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Foreword

The label Decision methods and models is applied in Italian universities to courses
with a rather various content. Quite often, it is another name for Operations Re-
search courses, dealing with optimization models and algorithms, or for collections
of practical applications of Operations Research. This course belongs to the same
general environment, but with a fundamental difference.

The common theme of these courses is the concept of decision, that is a choice
among nonindifferent alternatives. It is a situation we all face everyday, but that
in some cases is particularly difficult because the relevant data to take into account
are large, the number of possible alternatives is large and the cost of a wrong choice
are large. In these cases, the correct strategy is not to resort to common sense, to
past experience or to chance, but to model the problem, compute its solution, inter-
pret it and, finally, decide. This has been known for decades (at least since World
War II). Nowadays, however, new tools have put again into fashion the modellistic
approach to decision: Big Data provides huge quantities of precise, structured and
inexpensive data, which are ready to be exploited for extracting information; Cloud
Computing provides everywhere access to low-cost data and computing power; Busi-
ness Analytics supports the competitive advantage of a business culture open to the
use of models in order to extract useful information on one’s own company, cus-
tomers, competitors and business environment, in order to define one’s operational
strategies. This has stimulated in the academy the development of new theoretical
fields, such as online optimization, stochastic optimization, robust optimization,
multilevel optimization, etc. . .

The fundamental difference between this course and most of the other ones with
the same name is that this course does not deal with the technical aspect of solving
decision models, that is of their mathematical properties and solving algorithms.
By contrast, it deals with:

� the factors that make the design of such models complicated on principle;

� the mathematical models proposed to treat such complications and the res-
ulting mathematical models;

� the intrinsic limitations and errors of such methods and models, including
some impossibility results about the design of satisfactory solution approaches.

This course, in other words, means to show why it is advantageous to use models as
a support to decisions and why the results produced by such models must be used
with care. The focus moves from the core of the decision problem to everything
that surrounds it, and that in many cases is unavoidable to consider in order to
reach the core and to interpret in a meaningful way the results of the algorithms
applied to it.

This course has two original sources. The former is the course in Metodi e modelli
per il supporto alle decisioni which was given in the site of Como of the Politecnico
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10 Contents

di Milano, for students in environmental engineering and computer engineering and
for which years ago I provided some supporting activities. This source provides
most of the subjects and the choice of the case studies. These concern decisions
about public works, which are probably the situations in which it is clearest how
hard it is to turn a practical problem into a standard optimization problem and
to turn its numerical results into an operational strategy. On the other side, these
cases do not exhaust the application fields in which decision model can provide a
useful guide to action. Other examples can be found in:

� finance, where models are used to define investment strategies;

� marketing, where models are used to define advertising campaigns or pricing
strategies;

� natural resource management, where models are used to define exploitation
strategies;

� videogames, where models are used to define game strategies.

Figure 1: Structure of the track on Analytics and optimization

The second source of the course is the track on Analytics and optimization that
the degrees in Computer Science and Mathematics of the University of Milan have
been offering in recent years, in which this course plays a well determined role. This
source provides some subjects, but especially a more rigorous and formal approach,
as well as a strong complementarity relation with the other courses of the same
track. I start by saying that the course is designed so that is can be attended and
it can be interesting and useful also for students of other tracks and other degrees,
but the following paragraph will focus on the track of Analytics and optimization
to better clarify the basic purpose and approach of this course. Figure 1 shows the
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structure of the track: the courses in yellow boxes deal with basic subjects, those
in orange boxes with affine subjects from Computer Science1, those in green boxes
(plus Algoritmi euristici, that is Heuristic algorithms) are the fundamental courses
of the track. In short:

� Operations Research (Ricerca operativa) develops the concept of decision model
and the use of general-purpose solvers;

� Combinatorial Optimization (Ottimizzazione combinatoria) focuses on the
problems for which polynomial algorithms have been devised and discusses
the best known algorithms and data structures for a collection of fundamental
problems;

� Complements of Operations Research (Complementi di ricerca operativa) fo-
cuses on the problems for which no polynomial algorithm is known and dis-
cusses the design of exponential algorithms which in the average case can solve
medium-size instances of practical use;

� Heuristic algorithms (Algoritmi euristici) focuses on the problems for which
polynomial algorithms have been devised and discusses the design of polyno-
mial algorithms which do not guarantee to find the optimal solution, but on
average compute good quality solutions;

� Logistics (Logistica) presents a collection of models and algorithms for a spe-
cific application field, that is the prodution, storage and transportation of
goods;

� Decisions methods and models (Metodi e modelli per le decisioni) surrounds
them all, discussing how to build the decision models presented in the other
courses and to what extent such models correctly represent the real world.

From this scheme, it should be clear that the course in Decision methods and
models does not require strong skills on the properties of optimization models and
algorithms. The student who haven’t got those skills will simply accept the existence
of such models and algorithms as black boxes. The students who know more, for
example because they have attended the other courses of the track, will use this
course to enlarge their point of view to what precedes and follows the algorithmic
solution phase. These notes include several sections marked by a star which should
be considered as additional material, not required to pass the exam: those sections
provide connections to the other courses of the track.

As a further proof of the interdisciplinarity of the course and of the possibility to
attend it starting from very different backgrounds, besides being open to students of
Computer Science and Mathematics, since 2018 the course has been included in the
degree of Data Science and Economics, as the module on Optimization in the course
on Graph Theory, Discrete Mathematics and Optimization. This necessarily makes
the approach to the subject much wider than deeper and implies that every group
of students from a different background will find subjects that are already known or
that are apparently explained in a simplistic way. The students in Mathematics will
feel that the analytic methods are too informal, the students in Computer Science
will feel that data management and computational complexity are only hinted at,
the students in Data Science and Economics will feel that the economic concepts
are too superficial. This is unfortunately very hard to avoid, if all students must
have the possibility to attend the course and pass the exam in the standard times.
On the other hand, it is likely that all students will find interesting the occasion to

1Except for Algoritmi euristici which is in an orange box for beaurocratic reasons.
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enlarge their perspective through the combined presentation of the different aspects
that must necessarily interact in a complicated real decision.



Part I

Decision problems
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Chapter 1

Introduction

1.1 Terminology

Informally speaking, a decision is a choice among alternatives that are not recip-
rocally indifferent. Let us introduce some terms that will be used in the following
in order to be more precise and nonambiguous. It is not yet a formal definition,
but just the introduction of some keywords: Section 1.6 and Chapter 2 will provide
practical examples of the usage of such terms, while Chapter 3 will provide a formal
definition and discuss several methodological problems related to their usage. Un-
fortunately, the subjects of this course are studied in many different research fields
(mathematics, economy, engineering, etc. . . ) and each field has adopted its own
terminology and conventions, usually different from those of the other fields. I have
decided to report all terms of common use and to adopt in each chapter those typical
of the field that has studied in more depth the specific subject of the chapter itself,
recalling from time to time the equivalence with other terms. This violated the
classical rule to use a single word for each concept, but it should allow the students
to access more easily the literature. Some concepts, moreover, have no standard
name to the best of my knowledge, so that I have been forced to invent a term ad
hoc for this course.

We will define system the portion of the world which the decision will affect1.
A system is not given once for all, otherwise no decision would be possible. We
will denote as alternative or solution the combination of all controllable aspects
of the system2, as scenario or outcome the combination of all its uncontrollable
aspects3. A system, therefore, combines controllable and uncontrollable aspects
into a configuration4. A configuration is associated to an impact, that describes
all aspects which are relevant for the decision5. Decision-maker or stakeholder is
everybody who contributes to the choice of the alternative: the first term indicates
who takes part to the choice, while the second term also includes who does not
participate, but has interests at stake and could react to a disagreeable choice, thus
exerting an indirect influence on the choice. Finally, by preference we denote the
description of the relative satisfaction between different impacts6.

A decision problem requires to choose an alternative so as to move the system

1System is typical term of the engineering or mathematical jargon.
2Alternative is more used in the economical jargon, solution in the mathematical and engin-

eering one.
3Scenario is more used in the economical jargon, outcome in the statistical one.
4Configuration is an ad hoc term, though it is sometimes used in engineering.
5Impact is another ad hoc term; the literature often adopts circumlocutions.
6Preference derives from the economic jargon, but it is commonly used in everyday language.

