feasible solution. The num-
ber of solutions corresponding to each encoding is probably different (proving it would require
an example. Let n be the number of tasks and m the number of machines. The decoding pro-
cedure takes O(mn) time, because each task is assigned evaluating the completion time. The
encoding of a solution is not trivial, because it is not obvious how to permute the tasks so as to
obtain it. Is it actually required to encode solutions2?

10.7.4 Exercise 4

Propose an encoding for the VRP problem, discussing whether it satisfies well or not the basic
requirements listed in the lecture notes.

Solution A binary vector is not reasonable, neither on the arcs nor on the pairs (node,vehicle):
most of the encodings correspond to unfeasible solutions. In the former case, they do not form
circuits, in the latter they do not assign nodes to exactly one vehicle.
A string of symbols associated to vehicles, one for each task, provides an encoding that satisfies
the structural constraint that each node is assigned to exactly one vehicle, but it can violate
the capacity of the vehicles. While computing the encoding of a solution is easy, the decoding
procedure requires to solve a TSP on each vehicle. Doing it heuristically is a possibility.
A permutation of nodes can be used with the order-first split-second method to decode in time
proportional to the number of arcs of the auxiliary graph (possibly O(n2), where n is the number
of nodes). If a feasible solution compatible with the permutation exists, the method finds it. The
encoding of a solution is not trivial: one can sort somehow the vehicles and the nodes assigned
to each vehicle, but this does not guarantee that the corresponding solution is the original one.
Is it actually required3?

2My answer is probably not, apart from the generation of the starting population, but I have not yet thought
about this point.

3My answer is probably not, apart from the generation of the starting population, but I have not yet thought
about this point.

283

284 RECOMBINATION METAHEURISTICS CHAPTER 10

Encodings based on auxiliary constructive heuristics can also be used, drawing inspiration from
the TSP heuristics, but with a feasibility check on the capacity of the vehicles. These are not
guaranteed to find a feasible solution, even if one exists, because the greedy choice of the
insertion point could be incorrect. The complexity depends on the specific heuristic adopted.
The encoding of a solution is not trivial, because it is not obvious how to permute the tasks so
as to obtain it. The same question as above can be posed.

10.7.5 Exercise 5

Propose an encoding for the TSP problem, discussing whether it satisfies well or not the basic
requirements listed in the lecture notes.

Solution A binary vector on the arcs of the graph is not reasonable, because most of the
encodings violate the constraint of forming a Hamitonian circuit.
A string of symbols could associate to each node the index of the following one (or the pre-
vious one, equivalently). Unfortunately, this also does not guarantee to respect the structural
constraints of the problem.
A permutation of nodes is the most natural encoding: in a complete graph, each encoding
corresponds to a feasible solution and each solution corresponds to n encodings (the cyclic
permutations) or to a single one, if we fix a conventional starting node. Encoding or decoding a
solution takes linear time in the number of elements.
Another permutation that could be used is the permutation of the first n positive numbers, asso-
ciating each node to its position in the Hamiltonian circuit. The properties are the same as for
the previous permutation.

10.7.6 Exercise 6

Consider the following instance of the Capacitated Minimum Spanning Tree (CMST) problem,
that is a complete graph (the edges are not reported for the sake of clarity) with 5 vertices of
unitary weight wv = 1 for all v ∈ {a,b,c,d,e}, a root vertex, capacity V = 2.

r

a b

c d e

and the following cost matrix

284

CHAPTER 10 10.7. EXERCISES 285

r a b c d e
r - 14 11 25 26 24
a 14 - 15 13 16 27
b 11 15 - 15 12 18
c 25 13 15 - 14 20
d 26 16 12 14 - 10
e 24 27 18 20 10 -

Given solutions

• x′ = {(r,a),(r,b),(r,d),(b,e),(c,d)}

• x′′ = {(r,a),(r,b),(r,e),(a,d),(b,c)}

apply the following recombination procedures:

a) alternated greedy extraction based on Kruskal’s algorithm (cheapest edge not inducing cy-
cles or unfeasible trees) starting from x′;

b) alternated random extraction with uniform probability assuming the pseudorandom number
sequence 0.1,0.6,0.8,0.5,0.3.

Solution The following picture represents the two given solutions.

r

a b

c d e

f (x′) = 83

14

11
26

14

18

r

a b

c d e

f (x′′) = 80

14

11

24
16

15

Both recombination procedures suggest to start from z(0) = x′∩ x′′ = {(r,a),(r,b)}.

Part a) The alternate greedy recombination considers as acceptable all edges that produce
forests (no cycles) whose trees have weight not larger than V = 2, and that belong, respec-
tively, to x′ \ z(t) in the odd iterations and to x′′ \ z(t) in the even iterations. Consequently, the
operations comply with the following sequence:

1. start from z(0) = x′∩ x′′ = {(r,a),(r,b)};

r

a b

c d e

z(0) = x∩ x′ ⇒ f (z(0)) = 25

14

11

285

286 RECOMBINATION METAHEURISTICS CHAPTER 10

2. all edges of x′ \ z(0) = {(r,d),(b,e),(c,d)} are compatible with the constraints (forests
with trees of weight ≥V = 2); add the cheapest one, that is (c,d);

Add Evaluation
(r,d) δ f = 26
(b,e) δ f = 18
(c,d) δ f = 14

now z(1) = {(r,a),(r,b),(c,d)}.

r

a b

c d e

z(1) = z(0)∪{(c,d)}⇒ f (z(1)) = 39

14

11

14

3. in set x′′ \ z(1) = {(r,e),(a,d),(b,c)} only edge (r,e) is compatibile with the constraints,
because (a,d) and (b,c) would yield trees of weight 3;

Add Evaluation
(r,e) δ f = 24
(a,d) Unfeasible (capacity)
(b,c) Unfeasible (capacity)

now z(2) = {(r,a),(r,b),(c,d),(r,e)}.

r

a b

c d e

z(2) = z(1)∪{(r,e)}⇒ f (z(2)) = 63

14

11
24

14

4. finally, in set x′ \ x = {(r,d),(b,e)} only edge (r,d) is compatibile with the constraints,
because (b,e) closes a loop; now z(3) = {(r,a),(r,b),(c,d),(r,e),(r,d)} is a feasible so-
lution.

286

CHAPTER 10 10.7. EXERCISES 287

r

a b

c d e

z(3) = z(2)∪{(r,d)}⇒ f (z(2)) = 89

14

11
26

24

14

Part b) The alternate random strategy extracts one edge from x′ and one from x′′ alternatively,
selecting it based on the given pseudorandom number sequence. If this generates an incomplete
solution, further edges from the overall graph must be added, possibly with a greedy construc-
tive heuristic. In the specific case:

1. start from z(0) = x′∩ x′′ = {(r,a),(r,b)};

r

a b

c d e

z(0) = x∩ x′ ⇒ f (z(0)) = 25

14

11

2. in x′ \ z(0) = {(r,d),(b,e),(c,d)} all edges are compatible with the constraints; we select
(r,d) because there are three alternatives and 0.1 selects the first one (the probabilities are
uniform);

Add Evaluation Cumulated probability
(r,d) δ f = 26 0.3̄
(b,e) δ f = 18 0.6̄
(c,d) δ f = 14 1.0

now z(1) = {(r,a),(r,b),(r,d)}.

r

a b

c d e

z(1) = z(0)∪{(r,d)}⇒ f (z(1)) = 51

14

11
26

287

288 RECOMBINATION METAHEURISTICS CHAPTER 10

3. in x′′ \ z(1) = {(r,e),(a,d),(b,c)} only the edges (r,e) and (b,c) are compatible with the
constraints because (a,d) would close a loop, and 0.6 selects the second one;

Add Evaluation Cumulated probability
(r,e) δ f = 24 0.5
(a,d) Unfeasible (cycle)
(b,c) δ f = 15 1.0

now z(2) = {(r,a),(r,b),(r,d),(b,c)}.

r

a b

c d e

z(2) = z(1)∪{(c,d)}⇒ f (z(1)) = 66

14
11

26

15

4. in x′ \ z(2) = {(b,e),(c,d)} no edge is compatible with the constraints, because (b,e)
would yield a tree with weight >V = 2 and (c,d) would close a loop;

Add Evaluation
(b,e) Unfeasible (capacity)
(c,d) Unfeasible (cycle)

the solution does not change: z(3) = z(2) = {(r,a),(r,b),(r,d),(b,c)}.

5. in x′′ \ z(3) = {(r,e),(a,d)} only edge (r,e) is compatible with the constraints because
(a,d) would close a loop; now z(4) = {(r,a),(r,b),(r,d),(b,c),(r,e)} is a feasible solu-
tion.

r

a b

c d e

z(4) = z(3)∪{(r,e)}= z(2)∪{(r,e)}⇒ f (z(1)) = 90

14

11
26

24

15

10.7.7 Exercise 7

Consider the following instance of the Parallel Machine Scheduling problem (PMSP) with
|M|= 3 machines:

288

CHAPTER 10 10.7. EXERCISES 289

Tasks a b c d e f g
Durations 8 6 7 12 5 13 10

Apply the recombination step of Scatter Search to solutions4 x = {{a,b,c},{d,e},{ f ,g}} and
x′ = {{a,b,g},{c,d},{e, f}} to generate a new solution, choosing the elements in a greedy
way, alternatively, first from x then from x′.

Do the same applying a random recombination with free choice of the elements from x and x′,
using the following sequence of pseudorandom numbers: 0.2, 0.9, 0.4, 0.1. . .

Assume that the subset of the best solutions consists only of x and x′ (B = {x,x′}), the subset of
the diverse solutions D consists of y= {{b,g},{a,d, f},{c,e}} and y′= {{a,e, f},{b,c},{d,g}},
that both are full and that the recombination phase generated solutions z= {{a, f},{b,e,g},{c,d}}
and z′ = {{b,c},{d,g},{a,e, f}}. Update the reference set R with the new solutions.

Solution At first, the procedure computes the intersection of the two solutions:

z(0) = x∩ x′ = {{a,b},{d},{ f}}

which implies the following total execution times for the three machines: (14,12,13).
The remaining objects are c, e and g. The greedy alternating procedure considers their assign-
ment in x and chooses the one that provides the best completion time:

• assigning c to the first machine implies f (z(0)∪{(c,1)}) = max(21,12,13) = 21;

• assigning e to the second machine implies f (z(0)∪{(e,2)}) = max(14,17,13) = 17;

• assigning g to the third machine implies f (z(0)∪{(g,3)}) = max(14,12,23) = 23.

The procedure selects (e,2), obtaining z(1) = {{a,b},{d,e},{ f}} with f (z(1)) = 17.
Now we consider the assignments of c and g in x′:

• assigning c to the second machine implies f (z(1)∪{(c,2)}) = max(14,24,13) = 24;

• assigning g to the first machine implies f (z(1)∪{(g,1)}) = max(24,17,23) = 24.

Since they are equivalent, we choose lexicographically the first, obtaining z(2)= {{a,b},{c,d,e},{ f}}
with f (z(2)) = 24.
Since there is a single remaining assignment, the last step considers the assignment of g in x
and obtains z(3) = {{a,b},{c,d,e},{ f ,g}} with f (z(3)) = max(24,17,23) = 24.

If we apply the random free procedure, we still start from the intersection z(0) = x ∩ x′ =
{{a,b},{d},{ f}}, with f (z(0)) = max(14,12,13) = 14. The remaining elements must be cho-
sen in

(x∪ x′)\ z(0) = {(c,1),(c,2),(e,2),(e,3),(g,1),(g,3)}

that is sorted lexicographically by convention. Pseudorandom number 0.2 suggests to select the
second term, (c,2). Now we could proceed keeping all pairs and neglecting those that have be-
come unfeasible, but they are so few that it is not complicated even by hand to remove them (and

4For the sake of briefness, we can represent the solutions of the PMSP also as a collection of |M| subsets of
tasks, instead of a subset of pairs (task,machine).

289

290 RECOMBINATION METAHEURISTICS CHAPTER 10

it is more correct). The new set of options is {(e,2),(e,3),(g,1),(g,3)}. Pseudorandom number
0.9 suggests to select the fourth term, (g,3), which leaves only {(e,2),(e,3)}. Finally, pseudo-
random number 0.4 suggests to select (e,2). The final solution is z(3)= {{a,b},{c,d,e},{ f ,g}}
with f (z(3)) = max(14,24,23) = 24.

The current subset B consists of two solutions costing f (x) = max(21,17,23) = 23 and f (x′) =
max(24,19,18) = 24. The current subset D consists of two solutions whose Hamming distances
from the other ones in the reference set and whose costs are:

dH(y,R\y) = dH(y,x)+dH(y,x′)+dH(y,y′) = 10+6+14 = 30 f (y) = max(13,33,12) = 33

and

dH(y′,R\y′)= dH(y′,x)+dH(y′,x′)+dH(y′,y)= 10+10+14= 34 f (y′)=max(26,13,22)= 26

The “worst” element of D (with respect to the distance) is, therefore, y.
Solution z has a value equal to f (z) = max(21,21,19) = 21, that is better than the worst in B,
since f (x′) = 24 (actually, it is also better than the best). Therefore, z replaces x′, yielding B =
{x,z}. In principle, this implies that the distances used in the diverse set should be recomputed:

dH(y,R\ y) = dH(y,x)+dH(y,z)+dH(y,y′) = 8+12+14 = 34

and

dH(y′,R\y′)= dH(y′,x)+dH(y′,z)+dH(y′,y)= 10+6+14= 30 f (y′)=max(26,13,22)= 26

The “worst” element of D (with respect to the distance) is, therefore, y′.
Solution z′ has a value equal to f (z′ = max(13,22,26) = 26, that is worse than the worst in B.
We therefore compute its distance from R\ y′, that is

dH(z′,R\ y′) = dH(z′,x)+dH(z′,z)+dH(z′,y) = 6+12+8 = 26

smaller than dH(y′,R\ y′). Therefore, D is unchanged.

10.7.8 Exercise 8

Consider the following instance of the Capacitated Minimum Spanning Tree (CMST) problem,
that is a complete graph (the edges are not reported for the sake of clarity) with 5 vertices of
unitary weight wv = 1 for all v ∈ {a,b,c,d,e}, a root vertex, capacity V = 2.

r

a b

c d e

and the following cost matrix

290

CHAPTER 10 10.7. EXERCISES 291

r a b c d e
r - 14 11 25 26 24
a 14 - 15 13 16 27
b 11 15 - 15 12 18
c 25 13 15 - 14 20
d 26 16 12 14 - 10
e 24 27 18 20 10 -

Given solutions

• x′ = {(r,a),(r,b),(r,d),(b,e),(c,d)}

• x′′ = {(r,a),(r,b),(r,e),(a,d),(b,c)}

apply a Path Relinking procedure from x′ to x′′ using the one-swap neighbourhood NS1 with
respect to the edges of the graph.

Solution The problem and the two starting solutions are the same as for the Scatter Search
exercise. In order to reduce the Hamming distance from the current solution x to the final one,
x′′, every exchange must:

• delete an edge from z\ x′′;

• add an edge from x′′ \ z.

At the first step, z(0) = x′ and the possible swaps require to:

• delete an edge from z(0) \ x′′ = {(r,d),(b,e),(c,d)};

• add an edge from x′′ \ z(0) = {(r,e),(a,d),(b,c)}.

The two extreme solutions are represented in the following picture.

r

a b

c d e

f (x′) = 83

14

11
26

14

18

r

a b

c d e

f (x′′) = 80

14

11

24

16
15

The possible swaps are evaluated in the following table.

291

292 RECOMBINATION METAHEURISTICS CHAPTER 10

Add Delete Evaluation
(r,d) Unfeasible (cycle and disconnection)

(r,e) (b,e) δ f = 24−8 = 16
(c,d) Unfeasible (cycle and disconnection)
(r,d) Unfeasible (capacity)

(a,d) (b,e) Unfeasible (cycle and disconnection)
(c,d) Unfeasible (cycle and disconnection)
(r,d) Unfeasible (capacity)

(b,c) (b,e) Unfeasible (cycle and disconnection)
(c,d) Unfeasible (capacity)

Since only swapping (r,e) and (b,e) is feasible and reduces the Hamming distance, the next
solution is z(1) = {(r,a),(r,b),(r,d),(r,e),(c,d)} and its cost is f

(
z(1)
)
= 89

r

a b

c d e

z(1) = x∪{(r,e)}\{(b,e)}⇒ f (z(2)) = 90

14

11
26

14

24

r

a b

c d e

f (x′′) = 80

14

11

24

16
15

The possible swaps from z(1) towards x′′ require to:

• delete an edge from z(1) \ x′′ = {(r,d),(c,d)};

• add an edge from x′′ \ z(1) = {(a,d),(b,c)}.

and are evaluated in the following table.

Add Delete Evaluation
(a,d) (r,d) Unfeasible (capacity)

(c,d) Unfeasible (cycle and disconnection)
(b,c) (r,d) Unfeasible (capacity)

(c,d) δ f = 15−14 = 1

The only feasible exchange yields z(2)= {(r,a),(r,b),(r,d),(r,e),(c,d)}, whose cost is f
(

z(2)
)
=

90.

r

a b

c d e

z(2) = z(1)∪{(b,c)}\{(c,d)}⇒ f (z(1)) = 89

14

11
26

24

15

r

a b

c d e

f (x′′) = 80

14

11

24

16
15

292

CHAPTER 10 10.7. EXERCISES 293

A final swap between (a,d) and (r,d) would allow to reach x′′, but this is not required because
that solution is already known.

The best solution found along the path is z(1), and it will be tested for insertion in the reference
set. Probably, it is not a very promising starting point for further search, but this is mainly due
to the very small size of the instance.

10.7.9 Exercise 9

Consider the following instance of the Parallel Machine Scheduling problem (PMSP):

Tasks a b c d e f g
Durations 6 4 5 10 3 11 8

Apply the Path Relinking mechanism from solution x = {{a,b,c},{d,e},{ f ,g}} to solution
x′ = {{a,b,g},{c,d},{e, f}} to generate new solutions and evaluate them, using as a basic
neighbourhood NS1 (that is, the swap between two tasks assigned to different machines). What
can be observed with respect to the objective function?

Solution The PR procedure considers only the exchanges on solution x that reduce the Ham-
ming distance from solution x′. Since there are three tasks assigned to different machines, the
distance is dH(x,x′) = 6. There are three exchanges that reduce it:

• swap (c,e) generates {{a,b,e},{c,d},{ f ,g}}, whose Hamming distance from x′ is 4 and
whose cost is max(13,15,19) = 19;

• swap (c,g) generates {{a,b,g},{d,e},{c, f}}, whose Hamming distance from x′ is 4 and
whose cost is max(18,13,16) = 18;

• swap (e,g) generates {{a,b,c},{d,g},{e, f}}, whose Hamming distance from x′ is 4 and
whose cost is max(15,18,14) = 18.

The best ones are the second and third; we choose lexicographically (c,g), obtaining z(0) =
{{a,b,g},{d,e},{c, f}} with f

(
z(0)
)
= 18.

Now, there is a single swap that reduces the Hamming distance from x′, that is (c,e) and it
directly generates x′, so it is not necessary to consider it.

10.7.10 Exercise 10

Consider the following instance of the Bin Packing problem (BPP):

Items a b c d e f g Bin capacity
Volumes 8 6 3 9 5 12 10 21

Consider the binary vector encoding of the solutions of the BPP, where each index is as-
sociated with an element of the ground set O ×C, that is the assignment of an object to a
container. Write the encodings of the two solutions x = {{a,b,c},{d,e},{ f ,g}} and x′ =
{{a,b,g},{c,d},{e, f}}, and compute the Hamming distance between them.

293

294 RECOMBINATION METAHEURISTICS CHAPTER 10

Solution Rather than vectors, binary matrices offer a clearer (and fully equivalent) represen-
tation:

ξ =

1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

ξ
′ =

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
1 0 0

The Hamming distance is dH(x,x′) = 6, as 3 objects are assigned to different containers.

10.7.11 Exercise 11

Consider a population of 4 individuals X = {x1,x2,x3,x4}, characterised by the following fitness
values

φ (x) = [10 18 9 13]

and assume that the pseudorandom number generator provides the following sequence: r =
(0.47,0.33,0.80,0.71,0.12,0.93). Generate a new population of individuals with

a) the roulette wheel selection mechanism;

b) the rank selection mechanism;

c) the tournament selection mechanism on the following subsets of individuals: (1,3), (1,4),
(2,3) and (2,4);

Solution Part a) Roulette wheel selection assigns to each individual a probability propor-
tional to the value of its fitness. Since the sum of all fitnesses is 10+ 18+ 9+ 13 = 50, the
corresponding probabilities and their partial sums are reported in the following table.

Individual i x1 x2 x3 x4
φ(ξ (x)) 10 18 9 13

πi =
φi

∑
j

φ j
0.20 0.36 0.18 0.26

i
∑
j=1

π j 0.20 0.56 0.74 1.00

The sequence of extractions is the following (the extracted elements are not removed, so that
they can be extracted any number of times):

1. r = 0.47 falls in the second interval, so that we select x2;

2. r = 0.33 falls in the second interval, so that we select x2;

3. r = 0.80 falls in the fourth interval, so that we select x4;

4. r = 0.71 falls in the third interval, so that we select x3.

294

CHAPTER 10 10.7. EXERCISES 295

The final population is X = {x2,x2,x3,x4}.

Part b) Rank selection assigns to each individual a probability proportional to its index in
a fitness nondecreasing order. Since φ(ξ (x3)) < φ(ξ (x1)) < φ(ξ (x2)) < φ(ξ (x4)), solution
x3 has index 1, solution x1 has index 2 and so on, producing the following table of indices,
probabilities and partial sums of probabilities.

Individual i x1 x2 x3 x4
Index k 2 4 1 3

πi =
2k

n(n+1)
0.20 0.40 0.10 0.30

i
∑
j=1

π j 0.20 0.60 0.70 1.00

The sequence of extractions is the following (the extracted elements are not removed, so that
they can be extracted any number of times):

1. r = 0.47 falls in the second interval, so that we select x2;

2. r = 0.33 falls in the second interval, so that we select x2;

3. r = 0.80 falls in the fourth interval, so that we select x4;

4. r = 0.71 falls in the fourth interval, so that we select x4.

The final population is X = {x2,x2,x4,x4}.

Part c) Tournament selection extracts np = 4 subsets of α = 2 individuals, given in the text of
the exercise, and selects the individual with the largest fitness in each subset.

The sequence of selections is:

1. from (x1,x3), select x1;

2. from (x1,x4), select x4;

3. from (x2,x3), select x2;

4. from (x2,x4), select x2.

The final population is X = {x1,x2,x2,x4}.

10.7.12 Exercise 12

Consider the following instance of the Knapsack Problem with capacity V = 12:

Objects a b c d e f g
Prize φ 11 2 4 9 8 4 9

Volume v 5 1 2 4 3 1 6

Adopt the classical incidence vector encoding for x = (a,b,d) and x′ = (b,e,g), and apply a
uniform crossover operator to them, generating the binary mask with the following pseudoran-
dom number sequence: 0.1, 0.3, 0.7, 0.9, 0.6, 0.8, 0.2, . . . where lower values correspond to 0
(no exchange) and higher values to 1 (exchange).

295

296 RECOMBINATION METAHEURISTICS CHAPTER 10

Solution The two encoding are

ξ (x) = [1 1 0 1 0 0 0]

and
ξ (x′) = [0 1 0 0 1 0 1]

The binary mask corresponding to the pseudorandom number sequence is

m = [0 0 1 1 1 1 0]

meaning that the first, second and last bit should remain unchanged, whereas the other ones
should be exchanged between the two vectors.
Applying the mask to the original two encodings produces the following modified ones:

ξ = [1 1 0 0 1 0 0]

and
ξ
′ = [0 1 0 1 0 0 1]

where the fourth and fifth element are explicitly exchanged, whereas the third and sixth appar-
ently do not change because they are the same, and the first, second and last are unaffected by
the mask. The resulting solutions are x(ξ) = {a,b,e} and x(ξ) = {a,b,e} with f (x(ξ)) = 21
and x(ξ prime) = {b,d,g} with f (x(ξ ′)) = 20. They are both feasible.