15
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into a configuration whose impact is preferred by the decision-makers to those of
the other configurations, keeping into account that the actual configuration does
not depend only on the chosen alternative, but also on the possible scenarios. Two
fundamental elements for the existence of a decision problem are:

� freedom, that is the existence of several available alternatives;

� rationality, that is the existence of preferences between different impacts.

The former grants the possibility of a choice, the latter a criterium of choice.

Some confusion can derive from the fact that in theoretical Computer Science
a decision problem is a problem which admits only two possible solutions (yes and
no, or true and false). This is a completely different concept. Looking for a relation
with theoretical Computer Science problems, the decision problems treated in these
notes include somehow as special cases the optimization/search problems, whose
solution is an object with the maximum value (or minimum cost) among all objects
in a suitale family.

1.2 The modelling approach to decision

Figure 1.1 gives a scheme of the modelling approach to decision. Instead of dir-
ectly moving from the practical problem to the operational strategy, this approach
requires a series of intermediate passages:

� building a model of the problem, with suitable methods;

� solving the model with algorithms, that is formal methods;

� interpreting the solution, with suitable methods.

Methods occur in every phase of the process. Sometimes they are formal methods,
that is algorithms. This especially concerns the model resolution, that is the passage
from the model to its abstract solution. The correctness of this passage could even
be guaranteed by a mathematical proof, if the algorithm is an exact one. If it is
heuristic, the guarantee is only empirical and experimental. Even more informal
are the passage from the problem to the model, that is from the real world to
the world of mathematics, and the passage from the solution to the operational
strategy, that is from the world of mathematics to the real world. Such passages
are particularly tricky because they are intrinsically creative and intuitive, and
therefore prone to many sources of potential errors. A common risk is that the
decision-maker might mistake the model for the reality and blindly trust its results,
which could be formally correct, but impossible to apply. Another, subtler, risk, is
that the decision-makers might distort the numerical results of the algorithms by
applying them directly to build an operational strategy (for instance, they might
adopt an “optimal” solution very sensitive to data variations in a situation with
slightly different data, thus obtaining very poor results in practice). In this case,
both the model and the algorithm are correct, but the interpretation of the results
is wrong.

For this reason, the decision process is not a one-pass process, but works by
subsequent corrections. Figure 1.2 shows the process sketched by H. A. Simon7 in
his fundamental work “Models of bounded rationality” (1982). The scheme presents
the following phases, in which it is possible to recognize rather easily the concepts
introduced above:

7H. A. Simon () was one of the founders of Artificial Intelligence in the Fifties and won the
Nobel Prize for Economy in 1978 for his studies on bounded rationality.
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Figure 1.1: Scheme of the modellistic approach to decision

1. problema formulation: limit the system, identifying impacts and preferences
on one hand (Objectives), decision-makers and scenarios on the other hand
(Context);

2. identification of the alternatives: define the set of the feasible alternatives;

3. evaluation of the alternatives and choice:

� evaluate the impact associated to each configuration (that is, alternative
and scenario);

� choose an alternative based on the preferences of the decision-makers;

4. implementation of the decision:
turn into practice the chosen alternative or make a simulation of its applica-
tion;

5. monitoring and verification:

� observe the consequences of the decision;

� if unsatisfactory, make corrections and repeate the process introducing
new scenarios, new objectives, new alternatives, new evaluation methods.

In all these phases, specific experience and the support of information technology
are usually essential.

1.3 Why a formal approach?

It is appropriate to discuss the advantages of formalizing a decision problem. The
formal approach is profitable because it allows to:

1. predict in a more certain and exact way the impact of the decision, using
descriptive models, instead of intuition and experience;

2. accelerate the decision using algorithms and information technology, which
allow to handle a much larger set of possible alternatives;
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Figure 1.2: Scheme of the cyclic decision process according to Simon (1982)

3. assess and certify the decision process:

� making explicit assumptions on the alternatives, the scenarios, the pref-
erences the decision-makers and their reciprocal relations;

� guaranteeing the repeatibility of the process, so that it obtains always
the same results;

� make specific modifications to the process without repeating it from
scratch every time.

This holds in particular for the public decisions, or decisions in large private organ-
izations: the decision-maker usually has not an absolute power, but must prove to
other stakeholders that the decision has been taken based on all the available data
and on a transparent process. In these situations, moreover, the idea to repeat the
whole process from scratch every time that some secondary aspect has changed is
perhaps intuitive, but inefficient and unreasonable.

1.4 Prescriptive models and descriptive models

A decision model is usually a composite object. It includes, in fact, a number of
submodels which can be classified into two large classes based on the data they
require and the results they produce:

1. prescriptive models (or normative models)

� use as data the impact for each possible configuration and the preferences
of the decision-makers between the impacts;

� yield as result a “suggested” alternative;

In short, if this is the situation, the best which can be done is this.

2. descriptive models (or predictive models8)

8The main difference between them is that predictive models concern the future, descriptive
models concern the present.
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� use as data the description of each configuration (alternative and scen-
ario) of the system;

� yield as result the corresponding impacts.

In short, if one does this and if that occurs, then the situation will become
this.

The descriptive models can be trivial, but also sophisticated. A descriptive
model that is so trivial that it often escapes notice is the model that provides
the total cost ctot spent to buy two products given their unitary prices c1 e c2
and the acquired quantities x1 e x2: the model simply consists of the equation
ctot = c1x1 + c2x2. On the other hand, other very sophisticated models allow to
compute data which is too expensive or even impossible to measure (for example,
future forecasts, etc. . . ). Part VI is fully devoted to the presentation of descriptive
models of some relevance for complicated decision problems.

The two classes of models can have subtle interactions. For example, any pre-
scriptive model uses a set of descriptive models to obtain the impacts of the possible
alternatives and scenarios. On the other hand, some descriptive models can include
prescriptive models. For example, in order to estimate the traffic on a street, it is
necessary to predict the choices of drivers in the whole street network, with given
physical characteristics, prohibitions and semaforic cycles. These choices result
from decisions, which can be describe by prescriptive models. The same occurs for
customers’ choices depending on the price and selling conditions of a product, for
competitors’ choices reacting to our commercial strategies, etc. . .

1.5 Business Intelligence

Business Intelligence has become a trendy buzzword in recent studies on business
management. Books and magazine articles glorify it as an essential tool to win
competition and be successful. It denotes the set of all processes and technologies
that are used to collect, manage and account for decision-oriented data.

The architecture of a Business Intelligence system aims to:

� provide data, contents and analysis to the right person in the right moment;

� help the decision-makers to choose a solution, but also to justify their choice,
to correct or update it, to interact with each other, etc. . . ;

� conform to the laws and rules on process accounting.

Therefore, it includes technological systems, computer applications and algorithmic
or methodologic procedures to perform the following activities:

1. Data management : to acquire and manage data;

2. Transformation tools and processes: to extract, correct, transmit and store
the data (the expression Extract-Transform-Load is commonly used);

3. Repository : to store data and metadata;

4. Analytics: to perform optimizations simulations, estimations, predictions, in-
ferences, pattern matching and data mining;

5. User interface: to present and manipulate data and analysis without corrupt-
ing the data archives;
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6. Administrative procedures: to manage security, errors, auditing, privacy.

Each of these points would deserve a detailed discussion, but these notes will focus
on the fourth one (Analytics), in particular considering the methodological aspect
and neglecting the technological one.

Sistemi di questo genere sono ovviamente molto complicati e contengono al loro
interno sottosistemi più semplici, con compiti specifici, molti dei quali hanno una
lunga storia, che risale a ben prima della moda presente. Per esempio, i sistemi di
Electronic Data Processing (EDP) da decenni vengono usati per conservare i dati,
accedervi, e risolvere semplici problemi standard. Analogamente, i Management
Information Systems (MIS) consentono elaborazioni statistiche per aggregare dati
in un formato più leggibile e immediato. Infine, i sistemi di supporto alle decisioni o
Decision Support Systems (DSS ) sono l’immediato predecessore dei sistemi di Busi-
ness Intelligence, dato che combinano l’accesso a modelli descrittivi e prescrittivi,
l’uso di sistemi logici per rivelare incoerenze, l’uso di sistemi esperti per elaborare
strategie.