296

Part VI

Laboratory sessions

297

APPENDIX A

Generalities

The laboratory sessions of the course on heuristic algorithms aim to illustrate the practical
aspects of the design, implementation and evaluation of heuristic algorithms for combinatorial
optimisation problems.
These lessons assume a basic background on C language programming and on fundamental
algorithms and data structures. The lessons, therefore, will not go into technical details on this
topics, but will just briefly recall the existence of instructions, algorithms and data structures
that allow to apply the fundamental operations of the heuristic algorithms considered.
For the sake of simplicity, the lessons refer to a single combinatorial optimisation problem,
that is the maximum diversity problem (in short, MDP). This problem has been chosen among
the other treated in the course because its definition is very simple and its solutions can be
represented and manipulated in a rather simple way. On the other hand, the problem is strongly
NP-complete and does not admit any constant factor approximation guarantee. Therefore, it is
rather difficult to solve it to optimality. Finally, it presents several interesting aspects concerning
the effectiveness and the efficiency of the most common algorithmic procedures (insertions,
exchanges and recombinations) and not excessively related to specific features of the problem.
Section A.1 defines the problem and describes the data structure and the basic procedures (im-
plemented as C libraries) that will be used to manipulate the instances and the solutions. Sec-
tion B describes the implementation and evaluation of some constructive and destructive heuris-
tics.

A.1 The maximum diversity problem

A.1.1 Definition

The maximum diversity problem (MDP) is defined by:

• a set P of points in an abstract space (we define n = |P|);

• a distance function d : P×P → N, that associates each pair of points to a nonnegative
integer distance;

• a positive integer number k ∈ N with 0 < k < |P|.

The problem consists in determining a subset x ⊂ P such that

299

300 GENERALITIES APPENDIX A

• the sum of the pairwise distances between the points of x is maximized, that is

max
x⊆P

f = ∑
i∈x

∑
j∈x

di j

• the cardinality of x is equal to k (|x|= k).

Some minor remarks allow to restrict the possible data sets without affecting the generality of
the problem. To start with, in practical applications the distances could be real numbers, but
computers will always represent them with a finite precision, so that they can be considered
as rational numbers. Moreover, rational values can always be transformed into integer ones by
changing the unit of measure. Then, it can always be assumed that

di j = d ji for all i, j ∈ P

In fact, if for all pairs of points (i, j) we replace di j and d ji with their arithmetic mean
(
di j +d ji

)
/2,

the value of any solution x is unchanged, since the sum ∑i∈x ∑ j∈x di j contains either both dis-
tances or none. We can say that

dii = 0 for all i ∈ P

In fact, if every solution contains exactly k points, the sum which provides the value of the
objective contains exactly k terms di j for each i ∈ x, one of which is the term dii; setting dii
to zero and summing dii/(k−1) to each term di j the overall value of the objective does not
change; the same operation can be done on the terms di j for i /∈ x, given that they do not occur
in the objective. Finally, we can say that

di j ≥ 0 for all i, j ∈ P

In fact, if every solution contains k points, the value of the objective is always a sum of k2

terms; summing a constant value d̄ to every term so as to make them nonnegative, the objective
function increases by k2d̄ for every solution, so that the optimal solution does not change;
therefore, the distances can be considered as nonnegative integer numbers.
By contrast, in general the triangle inequality is not satisfied:

di j +d jk ≥ dik for all i, j,k ∈ P

There are MDP instances which enjoy it and instances which do not.

A.1.2 Benchmark instances

The literature provides several classes of benchmark instances for the MDP. Since most of
them have a fixed size, but we aim to discuss also the dependence of the results on size, we
will generate another benchmark set, inspired by the available ones, but with a larger range of
different sizes. The main features of these instances are:

• set P ranges from n = 100 to n = 1000 points by steps of 100;

• the integer number k is equal to 0.1n, 0.2n, 0.3n, 0.4n;

• the values di j of the distance function (with i < j) are random integer numbers uniformly
distributed in {1, . . . ,100};

300

APPENDIX A A.2. INSTANCE REPRESENTATION 301

• the values for i ≥ j derive from the assumptions made in the previous section.

Overall, they are 40 instances (ten different sizes times four different values of k).
They are neither particularly significant nor realistic instances, but they are hard enough not to
be trivially solved to optimality by any method, but easy enough to assume that the best known
solution is probably close to the optimum (even if this has not been proved) and small enough
to require a reasonable processing time from any polynomial algorithm.
The data are provided in text files. The name of each file reports the features of the instance:
file n[%n]k[%k].dat corresponds to an instance with a set P of %n points, and a required
cardinality equal %k for the solution.
The file adopts the AMPL format, a standard format to represent Integer Programming prob-
lems, used by general-purpose modelling languages and solvers for that family of problems.
The format is rather self-evident (and anyway does not concern us, given that library data.h

provides a function to load the data into the memory).

param n := 100 ;

param k := 10 ;

param D :=

[1,1] 0 [1,2] 42 [1,3] 10 [1,4] 75 [1,5] 53 ...

[2,1] 42 [2,2] 0 [2,3] 13 [2,4] 33 [2,5] 84 ...

...

A.2 Instance representation

The C library data.h provides the data structure

typedef struct data_s

{

int n; /* cardinality of the set of points P */

int k; /* cardinality of the feasible solutions x \in X */

int **d; /* distance matrix between the points */

} data_t;

that we will use to represent each given instance I of the MDP, since it consists of three simple
components: a set P, a metric d and an integer number k.
We will represent set P with the natural numbers from 1 to n = |P|, since this set has no other
specification besides the metric. We do not adopt the classical C language convention that
represents integer number sets starting from zero, in order to keep consistent with the data
available in the literature, and to possibly use index 0 for special operations.
We will represent metric d with a square integer matrix. We could save space exploiting the
symmetry of the metric, for example by representing only the values di j with i < j, but this
would require to test at each access to di j whether i < j or not, in order to exchange the two
indices if the result of the test is negative. Since we expect to access the data a huge number of
times, we choose to represent all of them, preferring time efficiency over space efficiency.
The distance matrix is dynamic, and will be allocated when loading the data from a text file and
deallocated at the end of the algorithm. The C library alloc.h is already available, and provides
functions to allocate integer vectors (given the actual number of elements) and matrices (given
the actual number of rows and columns).

301

302 GENERALITIES APPENDIX A

/* Allocate a vector of n int */

int *int_alloc (int n);

/* Allocate a matrix of (n1,n2) int */

int **int2_alloc (int n1, int n2);

To manage the instances, library data.h provides functions to load the data from a text file (in
the standard AMPL format), to deallocate the struct data t described above and to print the
instance on the screen (once again in AMPL format).

/* Load from the AMPL file data_file the instance *pI */

void load_data (char *data_file, data_t *pI);

/* Deallocate the instance *pI */

void destroy_data (data_t *pI);

/* Print the instance *pI in AMPL format */

void print_data (data_t *pI);

As observed above, a point is just an abstract object with no associated information, represented
by an integer number ranging from 1 to P. With some excess of zeal, we will however introduce
a level of abstraction and distinguish:

• on the one hand, the numerical index of a point, that is an int;

• on the other hand the abstract point, with all its associated information (if any), that is a
point.

For the sake of rigour, we shall use int variables to scan the indices (for example, in the distance
matrix) and point variables to scan the actual points (for example, the elements of a solution x
and of its complement P\ x, as will be described in the following section). As long as the two
concepts coincide, we will identify them with the type definition:

typedef int point;

allowing future developments, in which a point could be associated to auxiliary information
(e. g., coordinates, text strings, etc. . .) besides its numerical index. This approach allow more
easily to modify the data structures without modifying the algorithms already implemented.
The disadvantage is that, in order to switch between points and indices, we must use the func-
tions:

/* Get the index of point i in instance *pI */

int get_index (point i, data_t *pI);

/* Get the point of index id in instance *pI */

point get_point (int id, data_t *pI);

If the data structure will need to be modified, these functions will take care of the corresponding
type conversions, but currently they just return in output the same value received in input. This
is an inefficiency, that can be controlled by adopting suitable technological solutions, such as
inline functions or macros to implement the conversion.

302

APPENDIX A A.3. SOLUTION REPRESENTATION 303

A.3 Solution representation

The solutions of the MDP are subsets of the ground set, as for any other Combinatorial Optimi-
sation problem. There are two main ways to represent a subset:

1. with an incidence vector, which associates each i ∈ P to a boolean value

xi =

{
true when i ∈ x
false when i ∈ P\ x

2. with a list of elements, which allows to scan only the elements of the solution i ∈ x

The choice between the two representations depends on the type of operations that the algo-
rithm needs to perform: the inclusion test of a point in the solution is efficient in the first
representation (O(1)), inefficient in the second one (O(n)); the opposite holds for the operation
of scanning only the elements of the solution, or the elements out of it. The algorithms we want
to implement mainly use operations on lists, both the internal and external points. For example,
each step of a constructive algorithm scans the set ∆

+
A (x), that in the MDP is the complement

of the solution, P\ x, whereas the computation of the value of a solution, f (x), requires to scan
its elements. However, we will adopt both representations to keep as flexible as possible. We
will also represent the complementary set of the solution, P \ x as another list, because many
algorithms require to scan its points. If one of the two representations is not actually used, we
can decide to remove it a posteriori. The C library solution.h provides the struct

typedef struct solution_s

{

int f; /* solution value */

bool *in_x; /* incidence vector: in_x[i] = true if i \in x,

in_x[i] = false if i \notin x */

/* Lists of points in solution x and in the complement P \setminus x */

int head_x; /* sentinel of the list of points in x */

int head_notx; /* sentinel of the list of points in P \setminus x */

int *next; /* next element for each point i in either list */

int *prev; /* previous element for each point i in either list */

int card_x; /* cardinality of the solution */

} solution_t;

The value f of the solution is saved in member f and kept up to date, so that it can be accessed
in constant time O(1), instead of recomputed every time. Its recomputation, in fact, would
require O

(
n2) time if done scanning the incidence vector, O

(
k2) time if done scanning list x.

Note: since the distance matrix is symmetric and integer, f (x) is certainly an even number, as
it is the sum of pairs of equal terms. It is a common convention to report in f half of the overall
sum. We shall discuss this point again later.

The boolean vector in x represents the incidence vector. The boolean type, with its two values
false and true is declared in the library defs.h.

303

304 GENERALITIES APPENDIX A

typedef enum _bool bool;

enum _bool {false = 0, true = 1};

and dynamic vectors of booleans can be allocated thanks to the already cited library alloc.h,
that provides function

/* Allocate a vector of n bool */

bool *bool_alloc (int n);

The two lists that represent the solution x and its complement P \ x are doubly-linked circular
lists with sentinel, so that every fundamental operation (insertion, extraction, etc. . .) can be
performed in constant time, at the cost of a larger memory occupation. Briefly, such lists can
be scanned in both directions and are never physically empty, because they always contain the
fictitious element known as sentinel (by convention, an empty list is a list containing only the
sentinel). This removes the need for different ways to operate on different parts of the list (the
beginning, inner positions or the end).
We will adopt the implementation of the two lists with vectors and indices, instead of the im-
plementation with pointers and dynamically allocated structures, because all possible points
are defined once for all at the beginning of the algorithm, and only their positions change dy-
namically during the execution. Moreover, since the two lists do not intersect (they are com-
plementary), we will exploit the same vectors and indices next and prev for the two lists;
only the heads head x and head notx will be different. The sentinel of list x has index 0, the
sentinel of list P \ x has index card N+1. Only the intermediate values correspond to regular
indices. The following example shows how the solution x = {1,3,7} of an instance with point
set P = {1,2,3,4,5,6,7} will be represented:

f 46

1 2 3 4 5 6 7

in_x [1 0 1 0 0 0 1]

head_x 0

head_notx 8

0 1 2 3 4 5 6 7 8

next [1 3 4 7 5 6 8 0 2]

prev [7 0 8 1 2 4 5 3 6]

card_x 3

The cardinality of the solution |x| (card x) should be fixed to k, but reporting it explicitly
allows the structure to represent also general subsets of P, and in particular partial solutions
of cardinality < k. In fact, the set of all partial solutions is the search space FA for all the
constructive algorithms considered in the following.
In order to avoid programming technicalities, we will hide many implementation details using
library functions to access the data. This also allows, if necessary, to modify the low-level
implementation without affecting already implemented algorithms. It can, however, imply some
time inefficiencies, because it requires function calls instead of the simple direct access to data
structures. Such inefficiencies can be easily overcome by using macros (or inline definitions
in C++), so we accept them, but we do not describe how to do that to avoid technicalities.

304

APPENDIX A A.3. SOLUTION REPRESENTATION 305

The C library solution.h provides some functions to manage solutions:

/* Create an empty solution for a problem of size n */

void create_solution (int n, solution_t *px);

/* Deallocate the solution *px */

void destroy_solution (solution_t *px);

/* Turn a solution into the empty set for a problem of size n */

void clean_solution (int n, solution_t *px);

/* Copy solution *px_orig into solution *px_dest */

void copy_solution (solution_t *px_orig, solution_t *px_dest);

/* Print by increasing indices solution *px for a problem of size n */

void print_sorted_solution (solution_t* px, int n);

The creation of an empty solution corresponds to the typical initial step of a constructive heuris-
tic, that starts from the empty subset. The deallocation is performed at the end of the algorithms.
Cleaning a solution allows to restart an algorithm without deallocating and reallocating the
memory. The copy function is useful to update the best known solution when the current one
improves it. The print function is useful to analyse the results: it reports on the screen on a
single row the name of the data file, the value of the objective and the list of points in solution
x.

Another block of functions allow to access the solution x and its complement P\x, avoiding any
explicit reference to their concrete implementation. List x can be scanned with the following
library functions:

/* Return the first and the last point of solution *px */

point first_point_in (solution_t *px);

point last_point_in (solution_t *px);

/* Return the point following and preceding i in solution *px */

point next_point (point i, solution_t *px);

point prev_point (point i, solution_t *px);

/* Indicate whether i is a regular point or a sentinel */

bool end_point_list (point i, solution_t *px);

In order to scan the complementary list P \ x, the functions to access the first and last point
change, because the sentinel has a different index:

/* Return the first and the last point of the complement of solution *px */

point first_point_out (solution_t *px);

point last_point_out (solution_t *px);

but the functions that return the next and the previous point and the function that indicates
whether the point is regular or the sentinel remain the same for both lists, because they share
the same vectors and follow the same rules.
For example, given two points:

305

306 GENERALITIES APPENDIX A

point i, j;

in order to scan solution x from the first to the last point, one can perform the loop

for (i = first_point_in(&x); !end_point_list(i,&x); i = next_point(i,&x))

and to scan the complement P\ x from the first to the last point, one can perform the loop

for (j = last_point_out(&x); !end_point_list(j,&x); j = prev_point(j,&x))

The main manipulations of a solution in a constructive algorithm is the addition of a point,
that requires to move it from the complementary list to the solution list, while at the same
time updating the incidence vector and the value of the objective. It is adviseable to define a
specific function for this basic operation, to make it as efficient as possible and to guarantee the
consistency of the data structures. Functions operating on a single list would not make much
sense for the overall problem and could easily introduce inconsistencies in the representation of
the solution.

/* Add point i to solution *px */

void add_point (point i, solution_t *px, data_t *pI);

/* Delete point i from solution *px */

void delete_point (point i, solution_t *px, data_t *pI);

These functions must keep all components of the data structure consistent and up to date 1.
Function add point:

1. adds to the objective function the sum of all distances of the newly added point from the
previous ones (but not the reverse distances because f reports only half of the objective);
this operation requires the distance matrix;

2. increases by one the cardinality card x;

3. finds the index id of point i and sets the corresponding value of in x to true;

4. extracts point i from list P\ x;

5. adds point i to list x.

Considering the previous example, adding point 4 to the solution yields the following data
structure:

f 90

1 2 3 4 5 6 7

in_x [1 0 1 1 0 0 1]

head_x 0

head_notx 8

1It would be worth discussing whether these functions should require point i or index id. I guess the former is
more likely in general, but the current implementation makes it indifferent.

306

APPENDIX A A.3. SOLUTION REPRESENTATION 307

0 1 2 3 4 5 6 7 8

next [1 3 5 7 0 6 8 4 2]

prev [4 0 8 1 7 2 5 3 6]

card_x 4

The library also provides a function to remove a point from the solution, moving it from the
solution list to the complementary list, and correspondingly updating the incidence vector and
the value of the objective.

/* Delete point i from solution *px */

void delete_point (point i, solution_t *px, data_t *pI);

This function:

1. subtracts from the objective function the sum of all distances of the newly removed point
from the remaining ones; this operation requires the distance matrix;

2. decreases by one the cardinality card x;

3. finds the index id of point i and sets the corresponding value of in x to false;

4. extracts point i from list x;

5. adds point i to list P\ x.

Removing point 1 from the solution previously augmented yields the following data structure:

f 72

1 2 3 4 5 6 7

in_x [0 0 1 1 0 0 1]

head_x 0

head_notx 8

0 1 2 3 4 5 6 7 8

next [3 8 5 7 0 6 1 4 2]

prev [4 6 8 0 7 2 5 3 1]

card_x 3

All these operations require constant time, except for the update of the objective function, which
requires O(|x|) time for the addition and O(n−|x|) time for the removal. This will be useful to
implement destructive algorithms.

307

308 GENERALITIES APPENDIX A

A.3.1 Consistency check

Notice that the use of a double representation for the solution implies a computational overhead
and an additional effort to keep the two representations up to date. This choice should be justi-
fied by a better efficiency gained somewhere else. Moreover, this choice allows the risk to lose
the consistency between different elements of the two representations. Such a risk is limited
by the use of clearly defined functions to manipulate the solutions, but it is anyway impossi-
ble to remove completely. In our case, the data structure solution t includes five potentially
inconsistent components: objective value, cardinality, incidence vector, solution list and com-
plementary list. The manipulation functions should guarantee the consistency between the five
components. Even assuming that they are consistent at the beginning, every subsequent mod-
ification (for example, the introduction of new fields in the solution to allow other operations
or to perform the same operations more quickly) could introduce inconsistencies, and therefore
errors.
When implementing a heuristic algorithm, it is therefore a very good practice to write and
maintain a function to check the internal consistency of the data structures. This function usually
assumes one of the components as valid a priori, and recomputes the other ones, checking
whether their current values are correct or not. The choice of the valid component is arbitrary,
provided that it is sufficient to derive all of the other ones. In general, one uses the simplest
component, that it that which is less likely to be incorrect. In our case, the available check
function starts from the incidence vector, and derives from it the objective value, the cardinality
and the two lists.

/* Check the internal consistency of solution *px based on instance *pI,

starting from the incidence vector */

bool check_solution (solution_t *px, data_t *pI);

If the function finds an inconsistency, it return the value false, and the user can decide whether
to terminate the execution to correct the code. Of course, the check function is used only during
the implementation of the algorithm, and does not appear in its final version.

A.4 The main function

The main function in all the algorithms presented in the following sections manages the parsing
of the command line (that is, the interpretation of the parameters of each algorithm), the loading
of the data, the allocation and deallocation of the data and the solution, the execution of the
algorithm, the determination of the computational time and the print of the result on the screen.
Its general structure can be described as follows.

parse_command_line(argc,argv,data_file,¶m);

load_data(data_file,&I);

create_solution(I.n,&x);

start = clock();

...

end = clock();

308

APPENDIX A A.4. THE MAIN FUNCTION 309

CPUtime = (double) (end - start) / CLOCKS_PER_SEC;

printf("%s ",data_file);

printf("%10.6lf ",CPUtime);

print_sorted_solution(&x);

printf("\n");

destroy_solution(&x);

destroy_data(&I);

where data file stands for the name of the text file reporting the instance and param is a
specific structure for each family of algorithms tested, that collects the parameters that identify
a single algorithm. I is the instance of the problem and x the solution obtained. The starting
time, ending time and overall duration of the computation are start, end and CPUtime. Finally,
the dots (...) represent the actual call of the algorithm considered. The print of the results
occurs on a single line of the screen, so that several calls to the algorithm can be collected
in a script. This allows to run the algorithm on several benchmark instances, or with several
different parameters, appending the results in a single file, one row for each run.

309

310 GENERALITIES APPENDIX A

310

APPENDIX B

Laboratory on constructive heuristics

B.1 General scheme

The constructive heuristics usually apply the following simple general scheme:

Algorithm Greedy(I)
x := /0; x∗ := /0;
If x ∈ X then f ∗ := f (x) else f ∗ :=+∞;
While ∆

+
A (x) ̸= /0 do

i := arg min
i∈∆

+
A (x)

ϕA (i,x);

x := x∪{i};
If x ∈ X and f (x)< f ∗ then x∗ := x; f ∗ := f (x);

Return (x∗, f ∗);

Let us adapt this scheme to the specific case of the MDP. First, the only feasible subset visited
by the algorithm is the last one. This allows to remove any reference to x∗ and f ∗ and simply
return (x, f) at the end of the algorithm. Second, the extremely simple structure of the feasible
solutions (the only constraint is the fixed cardinality) suggests to define the search space as the
set of the partial solutions, that is of the subsets with at most k points.

FA = {x ⊆ P : |x| ≤ k}

This implies that the set ∆
+
A (x) of all possible extensions for a given partial solution x coincides

with the complement of the latter (except in the last step, when it is empty):

∆
+
A (x) =

{
P\ x for |x|< k

/0 for |x|= k

Moreover, as the MDP is a maximisation problem, it is more natural to consider also the selec-
tion criterium as a function to maximise.

311

312 LABORATORY ON CONSTRUCTIVE HEURISTICS APPENDIX B

This transforms the general scheme as follows:

Algorithm GreedyMDP(I)
x := /0;
While |x|< k do

i := arg max
i∈P\x

ϕA (i,x);

x := x∪{i};
Return (x, f);

This scheme can be easily implemented with the available functions, plus one that maximises
the selection criterium:

void greedy (data_t *pI, solution_t *px)

{

point i;

while (get_card(px) < pI->k)

{

i = best_point_to_add(px,pI);

add_point(i,px,pI);

}

}

The instruction x := /0 should correspond to create solution(pI->n,px), but we prefer to
move it out of the algorithm, in the main function, under the form create solution(I.n,&x)

and to pass the empty solution thus obtained as an argument to function greedy. The advantage
of this structure is that function greedy now can be used not only to generate a solution from
scratch, but also to complete a possible partial solution obtained in any other way1.
Function best additional point(px,pI) must be implemented to determine the best point
i to add to solution *px based on the features of instance *pI according to the selection cri-
terium ϕA (i,x), which we have not yet defined. Different definitions will give rise to different
constructive algorithms.

B.1.1 The basic constructive heuristic

Since the objective function can be easily extended to any subset of points, the simplest defini-
tion for the selection criterium is the value of the objective, that is

ϕA (i,x) = f (x∪{i}) = ∑
j∈x∪{i}

∑
k∈x∪{i}

d jk

Computing it from scratch requires O
(
|x|2
)

time, but is not actually necessary, because it is
enough to update it step by step choosing the point that maximises it. To achieve this result, one
can consider the variation δ f (x, i) = f (x∪{i})− f (x)

δ f (x, i) = ∑
j∈x

d ji +∑
j∈x

di j +dii = 2 ∑
j∈x

d ji

1This would be useful if a preliminary reduction procedure or some manipulation of a model of the problem
could prove (or suggests heuristically) the opportunity to include a promising subset of points.

312

APPENDIX B B.2. EMPIRICAL EVALUATION 313

which can be computed in O(|x|) time. Also remind that we are updating and optimizing
f (x)/2, so that the factor 2 can be removed from the expression of δ f (x, i).
The previous remark allows to implement the operation

i := arg max
i∈P\x

f (x∪{i}) ;

with the simple call

i = best_additional_point(px,pI);

of the following function

// Find the best point to add to solution *px based on the instance *pI

point best_additional_point (solution_t *px, data_t *pI)

{

point i, i_max;

int d, d_max;

d_max = -1;

i_max = NO_POINT;

for (i = first_point_out(px); !end_point_list(i,px); i = next_point(i,px))

{

d = dist_from_x(i,px,pI);

if (d > d_max)

{

i_max = i;

d_max = d;

}

}

return i_max;

}

which computes for each point i of list P\x the variation of the objective function, δ f (i,x)/2=
∑ j∈x di j, obtained adding i to solution x, that is the total distance of i from the points of x. This
value is computed by function dist from x(i,px,pI). The function returns the point i max

that yields the maximum increase. The result is the basic constructive algorithm.

B.2 Empirical evaluation

The benchmark considered is rather small and too specific to allow a truly meaningful analysis.
However, it is sufficient to illustrate the process and to make some interesting remarks. Let
us run the algorithm on the whole benchmark set. The script greedy solve.bat applies the
algorithm redirecting its output from the screen to the text file report.txt.

echo "File T_A f_A x_A" > report.txt

./main_greedy data/n0100k010.txt >> report.txt

./main_greedy data/n0100k020.txt >> report.txt

./main_greedy data/n0100k030.txt >> report.txt

...

313

314 LABORATORY ON CONSTRUCTIVE HEURISTICS APPENDIX B

The first line creates a header with four elements, that are potential labels in a table: the name
of the instance file, the computational time TA required by the algorithm, the value fA of the
objective function and the list of points in the solution xA found. This header is redirected by
directive > on the text file report.txt. Each following line applies the algorithm and redirects
the output in append (with directive >>) on the same text file, so as to obtain a very regular
summary, with the results of a single instance in each row.

File T_A f_A x_A

data/n0100k010.txt 0.000150 3308 1 33 70 31 72 ...

data/n0100k020.txt 0.000448 12120 1 72 61 12 66 ...

data/n0100k030.txt 0.000780 26115 1 96 46 4 57 ...

...

We are particularly interested in the columns reporting the computational time TA and the result
(fA (x)).

B.2.1 Computational time analysis

Figure B.1 reports the RTD diagram for the whole benchmark. It is a good example of a
“scientific-looking”, but insignificant diagram, because the benchmark includes instances of
different size, the computational time strongly depends on the size, and the diagram actually
describes the specific benchmark more than a property of the algorithm, or the problem in
general. The parametric RTD diagrams for fixed size (see Figure B.2) account for this aspect,
but each one refers to only four instances, so they are also nearly meaningless. The fact that
they are more and more spaced as the size increases suggests a more than linear dependence of
the time on the size.

Figure B.1: RTD diagram for the greedy algorithm on the benchmark

The correct tool to describe the dependence of the computational time TA on the instance size
P is the scaling diagram (see Figure B.3). The first remark is that TA is rather low, even for
large instances (n = 1000), and often nearly “zero” for n = 100. For a fixed value of P, they
appear distributed on a rather large “fan”. An interesting question is whether this distribution
is due to an important secondary feature of the instances or to wide random variations of the
computational time over different instances. A useful hint is provided by the distribution of the
points on the scaling diagram, that are rather clearly clustered in four profiles, corresponding to
the different values of parameter k. The theoretical analysis confirms that k plays a significant

314

APPENDIX B B.2. EMPIRICAL EVALUATION 315

Figure B.2: Parametric RTD diagrams for the greedy algorithm on the benchmark

role. In fact, the general scheme implies k iterations, each of which searches for the best addi-
tional point scanning the n− |x| external points and computing in O(|x|) time the distance of
each point from the current solution. The other operations are clearly faster, even if adding the
new point to the solution takes O(|x|) time to update the objective function value. Overall, the
complexity is

TA (n,k) =
k

∑
i=1

O(n− i)O(i) = O
(
nk2)

Since in the benchmark k = αn, with α ∈ {0.1,0.2,0.3,0.4}, the theoretical estimate amounts
to TA ∈ O

(
n3).

Figure B.3: Scaling diagram for the greedy algorithm on the benchmark

Let us verify whether it is correct by drawing the scaling diagram in a logarithmic scale:

TA = βnα ⇔ logTA = α logn+ logβ

Indeed, the graph seems to be remarkably linear. The linear interpolation suggests that α ≈
2.771 and β ≈ 10−9. The value of β depends on constant multiplying factors, among which
the technical parameters of the specific computer employed. The value of α suggests that the
algorithm is actually less than cubic. This could be due to actual overestimates in the theoretical
analysis (not likely in this case, given its rather simple structure) or to the fact that the instances

315

316 LABORATORY ON CONSTRUCTIVE HEURISTICS APPENDIX B

Figure B.4: Scaling diagram in logarithmic scales for the greedy algorithm on the benchmark

considered are not large enough to exhibit a full dominance of the main complexity factor. In
the present case, there is a number of quadratic terms that indeed could still measurably affect
the computational time (the update of the objective function, and possibly of the best additional
point).

Solution quality analysis

In order to evaluate the quality of the results, it is adviseable to compute the gap (relative
difference) with respect to the optimum, so that the values obtained from different instances
could be compared in a more reasonable way. However, the optimum is not known, due to the
hardness of the problem, and the gap should be replaced by an estimate. Two estimates are
possible2:

LB− fA (x)
LB

≤ δA (x) =
f ∗− fA (x)

f ∗
≤ UB− fA (x)

UB

In the case of the MDP, the best known upper bounds are of rather scarse quality, whereas the
lower bounds seem to be closer to the optimum. The first estimate is therefore probably tighter,
even if unfortunately they do not provide a quality guarantee (the real gap is larger).
Table B.1 reports the results of the basic greedy algorithm. None of the instances is solved to the
optimum. Is this a good or a bad result? Of course, the answer would depend on a comparison
with alternative algorithms, but in general it does not seem to be a strikingly good outcome. In
order to understand what is going on, we can watch the step-by-step behaviour of the algorithm,
in order to check whether it makes some obviously ineffective operation, or we can watch its
solutions, in order to check whether they have something strange. The following rows show the
solutions of the first instances:

"File T_A f_A x_A"

data\n0100k010.txt 0.000000 3308 1 6 21 22 31...

data\n0100k020.txt 0.000000 12120 1 2 12 13 15...

data\n0100k030.txt 0.000000 26115 1 4 7 16 17...

data\n0100k040.txt 0.000000 44037 1 2 4 7 12...

data\n0200k020.txt 0.001000 13139 1 3 4 5 35...

data\n0200k040.txt 0.002000 48040 1 13 14 22 23...

2Their expressions are different from those discussed in the theoretical lessons, because the problem is a max-
imisation one, but the basic idea is exactly the same.

316

APPENDIX B B.2. EMPIRICAL EVALUATION 317

I fA f ∗ δA
n100k10 3308 3561 7.10%
n100k20 12120 12541 3.36%
n100k30 26115 26642 1.98%
n100k40 44037 45445 3.10%
n200k20 13139 13489 2.59%
n200k40 48040 48866 1.69%
n200k60 102535 103266 0.71%
n200k80 175407 177263 1.05%
n300k30 27891 29208 4.51%
n300k60 104130 106272 2.02%
n300k90 225757 227346 0.70%
n300k120 388035 391901 0.99%
n400k40 49333 50593 2.49%
n400k80 180929 184820 2.11%
n400k120 394012 397695 0.93%
n400k160 681948 689552 1.10%
n500k50 75918 77937 2.59%
n500k100 279418 285776 2.22%
n500k150 610721 616986 1.02%
n500k200 1062600 1072953 0.96%
n600k10 107626 110064 2.22%
n600k20 400101 407113 1.72%
n600k30 876249 885531 1.05%
n600k40 1521578 1532111 0.69%
n700k20 144837 148024 2.15%
n700k40 544500 550806 1.14%
n700k60 1185633 1197512 0.99%
n700k80 2063246 2078232 0.72%
n800k30 186327 190962 2.43%
n800k60 704682 713263 1.20%
n800k90 1549915 1558378 0.54%
n800k120 2690094 2707534 0.64%
n900k40 235297 240114 2.01%
n900k80 886151 899843 1.52%
n900k120 1948726 1959910 0.57%
n900k160 3393602 3413499 0.58%
n1000k50 288336 293587 1.79%
n1000k100 1091266 1102515 1.02%
n1000k150 2389100 2407636 0.77%
n1000k200 4190140 4207633 0.42%

Table B.1: Results of the basic greedy algorithm

317

318 LABORATORY ON CONSTRUCTIVE HEURISTICS APPENDIX B

data\n0200k060.txt 0.003000 102535 1 5 9 10 11...

...

We immediately notice an interesting phenomen: all solutions include point 1. This is certainly
strange, given that the different instances of the benchmark have a similar structure, but have
been generated independently. It is strange enough to suggest revising the behaviour of the al-
gorithm, possibly step by step. The answer is trivial when performing this revision: in the first
iteration of the main loop, which selects the first point of the solution, the selection criterium
assigns the same value, equal to zero, to all points. This is because each point i ∈ P yields a so-
lution x(1) = {i} whose value is f ({i}) = 0, as the sum of the reciprocal distances is necessarily
zero. Something is clearly wrong in the selection criterium ϕ , at least at the first step.

B.3 Alternative constructive heuristics

In order to solve the intrinsic defect of the basic constructive heuristic, we can try to modify
something in its design, going back to the basics: the construction graph and the selection
criterium. Let us consider three possible proposals:

1. farthest-pair heuristic: keep the same selection criterium, but modify the construction
graph at the first level (where it is defective), skipping directly from the empty set to pairs
of points, instead of singletons; in other words, start with the two reciprocally farthest
points, then go back to adding a single point at a time:

ϕ (B,x) =

max
i, j∈P

di j when x = /0

f (x∪{i}) when x ̸= /0

The asymptotic worst-case complexity increases from O
(
nk2) to O

(
nk2 +n2), due to the

search for the pair of farthest points, but its order does not change unless k is very small.

2. farthest-point heuristic: adopt a special selection criterium for the first point i(1): for
example, it could be the point farthest away from the other ones:

ϕ (i,x) =

 ∑
j∈P

di j when x = /0

f (x∪{i}) when x ̸= /0

The asymptotic worst-case complexity increases from O
(
nk2) to O

(
nk2 +n2), due to the

computation of the total distance from each point to all the other points; however, its order
does not change unless k is very small.

3. try-all heuristic: use the first point as a parameter and run the algorithm P different times,
changing the first point at each repetition. This algorithm strictly dominates the other
three, because it includes them: one of the runs certainly makes the same starting choices
(point 1, or one of the two farthest points and therefore also the other, or the point at
maximum total distance from the other ones), and consequently proceeds in the same
way, hitting the same final result. It is however also much more expensive, becase its
asymptotic worst-case complexity grows to O

(
n2k2).

318

APPENDIX B B.4. THE BASIC DESTRUCTIVE HEURISTIC 319

The scaling diagrams for the three new algorithms are given in Figure B.5 in a logarithmic scale,
that shows how the last heuristic clearly has a larger slope than the other ones, whereas these
have more or less the same. This diagram also describes a basic destructive heuristic that we are
going to implement before proceeding with an experimental comparison of all the algorithms.

Figure B.5: Scaling diagram for the four greedy algorithms variants (and the stingy one) on the
benchmark

B.4 The basic destructive heuristic

A destructive heuristic starts from the overall ground set P and iteratively removes one element
at a time, according to a suitable selection criterium, so as to remain inside a suitable search
space, until a final solution is found.
If we adopt the objective function as a selection criterium, we can adapt the general scheme of
the destructive heuristic to the MDP as follows, based on remarks similar to those made for the
basic constructive one:

Algorithm StingyMDP(I)
x := P;
While |x|> k do

i := argmax
i∈x

f (x\{i});

x := x\{i};
Return (x, f);

Notice that maximising f (x\{i}) corresponds, through computations similar to the ones seen
for greedy constructive heuristics, but with a reversed sign, to minimise the (absolute value of
the) variation of the objective function δ f (x, i) = f (x)− f (x\{i})

δ f (x, i) = ∑
j∈x

d ji +∑
j∈x

di j +dii = 2 ∑
j∈x

d ji

which means that the point to be deleted is the one with the maximum total distance from the
current subset x.
The first iteration of this algorithm is not problematic as it is for the constructive algorithm: in
general, in fact, the removal of different points yields sets with a different value of the objective.

319

320 LABORATORY ON CONSTRUCTIVE HEURISTICS APPENDIX B

The computational time is predictably larger, because the number of iterations is n− k, and
each iteration requires to check the total distance of |x| points from other |x− 1| points, with
|x| decreasing from n to k+ 1. This is approximately O

(
n3), that is of the same order as nk2,

but with larger multiplying factors. In fact, the scaling diagram of Figure B.5 confirms this
prediction.
The quality of the results is experimentally better than that of the greedy algorithms (with the
obvious exception of the one that tries all starting points). This is rather surprising, because
stingy algorithms often tend to perform worse than the greedy ones, due to the larger number
of iterations in which they risk to take bad choices.
The reason for this opposite outcome is not clear, but one could conjecture that, in the special
case of the MDP, choosing the first points to be included in a good solution is actually much
more misleading than choosing the firsts to be removed from it. It is a phenomenon that would
deserve a more detailed study.
It is however to be remarked that the stingy algorithm cannot be simply considered better than
the greedy one because its computational time is much longer.

B.5 Experimental comparison

Solution quality diagrams The SQD diagram is not very significant in itself, because the
benchmark considered is rather small and specific. It allows however to compare the different
algorithms. See Figure B.6 for the comparison, which clearly confirms the strict dominance
of the last heuristic on the previous ones, the probabilistic dominance (at least on the given
benchmark) of the stingy heuristic on the greedy ones, whereas the three greedy heuristics are
more or less equivalent (with a slight predominance of the farthest point heuristic, especially
concerning the maximum gap).
The diagram also shows a very strange phenomenon: the farthest pair heuristic has the same
diagram as the basic greedy heuristic. In fact, they not only have the same distribution, but
exactly the same results. Is this an unpredicted property of the two algorithms? It does not
seem to be necessarily so, and yet this is what can be empirically observed.
The reason is very peculiar and depends on the specific structure of the benchmark. Hence, it is
not instructive for the MDP in general, but for the need to keep an open eye on the generation
of the benchmark. We have extracted the distance values from {1, . . . ,100}. An instance with n
points has exactly n(n−1)/2 independent distance values, if we take into account the assump-
tions made in the introductory section. This means that each point i is very likely to admit at
least another point j at distance di j = 100. In particular, it is very likely that point 1 admits such
another point. But this implies that the farthest pair heuristic will chose a pair including point
1. On the other hand, the basic heuristic, after choosing point 1 will certainly proceed choosing
the farthest point from it. Therefore, the two heuristics are very likely to start with the same
pair, and, being deterministic, to proceed in the same way and obtain the same final result. This
is not intrinsic in the two algorithms, but it depends on the structure of the benchmark instances.

Statistical indices and boxplots A more compact description of the same information can be
given by the boxplots of the five heuristics, that are reported in Figure B.7.

Statistical tests Wilcoxon’s test can be applied to pairs of algorithms to determine whether
any of the two dominates significantly the other one. Since the basic greedy heuristic and the

320

APPENDIX B B.5. EXPERIMENTAL COMPARISON 321

Figure B.6: Solution Quality Distribution diagram for the four greedy algorithms variants (and
the stingy one) on the benchmark

Figure B.7: Boxplots for the four greedy algorithms variants (and the stingy one) on the bench-
mark

321

322 LABORATORY ON CONSTRUCTIVE HEURISTICS APPENDIX B

farthest pair heuristic have exactly the same results, it does not make sense to test them. Let
us first compare the basic greedy heuristic and the farthest point heuristic. The latter appears
slightly better according to Figure ??, in particular concerning the worst cases (4% versus 7%).
Building a text file with two columns reporting the results of the two algorithms allows to run
the SRtest.pl Perl script that performs Wilcoxon’s test. The result is:

W+ = 413, W- = 407, N = 40, p <= 0.9732

that suggests very similar ranks for the two algorithms, and a very high probability to get such
results (or more unbalanced ones) under the null hypothesis that the two algorithms are actu-
ally equivalent: p = 97.32%. Therefore, we conclude that the two algorithms are probably
equivalent.
Considering the greedy basic heuristic and the stingy heuristic:

W+ = 30, W- = 790, N = 40, p <= 3.385e-007

the ranks of the two algorithms look very different, with negative ranks prevailing, meaning
that the second column (stingy) tends to include larger (that is, better) values. Since the p-value
is very small (3.385 · 10−7), it looks likely that the stingy heuristic is actually better than the
greedy one.
Finally, comparing the stingy heuristic with the “try all” heuristic:

W+ = 570, W- = 250, N = 40, p <= 0.03204

the latter looks better (positive ranks prevail) with a significant, but not very strong, p-value
(3.204% is only slightly lower than the classical 5% threshold).

Other constructive heuristics? The above experiments and remarks open the way to a large
variety of possible algorithms, based on more refined definitions of the construction graph or of
the selection criterium. Just to mention one, we could take into account the fact that in the final
solution each point i will relate with k−1 other points. Therefore, estimating its contribution as
the distance with respect to the |x| points currently included is certainly incorrect. An estimate
of the distances of i from the other k−1−|x| points could be useful. These points are unknown,
of course, but it is likely that they are far from x and from i. Therefore, we could consider the
points with the largest current total distance from x and from i. This still neglects the reciprocal
distances between such points, but could anyway provide a better estimate, and consequently a
more effective choice. Of course, computing that information has a computational cost, which
must be minimised and weighed with respect to the improvement in the final result.

Open questions Is there a dependence of the solution quality on n and k (see Figure B.8)? Is
it different for different algorithms?

322

APPENDIX B B.5. EXPERIMENTAL COMPARISON 323

Figure B.8: Scaling diagram for the quality of the greedy algorithm with respect to the size of
the instances of the benchmark

323

324 LABORATORY ON CONSTRUCTIVE HEURISTICS APPENDIX B

324

APPENDIX C

Laboratory on constructive metaheuristics

This chapter discusses the application of constructive metaheuristics to the Maximum Diversity
Problem (MDP). Constructive metaheuristic try to improve the results of a basic constructive
heuristic by running it repeatedly with the introduction of mechanisms that modify its final
result. In the end, of course, the algorithm returns the best of the solutions found during the
process. The main mechanisms used by metaheuristic algorithms to enhance a constructive
heuristic are:

1. the use of different selection criteria, typical of multi-start algorithms;

2. the use of random choices, typical of GRASP;

3. the use of memory, typical of the Ant System

In the following, we will implement GRASP and Ant System algorithms for the MDP, based
on the constructive heuristics discussed in the previous chapter1. In the literature, these two
approaches require the introduction of exchange procedures to improve the solutions generated
by the constructive mechanism. In order to focus on the latter, however, we will avoid them.
Correspondingly, the main function allows to choose from the command line which of the two
algorithms to apply (with option -grasp for the GRASP and -grasp for the Ant System) and to
provide the numerical values of the following parameters:

• for the GRASP heuristic:

– the total number of iterations ℓ

– the randomness parameter µ

• for the Ant System heuristic:

– the total number of iterations ℓ

– the randomness parameter q

– the oblivion parameter ρ

plus the seed required to initialise the pseudorandom number generator.
The other operations (loading the data, allocating and deallocating the data and the solution,
determining the computational time and printing the results on the screen) are the same as for

1Presently, the chapter only includes the GRASP algorithm.

325

326 LABORATORY ON CONSTRUCTIVE METAHEURISTICS APPENDIX C

the constructive heuristics, except for the fact that also the parameters are printed, so that the
report keeps trace of how each single solution was obtained to help guarantee the reproducibility
of the results2

parse_command_line (argc,argv,data_file,algo,&iterations,&mu,&q,&rho,&seed);

load_data(data_file,&I);

//print_data(&I);

create_solution(I.n,&x);

inizio = clock();

if (strcmp(algo,"-grasp") == 0)

grasp(&I,&x,iterations,mu,&seed);

else if (strcmp(algo,"-as") == 0)

ant_system(&I,&x,iterations,q,rho,&seed);

fine = clock();

tempo = (double) (fine - inizio) / CLOCKS_PER_SEC;

printf("%s ",data_file);

for (arg = 2; arg < argc; arg++)

printf("%s ",argv[arg]);

printf("%10.6lf ",tempo);

print_solution(&x);

printf("\n");

destroy_solution(&x);

destroy_data(&I);

C.1 Greedy randomized adaptive search procedure

The Greedy Randomized Adaptive Search Procedure (GRASP) is a development of the classical
semigreedy algorithm, that we will actually implement. Its basic idea is to modify the scheme
of constructive algorithms by replacing the deterministic choice of the element that provides the
best value of the selection criterium

i∗ := arg min
i∈∆+(x)

ϕA (i,x)

with a stochastic choice i∗ (ω). This requires to define a probability distribution on set ∆+(x),
that should be biased so as to favour the best elements over the worst ones:

ϕA (i,x)≤ ϕA (j,x)⇔ πA (i,x)≥ πA (j,x)

The following pseudocode provides the basic scheme of GRASP for maximisation problems,
adapted to the specific application to the MDP by translating the termination condition into a

2Of course, the code could change and yield different results for the same parameter values, but this should no
longer be the case when the implementation has reached a sufficiently stable status.

326

APPENDIX C C.1. GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE 327

check on the cardinality of the current subset, by returning the last visited subset (as it is the
only feasible one) and by replacing the search for a minimum cost solution with the search for
a maximum value one. The search procedure after each constructive phase is also neglected:

Algorithm 23 GRASP
1: procedure GRASP(I, ℓ,µ)
2: x∗ := /0; f ∗ := 0; ▷ Best solution found so far
3: for l := 1 to ℓ do
4: x := /0;
5: while |x|< k do ▷ Randomised constructive procedure
6: ϕi := ∑ j∈x di j for all i ∈ P\ x; ▷ ϕi := (f (x∪{i})− f (x))/2
7: i∗ := BiasedRandomExtraction(P\ x,ϕ,µ);
8: x := x∪{i∗};
9: end while

10: if f (x)> f ∗ then
11: x∗ := x; f ∗ := f (x);
12: end if
13: end for
14: return (x∗, f ∗);
15: end procedure

The algorithm performs ℓ iterations, where ℓ is a number chosen by the user, based on the avail-
able time. It is easy to recognise in the inner while a modified version of the basic constructive
heuristic presented in the previous chapter. The algorithm still computes all values of ϕA (i,x),
but, instead of choosing the largest one, it selects one at random based on a biased probability
distribution (with parameter µ) that favours the largest ones. At the end of each iteration, the
current solution possibly updates the best known one.
The scheme is quite similar to the one used for the greedy “try-all” heuristic, as it requires to cre-
ate and iteratively fill and empty a current solution, while updating the best known one, that will
be returned in the end. We just replace the function best point to add(px,pI) used in the
basic greedy heuristic, with a function biased random point to add(px,pI,pseed,pmu)

that performs the evaluation of the selection criterium ϕA (i,x) based on the current solution x

and on the instance I, the extraction of a pseudorandom number depending on the seed and the
biased stochastic selection of a new point i to add based on the parameter mu provided by the
user.

create_solution(pI->n,&x);

for (iter = 1; iter <= iterations; iter++)

{

while (get_card(&x) < pI->k)

{

i = biased_random_point_to_add(&x,pI,mu,pseed);

add_point(i,&x,pI);

}

if (x.f > px->f) copy_solution(&x,px);

clean_solution(&x,pI->n);

}

327

328 LABORATORY ON CONSTRUCTIVE METAHEURISTICS APPENDIX C

destroy_solution(&x);

C.1.1 Choice of the basic constructive heuristic

In the previous chapter, we have considered four alternative (though very similar) constructive
heuristics, and a destructive one. we now discuss which of the heuristics should be adopted as
the core of the GRASP approach.
We will leave aside the destructive heuristic, because it is conceptually different from the other
ones, though it would indeed be interesting to compare the constructive and destructive ap-
proaches in a metaheuristic allowing to give them equal time3. We will also exclude the try-all
heuristic, that was the best-performing one, but also the slowest, and in a sense it is already a
sort of multi-start metaheuristic, using the initial point as a parameter whose value changes at
every iteration. Since a metaheuristic is intrinsically less efficient than the basic heuristic on
which it is based, we prefer to choose a simple and fast mechanism, rather than a slow and
complex one, at least for a first experiment. There is always time to introduce complications
and refinements, if justified by theory or by experience.
The basic heuristic had a strong drawback: it could only generate solutions including point 1.
Is this drawback still present in a randomized version? The answer depends on the probability
distribution selected. We remind that at the first step the selection criterium is equal to zero for
all points. Therefore:

• a scheme based on a Heuristic Biased Stochastic Sampling (HBSS) would choose any
point, but it would assign larger probabilities to the first points;

• a scheme based on a Restricted Candidate List (RCL) would choose with uniform proba-
bility one of the first points.

In the first case, all solutions can be obtained, but there is a bias towards those including the
points with small indices, and such a bias is not justified by any good reason. In the second
case, the points with larger indices could even be impossible to reach for some instances (that
depends also on the values of the distance function). Since for the sake of simplicity, we are
going to test only a RCL approach, the basic greedy heuristic is not a good choice, unless with
some additional correction.
The farthest-point and the farthest-pair heuristic still introduce a bias, or a deterministic advan-
tage, in favour of points with a large total distance, or pairs of very distant points. Such a bias is
less unreasonable, but still not provably justified. Moreover, in the case of point pairs, since the
number of possible distances is not huge, several pairs of points could have the same distance,
and therefore the discrimination between them would end up being based on their indices, and
that would not be reasonable.
A very simple idea to avoid an index-based bias at the first iteration of the procedure could be
to select the first point at random with uniform probability. At the following step4, the choice
would be stochastically biased in favour of the point that is farthest from a first one selected
uniformly at random. That is similar to the farthest-pair heuristic, but different in that at least
one of the two indices would be selected at random, without any index-based bias. For the sake
of simplicity, we will apply this idea. This means that when x is empty the procedure directly

3That’s for a future laboratory, but it could be a good exercise.
4The following discussion is unrevised brainstorming: I do not expect it to be very clear, or even correct, but I

think that the elements discussed are indeed relevant for the behaviour of the algorithm.