Figure 1.3: General scheme of a Decision Support System

Figure 1.3 shows a general scheme of a DSS with its main functional components:

� a data base with the corresponding information system that provides the user
with the data without introducing biases in their meaning;

� a model base with the corresponding management system that uses the data
to predict the impacts of every possible decision and to suggest one or more
decisions;

� a user interface that allows to the decision-maker to rule the process, providing
the input data to the models, retrieving their results and possibly turning them
into data for other models.

During the whole process, the user is in charge of every step of the system, based
on its intermediate results. In particular, the user must:

� define decision-makers and preferences as data;

� define alternatives and scenarios as data;

� control the data flow among the models, choosing which data to use and which
models to feed with them:

– transfer data, hypothetical alternatives and scenarios to the descriptive
models, so as to obtain simulated impacts;
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– transfer measured or simulated impacts to the prescriptive models, so as
to obtain suggested alternatives;

– evaluate whether to keep the results of the models as new data;

� use the suggested alternatives as profitable information, and not as instruc-
tions to obey.

The fundamental aspect of the process is that the support systems do not create
decisions to be applied, but only information to generate decisions.

1.6 Examples of complicated decision problems

This section presents some examples of complicated decision problems, in order to
link the concepts introduced above with realistic situations and to suggest what
elements make a decision complicated in practice. To the same purpose, Chapter 2
will show in much deeper detail two large-size examples. From these examples,
we will obtain a list of the main complicating aspects, which will lead to classify
complicated decision problems and to build the index of these notes and of the
course.

Example 1 (The search for parking) In a rather congested town, we are looking
for a parking to leave our car and reach the place of an important meeting; we would
prefer to park quickly and not to walk for long to reach our destination.

� System is the local street network, with the set of all potential parking places

� Alternative is every possible trajectory of the car (path and time)

� Scenario is every possible distribution of the free parking places over space and
time

� Impact are the driving time and the walking time after parking

� Decision-maker is the driver (or also the passengers?)

Notice that the impact reduces to the specific aspects that actually matter for the
decisione, but it depends on a complex combination (that is the configuration) of
the trajectory followed by the car and the availability of free parking slots in all
places and times: the same trajectory, in fact, can lead to park immediately in
front of the meeting place if a parking slot is free when the car reaches it or to long
useless tours if none is.

Example 2 (The thermostat regulation) We want to tune the classroom’s ther-
mostat so that the temperature be pleasant for the teacher and the students.

� System is the classroom

� Alternative is the position of the thermostat knob

� Scenario is the external temperature and the exposition of the classroom to the
sun

� Impact is the internal temperature of the classroom (but probably also its hu-
midity)

� Decision-makers are the people dwelling in the classroom (all of them, or just
the teacher?)
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Though this problem is easier than the previous ones, notice that the definition of
the impact and of the decision-makers is far from trivial.

Example 3 (Buying a car) We want to buy a car with a good performance, a
high level of comfort, a nice design and a low cost throughout its life-cycle.

� System is the local market of cars, petrol, repairs, ecc. . .

� Alternative is the car bought

� Scenario are the stock and the prices of the car dealers, the occurrence of
accidents, the prices of petrol and car repairs, etc. . .

� Impact are the characteristics of the car throughout its life-cycle

� Decision-maker is the buyer (and possibly other family members)

Notice that a possible alternative, that it is easy to forget, could be to give up
buying the car, with an impact that is obviously very bad for some aspects, but
very good for other ones.

Example 4 (Risiko round) We want to play a round of Risiko, considering in
turn all of the players.

� System is the map with the distribution of territories, armies, cards

� Alternative are the territories from which and to which each attack is launched
and the corresponding number of attacking and defending armies

� Scenario is the dices’ outcome at each attack

� Impact is the number of armies destroyed for each player

� Decisione-makers are the players

With respect to other example, in which multiple decision-makers were possible,
here the presence of several decision-makers is intrinsic and unavoidable. Moreover,
the decision-makers do not act together on the same levers (in the case of the
car, they all contribute to choose a single car), but everyone makes his own choice
autonomously.

1.7 Classification of decision problems

The previous examples show various factors that can complicate a decision problem.
Let us start by stating that here we do not deal with the so called computational
complexity, that is the existence of perfectly clear and well-defined problems for
which not polynomial algorithm is known and it is conjectured that only exponential
algorithms exist9. In these problems it is expensive to move from the model to the
solution, but it is not complicated to define which is the correct solution.

The factor we are interested in concern the decision-makers and their relations
with the system. More precisely:

9In order to mark the difference from this concept, we will use almost everywhere the expres-
sions “complicated” and “complication” instead of “complex” and “complexity”. Unfortunately
a few lines below we will talk about “complex preferences”, because “complicated preferences”
sounds quite bad.
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1. complex preferences, that is insufficient to define a concept of optimality;

2. multiple scenarios, and hence an uncertain environment ;

3. multiple decision-makers, with potentially conflicting preferences.

There is a further factor that can complicate a decision problem: it is an in-
sufficient formalization of the system, that is the inability to determine univocally
the impact for a given configuration, that is for a fixed alternative and scenario.
This situation is often included in the case of uncertain environment by assuming
that, besides the known components of the scenario, additional unknown compon-
ents exist (often denoted as perturbations), whose knowledge would allow to com-
pute exactly the impact. The resulting models are denoted as black-box models, or
grey-box models, based on the importance of the perturbations with respect to the
measurable components of the configuration.

At this point, the decision problems can be classified based on the occurrence
or not of each of the three main complicating factors, obtaining 23 = 8 families of
possible decision problems. Figure 1.4 describes this classification with a three-axes
scheme.

Figure 1.4: Classification of decision problems based on the three complicating
factors

On this three-axes scheme is based the course syllabus and the index of these
notes. Instead of discussing all 8 classes, we will only consider the 4 fundamental
families in which none or only one of the 3 complicating factors occurs, discussing
possible important subfamilies. The other 4 families can be treated by suitable
combinations of the concepts adopted for the basic families. The course and these
notes therefore present in the first four parts the corresponding families of basic
prescriptive models:

1. models with simple preferences, a single scenario and a single decision-maker
(Mathematical Programming)

2. models with complex preferences, a single scenario, a single decision-maker:

� multiple objectives (Multiobjective Programming)

� preference not modelled by objectives (Analytic Hierarchy Process)

� nontransitive preferences (Electre methods)

3. models with simple preferences, multiple scenarios, a single decision-maker:

� complete uncertainty (Decisions in conditions of ignorance or Robust
Programming)
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� stochastic uncertainty (Decisions in conditions of risk or Stochastic Pro-
gramming)

4. models with simple preferences, a single scenario, multiplie decision-makers:

� independent decision-makers (Game theory)

� coordinating decision-makers (Group decisions)

and in the fifth part some sample families of sophisticated descriptive models:

� queuing theory

� discrete-event simulation

� transportation and discrete choice models

� dynamic systems



Chapter 2

Case studies

This chapter is devoted to present two case studies, in order to clarify the concept
of complicated decision problem and to understand the practical meaning of the
keywords introduced in Chapter 1. The purpose of the case studies is not to be
studied in detail to pass the exam, but to build a practical idea of the abstract
definitions on which the course is based, and to learn to recognize such concepts
in other, very different, situations. It must be specified that these studies concern
works that have not yet been implemented, and that therefore could potentially
undergo several variations and corrections. The former case, in particular, is a
very preliminary study, performed during a master’s thesis with the support of the
township of Como, whereas the latter is an official feasibility study entrusted by
the township of Milan to the Dipartimento di architettura e studi urbani of the
Politecnico di Milano.

Both case studies concern large public works. This is just one of the applications
fiels in which complicated decisions can occur, but it is particularly suitable to
provide sophisticated examples for teaching, because:

1. detailed information is often publicly available;

2. the three complicating factors listed in the introduction (complex preferences,
uncertainty and multiple decision-makers) are present at the highest degree.