328

APPENDIX C C.1. GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE 329

selects one of the points with probability πi = 1/n without computing the selection criterium
(that would be trivially equal to zero for all points i ∈ P).
When x is not empty, we compute the selection criterium for all external points and proceed to a
biased random extraction from the available alternatives. Instead of simply saving the maximum
of these values, we save them progressively in a vector phi and the corresponding points in a
vector P, returning the final length num of the two vectors, that corresponds to the number of
possible extensions |∆+ (x)|= P\ x5.

if (get_card(px) == 0)

i = get_point(rand_int(1,pI->n,pseed),pI);

else

{

P = point_alloc(pI->n+1);

phi = int_alloc(pI->n+1);

num = compute_selection_criterium(px,pI,P,phi);

i = biased_random_extraction(P,phi,num,mu,pseed);

free(P);

free(phi);

}

return i;

The selection criterium is still the value of the objective, that is

ϕA (i,x) = f (x∪{i}) = ∑
j∈x∪{i}

∑
k∈x∪{i}

d jk

replaced for the sake of efficiency by half of its variation δ f (x, i) = (f (x∪{i})− f (x))/2

δ f (x, i) = ∑
j∈x

d ji

It is therefore computed with the function dist from x(i,px,pI) that was implemented in
the previous chapter.

cnt = 0;

for (i = first_point_out(px); !end_point_list(i,px); i = next_point(i,px))

{

cnt++;

P[cnt] = i;

phi[cnt] = dist_from_x(i,px,pI);

}

return cnt;

5Strictly speaking, this value is therefore already known, so that it would not be necessary to retrieve it from
the computation.

329

330 LABORATORY ON CONSTRUCTIVE METAHEURISTICS APPENDIX C

C.1.2 Pseudorandom number extraction

In order to generate random numbers, we exploit a classical pseudorandom number generator
(the ran1 generator described in the Numerical recipes in C). This is a function that receives
in input a seed, that is a negative integer number, modifies that number (this is why the seed
is passed by reference) and returns in output a real number ω that tends to assume a uniform
distribution in the range [0;1] as the function is repeatedly called. The first value of the seed
is selected by the user, fed to the algorithm in the command line and determines the over-
all sequence of numbers generated. This is why the numbers of the sequence are denoted as
pseudorandom. The ability to generate the same sequence in all runs is fundamental for the re-
peatability of the approach and the reproducibility of the results. In short, it is a basic condition
for the scientific investigation of the problem.

C.1.3 Biased point selection

Given the pseudorandom number ω , it is necessary to determine the corresponding point in
∆+ (x) = P \ x with a biased scheme that favours the points with larger values of φi. This
mechanism depends on the probability distribution adopted. In the following, for the sake of
simplicity, we will adopt a value-based Restricted Candidate List (RCL scheme, in which:

1. a real parameter µ ∈ [0;1] is used to fix an intermediate threshold ϕ̄(x,µ) between the
minimum and maximum values available for φi;

2. the points i such that φi is better than (i.e., above) the threshold enter the RCL;

3. a point is selected from the RCL with uniform probability.

Other schemes commonly adopted in GRASP heuristics employ a cardinality-based RCL, a lin-
early decreasing or an exponentially decreasing probability profile on all external points. All
of them assign decreasing probabilities to the possible choices i ∈ ∆+(x) sorted by nondecreas-
ing values of φ . In short, if ir is the element in position r = 1, . . . , |∆+(x)| in the ranking,
φ(i1,x) ≥ φ(i2,x) ≥ . . . ≥ φ(i|∆+(x)|,x). Moreover, the typical schemes adopted in GRASP
heuristics define probabilities based on the ranking of the choices, and not on the absolute
values of the selection criterium, that is φ(ir,x) can be expressed as a function of r and |∆+(x)|.

C.1.3.1 Value-based RCL

This scheme computes an adaptive threshold depending on the values of the selection criterium
on the available extension.

ϕ̄(x,µ) = (1−µ)ϕmin +µϕmax

where
ϕmin (x) = min

i∈∆
+
A (x)

ϕA (i,x) and ϕmax (x) = max
i∈∆

+
A (x)

ϕA (i,x)

and defines a RCL as

RCL(x,µ) = {i ∈ ∆
+(x) : ϕ(i,x)≥ ϕ̄(x,µ)}

330

APPENDIX C C.1. GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE 331

Then, it assigns the elements keeping under the threshold a uniform probability, and the follow-
ing ones a zero probability:

πir =

1

|RCL(x,µ)|
if r ≤ |RCL(x,µ)|

0 if r > |RCL(x,µ)|

The parameter µ ∈ [0;1] tunes the randomness of the choice, with µ = 0 yielding a deterministic
heuristic and µ = 1 a random walk.
In order to implement this scheme, the procedure biased random extraction scans the vec-
tor phi a first time to determine its minimum and maximum values ϕmin and ϕmax. Then, it
computes the threshold based on parameter µ that discriminates from the other points the ele-
ments of the RCL, according to condition6

ϕi ≥ (1−µ)ϕmax +µϕmin

Scanning again the RCL allows to determine the number of its elements and to move them at the
beginning of the vector of points P. For the sake of efficiency, the points are copied overwriting
the previous elements of the vector, because there is no need to keep the whole original content:
only the elements of the RCL are necessary.

C.1.3.2 Identification of the selected point

Now, in order to extract one of them with uniform probability, it is enough to compute ⌈ω |RCL(x,µ)|⌉
and take the corresponding element of vector P. In RCL-based schemes, it is enough to multiply
ω by the size of the RCL and round up the result. This provides the position of the point in the
list, and therefore allows to access it directly.
The other schemes mentioned above require to first translate the pseudorandom number ω into
a ranking position, and then to identify the point corresponding to that position in a sorted
vector. Let us focus on the first phase. It is always possible to identify the ranking position
that corresponds to ω by summing the probabilities associated to the subsequent rankings, and
stopping when the sum reaches ω: the corresponding position is the required one. In practice,
however, it is usually not necessary to perform this sum explicitly, since the structure of the
values allows to compute the correct ranking more quickly, just as in the case of the RCL it was
enough to multiply ω by the size of the list7

After computing the ranking position, one must still identify the corresponding point according
to the order by nondecreasing values of φ . It is never required to fully sort vector phi: the
extraction of the k-th largest element from a vector can in fact be performed in linear time
applying suitable algorithms. We do not give details here since we limit our experiments to the
RCL scheme.

phiMin = INT_MAX;

phiMax = -1;

6The condition is complementary to the one given in the slides, because the selection criterium must be max-
imised, but µ still measures randomness.

7I need to work on this point, that is not clearly discussed in any paper or textbook at the best of my knowledge.
I am pretty sure that a linear probability profile allows to give a closed-form quadratic expression of the cumulated
probability in each ranking position r, and therefore to find the position corresponding to ω in constant time solving
a second-order equation. For the exponential profile, something more sophisticated is required.

331

332 LABORATORY ON CONSTRUCTIVE METAHEURISTICS APPENDIX C

for (cnt = 1; cnt <= num; cnt++)

{

if (phi[cnt] < phiMin) phiMin = phi[cnt];

if (phi[cnt] > phiMax) phiMax = phi[cnt];

}

barphi = (1-mu) * phiMax + mu * phiMin;

RCLsize = 0;

for (cnt = 1; cnt <= num; cnt++)

if (phi[cnt] >= barphi)

{

RCLsize++;

P[RCLsize] = P[cnt]; /* overwriting P for the sake of efficiency */

}

cnt = rand_int(1,RCLsize,pseed);

return P[cnt];

C.1.4 Empirical evaluation

We can now evaluate the performance of the GRASP heuristic. Contrary to what we have done
in the previous chapter, having acquired a certain understanding of what the heuristics are doing,
we will try to avoid producing meaningless diagrams.

C.1.4.1 Computational time analysis

An a priori worst-case asymptotic analysis of the computational time can be based on the sim-
ilar analysis made for the basic deterministic greedy heuristic. First of all, the constructive
heuristic is run for a given number of iterations ℓ. This number is a relevant parameter, that
could constant and totally unrelated to the size of the problem, but could also be chosen de-
pending on it, with the idea that larger instances could require more iterations to be explored
properly, or vice versa that larger instances allow less iterations because thery require a longer
time for each run, and the overall time is limited. In general, therefore, the expression of the
time complexity will include ℓ. The basic deterministic heuristic required time O(nk2) for each
run. The randomised version requires additional time for the generation of the pseudorandom
number (that can be assumed as constant), for the identification of the minimum and maximum
values of the selection criterium and the construction of the RCL (that can be assumed as linear),
for the biased random selection of the new point (constant time). Consequently, we can estimate
an additional linear time per each of the k iterations of the constructive method: the resulting
O(nk) term is dominated asymptotically. Other additional terms are given by the comparison of
each of the ℓ solutions obtained with the best known one and, possibly, the update of the latter.
All these terms are asymptotically dominated, but they could have a perceivable influence on
the empirical evaluation.
For the first experiment, we set ℓ= n. The choice is clearly arbitrary, but it is motivated by the
idea to allow each of the n points to be chosen with a reasonable probability as the starting point
of the constructive heuristic. It also aims to obtain a computational time comparable to that of

332

APPENDIX C C.1. GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE 333

the “try-all” heuristic, which also had n repetitions of the basic constructive scheme. This should
allow to better estimate the impact of the additional operations required by the randomisation
(not the maintenance of the best known solution, that occurs also in the deterministic heuristic).
Figure C.1 reports the scaling diagram for the whole benchmark, obtained setting µ = 0.1. It
can be noticed, however, that according to the theoretical analysis parameter µ should have very
little influence on the computational time. The detailed reports show a limited slow-down as µ

increases, but the difference is not significant. The diagram shows the expected increase of the
computational time with size, and its logarithmic version in Figure confirms its polynomiality.
The O

(
ℓnk2) theoretical estimate, with ℓ= n and k ∝ n, suggests an overall O

(
n4) complexity,

that is confirmed by the linear interpolation:

TA = βnα ⇔ logTA = α logn+ logβ

with α ≈ 3.969 and β ≈ 3.4 ·10−10.

Figure C.1: Scaling diagram for the greedy algorithm on the benchmark

Figure C.2: Scaling diagram in logarithmic scales for the greedy algorithm on the benchmark

The two figures report also the scaling diagram of the greedy “try-all” heuristic, that was ex-
pected to have a very similar performance with respect to the computational time. In fact, the
two profiles are very similar, with the GRASP heuristic only slightly higher, confirming that the
additional operations to randomise the selection of points affect very little the overall complex-
ity.

333

334 LABORATORY ON CONSTRUCTIVE METAHEURISTICS APPENDIX C

C.1.4.2 Solution quality analysis

Without forgetting that the benchmark is rather small and specific, we can now draw the SQD
diagram (see Figure ??), to compare the different parameter tunings with one another. We
consider the following tunings: µ ∈ {0.01,0.02,0.03,0.04,0.05}, after some preliminary ex-
periments showed that larger values provided worse results. The same diagram can be used
to compare GRASP with the algorithms already developed. In particular, the figure shows the
profile of the “try-all” heuristic, that is the most similar one in terms of behaviour (applying
a sequence of n different constructive heuristics) and computational time. The diagram is not
very clear, but the versions with larger values of the randomness coefficient µ seem to perform
slightly worse (the trend becomes clearer for larger values). Indeed, the performance of the
“try-all” heuristic is similar to that of the smaller values of µ and better than the other ones.
This is rather disappointing, and poses the question whether the values tested are too large and
should be reduced. In order to be sure, one would need to check the typical length of the RCL
during the search. A rough estimate, based on the (unproved, but not unreasonable) assumption
that the values of the selection criterium are uniformly distributed between ϕmin ϕmax is that the
typical size decreases from µn to µ (n− k). For µ = 0.01, n ranging from 100 to 1000 and k
ranging from 0.1n to 0.4n, this corresponds to sizes ranging from 1 to 9, that do not seem so
large.

Figure C.3: Solution Quality Distribution diagram for the GRASP algorithm (with µ ∈
{0.01,0.02,0.03,0.04,0.05}) and the greedy “try-all” heuristic

The boxplots reported in Figure C.4 provide a similar, perhaps slightly clearer, intuition. It
should anyway be noticed that the GRASP heuristic can be prolonged for more than ℓ = n
iterations, probably improving the final results, whereas the deterministic heuristic cannot. As
well, we could experiment with shorter runs, to determine whether the results obtained actually
could require a lower number of iterations. Anyway, the results remain unpromising.

C.1.4.2.1 Statistical tests We now apply Wilcoxon’s test to determine whether it can dis-
criminate between the results of different parameter tuning of GRASP and the deterministic
competitor. The results are:

• for µ = 0.01

W+ = 338.50, W- = 402.50, N = 38, p <= 0.6478

334

APPENDIX C C.1. GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE 335

Figure C.4: Boxplots for the GRASP algorithm (with µ ∈ {0.1,0.2,0.3,0.4}) and the greedy
“try-all’ heuristic’

• for µ = 0.02

W+ = 430.50, W- = 310.50, N = 38, p <= 0.3882

• for µ = 0.03

W+ = 523.50, W- = 256.50, N = 39, p <= 0.06345

• for µ = 0.04

W+ = 455.50, W- = 324.50, N = 39, p <= 0.3644

• for µ = 0.05

W+ = 634.50, W- = 145.50, N = 39, p <= 0.0006617

In short, the difference, at first not statistically significant, tends to become more significant as
µ increases (with an exception for µ = 0.04. The only comparison that seems to exhibit a true
dominance is the one between the deterministic heuristic and µ = 0.05. The message is clearly
not to exceed with randomicity.

C.1.4.2.2 Influence of the random seed An aspect that must be analysed when using ran-
dom steps is the influence that randomness has on the final result obtained. If we run the algo-
rithm a single time, in fact, the quality of the results achieved could be easily due to a lucky,
or unlucky, choice of the random seed. In order to estimate the role of randomness, we should
run the algorithm for several times, with different random seeds, and compare the results thus
obtained. A simple index is given by the average quality of the solution with respect to a suf-
ficiently large number of runs (at least 10, possibly more), but other indices of distribution are
certainly relevant: the maximum and minimum values obtained, or the medians and quartiles.

335

336 LABORATORY ON CONSTRUCTIVE METAHEURISTICS APPENDIX C

The description is very similar in principle to that we have given with respect to the benchmark
instances (numerical indices, boxplots, SQD diagrams), but it considers single instances and
variable seeds, instead of a single seed and random instances.
In order to give an idea of this kind of investigation, we select a single instance, that we consider
as significant for some reason, and we run the algorithm for a given number of times with
different seeds. We will consider the instance n0600k060, because it is the instance on which
the GRASP algorithm with µ = 0.01, that is the best performing one on average (though with
nonsignificant differences with other ones) obtains the largest gap: δA (I) = 1.21% (see the
maximum of the second boxplot in Figure C.4. The question investigated is whether this bad
result was typical or derived from a particularly unlucky, or particularly lucky, choice of the
random seed. In order to establish this, since the algorithm takes about 5 seconds to solve
the instances, we run it 100 times with different random seeds, ranging from −1 to −100.
Figure C.5 provides the SQD with respect to the random seed. The gap δ is never huge, but
indeed it varies in a rather large range (between 0.6% and 1.4%). The red line in the picture,
that corresponds to the single run of the previous phase of experiments, suggests that its result
was indeed rather unlucky. This suggests that the GRASP algorithm (at least on this instance)
is rather unstable, that its results could be in practice better (but also worse) than the ones
discussed above, that were obtained in a single (not necessarily representative) run, and that the
conclusions drawn from such results should be handled with much care.

Figure C.5: Solution Quality Distribution diagram for the GRASP algorithm with µ = 0.01 on
instance n0600k060 with 100 different random seeds: the red line corresponds to the single run
of the previous phase of experiments.

336

APPENDIX C C.2. ANT SYSTEM 337

C.2 Ant System

The Ant System (AS) is a development of the classical cost perturbation algorithm, as well as
of the semigreedy algorithm. Its basic idea is to modify the scheme of constructive algorithms
by replacing the deterministic choice of the element that provides the best value of the selec-
tion criterium with a stochastic choice, influenced by additional information provided by the
memory of previously found solutions. In addition, the AS considers a population of algorithms
that work in parallel, iteration by iteration. Among the several variants of AS, we are going to
implement the one that:

• defines the visibility of a point i ∈ P\ x as the selection criterium used in the constructive
and the GRASP heuristic, that is

η (i,x) = ϕ (i,x) = ∑
j∈x

d ji

• maintains in a suitable vector a trail function τ (i) that depends only on the point i to be
added, and is progressively updated during the execution;

• combines visibility and trail by multiplying them, as they both tend to associate larger
values to better options;

• tunes the randomness of the choice with a parameter q, so that the choice is made selecting
with probability 1−q

i∗ = arg max
i∈P\x

ϕ (i,x)τ (i)

and with probability q a random point with probability distribution

φi =
ϕ (i,x)τ (i)

∑ j∈P\x ϕ (j,x)τ (j)

• applies a local update to the trail to diversify the search after each individual has built a
solution;

• applies a global update to the trail to intensify the search on the points that belong to the
best known solution found in the whole process.

The following pseudocode provides the scheme of this variant of the AntSystem adapted to the
MDP as already done for GRASP. Also in this case the search procedure that should be run to
improve the solutions built is neglected:
The algorithm performs ℓ iterations, in each of which it generates h different solutions; ℓ and h
are numbers chosen by the user, based on the available time. It is easy to recognise in the inner
while a modified version of the basic constructive heuristic presented in the previous chapter.
The algorithm still computes all values of ϕA (i,x), but, instead of choosing the largest one, it
selects one at random based on a biased probability distribution (with parameter µ) that favours
the ones with largest values of ϕ and τ . At the end of each iteration, the current solution possibly
updates the best known one.

337

338 LABORATORY ON CONSTRUCTIVE METAHEURISTICS APPENDIX C

Algorithm 24 AntSystem
1: procedure ANTSYSTEM(I, ℓ,q,ρ)
2: x∗ := /0; f ∗ := 0; ▷ Best solution found so far
3: τi = τ0 for all i ∈ P;
4: for l := 1 to ℓ do
5: for g := 1 to h do
6: x := /0;
7: while |x|< k do ▷ Randomised constructive procedure
8: ϕi := f (x∪{i})− f (x) for all i ∈ P\ x;
9: i∗ := BiasedRandomExtraction(P\ x,ϕ,τ,µ);

10: x := x∪{i∗};
11: end while
12: if f (x)> f ∗ then
13: x∗ := x; f ∗ := f (x);
14: end if
15: τ := LocalTrailUpdate(x,τ,ρ);
16: end for
17: τ := GlobalTrailUpdate(x∗,τ,ρ);
18: end for
19: return (x∗, f ∗);
20: end procedure

338

APPENDIX D

Laboratory on exchange heuristics

asdasdas
This chapter discusses the application of exchange heuristics to the Maximum Diversity Problem
(MDP). Exchange heuristic start from a given feasible solution x(0) (typically obtained with a
constructive heuristic, or metaheuristic, or a random generation process) and try to improve the
current solution x iteratively by adding a suitable subset A and deleting a suitable subset D of
elements of the ground set. Of course, A consists of external elements (A ⊆ B \ x) and D of
internal ones (D ⊆ x). The possible pairs of subsets are determined by a rule that takes the
form of a neighbourhood function N : X → 2X , associating each feasible solution x ∈ X with a
subset of feasible neighbour solutions N (x). The choice of the incumbent, that is the neighbour
solution that replaces the current one, is done optimising a suitable selection criterium, that
nearly always is the objective function value.
In the following, we will consider some alternative initialisation procedures (namely, the farthest
point and the try-all constructive heuristics and a purely random generation). We will also adopt
the most natural neighbourhood for the MDP, that is the single-swap neighbourhood NS1 , which
includes all the subsets obtained from x deleting a single element i and adding a single element
j:

NS1 (x) =
{

x′ = x\{i}∪{ j} with i ∈ x, j ∈ P\ x
}

Notice that NS1 (x) = NH2 (x), that is, it coincides with the collection of feasible subsets hav-
ing Hamming distance equal to 2 from x. However, the collection of all subsets at Hamming
distance equal to 2 also includes the ones obtained adding or deleting two points, which are
unfeasible. The single-swap neighbourhood, on the contrary, automatically satisfies the car-
dinality constraint that characterises the MDP, and this implies the strong advantage that the
feasibility of the subset obtained with any swap operation is guaranteed a priori and needs not
be verified. The exploration of the neighbourhood, therefore, simply consists in the computation
of the objective function for each neighbour solution.
Thanks to the cardinality constraint, and to the lack of other complicating constraints, neigh-
bourhood NS1 always includes exactly k (n− k) solutions, and this induces a strong relation
between the number of neighbourhood explorations and the computational time (at least, if the
neighbourhood is fully explored).
Finally, concerning the selection criterium, we will adopt the objective function, thus imple-
menting the basic exchange heuristic known as steepest ascent (for maximisation problems
as the MDP). We will discuss its theoretical and empirical computational complexity, and we
will improve it with a standard trick to allow the evaluation of quadratic objective functions
in cardinality-constrained problems. We will compare the results of the different initialisation

339

340 LABORATORY ON EXCHANGE HEURISTICS APPENDIX D

procedures and we will tune the size of the neighbourhood with the adoption of the first-best
exploration strategy as opposed to the global-best one.
The main function, then, allows to choose from the command line which of the three initial-
ization procedures to apply (with option -gp for the farthest-point, -ga for the try-all heuristic
and -r followed by a negative integer seed for the random initialisation), and which of the two
neighbourhood exploration strategies to apply (with option -gb for the global-best and -fb for
the first-best strategy). The steepest ascent heuristics also returns the number of neighbourhood
explorations performed, because we are going to investigate the influence of the exploration
stategy on this value and its relation with the computational time. Apart from printing the
number of iterations, all other operations are the same introduced for the previous heuristics.

parse_command_line(argc,argv,data_file,init_algo,visit_strategy,&seed);

load_data(data_file,&I);

create_solution(I.n,&x);

start = clock();

if (strcmp(init_algo, "-gf") == 0)

greedy_farthest(&I, &x);

else if (strcmp(init_algo, "-ga") == 0)

greedy_tryall(&I, &x);

else if (strcmp(init_algo, "-r") == 0)

generate_random_solution(&I, &x, &seed);

steepest_ascent(&I,&x,visit_strategy,&niter);

end = clock();

tempo = (double) (end - start) / CLOCKS_PER_SEC;

printf("%s ",data_file);

printf("%10.6f ",tempo);

printf("%8d ",niter);

print_sorted_solution(&x,I.n);

printf("\n");

destroy_solution(&x);

destroy_data(&I);

D.1 The steepest ascent heuristic

The steepest ascent heuristic chooses the following solution from the neighbourhood of the
current one by optimising a selection criterium φ (x, i, j) that is simply the value of the objective
function f (x∪{i}\{ j}) or, to be more precise, half of its variation:

δ f (x, i, j) =
1
2
(f (x∪{i}\{ j})− f (x)) = ∑

k∈x
d jk − ∑

k∈x
dik −di j

This implies the following adaptation to the MDP of the general scheme:

340

APPENDIX D D.1. THE STEEPEST ASCENT HEURISTIC 341

Algorithm SteepestDescentMDP
(

I,x(0)
)

x := x(0);
Stop := false;
While Stop = false do

x̃ := arg max
i∈x, j∈P\x

(
∑

k∈x
d jk − ∑

k∈x
dik −di j

)
;

If f (x̃)≤ f (x) then Stop := true; else x := x̃;
EndWhile;
Return (x, f (x));

The implementation of this algorithm is nearly straightforward. The main difference is that,
for the sake of efficiency, the procedure explore neighbourhood that selects the incumbent
returns a pair of points (i∗, j∗) to be exchanged, and the resulting variation of the objective,
instead of a whole solution x̃. Therefore, if the incumbent improves the current solution (that
is, the variation is negative), the update operation x := x̃ is obtained performing the exchange
suggested with procedure swap points.

*pniter = 0;

do

{

explore_neighbourhood(px,pI,visit_strategy,&p_in,&p_out,&delta_f);

if (delta_f > 0)

{

(*pniter)++;

swap_points(p_in,p_out,px,pI);

}

} while (delta_f > 0);

It could be remarked that swapping points j and i is equivalent to deleting point j and adding
point i, so that we do not actually need an additional procedure. However, implementing this
procedure separately has the advantage to avoid any instruction that is useless when the two
operations must be performed together (to give a trivial example, the cardinality of the solution
remains unvaried, instead of being decremented and incremented).
The exploration of the neighbourhood trivially consists in two nested loops, as j scans the cur-
rent solution x and i scans its complement, taking advantage of the corresponding lists. For
each pair of solutions, the procedure estimates the variation of the objective function δ f (x, i, j)
calling a suitable procedure evaluate exchange and saves the best exchange and the corre-
sponding variation of the objective.