Concerning the first point, usually the law prescribes that sufficient information
be publicly spread so that the citizens could develop a complete and correct idea
about the works. Even if this is not strictly required, the government often decides
to spread information spontaneously in order to inform the public opinion and
acquire its support. This is much rarer in the case of business or private decisions.
Concerning the second point, the decisions on large public works have by nature
manifold impacts (economic, social, environmental, etc. . . ). Hence, it is hard to
express preferences as the simple maximization of a profit or the minimization of a
cost. On the other hand, these decisions also depend on events that are not under
the control of the decision-makers (wide-range social and economical phenomena,
political events, etc. . . ). Finally, these decisions involve large masses of people,
associations and institutions which, even if not in charge of the decision, can exert
a role in it or put pressure on the decision-makers. This justifies the choice of
examples drawn from that application field.

25
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2.1 The tramway of Como

2.1.1 The context

Como has been for centuries at the centre of commercial exchanges and people
transfers. It is in fact at the crossing between a main north-south line, which
connects Italy (in particular, Milan) to Switzerland and Germany, and a secondary
east-west line, which connects the main towns at the end of the alpine valleys
(Varese, Lecco, Bergamo, etc. . . ). Figure 2.1 shows these two lines.

Figure 2.1: The two main traffic lines meeting in Como

The geographical position that has favoured the development of the town origin-
ated also some of the problems that now affect it. These problems are mainly related
to the saturation of the access ways, with the following natural consequences:

� congestion (see Figures 2.2 and 2.3),

� economic losses due to slow transfers,

� pollution (see Figure 2.4),

� accidents.

Private cars are the main responsible for these problems, because they concen-
trate on few rather streets of limited width (see Figure 2.5). The main one is the
access way from the south-west, through Napoleona Street, that collects two state
roads (Briantea and Giovi) and a provincial road (Canturina). The following ones
are the state roads Regina and Lariana, from the north, which go along the two
narrow shores of the lake, and the state road Briantea from the east.

Enlarging these roads or opening other access ways is complicated and expensive
due to the orography of the site: Como lies in a narrow plain along the lake,
surrounded by high hills. Only the narrow “breach” of Grandate links it to the
southern plain (see Figure 2.6).

A possible improvement could be to transfer people from the private car to the
public transport, that is more efficient from the point of view of transportation
capacity. However, the analyses show that the fraction of transfers serviced by the
public transport is clearly smaller, and above all very uneven. Buses service only
a minority of users, with a decreasing trend. Moreover, they are subject to the
same access limitations of the private car. As for the train service (see Figure 2.7),
the state railway stopping in Como S. Giovanni station (formerly, FS) is rather
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Figure 2.2: Vehicle flows entering the town of Como every day

Figure 2.3: Saturation levels of the streets entering Como during the morning peak-
hour

Figure 2.4: Pollution levels of the main towns in Lombardy
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Figure 2.5: The main roads through which cars enter Como

Figure 2.6: Orography of the area around Como
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unloaded, whereas the regional railway stopping in Como Lago station (formerly,
FNM) is nearly saturated1 It is therefore spontaneous to think of increasing the
capacity of the FNM line, possibly moving some of its passengers on the FS line.
But how?

Figure 2.7: The two railways servicing Como: in orange the state line, in green the
regional line

In order to better discuss the potential interactions between the two lines, it is
necessary to list some critical points:

1. the crossing between the FS and FNM lines occurs in the breach, with an
acrobatic system of bridge: the Napoleona street overcomes the FNM line,
which overcomes the FS line, which overcomes a small local street named
Mulini street (see Figures 2.8 and 2.9);

Figure 2.8: The FS line overcomes Mulini street

1Since the present study, the regional railways have started servicing also the state line, provid-
ing trains between Milan and Como San Giovanni. This has slightly improved the situation, better
exploiting the residual capacity of the unloaded line. The two companies have also changed their
names. For the sake of simplicity, we will use their historical names.
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Figure 2.9: The FNM line overcomes the FS line

2. between the stations of Camerlata and Borghi, the FNM line has a single
track, as it runs on a narrow hill with steep slopes on both sides;

3. between the stations of Borghi and Lago, the FNM line has a single track,
and it runs along a narrow alley between houses (see Figure 2.10);

4. joining the FS and FNM lines through the town plain would require first to
cross either the walls (in a historical area) or along the lakefront (in a tourist
area, occupied by a main street and flooded from time to time), and then to
climb the steep slope on top of which lies the FS station of Como S.Giovanni.

All these factors make a solution based on railways impossible to adopt, unless
it is limited to the use of the existing tracks. Increasing the frequency of the trains
on the FNM line, however, has two problems:

� the single-track line forbids two trains to run along the Camerlata-Borghi-
Lago track (unless a perfectly synchronized meeting point is built in Como
Borghi station, which is technically possible, but prone to big problems at the
slightest unexpected event;

� the level crossings cut the town in two for several minutes every time a train
passes along them: if a train passes every 10-15 minutes, instead of 30 minutes,
the impact on the traffic congestion becomes very heavy.

Hence the idea of a tramway line, which could:

� have a double track, thanks to the shorter gauge;

� have fast crossings with traffic lights, instead of slow level crossings;

� be prolonged to the inside of the town.

But a classical tramway involves a big problem. It requires to replace the whole
track, and therefore:

� it force the train passengers arriving from outside Como to change at an
external station;

� it completely blocks the traffic during the works.
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Figure 2.10: The FNM line between the Borghi and Lago stations

2.1.2 The generation of the alternatives

The basic models of Operations Research, as well as the optimization problems
(even complicated ones) which arise in well-defined situations have a rather obvious
set of possible alternatives. In the present case, this set is far from being clear.
One would say that it is infinitely wide. More correctly, it is indefinite, and it must
be built step by step investigating the whole context. Indeed, it can be built by
subsequent iterations. As Section 1.2 pointed out:

� some alternatives are proposed;

� their impacts are evaluated;

� if no alternative is satisfactory, new alternatives are generated, under the
guide of the information obtained from the study of the previous ones, and
the process repeats.

For instance, if one realizes that modifying the gauge of the tracks is too expensive,
one can wonder whether there exist tramways which are able to use a standard train
track. Surprise surprise, they exist2.

The process of generating the alternatives becomes easier if one decomposes the
problem. identifying the basic alternative elements, which concern different fields
and are (at least partly) independent. In this study, three fundamental elements
have been identified, in order to base on them the generation of the alternatives:

1. the technology used to implement the new line;

2See https://it.wikipedia.org/wiki/Tram-treno

https://it.wikipedia.org/wiki/Tram-treno
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2. the route of the new line;

3. the management of the FNM trains with respect to the new line.

Let us discuss each element in further detail.

Technology Previous studies on similar cases suggest three possible technologies:

1. standard railway service: add a shuttle-train between Grandate and Como
Lago, so as to increase the frequency of the current railway service;

2. tramway: replace the railway with a classical tramway;

3. interoperabile: add to the current railway service a special tramway which is
able to work with both systems (facing the resulting problems about power
supply, track gauge, etc. . . ).

Route The number of possible routes is huge and not well-defined a priori. To
start, four possible routes have been identified (see Figure 2.11):

1. keeping the current FNM route, ending at the station of Como Lago;

2. linking the station of Como Lago (FNM) to Como S. Giovanni (FS) through
new tracks crossing the town centre;

3. linking the station of Como Lago (FNM) to Como S. Giovanni (FS) through
new tracks passing along the lakeside;

4. building a ring around the town centre through a new track from Como Lago
(FNM) to Como S. Giovanni (FS), plus a track from Como S. Giovanni (FS)
to Como Borghi (FNM).

Management of the FNM trains This element of the alternatives describes
the relation between the two rail transportation systems:

1. keep the FNM service on its current route;

2. move the FNM service to the FS station of Como S. Giovanni, through the
construction of an interchange between the FNM e FS lines (probably in the
station of Camerlata).

These are very extreme possibilities, with a whole range of intermediate solutions,
either during the works (the FNM service could be temporarily deviated on Como
S. Giovanni when the FNM track is unavailable for the works) or permanently. For
example, presently, the regional company also manages the local traffic from Milan
to Como S. Giovanni, even if the two lines remain completely unrelated.

Each of these aspects provides an alternative element. The single possible choices
for an element can be associated to numerical values: sometimes, they will be a
proper quantitative measure; other times, they will be simple arbitrary indices. For
example, one can use 0 to denote the railway, 1 the tramway, 2 the interoperabile.
The purpose of this association, in general, is not to make some computations, but
only to describe effectively the set of alternatives.