*pdelta_f = INT_MIN;

*pp_in = *pp_out = NO_POINT;

for (p_in = first_point_in(px); !end_point_list(p_in,px);

p_in = next_point(p_in,px))

for (p_out = first_point_out(px); !end_point_list(p_out,px);

p_out = next_point(p_out,px))

{

delta_f = evaluate_exchange(p_in,p_out,px,pI);

341

342 LABORATORY ON EXCHANGE HEURISTICS APPENDIX D

if (delta_f > *pdelta_f)

{

*pdelta_f = delta_f;

*pp_in = p_in;

*pp_out = p_out;

}

}

The procedure that evaluates each single exchange does not physically perform it. Do not
perform moves only to evaluate them is a specific application of a general fundamental principle
in the design of heuristic algorithms: avoid all useless operations. It simply computes

∑
k∈x

d jk − ∑
k∈x

dik −di j

as follows1.

delta = 0;

delta = dist_from_x(p_out,px,pI);

delta -= dist_from_x(p_in,px,pI);

delta -= pI->d[get_index(p_in,pI)][get_index(p_out,pI)];

return delta;

D.1.1 Time complexity estimation

The computational complexity of the steepest ascent heuristic derives from three main sources:

1. the number of neighbourhood explorations tmax performed to reach the local optimum in
which the search terminates;

2. the number of neighbour solutions (or, in general, subsets) whose objective value (and, in
general, feasibility) is evaluated;

3. the computational time required to evaluate the objective value (and, in general, the fea-
sibility) of each neighbour solution (or subset).

The first term is in general unknown and hard to estimate (unless for upper estimates such as
the total number of feasible solutions, that are very loose). For the single-swap neighbourhood
NS1 , the number of neighbour solutions is exactly k (n− k). The feasibility is automatically
guaranteed, and the evaluation of the objective requires to compute the distance of two points
from the current solution, that is O(k) time. The resulting overall estimate is O

(
tmax (n− k)k2).

D.1.2 Empirical evaluation

We can now evaluate the performance of the steepest ascent heuristic with the global-best strat-
egy.

1This is just a detail, but it is probably better to add and remove di j rather than checking at every step whether
k = j or not.

342

APPENDIX D D.1. THE STEEPEST ASCENT HEURISTIC 343

D.1.2.1 Computational time analysis

From the detailed results, we can remark that the overall computational time (including both
the initialisation constructive procedure and the following exchange procedure) ranges from
fractions of a second to a couple of minutes. This is two orders of magnitude larger than the
time required for the constructive heuristic alone (up to half a second), and therefore mostly
depends on the exchange phase. It is comparable to the try-all heuristic only for the smaller
instances, and one order of magnitude smaller for the larger ones (in fact, the try-all heuristic
repeats the basic constructive heuristic n times, with n ranging from 100 to 1000). The exchange
heuristic is therefore less efficient than the constructive (and destructive) ones, but more efficient
than the try-all heuristic.
Figure D.1 reports the semilogarithmic scaling diagram for the computational time of the steep-
est ascent heuristic on the whole benchmark. The diagram shows the expected polynomial in-
crease with size. The O

(
tmaxnk2) theoretical estimate, with k ∝ n, suggests an overall O

(
tmaxn3)

complexity. The linear interpolation:

TA = βnα ⇔ logTA = α logn+ logβ

suggests that α ≈ 4.3 and β ≈ 5.75 ·10−12. If we assume a cubic complexity for the neighbour-
hood exploration, this would imply that tmax increases slightly more than linearly with n. To test
more precisely this conclusion we can compute and plot the ratio T/tmax of the total time T on
the number of neighbourhood explorations tmax (see the yellow graph in Figure D.1) and make
an interpolation on it. Since α ≈ 2.7 and β ≈ 3.6 ·10−9, it seems that the cubic estimate for the
time required to explore a single neighbourhood is excessive, and that tmax is more than linear in
n, though not quadratic. One can also notice that the first diagram is much more irregular than
the first one, meaning that tmax is not strictly dependent on n. Of course, we could also directly
interpolate tmax as a function of size: a quick look at the detailed results for each fixed value
of n suggests that tmax indeed strongly depends on k, increasing more than linearly: it becomes
about 10 times larger as k goes from 0.1n to 0.4n.

Figure D.1: Scaling diagram in logarithmic scales for the steepest ascent algorithm on the
benchmark

343

344 LABORATORY ON EXCHANGE HEURISTICS APPENDIX D

D.1.2.2 Solution quality analysis

Figure D.2 reports the SQD diagram, compared with that of the initialisation farthest-point
procedure. Of course, the former strictly dominates the latter, as it receives the solution in
input and proceeds by improving it with local search. What is interesting is the amount of
the improvement, that is strong, but not huge: the average gap δ decreases from 1.52% to
0.97%. This suggests that the MDP has many local optima of various quality and with small
basins of attraction. In fact, the try-all heuristic still performs better than the steepest ascent.
Of course, as it takes much more time, we can’t say that the latter is dominated. However,
it is still impossible to dismiss the try-all heuristic as a viable approach. One can notice that
the steepest ascent heuristic has a larger probability of finding very small gaps (below 0.3%),
though not of finding the best known result. This suggests a region of stronger stability, possibly
corresponding to the capacity of improving good initial results.

Figure D.2: Solution Quality Distribution diagram for the steepest ascent and the farthest point
heuristics

The boxplots reported in Figure D.3 provide the same information.

Figure D.3: Boxplots for the steepest ascent and the farthest point heuristics

344

APPENDIX D D.1. THE STEEPEST ASCENT HEURISTIC 345

We do not apply statistical tests to this comparison, because by definition the dominance of
steepest ascent with respect to the farthest point heuristic is strict and the tests would not add
anything to this fundamental information.

D.1.3 Constant-time neighbour evaluation

From theory we know that the variation of a quadratic objective function implied by a simple
swap of elements can be estimated in constant time exploiting the formula

δ f (x, i, j) =
1
2
(f (x∪{i}\{ j})− f (x)) = ∑

k∈x
d jk − ∑

k∈x
dik −di j

by saving in a suitable vector Di the total distance of each point i ∈ P from the current solution
x, both for internal and external points. In fact, given this vector

δ f (x, i, j) =
1
2
(f (x∪{i}\{ j})− f (x)) = D j −Di −di j

can be computed in two operations. Of course, whenever the current solution x changes into
x′ = x \{i}∪{ j}, the vector D must be updated. This takes time O(n) applying the following
formula

Dk := Dk −dik +d jk for all k ∈ P

Overall, this reduces the time to explore a single neighbourhood from O
(
(n− k)k2) to O((n− k)k),

at the cost of adding an O(n) term, that is dominated.
From the implementation point of view, we need to decide where to store vector D. The most
natural approaches are either to keep it explicitly as a variable in procedure steepest ascent

or to “hide” it in solution x. In the former case, we will have to pass it as an argument to proce-
dure explore neighbourhood. In the latter case, we will have to update all the functions that
manipulate objects of type solution t. The choice mainly depends on whether we think that
the vector will be used outside of the exchange heuristic or not. As we are going to use it also in
the exchange metaheuristics, we will adopt this approach. Moreover, it make sense to go back to
constructive heuristics and metaheuristics and evaluate whether the computational trick would
provide an advantage also in those algorithms. Indeed, the O

(
nk2) complexity of the construc-

tive heuristics depends on applying k times the basic constructive step, in which for all external
points (hence, the O(n) term) the distance from the current solution is estimated in time O(k).
The introduction of vector D would remove that term, and therefore the total time to O(nk) at
the cost of an additional O(n) term, that is dominated. All the required work auxiliary work has
been done in library solution2, that we will use in the following instead of solution. This
will also require to modify accordingly the inclusion directive in file local search.h.
Adding vector D to the solution t data structure under the form of a dynamic integer vector
(int *) requires to update the creation, destruction, copy and check procedures, as well as the
manipulation procedures (add point, delete point and swap points). After this update, it
is possible to implement the evaluation of the exchange simply as follows.

delta = px->D[get_index(p_out,pI)];

delta -= px->D[get_index(p_in,pI)];

delta -= pI->d[get_index(p_in,pI)][get_index(p_out,pI)];

return delta;

345

346 LABORATORY ON EXCHANGE HEURISTICS APPENDIX D

On the other hand, the swap points procedure must also update the elements of vector D (in
O(n) time), but it can save O(k) time for the update of the objective value.
Solving again the whole benchmark leads to exactly the same results as above, as expected.
The computational time is however much smaller: in Figure D.4, the logarithmic scale clearly
shows a decrease in the slope, corresponding to a reduction of the exponent in the polynomial
dependence of the computational time on the number of points2. Just to have an intuitive idea
of the improvement, the computational times now range from fractions of a second to 1 second,
instead of two minutes. This impressive result derives from having reduced the theoretical
worst-case complexity from O

(
tmaxnk2) to O(tmaxnk). The time is not strictly reduced by a

factor of k (from 10 to 400 in the benchmark) because the contribution of secondary terms
previously overwelmed by the evaluation of the value for the neighbour solutions now can
becomes perceivable.

Figure D.4: Scaling diagram in logarithmic scales for the steepest ascent algorithm with the
constant-time or the linear-time evaluation of neighbours

D.1.4 Comparison of initialisation procedures

We now investigate whether the initial solution x(0) exerts a long-term influence on the quality
of the final solution returned by the exchange heuristic; in other words, whether good starting
solutions tend to fall into the basin of attraction of good local optima. This would recommend
the adoption of a good constructive procedure, provided that its computational time is not ex-
cessive. To investigate also this aspect, we consider a third variant in which the initial solution
is obtained with the “try-all” heuristic3.
Figure D.5 shows the three SQD diagrams for the initial solutions and for the final ones. The
diagrams are in semilogarithmic scale because the gaps are widely distributed (part of the dia-

2Actually, α decreases from 4.3 to 2.9 for the overall time and from 2.7 to 1.3 for the time per iteration, which
seems rather too much, but I have had no time to check the numbers and to investigate the reason of this behaviour.

3It is clear that this heuristic could be fully exploited by running an exchange procedure on each of the starting
solutions it provides, but we are now focusing on the improvement power of a single run of an exchange heuristic.
Applying the exchange heuristic to each solution generated by the “try-all” heuristic would be more on the line of
a multi-start exchange metaheuristic. The same can be said about the classical GRASP mechanism that applied an
exchange procedure to each solution generated by the semigreedy algorithm.

346

APPENDIX D D.1. THE STEEPEST ASCENT HEURISTIC 347

grams is missing because zero values cannot be represented on a logarithmic axis). This allows
to appreciate the relative improvement obtained by the exchange procedure with respect to
each different starting point This is particularly strong in the case of the random initialisation,
whereas it becomes smaller for the constructive initialisations. In particular, it can be noticed
that the worse starting solutions are only slightly improved (in the case of the try-all heuristic,
the second-worse solution is not improved, so that the diagram appears to reach the upper bound
nearly for the same gap). It is however clear that better starting solutions tend to be associated
with better final solutions: the exchange heuristic is not strong enough to overcome the initial
advantage.

Figure D.5: Comparison of different initialisation procedures

Of course, the computational times are also relevant for the choice. Notice that we can apply
the try-all heuristic only because the constant-time evaluation procedure can be extended to
the constructive phase, so that this heuristic no longer takes several minutes to provide the
starting solution for the larger instances. Indeed, its overall time requirement (constructive and
improvement phase) ranges from fractions of a second to about 5 seconds, as opposed to about
1 second for the farthest point initialisation and 1.6 seconds for the random initialisation. The
try-all initialisation is slower due to the more refined constructive phase; in fact, the number of
neighbourhood explorations before reaching the local optimum is on average 15. The random
initialisation has an extremely fast initialisation, but an average of 100 iterations. That implies
the final longer time with respect to the farthest point heuristic, which only makes 25 iterations
before hitting the local optimum.
Figure D.6 provides the RTD diagrams on the benchmark. We remind that such a diagram
makes little sense for benchmarks collecting instances of different size, but it allows meaningful
comparisons between different algorithms.
This suggests that a random initialisation is not a good idea (at least for the steepest ascent
heuristic), whereas it is still open whether the farthest point or the try-all initialisation (or other
non fully random ones) could be more effective.

D.1.5 Neighbourhood tuning: global-best versus first-best

Finally, we experiment with the idea of tuning the exploration of the neighbourhood, that is
terminating it as soon as an improving solution is found with respect to the current one. This
is known as first-best strategy, as opposed to the classical global-best strategy that visits the
whole neighbourhood and returns the overall best solution it contains. The rationale is to accept

347

348 LABORATORY ON EXCHANGE HEURISTICS APPENDIX D

Figure D.6: Comparison of the overall running time of the exchange heuristic for different
initialisation procedures

a smaller improvement in each step of the search, in exchange for a much smaller computational
time, that allows to perform many more steps, possibly getting earlier to the same local opti-
mum. It must be noticed that, changing the rule that determines the following visited solution
in general also changes the basins of attraction, and therefore the final local optimum reached.
This could be worse or better than in the global-best case. To make things even more complex,
the local optimum returned also depends on the order in which each neighbourhood is visited,
a fact that could be perhaps exploited somehow (possibly, starting with the most promising ele-
ments based on the distance D from x), with a possible increase of the computational cost. We
are not going to explore this line of research: the neighbourhood will be explored scanning x
and P\ x with the corresponding lists, exactly as in the global-best strategy.
In order to impose the first-best strategy, an extremely simple modification must be made to the
neighbourhood exploration procedure: as soon as an exchange with a positive effect is found,
the procedure terminates returning that exchange.

*pdelta_f = INT_MIN;

*pp_in = *pp_out = NO_POINT;

for (p_in = first_point_in(px); !end_point_list(p_in,px);

p_in = next_point(p_in,px))

for (p_out = first_point_out(px); !end_point_list(p_out,px);

p_out = next_point(p_out,px))

{

delta_f = evaluate_exchange(p_in,p_out,px,pI);

if (delta_f > *pdelta_f)

{

*pdelta_f = delta_f;

*pp_in = p_in;

*pp_out = p_out;

if ((delta_f > 0) && (strcmp(visit_strategy,"-fb") == 0)) break;

}

}

For the sake of simplicity, we apply the farthest-point initialisation heuristic. The detailed re-
sults show that the number of iterations tends to be larger with respect to the global-best strategy,

348

APPENDIX D D.1. THE STEEPEST ASCENT HEURISTIC 349

as expected, but the difference is not strong (30 versus 25 on average). In fact, the computa-
tional time is shorter, and the results comparable. Figure D.7 shows that the two algorithms have
rather similar performance with respect to the solution quality (perhaps, the first-best strategy
is slightly better).

Figure D.7: Comparison of the solution quality of the exchange heuristic with the global-best
and first-best neighbourhood exploration strategies

Figure D.8, however, shows that the first-best strategy is clearly faster. This could be enough to
suggest to adopt it instead of the classical global-best strategy.

Figure D.8: Comparison of the computational time of the exchange heuristic with the global-
best and first-best neighbourhood exploration strategies

In order to further support this choice, we can compare the two sets of results with Wilcoxon’s
test. The results concerning the solution quality are:

W+ = 168, W- = 297, N = 30, p <= 0.188

and suggest that, while there is a slight predominance of the first-best strategy with respect to
the global-best, it would not be unlikely that such a predominance be due only to a random
extraction (the p-value is 18.8%, that is quite large).
On the other hand, the results for the computational time are:

W+ = 677.50, W- = 25.50, N = 37, p <= 9.094e-007

and indeed suggest that the global-best strategy takes a longer time, even if the first-best strategy
requires more neighbourhood explorations (the p-value is approximately 10−6).

349

350 LABORATORY ON EXCHANGE HEURISTICS APPENDIX D

350

APPENDIX E

Laboratory on exchange metaheuristics

This chapter discusses the application of exchange metaheuristics to the Maximum Diversity
Problem (MDP). Exchange metaheuristic extend the basic scheme of exchange heuristics mod-
ifying its elements (the starting solution, the neighbourhood, the objective function or the se-
lection rule) in order to proceed with the search after reaching a locally optimal solution. In
the following, we will consider two such extensions, both based on the basic steepest ascent
heuristic described in the previous chapter. The former is a Variable Neighbourhood Search
(VNS) heuristic, that restarts the search from a new solution generated with a shaking procedure
on the best known solution. The latter is a Tabu Search (TS) heuristic, that prolongs the search
beyond local optima by looking for the minimum cost neighbour solution that respects suitable
tabu conditions, designed to avoid a cyclic behaviour.
For the sake of simplicity, we will build the starting solution with the farthest-point construc-
tive heuristic introduced in Chapter 3 and apply the steepest ascent heuristic with the first-best
strategy that proved to be equally effective and more efficient in Chapter 4. The command
line arguments will allow the user to choose which of the two metaheuristics to apply and the
associated parameters:

• for the VNS metaheuristic, option -vns, followed by five parameters: the total number
of neighbourhood explorations tmax, the minimum neighbourhood index smin, the index
variation δ s, the maximum neighbourhood index smax and the seed of the pseudorandom
number generator;

• for the TS metaheuristic, option -ts, followed by three parameters: the total number of
neighbourhood explorations tmax, the tabu tenure for the reinsertion of deleted elements
Lin, and the tabu tenure for the removal of added elements Lout.

parse_command_line(argc,argv,data_file,exchange_algo,&niter,&seed,

&s_min,&delta_s,&s_max,&l_in,&l_out);

load_data(data_file,&I);

create_solution(I.n,&x);

greedy_farthest(&I,&x);

start = clock();

if (strcmp(exchange_algo,"-vns") == 0)

variable_neighborhood_search(&I,&x,"-fb",niter,s_min,delta_s,s_max,&seed);

351

352 LABORATORY ON EXCHANGE METAHEURISTICS APPENDIX E

else if (strcmp(exchange_algo,"-ts") == 0)

tabu_search(&I,&x,"-fb",niter,l_in,l_out);

end = clock();

tempo = (double) (end - start) / CLOCKS_PER_SEC;

printf("%s ",data_file);

printf("%10.6f ",tempo);

printf("%8d ",niter);

print_sorted_solution(&x,I.n);

printf("\n");

destroy_solution(&x);

destroy_data(&I);

E.1 Variable neighbourhood search

The Variable Neighbourhood Search metaheuristic applies a basic steepest ascent heuristic, and
restarts it every time this terminates in a locally optimal solution. The restart is performed with
a shaking procedure that modifies the current best known solution generating it at random in a
suitable neighbourhood, whose size is the main parameter of the method1. The scheme is the
following:

Algorithm VariableNeighbourhoodSearch(I,x(0), ℓ,smin,δ s,smax)

x := SteepestAscent(x(0)); x∗ := x;
s := smin;
For l := 1 to ℓ do

x′ := Shaking(x∗,s);
x′ := SteepestAscent(x′);
If f (x′)> f (x∗)

then x∗ := x′; s := smin;
else s := s+δ s;

If s > smax then s := smin;
EndWhile;
Return (x∗, f (x∗));

This scheme is general enough to not require any specific adaptation for the MDP, except for
the replacement of steepest descent with steepest ascent, as usual because it is a maximisation
problem. However, we will also modify the termination condition, replacing the number of
restarts ℓ with the total number of neighbourhood explorations tmax in order to get a better
control of the computational time (of course, we could directly fix the total computational time,
and that would be even more precise). To this purpose, we exploit the information on the
number of neighbourhood explorations performed that is already provided by the steepest ascent
procedure, but we also need to terminate if before reaching a locally optimal solution whenever

1This parameter is generally denoted as k (as in the slides of the theoretical lessons), but here we will denote it
as s to distinguish it from the required number of points in the feasible solutions of the MDP.

352

APPENDIX E E.1. VARIABLE NEIGHBOURHOOD SEARCH 353

the total number of available explorations has been consumed. For the sake of simplicity, we
will adopt the steepest ascent heuristic discussed in the previous chapter, based on the single-
swap neighbourhood NS1 with the first-best exploration strategy. It is therefore straightforward
to implement the VNS procedure as follows.

truncated_steepest_ascent(pI,px,visit_strategy,niter,&iter);

tot_iter = iter;

create_solution(pI->n,&x_star);

copy_solution (px,&x_star);

s = s_min;

while (tot_iter < niter)

{

shaking(pI,px,s,pseed);

truncated_steepest_ascent(pI,px,visit_strategy,niter-tot_iter,&iter);

tot_iter += iter;

if (px->f > x_star.f)

{

copy_solution(px,&x_star);

s = s_min;

}

else

{

s += delta_s;

if (s > s_max) s = s_min;

}

The variable tot iter saves the cumulative number of neighbourhood explorations performed,
in order to compare it with the maximum imposed value niter.
Moreover, the truncated steepest ascent procedure coincides with the already implemented
steepest ascent procedure, with the additional termination condition of stopping as soon as
the remaining niter-tot iter explorations have been performed. The modified procedure is
already provided in a modified localsearch.c library.

*pniter = 0;

if (max_iter <= 0) return;

do

{

explore_neighbourhood(px,pI,visit_strategy,&p_in,&p_out,&delta_f);

if (delta_f > 0)

{

swap_points(p_in,p_out,px,pI);

(*pniter)++;

}

} while ((delta_f > 0) && (*pniter < max_iter));

353

354 LABORATORY ON EXCHANGE METAHEURISTICS APPENDIX E

The only part of the variable neighborhood search procedure that remains unimplemented
is the shaking procedure, that receives the reference solution (that is the best known one, as we
are applying the basic version of the VNS) the current value of parameter s and the seed of the
pseudorandom number generator, and returns the perturbed solution that will be used as a start-
ing point for the following application of the steepest ascent procedure. In order to implement
it, we need to define a hierarchy of neighbourhoods from which to extract a random solution.
In general, these neighbourhoods should be progressively increasing, in order to allow a con-
trollable amount of intensification (using the first neighbourhoods) or diversification (using the
last ones). In the specific case of the MDP, swaps are the most natural operation to generate
neighbourhoods, due to the cardinality constraint, that guarantees the feasibility of every solu-
tion they generate, while proving the unfeasibility of the subsets generated by any other kind
of operation. Therefore, we will adopt the hierarchy formed by the swap neighbourhoods NSs .
Every solution in NSs is obtained performing s single swaps of a point in the current solution
with a point out of it. A technical detail to be defined is whether we consider:

• s possibly overlapping swaps, in which a point deleted by one of the swaps can be added
again by a following swap;

• s disjoint swaps, that is we swap s points from the starting solution with s points out of
the starting solution.

The former definition allows to obtain also solutions that could be obtained with any number
s′ ≤ s of swaps (because swapping points i and j, followed by j and k is equivalent to swap-
ping directly i and k). Therefore, it is a more general definition and it guarantees that each
neighbourhood in the hierarchy include the previous ones. The latter definition restricts the
neighbourhood only to disjoint swaps and yields disjoint neighbourhoods. However, it has the
advantage that all neighbour solutions have a Hamming distance exactly equal to 2s from the
reference solution x∗. This property seems particularly desirable from the point of view of con-
trolling the size of the perturbation introduced (in the former case, a perturbation with a very
large s might generate a solution very close to x∗, possibly even coincident with it). We therefore
adopt the second definition. Generating a random s-swap is then straightforward: it requires to
save in a vector the elements of the solution and extract s uniformly without repetitions. The
same must be done for the elements out of the solution. Then, we can match the two sets of
points in s pairs and swap the points to obtain the perturbed solution. There are several ways to
do that, whose time and space complexity can be discussed in detail. Choosing one arbitrarily,
we will write in a single vector of n elements the indices of all points: those in the solution in its
first positions and the other ones in the last positions (using the incidence vector to distinguish
them). Then, we will randomly extract s indices from the first and s from the second subvector,
moving them to the ends of the vector to avoid generating duplicate terms and finally swap the
corresponding points with the swap points procedure. It can be argued that an ad hoc proce-
dure could be more efficient (in particular for large values of s), but the shaking procedure is
applied rarely enough to assume that it will take a negligible part of the overall computational
time of the algorithm2

2This assumption should be verified, of course.

354

APPENDIX E E.1. VARIABLE NEIGHBOURHOOD SEARCH 355

/* Build a vector with the indices of the internal points

in the first k positions and the indices of the external

point in the last n-k positions */

Indices = int_alloc(pI->n+1);

i_in = 1; i_out = pI->n;

for (i = 1; i <= pI->n; i++)

if (px->in_x[i] == true)

Indices[i_in++] = i;

else

Indices[i_out--] = i;

/* Select s internal points and move their indices to the

first s positions of Indices */

for (i_in = 1; i_in <= s; i_in++)

{

i = rand_int(i_in,pI->k,pseed);

temp = Indices[i_in];

Indices[i_in] = Indices[i];

Indices[i] = temp;

}

/* Select s external points and move their indices to the

last s positions of Indices */

for (i_out = pI->n; i_out >= pI->n-s+1; i_out--)

{

i = rand_int(pI->k+1,i_out,pseed);

temp = Indices[i_out];

Indices[i_out] = Indices[i];

Indices[i] = temp;

}

/* Perform s exchanges between the first and the last points of Indices */

for (i_in = 1, i_out = pI->n; i_in <= s; i_in++, i_out--)

swap_points(get_point(Indices[i_in],pI),

get_point(Indices[i_out],pI),px,pI);

free(Indices);

E.1.1 Time complexity estimation

The computational complexity of the VNS metaheuristic combines that of the steepest as-
cent heuristic with that of the shaking procedure. The former has already been estimated as
O(tmax(n− k)k), with the modification that tmax is now the total number of neighbourhood ex-
plorations, fixed by the user. Applying the first-best exploration strategy means that the number
of explored solutions should be ≤ (n− k)k, though usually smaller (probably much smaller in
the first iterations, when it is easier to improve the current solution, and nearly equal later when
approaching the local optimum). The latter term is given by the initialisation in O(n) time of
the index vector, followed by the generation of s pseudorandom number (constant time, though

355

356 LABORATORY ON EXCHANGE METAHEURISTICS APPENDIX E

probably not a very small constant) and s swaps, that take (as discussed in the previous chapter)
O(n) time each. Overall, this is O(ℓns) time, where s ≤ min(k,n− k) (as discussed in the fol-
lowing) and ℓ is the number of restarts (unknown a priori). However, s and ℓ tend to be inversely
correlated, since smaller perturbations probably imply shorter paths to the local optimum and
more restarts, whereas larger perturbations imply longer paths to the local optimum and less
restarts. A rough guess is that each shaking application should take a time comparable to a
neighbourhood exploration, so that overall its contribution should be negligible with respect to
the steepest ascent heuristic, but this needs to be verified experimentally.

E.1.2 Empirical evaluation

We can now evaluate the performance of the VNS metaheuristic. We have decided to use the
total number of neighbourhood explorations as a termination condition. This value should be
set so as to allow the heuristic to experiment with every possible working condition. However,
we also want to get results in a reasonably short time. In the previous chapter, we have estimated
that the average number of iterations performed from a starting solution to the corresponding
local optimum ranges between 15 and 30 in our benchmark instances. It will probably be
smaller for starting solutions generated with small perturations from the best known solution.
Since s ≤ k, it should take at most 30 · 400 neighbourhood explorations to reach the strongest
perturbations on the largest instances. Therefore, tmax = 10000 could be a good choice, but we
will adopt tmax = 1000 to fit the experiments in the space of a lesson.
In the first experiments, we will let parameter s autotune, by fixing smin, δ s and smax to their
simplest values: smin = 1, δ s = 1 and smax = min(k,n− k).

E.1.2.1 Computational time analysis

The detailed results show that the overall computational time (including the initialisation con-
structive procedure, the shaking procedure and the steepest ascent procedure) ranges from frac-
tions of a second to less than four seconds. This is even shorter than the exchange heuristic
initialised by the try-all heuristic, which is a quite promising fact, should the results prove at
least as good. Let us remind that the steepest ascent procedure applied to the farthest-point
procedure could not enhance it enough to overcome the advantage provided by the better try-all
initialisation procedure, even if its computational time was smaller. We can investigate whether
the use of VNS allows exploit the shorter computational time to get better results.
Figure E.1 reports the logarithmic scaling diagram for the computational time of the VNS
heuristic on the whole benchmark. The diagram shows a very regular polynomial increase
with size, also thanks to the fixed number of iterations tmax. The O((n− k)k) theoretical esti-
mate, with k ∝ n, suggests a quadratic complexity, which is in extremely good accordance with
the linear interpolation:

TA = βnα ⇔ logTA = α logn+ logβ

since α ≈ 2.008 and β ≈ 2.6 ·10−6.

E.1.2.2 Solution quality analysis

Figure E.2 reports the SQD diagram of the VNS metaheuristic, compared with that of the steep-
est ascent heuristic applied to the result of the farthest-point and of the try-all heuristics: the
former allows the comparison with the result obtained stopping at the first local optimum; the

356

APPENDIX E E.1. VARIABLE NEIGHBOURHOOD SEARCH 357

Figure E.1: Scaling diagram in logarithmic scales for the VNS algorithm on the benchmark

latter allows a comparison with a heuristic taking a similar computational time. The improve-
ment with respect to the former is clear (the average gap decreases from 0.93% to 0.33%): it
is a strict dominance, given that they visit the same solutions, and the VNS proceeds when the
competitor just terminates. Also with respect to the try-all initialisation the average gap is better
(0.33% versus 0.35%) and the SQD diagram shows a much larger fraction of very good results,
but also a larger fraction of bad results. Notice that the computational time is not the same: a
true comparison should be made in perfectly equal conditions.

Figure E.2: Solution Quality Distribution diagram for the VNS metaheuristic compared with the
steepest ascent heuristic initialised with the farthest point and the try-all procedures

The boxplots reported in Figure E.3 provide the same information: VNS provides both better
and worse results with respect to the steepest ascent initialised by the try-all heuristic.
In order to have a rough idea of the corresponding computational times, Figure E.4 provides the
RTD diagram, from which it is apparent that VNS has some margin of further improvement for
the slower runs, that correspond to the largest instances. On the contrary, it is already slower
for the faster runs, that is the smallest instances. Therefore an equal-time comparison is clearly
necessary to be fair. Performing one, however, is complicated when some of the competing
algorithms have an intrinsic termination condition: we should build a time-limited version of
the VNS heuristic, run the steepest ascent heuristic saving its computational time, and feed it to

357

358 LABORATORY ON EXCHANGE METAHEURISTICS APPENDIX E

Figure E.3: Boxplots for the VNS metaheuristic compared with the steepest ascent heuristic
initialised with the farthest point and the try-all procedures

the VNS heuristic. This is beyond the scope of the course.

Figure E.4: Solution Quality Distribution diagrams for the VNS metaheuristic and the steepest
ascent heuristic initialised with the try-all procedure

E.1.3 Parameter tuning

It is often possible to improve the performance of an algorithm by tuning the values of its pa-
rameters. In the case of the VNS, this corresponds to increasing the smallest neighbourhood
used to restart the search, or decreasing the largest one, or skipping some intermediate neigh-
bourhoods. The last possibility is useful when the number of neighbourhoods is huge. In this
case, s ranges from 1 to 400, that is quite large. As we have fixed a rather small total number of
neighbourhood explorations tmax, it is possible (and it can be easily verified printing the value
of s at each shaking operation) that on the larger benchmark instances only small shakings are
performed. In order to test this aspect, we compare some alternative parameter configurations.

358

APPENDIX E E.1. VARIABLE NEIGHBOURHOOD SEARCH 359

The test is very limited, considering the following configurations, chosen so as to cover rather
extreme cases:

• smin = 1 and smax = k: the trivial configuration (probably not fully exploited, for the
insufficient number of iterations);

• smin = 1 and smax = 10: an intensifying configuration, imposing rather small perturba-
tions;

• smin = 1 and smax = k/2: a configuration avoiding only very large perturbations (this could
coincide with the trivial fone if the insufficient number of neighbourhood explorations
forbids to increase s beyond the upper bound);

• smin = k/2 and smax = k: a configuration producing strong perturbations since the begin-
ning to diversify the search and try to avoid falling back in the reference solution;

• smin = k and smax = k: a degenerate configuration in which the maximum possible per-
turbation is applied (all points must in the best known result are replaced by new random
points);

The number of configurations and the number of iterations for each configuration are too lim-
ited to provide really significant results, but they are a good occasion for some intuitions and
further discussion. A good way to formulate reasonable configurations is to print the values
of s that improve the best known result. Increasing smin and decreasing smax to approach such
values will modify the overall behaviour of the algorithm, because the same sequence of pseu-
dorandom numbers will imply completely different choices, but it is probably a good idea: if no
improvement is found out of a certain range of values of s, this probably means that the radius
of the basins of attraction falls in a similar range, and therefore a good perturbation should be
in the same range.
A quick glance at the computational times suggests that they are nearly independent from the
parameters: the variations are usually below 10%, that in a period of few seconds is probably
just due to random fluctuations. The quality of the results is roughly indicated by Table E.1
which reports the average gaps with respect to the best known result. The diversifying config-
uration ([k/2,k]) is the best one, followed by the relaxed configuration ([1,k]) and the slightly
intensifying one ([1,k/2]), that are very similar, as expected. The strongly intensifying and the
strongly diversifying configuration appear to be the worst. It can be interesting to notice that
the strongly diversifying configuration ([k,k]) actually proved the best in one of my personal
contributions to the literature, which combined rather short runs of a TS metaheuristic with a
VNS restart mechanism. This is not unreasonable, given that the TS procedure probably guar-
antees a good exploration of the region surrounding the current best known result (better than
the steepest ascent procedure adopted here), so that stronger perturbations in the restart make
sense.
Figures E.5 and E.6 show the SQD and boxplot diagrams of the five configurations, that clearly
confirm the dominances suggested by the average gaps. Indeed, checking the results of the
steepest ascent heuristic initialised with the try-all procedure, the diversifying configuration
seems to be comparable even in the upper part of the diagram.

E.1.3.1 Statistical tests

We can also compare the performance of the five configurations with statistical tests. Using
Wilcoxon’s test poses a methodological problem: the test is designed to compare two empirical

359

360 LABORATORY ON EXCHANGE METAHEURISTICS APPENDIX E

smin smax Average gap
1 k 0.33%
1 10 0.45%
1 k/2 0.34%

k/2 k 0.22%
k k 0.44%

Table E.1: Average gaps with respect to the best known result of the VNS metaheuristic with
different tunings of the shaking range [smin,smax]

Figure E.5: Solution Quality Distribution diagrams for the VNS metaheuristic with different
tunings of the shaking range [smin,smax]

Figure E.6: Boxplot diagrams for the VNS metaheuristic with different tunings of the shaking
range [smin,smax]

360

APPENDIX E E.1. VARIABLE NEIGHBOURHOOD SEARCH 361

populations. It is possible to use it on more than two algorithms, applying it to all pairs or
choosing a reference heuristic and comparing the other ones to it. This, however, requires
to handle with care the interpretation of the results. The p-value obtained, in fact, estimates
the probability of observing the empirical results under the assumption that the two samples
compared derive from the same population, that is, that the two configurations compared are
equally effective. When p is small, this interpretation of the results can be rather safely rejected,
but it must not be considered as straightforwardly false. If the test is applied nt times, the
probability that at least one of the interpretations drawn from the test is false becomes larger and
larger. This means that our conclusions should be based on stricter requirements. The literature
offer several methods to correct the estimates provided by a pairwise test. The simplest one
is the Bonferroni correction, that is based on Boole’s inequality for the familywise error rate
(FWER):

FWER = P

[
nt⋃

i=1

(pi ≤ α)

]
≤

nt

∑
i=1

P [(pi ≤ α)]

In other words, the sum of the p-values obtained gives an overestimate of the p-value for the
overall observation. A simple way to impose it every given threshold on the significancy of the
results (for example, the classical 5%) consists in dividing such a threshold by the number nt of
the tests.
For example, let us check the hypothesis that the diversifying configuration is better than the
other four. This corresponds to the four following different pairwise tests:

1. [k/2,k] versus [1,k]

W+ = 470, W- = 91, N = 33, p <= 0.0007329

2. [k/2,k] versus [1,10]

W+ = 630, W- = 73, N = 37, p <= 2.743e-005

3. [k/2,k] versus [1,k/2]

W+ = 499, W- = 96, N = 34, p <= 0.0005896

4. [k/2,k] versus [k,k]

W+ = 612, W- = 18, N = 35, p <= 1.197e-006

The hypothesis is consistent with the observations even after applying Bonferroni’s correction,
since the sum of all p-values is 0.2% and each one is smaller than 5%/nt = 1.25% (even a
threshold much tighter than 5% would be respected).
Of course, other systems of assumptions, such as a full ordering among the configurations, could
be checked, but they would probably be less interesting: we are mainly interested in finding the
best performing configuration on the given benchmark.

361

362 LABORATORY ON EXCHANGE METAHEURISTICS APPENDIX E

E.2 Tabu search

The Tabu Search metaheuristic applies a basic steepest ascent heuristic, but modifies it intro-
ducing a limitation of the neighbourhood that forbids to accept as incumbent a solution already
visited, but also (in the standard attribute-based version) a solution similar to the ones already
visited. In order to adapt the TS metaheuristic to the MDP, we will initialise the search with
the farthest-point heuristic and adopt the basic single-swap neighbourhood NS1 as done for the
VNS. This should make the comparison between the two approaches fairer, allowing to under-
stand whether the problem is better attacked by restarting or prolonging the search after hitting
a locally optimal solution. The general TS scheme can be easily adapted to the MDP with the
usual replacements due to the maximising nature of the problem.

Algorithm TabuSearch
(

I,x(0), tmax,L
)

x := x(0); x∗ := x(0);
Ā := /0;
For t := 1 to tmax do

x′ := /0;
For each y ∈ N (x) do

If f (y)> f (x′) then
If Tabu

(
y, Ā
)

= false or f (y)> f (x∗) then x′ := y;
EndIf

EndFor
x := x′;
Ā := Update

(
Ā,x′,L

)
;

If f (x′)> f (x∗) then x∗ := x′;
EndFor
Return (x∗, f (x∗));

First, we must decide whether to apply the basic version of TS or the most common attribute-
based one. In the MDP literature, the best performing algorithm proposed so far to solve the
problem actually uses the basic version. However, this algorithm introduces several refine-
ments, and we are interested in the MDP mainly as an example for the application of TS to
general Combinatorial Optimization problems. We will therefore implement an attribute-based
TS metaheuristic. It is rather natural to define a pair of complementary attribute sets, that are the
presence and the absence of given points in the current solution. Setting A = x and A′ = P \ x
means that every time a point is deleted from the solution, it becomes tabu for a given number
Lin of neighbourhood explorations to add it back; conversely, every time a point is added to the
solution, it becomes tabu for a given number Lout of neighbourhood explorations to delete it.
Procedure tabu search implements both tabu lists on a single integer vector T, each of whose
components reports the last iteration at which the corresponding point has changed its sta-
tus: if i currently belongs to x, T[i] is the iteration at which i has entered the solution; if
i currently does not belong to x, T[i] is the iteration at which i has gone out of the solu-
tion. At the beginning, T[i] is set to -MAX INT for all points, so that the check on the tabu
status of any point states that the point is not tabu, and therefore free for exchanges. Proce-
dure explore neighbourhood with tabu differs from the explore neighbourhood proce-

362

APPENDIX E E.2. TABU SEARCH 363

dure implemented in the previous chapter for the steepest ascent heuristic in that it takes into
account also the tabu status (in fact, it requires the current iteration index iter, vector T, the
tabu tenures Lin and Lout, and the value of the best known solution w star.f, to apply the
aspiration criterium). The update of the tabu list simply amounts to saving the current iteration
index in the two positions of vector T associated to the points swapped. We should also take into
account the possibility that all moves in the neighbourhood are tabu. In that case, the neighbour-
hood exploration procedure should return the solution with the oldest tabu status. The current
implementation simply returns no point and performs no move, remaining idle until some tabu
expires. This is an inefficient implementation, that shall be corrected in future versions of the
algorithm.

create_solution(pI->n,&x_star);

copy_solution(px,&x_star);

T = int_alloc(pI->n+1);

for (i = 1; i <= pI->n; i++)

T[i] = INT_MIN;

for (iter = 1; iter <= max_iter; iter++)

{

explore_neighbourhood_with_tabu(px,pI,visit_strategy,

iter,T,l_in,l_out,x_star.f,

&p_in,&p_out,&delta_f);

if (p_in != NO_POINT)

{

swap_points(p_in,p_out,px,pI);

T[get_index(p_in,pI)] = T[get_index(p_out,pI)] = iter;

if (px->f > x_star.f) copy_solution(px,&x_star);

}

}

free(T);

copy_solution(&x_star,px);

The exploration of the neighbourhood is performed exactly as in the steepest ascent heuristic,
with the addition of a further check. If the currently explored swap is tabu (and this is checked
by function is tabu, then the move is performed only if it improves upon the best known
one, that is if the improvement δ f applied to the current solution value yields a value strictly
better than the best known one (aspiration criterium). In this special case, in fact, the new
solution is only apparently violating a tabu, and is on the contrary providing a precious overall
improvement to the search process. We still apply the first-best exploration strategy, returning
the first improving solution in the neighbourhood, but only if it is nontabu, or it satisfies the
aspiration criterium.

*pdelta_f = INT_MIN;

*pp_in = *pp_out = NO_POINT;

for (p_in = first_point_in(px); !end_point_list(p_in,px);

363

364 LABORATORY ON EXCHANGE METAHEURISTICS APPENDIX E

p_in = next_point(p_in,px))

for (p_out = first_point_out(px); !end_point_list(p_out,px);

p_out = next_point(p_out,px))

{

delta_f = evaluate_exchange(p_in,p_out,px,pI);

if ((delta_f > *pdelta_f) &&

(!is_tabu(p_in,p_out,pI,iter,T,l_in,l_out,px->f+delta_f,fstar)))

{

*pdelta_f = delta_f;

*pp_in = p_in;

*pp_out = p_out;

if ((delta_f > 0) && (strcmp(visit_strategy,"-fb") == 0)) break;

}

}

Finally, the check of the tabu status simply consists in determining whether the current iteration
index has reached or not the value at which the tabu expires. This must be checked both for the
point i that is leaving the solution (and in that case the tabu tenure is l out) and for the point j
that is entering the solution (in that case the tabu tenure is l in) .

if (f > f_star) /* aspiration criterium */

return false;

else

return ((iter <= T[get_index(p_in,pI)] + l_out) ||

(iter <= T[get_index(p_out,pI)] + l_in));

E.2.1 Time complexity estimation

It is rather obvious that the computational complexity of the TS metaheuristic coincides with
that of the basic steepest ascent heuristic, as all additional operations require constant time in
their respective locations:

• the evaluation of the tabu status adds a constant number of operations to the evaluation of
the cost of each explored solution;

• the update of the tabu list adds a constant number of operations to the execution of the
move, that is the exploration of a neighbourhood;

The allocation, initialization and deallocation of vector T add O(n) time to the overall algo-
rithm. Therefore, the overall complexity remains O(tmax(n− k)k), where the number of neigh-
bourhood explorations tmax is a parameter provided by the user as the termination condition.

E.2.2 Empirical evaluation

We can now evaluate the performance of the TS metaheuristic. We set the total number of
neighbourhood explorations to tmax = 1000, as for the VNS metaheuristic, in order to allow a
meaningful comparison between them, even if a completely fair comparison would require to
give them the same computational time.

364

APPENDIX E E.2. TABU SEARCH 365

E.2.2.1 Cyclic or erratic behaviours

Contrary to the VNS, where it is usually very easy to determine a default configuration for the
parameters smin, δ s and smax, the most influential parameters of the TS, that is the tabu tenures
need to be tuned with a certain care since the beginning. Two basic complementary risks must
be avoided:

• cyclic behaviours: if the tabu tenure is too short, the search can get stuck in a cyclic
sequence of solutions, because the search is attracted by locally optimal solutions that
have already been visited and the tabu expires before the cycle starts again;

• erratic behaviours or empty neighbourhoods: if the tabu tenure is too long, the search
can wander in the solution space avoiding the more promising regions because these are
too close to solutions that have already been visited; the neighbourhood can even become
fully tabu.

Since the number of points out of the solution varies from n− k = 60 to n− k = 900, and
the number of points in the solution varies from k = 10 to k = 400, the tenures should keep
below these values, but above a few units, which is still a rather large range. The tenures could
also possibly depend on the size of the instance. It is also likely that the tenure for reinsertion
Lin should be larger than the tenure for redeletions Lout, because the candidate elements for
insertion (the n− k external ones) are more numerous than the candidate elements for deletion
(the k internal ones). A simple way to verify the occurrence of the cyclic behaviours and (less
evidently) of erratic ones, is to plot the profile of the objective function along the search.
In order to give a quick idea of how reasonable values are introduced, we will fix focus on
the smallest instance (n0100k010.txt), and investigate different possible values for Lin while
trivially setting Lout = 1, so that the tabu mechanism is mainly based on the reinsertion of deleted
elements. Figure E.7 reports the profile of the objective function for the first 100 neighbourhood
explorations. The configuration with Lin = 5 exhibits a clearly periodic profile, suggesting that
the tenure is too short. The one with Lin = 6 appears much better, but long cycles (with a
period of 106 iterations actually arise after a while). The configuration with Lin = 8 hits the best
known result (f ∗ = 3561) several times during the whole run. The configuration with Lin = 30
starts moving erratically in regions of worse quality. Finally, the configuration with Lin = 100
seems to avoid good solutions and also shows sequences of iterations in which the value of the
objective does not change because the whole neighbourhood is tabu (Lin = 100 > n− k = 90)
and our simple implementation trivially waits for the tabu to expire.
Figure E.8 reports the profile of the objective function for the whole run on the largest instance
(n1000k400.txt). The configurations with the smallest values of Lin actually prove better,
without exhibiting cyclic behaviours. This (absolutely nonobvious) behaviour is possibly due
to the much larger size of the neighbourhood, that allows the algorithm to choose the incumbent
in a larger set, and thus reduces the risk of repeating the same sequence of moves.

E.2.2.2 Computational time analysis

The overall computational time, including the initialisation procedure is very similar to that of
the VNS metaheuristic: it ranges from fractions of a second to about four seconds. It is there-
fore another interesting candidate to provide an efficient solving approach. Figure E.9 reports
the logarithmic scaling diagram on the whole benchmark. The diagram shows a polynomial

365

366 LABORATORY ON EXCHANGE METAHEURISTICS APPENDIX E

Figure E.7: Profile of the objective function for the TS metaheuristic on instance
n0100k010.txt with different values of tenures

(
Lin,Lout)

Figure E.8: Profile of the objective function for the TS metaheuristic on instance
n1000k400.txt with different values of tenures

(
Lin,Lout)

366

APPENDIX E E.2. TABU SEARCH 367

increase with size, in good accordance with the O((n− k)k) theoretical estimate, which corre-
sponds to a quadratic complexity when k ∝ n. In fact, the linear interpolation is:

TA = βnα ⇔ logTA = α logn+ logβ

since α ≈ 2.012 and β ≈ 2.7 ·10−6.

Figure E.9: Scaling diagram in logarithmic scales for the TS algorithm on the benchmark

E.2.3 Parameter tuning

We now compare a small number of configurations in which both tenures Lin and Lout assume
different values. For the sake of simplicity, we apply the same values to all instances of the
benchmark, also based on the results of the previous experiments, which showed that rather
short tenures are enough to avoid cyclic behaviours, and at the same time to allow the search
to focus on good quality solutions, both on the smallest and the largest instance. We consider
the six configurations obtained setting Lin = 5, 6 or 8 and Lout = 1 or 2. This is, of course,
only a very simple illustrative investigation. Table ?? reports the average gaps over the whole
benchmark. They are quite promising: most of them are smaller than the corresponding values
obtained by the VNS metaheuristic; the larger tenures, in particular, provide the best gap.

Lin Lout Average gap
5 1 0.31%
6 1 0.26%
8 1 0.19%
5 2 0.17%
6 2 0.18%
8 2 0.14%

Table E.2: Average gaps with respect to the best known result of the TS metaheuristic with
different tunings of the tabu tenures Lin and Lout

Figure E.10 reports the SQD diagram of the six configurations, confirming the better perfor-
mance of the configuration with the larger tenures.

367

368 LABORATORY ON EXCHANGE METAHEURISTICS APPENDIX E

Figure E.10: Solution Quality Distribution diagrams for the TS metaheuristic with different
tunings of the tabu tenures

(
Lin,Lout)

The corresponding boxplots are reported in Figure E.11: they seem to contradict the SQD dia-
gram (Lin = 1 and Lout = 8 look better than Lin = 2 and Lout = 8), but that mainly depends on the
automatic definition of outliers by Excel3 It seems anyway justified to consider larger tenures
as better. Indeed, the experiments should now include larger values, to determine whether it is
possible to further improve the results, but we stop here.

Figure E.11: Boxplot diagrams for the TS metaheuristic with different tunings of the tabu
tenures

(
Lin,Lout)

The application of Wilcoxon’s test to compare
(
Lin,Lout)with the other configurations gives the

following results:

1. (8,2) versus (5,1)

W+ = 432, W- = 64, N = 31, p <= 0.0003233

3There seems to be a formula to label a value as an outlier. I do not know whether this is a statistic standard or
just an Excel convention.