Once the elements of the alternatives and the possible values for each element
have been identified, one can proceed to enumerate their combinations, which in
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Figure 2.11: The four alternative routes for the project of Como’s tramway



34 2 Case studies

general are not all feasible. In the present case, the possible combinations are
3 × 4 × 2 = 24, but only 7 combinations are feasible. The other ones can be
excluded owing to:

� obvious contradictions;

� technical impossibility or excessive costs;

� common sense.

For example, the railway technology is in practice incompatible with any route
different from the present one: nowadays, trains cannot cross a town as it was
customary until the beginning of the twentieth century, unless through a tunnel,
that is here impossible to propose. Figure 2.12 shows the possible combinations and
the feasible alternatives for the case study.

Figure 2.12: The 24 combinations and the 7 feasible alternatives for the case study
on Como’s tramway; the three axes represent the elements of the alternatives

A fundamental remark on the generation of the alternatives is that there always
exists an alternative that consists in doing nothing and keeping the current situation.
This alternative is conventionally denoted with the name of alternative zero3 This
remark is important, because quite often the heat of the public debate leads to
forget that new alternatives should at least not worsen the current situation. Since
“worsen” is a complicated concept, the remark is far from being trivial.

In this discussion, we have neglected several other potential elements of altern-
ative, such as:

� the location of interchange parkings (in various sites);

� the implementation of double-track rails along parts of the current single-track
rail;

3In this case study, unfortunately, it is denoted with index 1.
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� the construction of new stations along the current route and the possible new
routes;

� possible transfers of the current route;

� the extension of the service out of Como, beyond the station of Grandate;

� the frequency of the new service;

� the tariffs of the new service;

� . . .

In particular, some mobility studies suggest that there could be a strong request
for a railway servicing parts of the province currently badly connected to Como,
both estward (Cantù) and westward (Olgiate Comasco). Other feasibility studies
following the one we are describing, in fact, have focused on these aspects when
generating the alternatives: they have rejected the most extreme solutions (current
route and town ring) and merged the intermediate ones (centre crossing and lakeside
route) in a mixed variant, first passing along the lakeside and then crossing part of
the centre (see Figure 2.13).

Figure 2.13: The mixed route alternative passing first along the lakeside and then
across the centre

As well, we have neglected the possible mitigation measures, that is all those
interventions that must be added to the alternatives in order to correct the negat-
ive impacts that they produce (traffic or railway service deviations, urban quality
improvements to reduce the negative impact of the new line along its route, etc. . . )
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or to convince possible stakeholders strongly opposing the project to accept it or at
least not to fight it fiercely (for example, the parks, schools, sport complexes that
are built for the towns whose territory hosts a highway, a dump, a power plant,
etc. . . ), or, finally, to modify the impacts of the works (for example, limited access
zones to discourage the use of the private car and interchange parkings to encour-
age the travellers to use the new public service more than they would otherwise
spontaneously do).

All this confirms that even listing the possible solutions of a decision problem
can be a preliminary problem in itself, that is not to be solved in a single phase,
and actually is never ultimately solved.

2.1.3 The generation of scenarios

The same complications faced to generate the alternatives affects the definition of
the scenarios. In addition, this requires to predict events which are uncontrollable
by the decision-makers, but have a potential impact on the problem.

The generation of the scenarios follows the same rationale as the generation
of the alternatives: first, one identifies the scenario elements and their possible
values; then, one lists their combinations and removes those that are considered
impossible. Of course, this excludes from the study any unpredicted element and
any removed combination, which could undermine the basis of the whole model. On
the other hand, the alternative is to proceed at random or by intuition, which could
be worse. As already said, if new scenarios emerge or old scenarios disappear, the
study should be simply updated and corrected, possibly with the result to suggest
a different alternative for the final decision.

In the present case, the scenario elements considered are the following ones:

1. closure of the lakeside to the private traffic: it consists in forbidding the access
of vehicles to the street that runs between the city centre and the lake: this
interacts with the project because it frees-up the space used by cars, thus
making it easier to build a tramway along the lakeside;

2. International Como-Chiasso Station: it consists in the merging of the interna-
tional railway stations of Como (Italy) and Chiasso (Switzerland) in a single
stop, half-way (see Figure 2.14), thus accelerating the trips between Italy and
central Europe: this interacts with the project because the station of Como S.
Giovanni would be reduced to the level of local station, thus introducing the
need for a service taking travellers to Como S. Giovanni and possibly onward
to the new international station4

3. Anti-flood barriers: it consists in building barriers (partly mobile, partly fixed)
that protect the centre of Como from the floodings of the lake (see Figure 2.15):
this interacts because a tramway service passing along the lakeside would be
blocked by the floodings5

4. Borgovico tunnel: it consists of a toll tunnel that should run from the north-
west to the south-west of Como, allowing to cross the town without congesting
its western side6

4This is still a project; recently, the trend seems to favour the suppression of Como directly in
favour of Chiasso.

5The barriers are currently under construction, with strong protest on their visual impact. A
stretch of fixed barrier has even been built and destroyed because it blocked the view on the lake
to the passers-by. . .

6This project has been apparentely put aside because it was too expensive.
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5. Underlake tunnel: it consists of a tunnel which should run under the lake (see
Figure 2.16) to replace the street that currently connects the north-west ad
the north-east of Como7

In theory, each combination of these elements is possible, with the exception of those
that combine the underlake tunnel with keeping the lakeside open to the privat cars
(a meaningless idea) and those that combine both tunnels (too expensive).

Figure 2.14: La Stazione Internazionale Como-Chiasso

Figure 2.15: The anti-flooding barriers along the lake

This discussion neglects important aspects such as:

� the anticipated varations in the residential and economic structure of the area
under study;

� the variations in the origin-destination matrix (O/D-matrix ) of the potential
transportation demand (that is, the number of trips from place to place that
will take place in the town and could be captured by the new service);

7This project has been apparentely put aside because it was too expensive.
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Figure 2.16: The underlake tunnel

� the amount of European, state, region financing.

Some of these scenario elements correspond to numerical values, which could
fall inside predictable ranges. Some, on the other hand, correspond to events that
could either occur or not, or that could occur in different ways. For each numerical
value, for each event or for each way in which an event can occur, it could be
possible to estimate a probability, or at least providde a qualitative estimation of
its likelyhood. All this information concurs to describe the set of possible scenarios
and its auxiliary information.

2.1.4 The definition and computation of the indicators

As the alternatives and the scenarios, also the impacts are combinations of different
elementary quantities, which are usually not named “impact elements”, but indic-
ators. They characterize the satisfaction of the decision-makers for a configuration
of the system, and determine their preferences. The indicators are typically much
more numerous and diversified than the elements of the alternatives and the scen-
arios. They are so numerous and diversiied that, in order to avoid forgetting any,
their generation adopts a hierarchical process that progressively details the different
sectors of the impact:

� first, one identifies very general macrosectors;

� then, each macrosector is decomposed into sectors, and possibly into sub-
sectors, progressively more and more specific;

� finally, the elementary indicators are identified.

This mechanism produces an indicator tree.

In the present case, the three standard macrosectors used in Environmental
Impact Assessment (EIA) have been adopted:

1. Environment, subdivided into Air pollution, Noise, Vibrations, Landscape and
Territorial structure (that is, the compatibility with the current management
plans of the area)8;

2. Economy, subdivided into Costs, Revenues and House values;

8Water and Land pollution have been neglected, given that the impact of the tramway will
probably be very limited under those regards.
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3. Society, subdivided into Appreciation, Discomfort, Accessibility9, Employ-
ment, Induced effects;

but a fourth macrosector has been added:

4. Transportation, subdivided into Security, Congestion and Interferences.

The last macrosector usually is included in the Society macrosector, but in this case
it has been attributed an autonomous role as the study specifically evaluates a large
transportation service. This has yielded the indicator tree reported in Figure 2.17.

Figure 2.17: The indicator tree

The aim of the hierarchical structure is also to organize the evaluation of the
single indicators during the phase of data collection. The estimation, the prediction
and the measurement of the values of each indicator, in fact, will be assigned to
experts of the sector to which they belong: environmental experts will evaluate the
pollution levels predicted for each configuration; accounting experts will evaluate
the implementation and management costs; town planning experts will evaluate the
visual quality of the buildings; transportation experts the impact of the service on
urban congestion and transfer times, etc. . .

As well, the construction of preferences in the actual decision phase will be or-
ganized based on the specific skills of the experts of the various sectors. The choice
whether to consider carbon oxide pollution more or less important than nitrogen
oxide pollution will be assigned to health and environment experts; the choice of
the relative weight between implementation and management costs (the so called
ammortamento) is assigned to economy experts. The tree structure implies that, at
the upper levels, the decision-makers will determine the relative importance of air
pollution with respect to noise, or security with respect to traffic congestion, and
finally between the macrosectors Environment, Economy, Society and Transporta-
tion. These more and more abstract concepts require more and more “political”
skills. Therefore, nobody will ever be asked to compare completely heterogeneous

9This is the time and cost required to access important sites in the town, such as hospitals,
monuments, schools, etc. . .



40 2 Case studies

indicators, such as CO2 pollution and time savings in the trips to Como Lago
stations, or visual quality of the tramway along the lakeside with the discomfort in-
duced by the building sites during its construction. Someone will compare CO2 and
NOx, trip costs and trip times, the consistency with the Urban Traffic Plan and
the consistency with the Piano Regolatore Generale. Let us postpone the prob-
lem of how to compare abstract and vague concepts such as those denoting the
macrosectors.

Each indicator must be associated with a tool which will provide its values
for each possible configuration (that is, alternative and scenario). In most cases,
these values will not be directly measurable, because they will refer to a hypotetical
situation (one can directly measure the CO2 pollution in the current configuration,
that is with alternative zero and the current scenario, but it is necessary to estimate
somehow the CO2 pollution induced by the ring tramway in the scenario in which
the lakeside is closed to the private cars, the anti-flooding barriers are built and
no other scenario element is implemented. Quite often, therefore, the value of an
indicator is the result of a descriptive model, for which data and computing tools
must be identified.

The indicators can be numerical values that express physical measures, but also
qualitative values expressed on an ordinal scale. For example, the visual quality of
a building can be bad, poor, sufficient, fairly good, good, very good. These values
can be translated into a numerical scale, for the sake of compactness. The purpose,
at least at first, is not to make computations, but just to describe the situation.
In practice, we will see that some evaluation methods actually use such numerical
values to make computations.

Time decomposition (phases) and space decomposition (zones) Some in-
dicators have an intrinsical space or time feature, which must be taken into account.
In other words, the values of an indicator might be meaningless if referred to the
whole territory or the whole time horizon of the project. In that case, in order to
correctly describe the situation the system must be subdivided into distinct geo-
graphical zones, on which it is meaningful to define (at least approximately) a value
of the considered indicator. For instance, the time required to reach the station of
Como Lago will strongly depend on the starting point, even if it can be considered
approximately uniform for a given zone of the town. Of course, this increases the
amount of information to manage, and it requires to evaluate a relative importance
of the different zones on the decision, dealing with the values of the indicator in the
zones as if they were values of different indicators. Other indicators, even if related
to a specific geographical position, can remain aggregated, because their effect con-
cerns the whole town (for example, the damages to monumental buildings, which
are a common heritage). See Figure 2.18 for the subdivision of the indicators into
aggregated and e disaggregated into zones for the current case study.

In this case study, the town of Como has been subdivided into 5 zones which had
already been used for other previous works on the same territory (see Figure 2.19):

1. Como centro

2. Borghi

3. Camerlata

4. Lora

5. Tavernola
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Figure 2.18: Aggregated and disaggregated indicators
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Only the first three zones are directly affected by the project, whereas Lora and
Tavernola have been maintained to check the indirect effects on the whole town.

Figure 2.19: Subdivision of the town of Como into zones

2.1.5 The definition of the stakeholders

We denote as stakeholder every person, organization, category or institution that is
involved, directly or indirectly, in the project, even if it plays no role in the decision,
since its interests are affected by the project, and it is therefore presumable that it
could react to defend them in a more or less favourable way for the project. The
fundamental aspect in the description of the stakeholders is to characterize their
preferential structure. We will discuss later its definition and how to determine and
describe it. However, the stakeholders could also point out neglected alternatives,
scenario elements and indicators.

In the present case, four classes of stakeholders have been identified and further
subdivided:

1. Institutional stakeholders (Municipality, Province, Region)

2. Society

� Citizens
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� Environmentalist associations

� Category associations

3. Users

� regular (commuters, students, etc. . . )

� irregular

4. Transportation companies

� FNM (the regional railway company, whose track between Grandate and
Como Lago should be used by the new service);

� SPT (the local public transport company managing the bus lines, whose
demand would be disrupted by the new service, requiring a radical revi-
sion of the routes and schedules)10;

� FS (the state railway company) whose station of Como S. Giovanni could
host part or all the trains currently servicing the FNM line.

Each stakeholder has limited interests ad skills, often related to one or few
subtrees of the indicator tree (this is another reason for the hierarchical modelling
of the impact). Hence, it will usually be involved only (or mainly) in the phases of
the decision process which concern those specific indicators. Figure 2.20 describes
a hypothetical relation between the stakeholders and the subsectors in which they
are likely to be interested:

1. the local government stakeholders (in particular, the municipality of Como)
will be interested in the whole system of indicators;

2. concerning society stakeholders:

� the citizens will probably focus their interest on the Environment, Society
and Transportation macrosectors;

� the environmental associations will focus on the Environment macro-
sector;

� the category associations (Camera di Commercio, Industria, Artigianato
e Agricoltura - Confesercenti - . . . ), who support the economic interests
of the traders and entrepreneurs, will focus on the Economy macrosector
and on the discomfort induced by the works;

3. the users will focus on the Society macrosector, and in particular on the quality
and the accessibility of the service;

4. concerning the transportation companies:

5. FNM will focus on the Society macrosector (in particular, Employment and
Discomfort) and the Economy macrosector (Costs and Revenues);

6. SPT is particularly interested in the Society, Economy and Transportation
macrosectors, and in particular in Employment, Discomfort, Traffic congestion
and its own Costs and Revenues);

7. FS is interested in the management of the train service potentially moved to
the station of Como S. Giovanni.
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Figure 2.20: Relation between the stakeholders and the subsectors in which they
are interested

Once the stakeholders have been identified, a reference person (or group of per-
sons) should be defined for each stakeholder, and involved in all phases of the de-
cision process: problem definition, identification of the alternatives, of the scenarios,
of the indicators, computation of the impacts, description of the preferences. These
reference persons should be also involved in the subsequent iterations in which al-
ternatives, scenarios, indicators and preferences are updated based on the partial
results obtained from the previous iterations of the study. The tools to interact
with these persons depend on the specific case:

1. the interactions with the local government stakeholders could take place with
the mayor of Como, the governor of the Province of Como and the governor
of Lombardy, or their delegates, through meetings and detailed interviews;

2. as for society stakeholders:

� the interactions with the citizens could exploit forms, websites, public
meetings and interviews with the local representatives (consiglieri di cir-
coscrizione);

� the interactions with environmental or category associations could in-
volve forms, meetings and interviews with their spokesmen;

3. the interactions with the users could require polls among the passengers and
meetings with commuters’ committees;

4. the interactions with the transportation companies could take place with man-
agers specifically charged with this task.

It can be notice that environmentalists, shopkeepers and users are also citizens,
and therefore exert a double role. Isn’t this a useless redundancy? Not actually,
since the preferences of common citizens will be rather different from those of specific
categories, and the ways and tools to express such preferences will also be different.
Therefore, it is correct to represent them as different stakeholders, even if they are
partly overlapping. Keeping all this into account should guarantee a more fluid
development of the whole decision process, avoiding that some subjects might feel
neglected and decide to oppose the project on principle.

10An interesting development is that the bus lines in Como are now managed by ATM, after a
(very rare) call for tenders.
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2.1.6 The decision process

For each possible configuration of the system, i. e. for each alternative and each
scenario, it is necessary to evaluate each indicator. This will require in some cases
physical measurements, but most of the time the application of suitable descript-
ive models in order to compute the expected value of the indicator in the given
configuration. Speaking in qualitative terms:

� the alternatives exploiting the railway technology will have:

– low implementation costs and a low discomfort;

– a limited effect of the accessibility of the sites not currently serviced;

– limited environmental improvements;

– nearly no impact on the employment;

– . . .