368

APPENDIX E E.3. COMPARISON BETWEEN VNS AND TS 369

2. (8,2) versus (6,1)

W+ = 494, W- = 101, N = 34, p <= 0.0008056

3. (8,2) versus (8,1)

W+ = 261.50, W- = 173.50, N = 29, p <= 0.3469

4. (8,2) versus (5,2)

W+ = 313, W- = 152, N = 30, p <= 0.09987

5. (8,2) versus (6,2)

W+ = 248, W- = 187, N = 29, p <= 0.5165

which suggests that only the first two comparisons, with configurations having both tenures
shorter, are significant (even applying the Bonferroni correction), whereas the other compar-
isons could easily be the result of a random sampling.

E.3 Comparison between VNS and TS

To conclude our experiments, we compare the VNS and the TS metaheuristic, with their best
performing configurations, both with respect to the quality of the solutions and the computa-
tional time. The corresponding SQD and RTD diagrams are reported in Figures E.12 and E.13,
and show that the TS metaheuristic is more effective while taking the same time as the VNS
algorithm. The result is confirmed by the following response of Wilcoxon’s test:

W+ = 131, W- = 464, N = 34, p <= 0.00454

It is important not to overestimate the range of these conclusions. They refer to a not very large
benchmark of a specific nature, to a computation consisting of tmax = 1000 iterations, to a pair
of configurations that have been obtained with a very short investigation. They are however a
preliminary result of a certain soundness, obtained with an experimental methodology based on
the formulation and verification of hypotheses.

369

370 LABORATORY ON EXCHANGE METAHEURISTICS APPENDIX E

Figure E.12: Solution Quality Distribution diagrams for the VNS metaheuristic and the TS meta-
heuristic

Figure E.13: Run Time Distribution diagrams for the VNS metaheuristic and the TS metaheuris-
tic

370

APPENDIX F

Laboratory on recombination
metaheuristics

In this chapter we consider a couple of recombination metaheuristics for the Maximum Di-
versity Problem (MDP), namely a Path Relinking (PR) and a Scatter Search (SS) approach.
Recombination-based approaches do not have a common basic scheme, and they very frequently
use randomization or memory. Therefore, the distinction between heuristics and metaheuristics
is much less easy to draw than for constructive and exchange approaches. In general, however,
they manipulate a reference set of solutions extracting from it suitable subsets and combining
the elements of such subsets to generate new solutions. The aim is to retrieve promising portions
from different solutions and integrate them in a better way, instead of labouriously modifying
the bad portions of a single solution while keeping the good ones.
Since PR and SS algorithms are mainly deterministic methods based on the idea of exploiting as
much as possible the information provided by the data, the initial population usually consists of
locally optimal solutions generated by a previous exchange heuristic or metaheuristic. In order
to make both methods virtually unlimited, we need a mechanism to generate new solutions
even when the recombination mechanism fails to do so. For the sake of simplicity, we generate
random solutions and improve each of them to local optimality, as we have done in Chapter 4,
to restart the steepest ascent heuristic. In order to understand whether the performance of the
two approaches depends on the recombination mechanism or not, we will compare them with
the simple steepest ascent heuristic with random restart without applying any recombination
procedure. In order to allow a fair comparison among these very different approaches, we will
impose a limit on the total computational time as a termination condition.
The neighbourhood used in all three approaches will be the usual single-swap neighbourhood
NS1 , explored with the first-best strategy. We will discuss later in detail how the mechanism to
generate new solutions is integrated in the schemes of PR and SS. These will be, therefore, more
complicated than the ones reported in the theoretical lessons, which assumed the approaches to
terminate as soon as the recombination operations fail to update the reference set. We will
consider first PR and then SS, contrary to the theoretical lessons, because the former is simpler
and this will allow to introduce more gradually different concepts and algorithmic components.
The command line arguments of the main procedure allow the user to choose which of the three
metaheuristics to apply and the associated parameters:

• for the PR metaheuristic, option -pr, followed by three parameters: the total time τmax,
the cardinality of the reference set |R|, and the seed of the pseudorandom number gener-
ator;

371

372 LABORATORY ON RECOMBINATION METAHEURISTICS APPENDIX F

• for the SS metaheuristic, option -ss, followed by four parameters: the total time τmax, the
cardinality of the best set |B| and of the diverse set |D|, and the seed of the pseudorandom
number generator;

• for the random restart metaheuristic, option -rr, followed by two parameters: the total
time τmax and the seed of the pseudorandom number generator.

The structure of the main function is therefore the usual one, with the exception that no start-
ing solution is generated, because the population is initialized inside the two recombination
procedures.

parse_command_line(argc,argv,data_file,exchange_algo,&time,&seed,&nb,&nd);

load_data(data_file,&I);

create_solution(I.n,&x);

start = clock();

if (strcmp(exchange_algo,"-ss") == 0)

scatter_search(&I,&x,"-fb",niter,nb,nd,&seed);

else if (strcmp(exchange_algo,"-pr") == 0)

path_relinking(&I,&x,"-fb",niter,nb,&seed);

else if (strcmp(algo,"-rr") == 0)

random_restart(&I,&x,"-fb",tauMax,&seed);

end = clock();

tempo = (double) (end - start) / CLOCKS_PER_SEC;

printf("%s ",data_file);

printf("%10.6f ",tempo);

printf("%8d ",niter);

print_sorted_solution(&x,I.n);

printf("\n");

destroy_solution(&x);

destroy_data(&I);

F.1 Path relinking

The Path Relinking metaheuristic manages a reference set, that is composed of the best known
solutions. We will denote it as B (instead of R) to stress the similarities with the design of the
Scatter Search approach. The basic scheme of PR extracts pair of solutions from B and applies
an auxiliary exchange procedure to move from the first to the second solution of each pair.
Then, it identifies the best solution along each path thus determined and improves it with an
exchange procedure. Usually, for the sake of simplicity, the exchange procedure used for both
purposes is the same used to generate the solutions of the reference set. The only difference is
that, when drawing the relinking path, the objective is to minimize the Hamming distance from
the final solution, and only secondarily to optimize the objective of the problem. The locally
optimal solution found for each pair is checked to decide whether it is worth inserting in the

372

APPENDIX F F.1. PATH RELINKING 373

reference set. The process terminates when all solutions generated in this way are rejected, and
the reference set is not updated.
Therefore, this scheme has an intrinsic termination condition. In order to prolong it indefinitely,
if the candidate solutions generated by the relinking paths are less than a given number, new
ones are generated at random and improved by steepest ascent. The same process is applied
(with no candidate obtained by recombination) to generate the starting reference set. Then, these
candidate solutions are tested for insertion in the reference set. This is not the only possible
approach: many others are used in the literature, but this one has the advantage of being simple.
An important distinction is between the static update, which collects the new solutions in a
pool and tests them for insertion in the reference set at the end of the recombination phase, and
the dynamic update, which immediately tests the new solutions. The former approach has the
advantage of a simpler implementation and of exploiting all the generated solutions, whereas
the latter can remove a solution from the reference set before using it for recombination. On the
other hand, the latter approach is more aggressive, as it immediately exploits the new solutions,
possibly leading to good results earlier. We will adopt the static update for the sake of simplicity.
The resulting scheme is the following:

Algorithm PathRelinking(I,τmax,nB)

B := /0;P := /0;
While Time() ≤ τmax do
{ Build or integrate the candidate population }
While |P|< nB do

x := RandomSolution(I);
x := SteepestAscent(x);
If x /∈ P then P := P∪{x};

EndWhile
{ Test the candidate solutions for insertion in the reference set }
For each x ∈ P do

If x /∈ B then B := UpdateBestSet(B,x);
EndFor
{ Recombine the solutions in the reference set into candidate ones }
P := /0;
For each (x,y) ∈ B×B do

Γx,y := FindRelinkingPath(x,y, I);
z := arg max

w∈Γxy\{x,y}
f (w);

z := SteepestAscent(z);
If z /∈ P then P := P∪{z};

EndFor
EndWhile
x∗ := argmax

x∈B
f (x);

Return (x∗, f (x∗));

Function Time() returns the time elapsed from the beginning of the algorithm, in order to enforce
the termination condition. In C, this is done with function clock(), that returns the number of

373

374 LABORATORY ON RECOMBINATION METAHEURISTICS APPENDIX F

time units1 elapsed since the beginning of the execution. For the sake of simplicity, we will call
this function only in the outer loop. If performing a single iteration is slow, due to the size and
features of the instance, to the size of the reference set or any other factor, the time limit will
be actually violated. This should be avoided checking the time also inside the inner loops. Of
course, too frequent checks negatively affect the overall computational time.
The first inner loop builds a population of candidate solutions by generating random solutions
and improving them with steepest ascent. For the sake of simplicity, the number of candidates
is set large enough to fill the reference set (nB), though in general it could be larger. Duplicate
candidates are not accepted, because they would not provide any advantage in the following
operations. There is therefore a risk that this loop could not terminate, if many identical locally
optimal solutions are obtained. This is rather unlikely, however, with a sufficiently diversifying
generation mechanism, such as a random extraction. Notice that in the following iterations of
the outer loop, the random candidates will be used only to integrate the solutions generated by
recombination when the latter are too few, and that the candidates derived from recombination
could be more numerous than nB, in which case this loop will simply be skipped. Additional
parameters could be introduced to tune all these aspects.
The second inner loop tests each candidate solution to check whether it deserves to be included
in the reference set B. This is done with a suitable procedure that, in the positive case, adds
the solution to update the subset. At the end, the population is cleared, because all its useful
elements have been added to the reference set.
The third inner loop considers each pair of solutions (x,y) from B, draws a relinking path from
x to y and finds the best solution z on this path (excluding the two extremes). This is then im-
proved by steepest ascent and saved in the population P. The exchange procedure will, as usual,
exploit the single-swap neighbourhood, but it will use the global-best strategy when drawing
the relinking path, and the first-best strategy when improving the solution. The reason is that
the neighourhood used to move between candidate solutions is severely limited by the require-
ment to strictly reduce the Hamming distance from the final solution, so that a more careful
exploration of the neighbourhood seems preferable. When all pairs of reference solutions have
been considered, the algorithm starts a new iteration.
The procedures required by this phase of the implementation are in part available in the library
solutionpool, that manages the allocation and deallocation of solution pools
(create solutionpool and destroy solutionpool), the search for a given solution in a
pool (is in solutionpool), the append of a new solution at the end of a pool with residual
room (add solution to pool), the insertion of a new solution in a pool of solutions sorted by
increasing objective values (update best set), and the removal of all solutions from a pool
(clean solutionpool). The generation of a random solution, that was already implemented
in Chapter 3, is provided in library randomsolution.
The practical implementation creates at the beginning and destroys in the end a current solution
x and two pools of solutions B and P, representing the reference set and the population of
candidate solutions. Two pools are required by the static update, that first builds all candidates
and then tests them for insertion in the reference set. Pool B has maximum size nb; it is sorted
by nondecreasing values of the objective, and solutions are added to it in the second loop by
procedure update best set. Pool P is unsorted, solutions are added at the end of the available
space in the first and the third loop; its size is nb*(nb-1), because the first loop stops when it

1Typically, they are milliseconds or microseconds, depending on the machine. QUESTO VA ANTICIPATO
NEL COMMENTO AL MAIN DEL PRIMO CAPITOLO, DATO CHE SI USA ANCHE LI’, LASCIANDO QUI
SOLO UN RICHIAMO.

374

APPENDIX F F.1. PATH RELINKING 375

reaches nb solutions and the third loop considers all pairs of solutions of B, though the actual
number will probably be much smaller. At the end of the second loop, pool P is cleaned: that
is simpler and more efficient than deallocating and reallocating it, exactly as it is preferable to
clean the auxiliary solution x after its use2. The only procedure that is used and declared, but
not yet implemented, is find relinking solution, that determines the relinking path and
returns its best solution (excluding the two extremes x and y). This is then improved by steepest

2An interesting point to discuss on the management of solutions pools is whether to add copies of the new
solutions, as it is done at present, or move them physically into the pool. I have not pondered this point enough to
take a clear decision.

375

376 LABORATORY ON RECOMBINATION METAHEURISTICS APPENDIX F

ascent and included among the candidate ones, if it is not a duplicate.

start = clock();

create_solution(pI->n,&x);

create_solutionpool(nb,&B);

create_solutionpool(nb*(nb-1),&P);

while (((double)clock() - start) / CLOCKS_PER_SEC < tauMax)

{

/* Build or integrate the candidate population */

while (P.card < nb)

{

clean_solution(&x,pI->n);

generate_random_solution(pI,&x,pseed);

steepest_ascent(pI,&x,visit_strategy,&iter);

if (!is_in_solutionpool(&x,pI->n,&P)) add_solution_to_pool(&x,pI->n,&P);

}

/* Test the candidate solutions for insertion in the reference set */

for (s = 1; s <= P.card; s++)

update_best_set(P.S[s],pI->n,&B);

clean_solutionpool(&P);

/* Recombine the solutions in the reference set into candidate ones */

for (s = 1; s <= B.card; s++)

for (s2 = 1; s2 <= B.card; s2++)

if (s != s2)

{

clean_solution(&x,pI->n);

find_relinking_solution(B.S[s],B.S[s2],pI,"-gb",&x);

steepest_ascent(pI,&x,visit_strategy,&iter);

if (!is_in_solutionpool(&x,pI->n,&P)) add_solution_to_pool(&x,pI->n,&P);

}

}

if (B.card > 0) copy_solution(B.S[1],px);

destroy_solution(&x);

destroy_solutionpool(&B);

destroy_solutionpool(&P);

The implementation of function find relinking solution builds upon the steepest ascent
procedure. There are two main differences:

1. the procedure minimizes first the Hamming distance from the final solution y, then the
objective function (in case of ties);

2. the procedure terminates when solution y is reached.

The special features of the MDP, in particular its only constraint fixing the cardinality of the
solution, implies that:

376

APPENDIX F F.1. PATH RELINKING 377

1. the only way to reduce the Hamming distance of the current solution z from y (always
exactly by 2) is to swap a point in z\ y with a point in y\ z;

2. it is possible to focus on the moves that reduce the Hamming distance and avoid all other
moves of NS1;

3. there are |z\ y| · |y\ z| such moves, that is a positive number, as long as z ̸= y: the best of
these moves will be performed.

Since the size of this neighbourhood and the number of moves is probably much smaller than
for a typical single-swap, we will adopt the global-best visit strategy for the relinking path
identification. An experimental comparison with the first-best strategy should be performed,
but we will not do it for lack of time.

create_solution(pI->n,&z);

copy_solution(px,&z);

clean_solution(pz,pI->n);

do

{

explore_neighbourhood_for_relinking

(&z,py,pI,visit_strategy,&p_in,&p_out,&delta_f);

if (p_in != NO_POINT)

{

swap_points(p_in,p_out,&z,pI);

if (z.f > pz->f) copy_solution(&z,pz);

}

} while (p_in != NO_POINT);

The neighbourhood is explored in procedure explore neighbourhood for relinking ex-
actly as in the steepest ascent heuristic, with two limitations to guarantee that the solutions
explored are closer to the final one than the current solution: the deleted point p in must not
belong to the final solution y, and the added point p out must belong to the final solution y.
This is similar to what happens in Tabu Search, but much simpler, as it is just a straightforward
reduction of the neighbourhood. Notice that, if k < n/2, it would be more efficient to scan
p out in py and check that it is not in px.

*pdelta_f = INT_MIN;

*pp_in = *pp_out = NO_POINT;

for (p_in = first_point_in(px); !end_point_list(p_in,px);

p_in = next_point(p_in,px))

if (!py->in_x[get_index(p_in,pI)])

for (p_out = first_point_out(px); !end_point_list(p_out,px);

p_out = next_point(p_out,px))

if (py->in_x[get_index(p_out,pI)])

{

delta_f = evaluate_exchange(p_in,p_out,px,pI);

if (delta_f > *pdelta_f)

377

378 LABORATORY ON RECOMBINATION METAHEURISTICS APPENDIX F

{

*pdelta_f = delta_f;

*pp_in = p_in;

*pp_out = p_out;

}

}

F.1.1 Time complexity estimation

An a priori estimation of time complexity of the PR metaheuristic is quite complex, as it con-
sists of procedures of a very different nature, that include conditions whose occurrence is usually
unpredictable. Moreover, in our experiments the computational time is fixed by the user. How-
ever, the analysis can suggest the relative weight of the different components of the algorithm,
and consequently on which procedures and parameters to focus in order to improve it.
The first inner loop, in which random candidates are generated and improved, is particularly
hard to characterize: we know from Chapter 3 that random solutions are usually reduced to a
locally optimal one in a number of neighbourhood explorations tmax that increases more than
linearly with size. Of course, each exploration takes O(k(n− k)) time. The main problem is
that this loop ends when the population P includes at least nB solutions, which can take zero
time (if the relinking paths are enough to fill it) or a potentially infinite time (if the random
initializations repeat over and over again the same locally optimal solutions). A very rough
estimate can be O(nBtmaxk(n− k)) time.
The second inner loop tests all candidate solutions for insertion in B. In the worst case, the
candidates could be nB(nB −1); each one could require to scan all the reference solutions point
by point (if all candidates and all reference solutions have the same value, an extremely unlikely
case); finally, each candidate could be copied into the pool: overall, that would be O

(
n3

Bk+n2
Bn
)

time. In practice, the candidate solutions are usually nB and most of them are tested against some
reference solutions using only the objective value (a single reference solution will be enough to
reject bad candidates), so the time could be as low as O(nB).
The third inner loop draws a relinking path for nB (nB −1) pairs of reference solutions. Each
path takes at most k neighbourhood explorations and each exploration takes O(k(n− k)) time,
as usual (probably with smaller multiplying coefficients, due to the limitation of the neighbour-
hood). Then, the best solution along the path is improved by steepest ascent. Overall, this
should be O

(
n2

B
(
k2(n− k)+ tmaxk(n− k)

))
time, where tmax is probably smaller than for a ran-

dom initialization. This is probably the most expensive component of the algorithm, though the
first one could also be relevant. A profiler could confirm or disprove it empirically, but its use
exceeds the scope of the present discussion3.

F.1.2 Empirical evaluation

We can now evaluate the performance of the PR metaheuristic. We will experiment with typical
values for the number of reference solutions nB, ranging from 5 to 20. Smaller values would not
be enough to generate enough new solution by recombination, whereas larger values would take
too much time to systematically test all pairs and would also probably generate many duplicate
or bad quality locally optimal solutions. Another possible experiment could be to compare the
effect of using the global-best or the first-best strategy in the two exchange procedures that,

3Next year, may be.

378

APPENDIX F F.1. PATH RELINKING 379

respectively, improve the recombined and the random solutions or build the relinking paths.
For the sake of briefness, we will not perform this analysis.
The only other parameter is the total time. From the previous chapters we know that for the
largest instances of the benchmark 1000 neighbourhood explorations correspond to about 4
seconds and that a randomly generated solution requires around 30 neighbourhood explorations.
Each generation of the PR framework requires to improve about n2

B solutions, some of which
are fully random, whereas most derive from the relinking paths. A very rough computation
suggests that a generation could take about 202 · 30/1000 · 4 = 48 seconds. This is quite long
with respect to the time used in the previous chapters, though it is probably an overestimate,
because the solutions derived from the relinking paths are probably quicker to optimize. As a
compromise, we will set the time to tmax = 30 seconds.
Notice that if the time limit is tested only at the beginning of each generation, it could expire be-
fore the generation has ended, but the algorithm would terminate only later, violating the limit.
This happens also for the random restart approach, because the steepest ascent procedure runs
to completion before testing the time limit. To avoid these violations, the condition should be
tested more often; possibly, a truncated version of steepest ascent should be designed. However,
for the sake of simplicity we will skip this step. Our experiments, in fact, show times ranging
from 30 to 30.9 seconds: a more precise termination would be desirable, but is not strictly
required for our rough analysis.

F.1.3 Parameter tuning

We now compare the effect on the quality of the solution of four different sizes of the reference
set, namely nB = 5, 10, 15 and 20. Table F.1 reports the resulting average gaps over the whole
benchmark. For comparison purposes, the table also reports the average gap obtained by the
random restart approach. The best performing configurations set nB = 15 and nB = 20.

PR RR
nB 5 10 15 20

Gap 0.26% 0.20% 0.12% 0.12% 0.10%

Table F.1: Average gaps with respect to the best known result of the PR metaheuristic with
different cardinalities of the reference set (nB) and of the random restart algorithm (RR)

Figure F.1 reports the SQD diagram of the four configurations, confirming the relations sug-
gested by the average gap (possibly with a prevalence of nB = 15 on nB = 20, since the latter
looks more or less dominated by random restart, whereas the former does not).
The corresponding boxplots are reported in Figure F.2, and approximately suggest the same
conclusions.
Finally, applying Wilcoxon’s test to compare the PR algorithm with nB = 15 with the other
tunings we obtain the following results:

1. nB = 15 versus nB = 5

W+ = 569, W- = 134, N = 37, p <= 0.001062

2. nB = 15 versus nB = 10

379

380 LABORATORY ON RECOMBINATION METAHEURISTICS APPENDIX F

Figure F.1: Solution Quality Distribution diagrams for the PR metaheuristic with different car-
dinalities of the reference set (nB) and of the random restart algorithm (RR)

Figure F.2: Boxplot diagrams for the PR metaheuristic with different cardinalities of the refer-
ence set (nB) and of the random restart algorithm (RR)

380

APPENDIX F F.1. PATH RELINKING 381

W+ = 206, W- = 119, N = 25, p <= 0.2473

3. nB = 15 versus nB = 20

W+ = 144, W- = 109, N = 22, p <= 0.581

which suggests that only the first comparison is significant, whereas the other ones could easily
be the result of a random sampling. So, the results are inconclusive.

F.1.3.1 Comparison with random restart

The comparison between the PR metaheuristic and the steepest ascent with purely random
restart allows to estimate the contribution of recombination to the performance. In fact, the
PR metaheuristic adopts the same method to initialize the population and to integrate it when
recombination is not enough to fill the required minimum number of solutions. From the ta-
bles and pictures presented above, all configurations of the PR algorithm appear to be worse
than random restart: even the best one has an average gap of 0.12% versus 0.10%, and a SQD
diagram that is dominated in most of the range, though not for all values.
Wilcoxon’s test however yields the following results:

1. RR versus nB = 5

W+ = 411, W- = 184, N = 34, p <= 0.05337

2. RR versus nB = 10

W+ = 301, W- = 294, N = 34, p <= 0.9591

3. RR versus nB = 15

W+ = 247, W- = 314, N = 33, p <= 0.5554

4. RR versus nB = 20

W+ = 185, W- = 221, N = 28, p <= 0.6903

While we could expect some tests to be inconclusive, it is rather surprising to find out that all of
them are. Analyzing the detailed results, one can remark that random restart seems to perform
better on smaller instances and worse on larger ones. Now, our application of Wilcoxon’s
test considers the absolute differences, whereas the SQD considers the relative differences, or
percent gaps. The former favours the algorithm that is better on large instances (PR), whereas
the latter favours the algorithm that is better on small instances (RR). This could perhaps explain
the results. Anyway, the most correct interpretation is probably to suspend any judgment.

381

382 LABORATORY ON RECOMBINATION METAHEURISTICS APPENDIX F

Another interesting insight can be obtained by plotting the values of the solutions met along the
relinking paths: we can see that typically the objective is good (that is, large) in the two extreme
solutions and decreases in the intermediate ones. Therefore, the best solution is usually the first
or the last along the path, that is a neighbour of the given locally optimal solutions4: the subse-
quent exchange heuristic is unlikely to find better solutions. This means that the improvement
is mainly due to the random generation step, and therefore increasing the time dedicated to this
step by removing the recombination mechanism is actually profitable. In the largest instances,
however, this is not always the case: the recombination mechanism starts yielding new solu-
tions, whose quality is better than that of the random ones. These are however just speculations,
working hypothesis for further studies, that should be verified checking the actual behaviour of
the algorithm on some instances.

F.2 Scatter search

The Scatter Search metaheuristic also manages a reference set R, that is however composed of
two subsets: B includes the best known solutions, D includes the most diverse solutions. The
basic scheme extracts pairs of solutions, one from B and one from B∪D, and combines them
with a suitable procedure. Then, it improves the new solution by an exchange procedure and
checks whether the locally optimal solution thus obtained is worth inserting in B (first) or in
D (then). The process terminates when all solutions generated in this way are rejected, and
the reference set is not updated. This scheme has an intrinsic termination condition, at least if
the recombination procedure is deterministic. In fact, applying it to the same set of reference
solutions, it generates the same locally optimal solutions. If the recombination mechanism is
randomized, different solutions could be obtained in different iterations, but the process is very
intensifying, so that, even if it is profitable at first, in the long term it is likely to lead to repeated
solutions and stagnation.
In order to implement a potentially unlimited algorithm with a user-defined time limit, we ex-
ploit the same mechanism used for PR in the previous section, that is also the same mechanism
used to generate the starting population: new solutions are produced by generating random so-
lutions and improving them with steepest ascent. Then, all solutions of the new population are
tested for insertion in the reference set, first in B and then in D. For the sake of simplicity, we
will adopt once again a static update mechanism.
The resulting scheme is the following.