� the alternatives exploiting the “interoperabile” technology will have:

– higher economic costs;

– a stronger penetration of the service in the urban fabric, mainly depend-
ing on the chosen route;

– an intermediate discomfort;

– . . .

� the alternatives exploiting the classical tramway technology will have:

– much higher implementation costs and times;

– a very detailed service;

– . . .

The resulting huge amount of quantitative numerical values and qualitative or-
dinal values will have to be reaggregated depending on the preferences of the various
stakeholders. It is necessary to model somehow the preferential structure of each
stakeholder, in order to be able to determine, for each given pair of possible impact,
which is preferred by the stakeholder. This requires a basic methodological choice
about the kind of model used to describe the preferential structure.

Once this has been done, it is necessary to aggregate the preferences of the dif-
ferent stakeholders in a final ordering of the alternatives, or at least in the selection
of one alternative. This can be done in several different ways, since the specific
values associated to the elementary triplets (alternative, scenario, indicator) can
be recombinated with very different methods. For example, some methods start
from the indicators, followed by the scenarios, providing a specific ordering of the
alternatives for each stakeholder; only in the end the orderings of the various stake-
holders are merged in a final ordering with a negotiation process. Other methods
take into account the preferences of the stakeholder since the beginning. The study
should possibly also provide information on the sensitivity of the final ordering or
choice, that is on the bounds within which it remains valid when the data change
(scenarios, impacts, preferences, relative importance of the stakeholders). We will
discuss these subjects in detail in the following chapters.
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2.2 The reopening of the Navigli in Milan

2.2.1 The context

Though few today perceive it, Milan is born as a river town, rich in natural rivers
(the Olona, the Vepra, the Nirone, the Seveso, the Southern Lambro and the Lam-
bro), torrents and brooks, and later further enriched by an infinite network of canals.
Modernity led to covering nearly the whole network to favour the vehicle traffic and,
more recently, to a periodic proposal and discussion of project to reopen part of
it. Figures 2.21 and 2.22 show the historical and current situation of Milan and its
hydrographic network.

Figure 2.21: Historical map of the gradual enlargement of the city of Milan and its
hydrographic network

The consultive referendum of 2011 has led to the development of a detailed
project that is available in the internet11

Usually, the subject is laid out and tackled from the urbanistic, historic and
aesthetic point of view, that is as an improvement of the landscape and urban quality
and an enhancement of a cultural heritage nearly forgotten, though still quite recent.
In fact, there are other relevant motivations that are entwined with the ones above
and that concur to the interest of a potential reopening. Summarising, the main
motivations are:

� the hydraulic continuity, that is the possibility to better control and to limit
the flooding of water streams in the northern part of Milan, which currently
flow through pipes under the city with the resulting limitations on the capacity
and the troubles in managing their cleansing;

� the touristic and commercial navigability, with their social, cultural and eco-
nomic outcomes (see Figure 2.23 for the current situation);

11See the URLs http://www.comune.milano.it/wps/portal/ist/it/servizi/territorio/

riapertura_navigli_2016 and http://www.cuoredimilano.org/index.html.

http://www.comune.milano.it/wps/portal/ist/it/servizi/territorio/riapertura_navigli_2016
http://www.comune.milano.it/wps/portal/ist/it/servizi/territorio/riapertura_navigli_2016
http://www.cuoredimilano.org/index.html
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Figure 2.22: Current hydrographic network of the area surrounding the city of Milan

� the production of electricity, not by directly installing turbines in the Navigli,
but with the increase of the water flow in the Naviglio Pavese, which has
several small hydroelectric plants south of Milan;

� the feeding of heat-pump plants in the area of the Darsena using nappe water
(undergound water);

� the decrease in the nappe level, thanks to the extraction of water from wells
which are currently close; this would reduce the ceaseless use of pumps in
several underground stations that defend the tunnels from flooding (the level
of the nappe is strongly increased since the Seventies, due to the deindustri-
alization of the city).

Figure 2.23: The current situation of navigability in the area surrounding Milan
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2.2.2 The definition of the alternatives

The definition of the alternatives is apparently much easier in this case than in the
case of Como’s tramway, given that the Navigli had a well-defined historical route.
In fact, things are far from being obvious. Starting from a basic dichotomy, one can
distinguish:

� “virtual ” alternatives, in which the Navigli are not actually reopened, but
made enjoyable by the public with visual aids (information signs, vintage pho-
tographs, pavings, etc. . . ); see Figures 2.24 and 2.25 for some examples that
have been proposed as a first step in the detailed project we are describing;

� “physical” alternatives, in which the Navigli are actually reopened.

Figure 2.24: A first example of paving, with stone cubes, to revive the historical
route of the Navigli

Figure 2.25: A second example of paving, with painted waves, to revive the historical
route of the Navigli

One might imagine that all physical alternatives share the same route, that is
fixed by history (see Figure 2.26). In fact, many alternatives are possible also from
this point of view:

� a partial reopening, keeping some covered stretches;

� the complete reopening of the classic circle north-east-south, which includes
a number of minor variations concerning:
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– Porta Nuova park (see Figure 2.27);

– Cavour Square (see vol. 1 pag. 202 o 276 e 279/281 in the project
documentation);

– the Vallone Naviglio (see vol. 1 pagg. 337 e segg. in the project docu-
mentation);

– the Viarenna basin (see vol. 1 pag. 206, 342, 344-350 in the project
documentation);

� the reopening of the whole inner circle, also on the western side: some tec-
nical reasons make this alternative quite impractical (the main one is the
interference between the original route of the Naviglio and the route of the
underground line 2 near Sant’Ambrogio);

� additional works with respect to the historical route:

– the Vettabbia canal (see vol. 2 pag. 249 in the project documentation);

– the “Darsena 2” project, that is a brand new basin near the railway sta-
tion of Porta Genova (see vol. 2 pag. 254 in the project documentation).

Figure 2.26: The historical route of the Navigli in Milan

Another fundamental element of alternative is navigability: the new canal could
be open or close to boat trips. The elements of alternative (route, navigability and
other possible ones) must then be combined to build the alternatives, removing
the combinations that are impossible. For instances, the virtual alternatives or the
alternatives adopting a very limited partial reopening obviously forbid navigability.

2.2.3 The definition of the scenarios

This point is not developed in the detailed project we are describing. We therefore
make only a superficial analysis. The most likely elements of scenario should be
identified in: Gli aspetti fondamentali riguardano
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Figure 2.27: The two solutions proposed at the end of Melchiorre Gioia Street: A)
full covering of the Naviglio; B) an open stretch of the Naviglio in Porta Nuova park

� the availability of public funding to build the canal and manage it in the long
term;

� the (more or less strict) closure or the city centre to private cars;

� the construction of the underground line 4, which would provide an easy
access on foot to most of the city centre even if private cars were no longer
allowed and some bus lines were hampered by the canal (Figure 2.28 shows
the areas covered by the current underground lines and by the future line 4);
moreover, the underground works could be combined with the building of an
underground canal under the route of the new Naviglio, that would guarantee
the hydraulic in shorter time and would reduce the total cost12

Figure 2.28: The areas at short walk distance from the current underground stations
(in red) and those of the future line 4 (in blue)

12This is actually planned in the current works for the underground. Some supporters of the
physical alternatives are afraid that the construction of an underground canal, by solving the
continuity problem, could reduce the interest for a true reopening of the Navigli.
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2.2.4 The definition and computation of the indicators

Once again, it is possible to proceed in a hierarchical way, by first identifying large
sectors and then dividing them into more and more specific subsectors. To give a
nonexhaustive list:

� the impact on pollution;

� the variation of the travel times to various sites of the town;

� the impact on traffic congestion (see vol. 2 pag. 79, 88 in the documentation
of the project)

� the impact on the public transport (see vol. 2 pag. 80, 85in the documentation
of the project), and in particular with tramways, that forbid slopes along the
bridges;

� the construction costs (see vol. 1, da pag. 123 a pag. 138 in the documentation
of the project);

� the hedonic impact on the real estate prices (see vol. 2 pag. 145-146 in the
documentation of the project)

� the impact on the commercial activities (see vol. 2 pag. 150 in the document-
ation of the project).