4A possible idea could be to abandon the standard scheme of PR and improve an intermediate solution, instead
of the best one along the relinking path.

382

APPENDIX F F.2. SCATTER SEARCH 383

Algorithm ScatterSearch(I,τmax,nB,nD)

B := /0;D := /0;P := /0;
While Time() ≤ τmax do
{ Build or integrate the candidate population }
While |P|< nB +nD do

x := RandomSolution(I);
x := SteepestAscent(x);
If x /∈ P then P := P∪{x};

EndWhile
{ Test the candidate solutions for insertion in the reference set }
For each x ∈ P do

If x /∈ B then B := UpdateBestSet(B,x);
If x /∈ B∪D then D := UpdateDiverseSet(D,x,B);

EndFor
{ Recombine the solutions in the reference set into candidate ones }
For each (x,y) ∈ B× (B∪D) do

P := P∪ Recombine(x,y, I);
EndFor

EndWhile
x∗ := argmax

x∈B
f (x);

Return (x∗, f (x∗));

Notice the strong structural similarity with the scheme of PR. The first inner loop builds a
population of candidate solutions by generating random solutions and improving them with
steepest ascent. For the sake of simplicity, the number of candidates is set large enough to fill
the reference set (nB+nD). As in PR, duplicate candidates are not accepted, because they would
provide no advantage, and a (very limited) risk of not terminating the loop exists.
The second inner loop tests each candidate solution to check whether it deserves to be included
in either of the two subsets B and D. This is done with suitable procedures that, in the positive
case, also add the solution to update the subset. These procedures return true or false to
indicate whether the candidate solution has been accepted or not. A solution added to B is
not tested on D. Since the definition of “diverse” solution refers to both subsets, the update of
the diverse set requires set B, or at least information on the Hamming distance of each current
solution y ∈ D from B∪D\{y}. At the end, the population P is cleaned, as in PR.
The third inner loop considers each pair of solutions (x,y) from B× (B∪D) and recombines
them to produce a solution z that is saved in pool P. Now the algorithm goes back to the random
generation, in case the recombined solutions are not enough to provide the sufficient number of
solutions to update the reference set.
The implementation can exploit many of the procedures already discussed: those provided in
library solutionpool to manages solution pools, and the generation of random solutions. Of
course, we need an additional pool D. As mentioned above, the update of the diverse set requires
information on the Hamming distance: the two vectors Hmin and Htot provide, respectively,
the minimum and total distance of each reference solution from the other ones. We use both
the minimum and total distance to better discriminate between solutions: in fact, the Hamming

383

384 LABORATORY ON RECOMBINATION METAHEURISTICS APPENDIX F

distance is an integer value between 1 and k, and therefore it could easily assume identical
values for several solutions. The update procedure should take care to keep these vectors sorted
in the same way as the solutions in D.
Procedure recombine solutions simply recombines two solutions into a third one in one of
the several ways discussed in the theoretical lessons. In the present phase, we simply declare it

384

APPENDIX F F.2. SCATTER SEARCH 385

without defining its content.

start = clock();

create_solutionpool(nb,&B);

create_solutionpool(nd,&D);

create_solutionpool(nb*(nb+nd),&P);

create_solution(pI->n,&x);

while (((double)clock() - start) / CLOCKS_PER_SEC < tauMax)

{

/* Build or integrate the candidate population */

while (P.card < nb + nd)

{

generate_random_solution(pI,&x,pseed);

steepest_ascent(pI,&x,visit_strategy,&iter);

if (!is_in_solutionpool(&x,pI->n,&P))

{

add_solution_to_pool(&x,pI->n,&P);

}

clean_solution(&x,pI->n);

}

/* Test the candidate solutions for insertion in the reference set */

for (s = 1; s <= P.card; s++)

{

insert = update_best_set(P.S[s],pI->n,&B);

if (!insert) insert = update_diverse_set(P.S[s],pI->n,&D);

}

/* Recombine the solutions in the reference set into candidate ones */

for (s = 1; s <= B.card; s2++)

{

for (s2 = 1; s2 <= B.card; s2++)

if (s != s2)

{

recombine_solutions(B.S[s],B.S[s2],pI,&x);

add_solution_to_pool(&x,pI->n,&P);

}

clean_solutionpool(&P);

for (s2 = 1; s2 <= D.card; s2++)

{

recombine_solutions(B.S[s],D.S[s2],pI,&x);

add_solution_to_pool(&x,pI->n,&P);

}

}

}

if (nb > 0) copy_solution(B.S[1],px);

destroy_solutionpool(&B);

destroy_solutionpool(&D);

destroy_solutionpool(&P);

The update of the diverse set is similar to the update of the best set provided in library solutionpool.

385

386 LABORATORY ON RECOMBINATION METAHEURISTICS APPENDIX F

It is however more complicated because pool D is sorted with respect to the (minimum and total)
Hamming distance from B∪D. Therefore...
PROBLEM: THE DEFINITION OF POOL DOES NOT INCLUDE FIELDS FOR Htot AND
Hmin. USING EXTERNAL VECTORS MAKES THE CODE MORE COMPLEX AND POSES
THE QUESTION WHETHER THE FUNCTION SHOULD BE INCLUDED OR NOT IN THE
LIBRARY, PLUS THE FOLLOWING ADDITIONAL PROBLEMS: WHEN ARE THE HAM-
MING DISTANCES OF THE RECOMBINED SOLUTION COMPUTED? WHERE ARE THEY
COMPARED WITH THE HAMMING DISTANCES OF THE SOLUTIONS IN D?

TO BE COMPLETED

The core of the SS metaheuristic is the recombination procedure. Usually, its first step consists
in initializing the new solution x with the intersection of the two parent solutions x1 and x2.
Then, the partial solution is augmented with elements drawn from the two parents. This can be
performed in several ways, concerning two main aspects:

• whether the choice of the elements is random or greedy (or any semigreedy combination):
the first approach allows a given pair of parent solutions to generate many different new
solutions, the second usually generates better solutions;

• whether the elements are chosen alternatively from the two parents or freely: the first
approach guarantees the largest possible distance from the two parent solutions, the latter
allows a larger variety (in particular, if combined with choices at least partly random).

In the following, for the sake of simplicity, we will draw random elements alternatively from
the two parent solutions, counting on the steepest ascent procedure as a tool to generate good
solutions (rather than on a greedy choice) and on the recombination of good solutions as a tool
to intensify the search (rather than on a biased extraction favouring one parent). It is in general
possible that the constraints of the problem forbid to build a whole solution simply drawing
random elements from the two parents. In the case of the MDP, however, this is possible,
thanks to the very simple cardinality constraint. We have therefore simply to create an empty
solution, add to it the points that belong to both parents (for example, by scanning one and
checking which of its elements also belong to the other), put the other points of both solutions
in suitable vectors from which they can be extracted at random, and perform the extraction as
already done in several occasions in the previous chapters.
UPDATE: FIRST, SCAN A SOLUTION AND PUT IN THE DESTINATION THE POINTS
THAT ARE ALSO IN THE OTHER SOLUTION. THEN, BUILD VECTORS FOR THE RE-
MAINING CANDIDATE POINTS FROM THE TWO SOURCES. FINALLY, ALTERNA-
TIVELY EXTRACT ONE POINT FROM EACH OF THE TWO SOURCES, AND ADD IT TO
THE RECOMBINED SOLUTION. THERE IS MUCH IN COMMON WITH OTHER RAN-
DOM EXTRACTIONS USED IN THE PREVIOUS CHAPTERS.

TO BE COMPLETED

F.2.1 Time complexity estimation

A time complexity estimation of the SS metaheuristic is quite complex, as it consists of proce-
dures of a very different nature, including tests whose outcome is usually impossible to predict a

386

APPENDIX F F.2. SCATTER SEARCH 387

priori. The generation of the reference set, for example, requires a random extraction in O(kn)
time, where coefficient n depends on the update of vector D. This apparently plays no role, and
therefore seems damaging, but it still strongly accelerates the steepest ascent procedure, that
probably gives a large contribution to the overall computational time: an assumption to be ver-
ified empirically. Then, it requires a steepest ascent procedure, whose complexity has already
been characterized as O(tmax(n− k)k), where tmax is the number of neighbourhood exploration
from a random solution to the local optimum in which steepest ascent terminates, that is an un-
known function of n and k. The generation is repeated until B and D are both full, which requires
at least nB+nD iterations, but it could require many more, if the locally optimal solutions found
are often the same. This depends strongly on chance and on the landscape of the problem (the
MDP should have a sufficiently rugged landscape to generate many different local optima, but
this is just a guess). Then, nB (nB +nD −1) pairs of solutions are taken into account5. For each
pair, the recombination procedure requires to find the intersection and the two set differences of
the parent solutions (in time O(k)) and to add the points of the intersection and random points
of the differences to build the new solution (in time O(n) for each of the k points, once again
for the update of vector D). Each solution must be checked for insertion in the best set B in time
O(k) (in the worst case, that becomes probably quite rare after a while, because it corresponds
to improving most of the best solutions at every attempt). If this fails, it must be checked for
insertion in the diverse set B in time WHO KNOWS? The main problem is that there is no way
to predict how many times these operations will be repeated overall. Therefore, the theoreti-
cal analysis is mainly useful to determine the relative weight of the different contributions: the
steepest ascent procedure appears to be the most computationally intensive, and this justifies
the choice to keep vector D even if it slows down some of the other procedures.

F.2.2 Empirical evaluation

We can now evaluate the performance of the SS metaheuristic. We consider reference sets of
the same size used for PR. In this case, however, we have two subset, B and D. For the sake of
simplicity, we assume them to have the same size. Since the pairs of solution to be recombined
are nB(nB +nD −1), we will experiment with the following configurations: nB = nD = 5, nB =
nD = 10 and nB = nD = 15. In this way, the number of pairs will not be very different from the
one considered by PR.
OTHER POSSIBLE PARAMETERS: GREEDY CHOICE VERSUS RANDOM CHOICE; FREE
CHOICE VERSUS ALTERNATE CHOICE

F.2.2.1 Computational time analysis

As for PR the computational time is fixed to 30 seconds overall.
TEST WHETHER THE TIME IS VIOLATED DUE TO THE CHECK MADE ONLY AT THE
BEGINNING OF EACH ITERATION (PRESUMABLY NOT). IF THIS HAPPENS, ADD
OTHER CHECKS.

5This means that every pair of best solutions is considered twice: once in each direction. The random choice
of elements during the recombination suggests that such a repetition could be nonredundant, but this should be
verified empirically.

387

388 LABORATORY ON RECOMBINATION METAHEURISTICS APPENDIX F

F.2.3 Parameter tuning

AVERAGE RESULTS
Figure F.3 reports the SQD diagram of the SS metaheuristic, compared with that of the steepest
ascent heuristic applied to purely random solutions. This allows to estimate the contribution
of recombination to the overall performance. In fact, the SS metaheuristic adopts the same
method to initialize the population and to integrate it when recombination is not enough to fill
the required minimum number of solutions

Figure F.3: Solution Quality Distribution diagram for the SS metaheuristic compared with the
steepest ascent heuristic initialised with random solutions with a time limit of 30 seconds

The boxplots reported in Figure F.4 provide the same information: SUMMARY OF THE PIC-
TURE

Figure F.4: Boxplots for the SS metaheuristic compared with the steepest ascent heuristic ini-
tialised with random solutions with a time limit of 30 seconds

WILCOXON’S TEST

F.3 Comparison with PR and random restart

388

	Foreword
	I Introduction to problems and heuristics
	1 Introduction
	1.1 Heuristics
	1.1.1 History
	1.1.2 What is a heuristic algorithm?

	1.2 Different types of problems
	1.2.1 Optimisation-search problems
	1.2.2 Combinatorial Optimisation

	1.3 Different types of heuristics
	1.3.1 Solution-based heuristics
	1.3.2 Metaheuristics

	1.4 Caveats

	2 Combinatorial optimization problems
	2.1 Weighted set problems
	2.1.1 The knapsack problem
	2.1.2 Maximum diversity problem
	2.1.3 Interlude I: the objective function

	2.2 Partitioning set problems
	2.2.1 Bin packing problem
	2.2.2 Parallel machine scheduling problem
	2.2.3 Interlude II: again, the objective function

	2.3 Logic function problems
	2.3.1 Max-SAT problem

	2.4 Numerical matrix problems
	2.4.1 Set covering problem
	2.4.2 Interlude III: the feasibility test
	2.4.3 Set packing problem
	2.4.4 Set partitioning problem
	2.4.5 Interlude IV: the search for feasible solutions

	2.5 Graph problems
	2.5.1 Vertex cover problem
	2.5.2 Maximum clique problem
	2.5.3 Maximum independent set problem
	2.5.4 Interlude V: relations between problems
	2.5.5 The travelling salesman problem
	2.5.6 Capacitated minimum spanning tree problem
	2.5.7 Vehicle routing problem
	2.5.8 Interlude VI: combining alternative representations

	2.6 Summary
	2.7 Exercises
	2.7.1 Exercise 1
	2.7.2 Exercise 2
	2.7.3 Exercise 3
	2.7.4 Exercise 4
	2.7.5 Exercise 5
	2.7.6 Exercise 6
	2.7.7 Exercise 7
	2.7.8 Exercise 8
	2.7.9 Exercise 9
	2.7.10 Exercise 10
	2.7.11 Exercise 11
	2.7.12 Exercise 12
	2.7.13 Exercise 13
	2.7.14 Exercise 14
	2.7.15 Exercise 15

	II Algorithm analysis
	3 Theoretical efficiency
	3.1 Cost as computational complexity
	3.1.1 Problems
	3.1.2 Algorithms
	3.1.3 Cost of a heuristic algorithm
	3.1.4 Worst-case asymptotic time complexity
	3.1.5 Transformations and reductions

	3.2 Going beyond worst-case complexity
	3.2.1 Parameterised complexity
	3.2.2 Average case complexity
	3.2.2.1 Phase transitions

	4 Theoretical effectiveness
	4.1 A measure of distance from the optimum
	4.2 Theoretical analysis: approximation guarantees
	4.2.1 Absolute and relative approximation
	4.2.2 How to obtain an approximation guarantee
	4.2.3 Tight approximation bounds
	4.2.4 Inapproximability
	4.2.5 Approximation schemes

	4.3 Beyond worst-case approximation
	4.3.1 Randomised approximation

	4.4 Exercises
	4.4.1 Exercise 1
	4.4.2 Exercise 2
	4.4.3 Exercise 3
	4.4.4 Exercise 4
	4.4.5 Exercise 5
	4.4.6 Exercise 6
	4.4.7 Exercise 7
	4.4.8 Exercise 8
	4.4.9 Exercise 9

	5 Empirical performance evaluation
	5.1 Introduction to experimental analysis
	5.1.1 Models
	5.1.2 Benchmarks
	5.1.3 Comparing heuristic algorithms
	5.1.4 Statistical models of performance

	5.2 A posteriori efficiency evaluation
	5.2.1 Run time distribution diagram
	5.2.2 Scaling diagram

	5.3 A posteriori effectiveness evaluation
	5.3.1 Solution quality distribution diagram
	5.3.2 Parametric SQD diagrams
	5.3.3 Algorithm comparison with SQD diagrams
	5.3.4 Position indices and boxplots

	5.4 Relation between quality and computational time
	5.4.1 A classification of algorithms

	5.5 Complete performance diagrams
	5.5.1 Qualified run time distribution diagrams
	5.5.2 Timed solution quality distribution diagrams
	5.5.3 Solution quality statistics over time diagrams

	5.6 Wilcoxon test
	5.6.1 Assumptions of Wilcoxon's test
	5.6.2 Computation of the p-value

	5.7 Exercises
	5.7.1 Exercise 1
	5.7.2 Exercise 2
	5.7.3 Exercise 3 -
	5.7.4 Exercise 4 -
	5.7.5 Exercise 5 -
	5.7.6 Exercise 6 -
	5.7.7 Exercise 7 -

	III Constructive algorithms
	6 Constructive heuristics
	6.1 Basic elements of constructive algorithms
	6.1.1 The construction graph
	6.1.2 The termination condition
	6.1.3 The general scheme
	6.1.4 Effectiveness and efficiency of constructive algorithms
	6.1.5 Using the objective as a selection criterium

	6.2 Exact constructive algorithms
	6.2.1 The additive case: matroids and greedoids

	6.3 Nonexact constructive algorithms
	6.3.1 Pure constructive heuristics
	6.3.2 Adaptive constructive algorithms

	6.4 Extensions to the basic constructive scheme
	6.4.1 Extensions of the construction graph with small subsets
	6.4.2 Extension of the construction graph using auxiliary subproblems
	6.4.3 Extensions of the selection criterion: regret functions
	6.4.4 Extensions of the selection criterion: roll-out heuristics

	6.5 Destructive heuristics
	6.5.1 Why are they less used than constructive heuristics?

	6.6 Exercises
	6.6.1 Exercise 1
	6.6.2 Exercise 2
	6.6.3 Exercise 3
	6.6.4 Exercise 4
	6.6.5 Exercise 5
	6.6.6 Exercise 6
	6.6.7 Exercise 7
	6.6.8 Exercise 8
	6.6.9 Exercise 9
	6.6.10 Exercise 10
	6.6.11 Exercise 11
	6.6.12 Exercise 12
	6.6.13 Exercise 13
	6.6.14 Exercise 14

	7 Constructive metaheuristics
	7.1 Introduction to constructive metaheuristics
	7.1.1 Multistart

	7.2 Adaptive research technique
	7.3 The semi-greedy algorithm
	7.3.1 Convergence to the optimum

	7.4 Greedy Randomized Adaptive Search Procedure
	7.4.1 Definition of the RCL
	7.4.2 The reactive tuning of parameters

	7.5 Cost perturbation methods and Ant System
	7.5.1 The role of the trail
	7.5.2 Trail update
	7.5.2.0.1 The oblivion parameter
	7.5.2.0.2 The élite solutions

	7.5.2.1 Variants of the trail update mechanism

	7.5.3 Convergence properties of the Ant System

	7.6 Exercises
	7.6.1 Exercise 1
	7.6.2 Exercise 2
	7.6.3 Exercise 3
	7.6.4 Exercise 4
	7.6.5 Exercise 5
	7.6.6 Exercise 6

	IV Exchange algorithms
	8 Exchange heuristics
	8.1 The general scheme of exchange algorithms
	8.1.1 Neighbourhood
	8.1.2 Connectivity of the search graph

	8.2 The steepest descent algorithm
	8.2.1 The selection criterium
	8.2.2 Exact neighbourhood

	8.3 Properties of the search graph
	8.3.1 Landscape
	8.3.2 Autocorrelation coefficient
	8.3.3 Plateau
	8.3.4 Attraction basins

	8.4 Efficiency of the exchange algorithms
	8.4.1 The exploration of the neighbourhood
	8.4.1.1 Updating a quadratic objective function

	8.4.2 Updating the feasibility check
	8.4.3 Partial saving of the neighbourhood
	8.4.4 Tradeoff between efficiency and effectiveness
	8.4.5 Fine tuning of the neighbourhood

	8.5 Very large scale neighbourhood search
	8.5.1 Efficient visit of exponential neighbourhoods
	8.5.2 Heuristic visit of large neighbourhoods
	8.5.2.1 Variable depth search
	8.5.2.2 Iterated greedy method (destroy and repair)

	8.6 Exercises
	8.6.1 Exercise 1
	8.6.2 Exercise 2
	8.6.3 Exercise 3
	8.6.4 Exercise 4
	8.6.5 Exercise 5
	8.6.6 Exercise 6
	8.6.7 Exercise 7

	9 Exchange metaheuristics
	9.1 Introduction to exchange metaheuristics
	9.1.1 Termination condition

	9.2 Repeating the search
	9.2.1 Random generation
	9.2.2 Multi-start methods
	9.2.3 Exploiting previous solutions
	9.2.4 Iterated Local Search
	9.2.4.0.1 The acceptance condition
	9.2.4.1 Variable Neighbourhood Search

	9.3 Extending the local search
	9.3.1 Variable neighbourhood descent
	9.3.2 Dynamic local search

	9.4 Modifying the selection rule
	9.4.1 Simulated Annealing
	9.4.1.1 The details of Metropolis simulation algorithm
	9.4.1.2 The algorithm

	9.4.2 Tabu search

	9.5 Exercises
	9.5.1 Exercise 1
	9.5.2 Exercise 2
	9.5.3 Exercise 3
	9.5.4 Exercise 4
	9.5.5 Exercise 5
	9.5.6 Exercise 6
	9.5.7 Exercise 7
	9.5.8 Exercise 8
	9.5.9 Exercise 9

	V Recombination algorithms
	10 Recombination metaheuristics
	10.1 Introduction to recombination metaheuristics
	10.1.1 General concepts

	10.2 Scatter search
	10.2.1 The algorithm
	10.2.2 Recombination procedure

	10.3 Path relinking
	10.3.1 General scheme of Path Relinking

	10.4 Genetic algorithms
	10.4.1 Encodings
	10.4.2 General scheme of the genetic algorithm
	10.4.3 Features of a good encoding
	10.4.4 Selection
	10.4.5 Crossover
	10.4.6 Mutation

	10.5 The feasibility problem
	10.5.1 Special encodings and operators
	10.5.2 Repair procedures
	10.5.3 Penalty functions

	10.6 Other recombination metaheuristics approaches
	10.6.1 Memetic algorithms
	10.6.2 Evolution strategies

	10.7 Exercises
	10.7.1 Exercise 1
	10.7.2 Exercise 2
	10.7.3 Exercise 3
	10.7.4 Exercise 4
	10.7.5 Exercise 5
	10.7.6 Exercise 6
	10.7.7 Exercise 7
	10.7.8 Exercise 8
	10.7.9 Exercise 9
	10.7.10 Exercise 10
	10.7.11 Exercise 11
	10.7.12 Exercise 12

	VI Laboratory sessions
	A Generalities
	A.1 The maximum diversity problem
	A.1.1 Definition
	A.1.2 Benchmark instances

	A.2 Instance representation
	A.3 Solution representation
	A.3.1 Consistency check

	A.4 The main function

	B Laboratory on constructive heuristics
	B.1 General scheme
	B.1.1 The basic constructive heuristic

	B.2 Empirical evaluation
	B.2.1 Computational time analysis

	B.3 Alternative constructive heuristics
	B.4 The basic destructive heuristic
	B.5 Experimental comparison

	C Laboratory on constructive metaheuristics
	C.1 Greedy randomized adaptive search procedure
	C.1.1 Choice of the basic constructive heuristic
	C.1.2 Pseudorandom number extraction
	C.1.3 Biased point selection
	C.1.3.1 Value-based RCL
	C.1.3.2 Identification of the selected point

	C.1.4 Empirical evaluation
	C.1.4.1 Computational time analysis
	C.1.4.2 Solution quality analysis
	C.1.4.2.1 Statistical tests
	C.1.4.2.2 Influence of the random seed

	C.2 Ant System

	D Laboratory on exchange heuristics
	D.1 The steepest ascent heuristic
	D.1.1 Time complexity estimation
	D.1.2 Empirical evaluation
	D.1.2.1 Computational time analysis
	D.1.2.2 Solution quality analysis

	D.1.3 Constant-time neighbour evaluation
	D.1.4 Comparison of initialisation procedures
	D.1.5 Neighbourhood tuning: global-best versus first-best

	E Laboratory on exchange metaheuristics
	E.1 Variable neighbourhood search
	E.1.1 Time complexity estimation
	E.1.2 Empirical evaluation
	E.1.2.1 Computational time analysis
	E.1.2.2 Solution quality analysis

	E.1.3 Parameter tuning
	E.1.3.1 Statistical tests

	E.2 Tabu search
	E.2.1 Time complexity estimation
	E.2.2 Empirical evaluation
	E.2.2.1 Cyclic or erratic behaviours
	E.2.2.2 Computational time analysis

	E.2.3 Parameter tuning

	E.3 Comparison between VNS and TS

	F Laboratory on recombination metaheuristics
	F.1 Path relinking
	F.1.1 Time complexity estimation
	F.1.2 Empirical evaluation
	F.1.3 Parameter tuning
	F.1.3.1 Comparison with random restart

	F.2 Scatter search
	F.2.1 Time complexity estimation
	F.2.2 Empirical evaluation
	F.2.2.1 Computational time analysis

	F.2.3 Parameter tuning

	F.3 Comparison with PR and random restart