Some of these impacts could be so negative to suggest a feedback loop on the
definition of the alternatives, that is a correction and update of the alternatives
through the introduction of devices to reduce those impacts. For example, reopening
the canals would affect the car traffic along the canal and in some points it would
nearly forbid the access of vehicles to the nearby buildings. This requires some local
solutions to gain space, such as “balconies” over the canal (see vol. 2 pagg. 292-293-
295 in the documentation of the project). As well, the bridges used by tramways
must be at ground level, which implies, in order to allow the navigability, that the
level of the water be kept low enough and that the boats be suitably designed to
have a low height.

2.2.5 The time and space organization

Several indicators (in particular those concerning traffic congestion, accessibility,
real estate prices, pollution, etc. . . ) are naturally related to geographical positions.
Some indicators refer to zones, whereas others, to linear stretches of the Naviglio
(e.g., the real estate prices). The detailed project divides the route of the canal into
16 stretches.

Concerning the time phases, some of them correspond, somehow, to alternatives,
meaning that it is possible to implement a specific phase of the project and then
leave the following phases “frozen” for a long time, and even indefinitely, waiting
for favourable conditions to complete them. For example, the virtual alternatives
with pavings and signs can be seen as a preliminary phase for a global reopening
(vol. 2, pag. 238). On the one hand, they allow to achieve a partial result at low
cost and to gradually move towards the final result; on the other hand, however,
they could increase the overall cost.

The construction of a double Naviglio, with an underground pipe running under
the canal (vol. 2, pag. 239) is obviously an additional cost, but it also allows to
reach in short time the important result of hydraulic continuity and to spread over
the time the following phases, dividing the expense.
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2.2.6 The definition of the stakeholders

The definition of the stakeholders is much similar to what has been described for the
tramway of Como. The mayor of Milan can be considered as the decision-maker, but
other subjects must be taken into account, such as the transportation companies
(mainly ATM, which manages the bus and tramway lines; the railway lines are not
affected by the project), the (environmental and category) associations, the citizens.
Among the citizens, the owners of real estate along the route of the canal could be
considered specifically.

2.2.7 The decision process

The evaluation and decision process should follow the same lines adopted for the
tramway of Como. First, it is necessary to evaluate each indicator in each pos-
sible configuration, that is in each alternative and each scenario. This implies the
application of suitable descriptive models. One could expect that:

� the “virtual” alternatives will be particularly cheap and have a negligible
impact on traffic congestion and pollution, but will not offer any advantage
with respect to hydraulic continuity (unless they are combined with the con-
struction of an underground pipe), to the production of electricity and to the
management of the water nappe, and they have a limited impact on tourism
and commerce; the aesthetic impact is harder to evaluate;

� the “physical” alternatives will be much more expensive, that they will reach
the desider objective for hydraulic continuity, electricity production and the
management of the water nappe, that they will favour tourism, commerce and
real estate prices and have a good aesthetic impact.

Moreover, one can expect that:

� the alternatives involving a navigable canal will have touristic, commercial and
accessibility advantages, but a higher cost, because they require to manage a
system of gatehouses to get over the height difference between the subsequent
stretches of the canal (see vol. 2 pag. 8 in the project documentation);

� the alternatives involving a nonnavigable canal will have will be cheaper, but
less advantageous for accessibility, commerce and tourism, even if they could
have a better aesthetic impact, since a navigable canal requires to keep the
level of the water low enough to let the boats pass under the bridges, and
therefore reduces the view of the water from the shores.

After all indicators have been evaluated, the aggregation phase can start. In this
phase, the preferential structure of all the stakeholder identified must be taken into
account. This can be done in several ways, that will be described in the following
chapters, and should conclude with an ordering of the alternatives, or at least the
choice of one, as well as with information on the sensitivity of such an ordering or
choice.



Chapter 3

Fundamental definitions and
conceptual problems

Definition 1 A decision problem is defined by a 6-uple

P = (X,Ω, F, f,D,Π)

where

� X is the feasible region, that is the set of all possible alternatives, or feasible
solutions;

� Ω is the sample space, that is the set of all possible scenarios, or outcomes;

� F is the indicator space, that is the set of all possible impacts;

� f : X × Ω→ F is the impact function:

– every pair (x, ω) ∈ X × Ω describes a configuration of the system on
which a decision should be taken;

– function f associates to each configuration (x, ω) of the system an impact
f (x, ω) ∈ F ;

– impact f (x, ω) describes all the features of the configuration (x, ω) that
are relevant for the decision (costs, profits, quality levels, etc. . . );

� D is the set of all decision-makers, or stakeholders;

� Π : D → 2F×F is a function that associates to each decision-maker d ∈ D a
subset of impact pairs, Π (d) ⊆ F × F ; this subset is interpreted as a binary
relation representing the preference of decision-maker d.

The aim of the problem is to identify a solution x∗ ∈ X or a subset of solutions
X∗ ⊆ X that the decision-makers consider satisfactory based on their preferences
between the impacts f (x∗, ω) with ω ∈ Ω and the other impacts f ∈ F .

3.1 Alternatives

The alternatives formally describe the events that are under the control of the
decision-makers. Then, set X includes all the choices that are possible for the
decision-makers, because they are compatible with all constraints on the system:
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physical, economic, legal, organizational, etc. . . . The word “alternative” stresses
the idea that exactly one solution must be applied. If it is possible to combine more
than one, one should denote as “alternative” each possible combination.

In the following, we will assume that X ⊆ Rn, that is we will describe the
alternatives quantitatively as vectors of n real numbers (by convention, column
vectors):

x = [x1, . . . , xn]
T

with xi ∈ R for i = 1, . . . , n

Each component xi of alternative x is denoted as element of alternative, or decision
variable and it is an elementary quantity that defines an aspect of the alternative.

The assumption that X ⊆ Rn is actually a limitation, because:

� it excludes infinite-dimension spaces X, where the available choices are func-
tions depending on infinitely many parameters (e. g., we do not consider
optimal control problems).

On the other hand, this assumption admits problems whose solutions are:

� families of functions depending on a finite number of parameters (e. g., X
could include all polynomials of degree ≤ n− 1);

� qualitatively described: it is enough to assign to the decision variable xi a
conventional numerical value for each degree of the qualitative scale (e. g.,
from 1 to 10);

� trivially enumerated: it is enough to associate a binary decision variable to
each alternative and impose that exactly one of them be equal to 1 (in this
way, alternative i∗ corresponds to the incidence vector x, where xi∗ = 1 and
xi = 0 for all i 6= i∗).

Notice that, so far, the notation is purely descriptive: vector x is not used to make
computations.

It is also possible to classify the decision problems based on the cardinality of
X, dividing them into discrete or enumerable (that is, in one-to-one correspondence
with a subset of N) and continuous. The discrete problems can, on their turn, be
divided into infinite and finite. To conclude, the finite problems are denoted as
combinatorial if their cardinality, though finite, is exponential with respect to the
number of decision variables n. This usually happens when the alternatives are
obtained by combining a finite number of possible values for each decision variable.
This classification influences the methods used to solve the problems: each category,
in fact, has its own possible (or at least preferred) methods.

3.2 Scenarios

The scenarios formally describe the events that are out of the control of the decision-
makers, but have a nonindifferent effect on the system. Then, set Ω defines all the
uncontrollable events that could affect the system during the time horizon interested
by the decision and that are relevant to the decision.

The scenarios also include every source of uncertainty on the behaviour of the
system, such as:

� really exogenous phenomena, that affect the system and could be predictable
by suitably enlarging the boundaries of the system (e. g., when flipping a coin,
a perfect knowledge of the wind could perhaps allow to predict the outcome
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of the flip, but the behaviour of the wind is out of the system, and therefore
the outcome of the coin is described as part of the scenario);

� effects of an incomplete or partially incorrect model of the system; in that case,
the exogeneous variables are often called disturbances (e. g., when tuning a
hydraulic valve, small losses can let some water pass even if the valve is close;
these losses are not due to a exogeneous phenomenon, but they are included
in the scenario to allow a simplified perfect valve model).

In the following, we assume that Ω ⊆ Rr, that is we describe the scenarios
quantitatively as (column) vectors of r real numbers.

ω = [ω1, . . . , ωr]
T

with ωk ∈ R and k = 1, . . . , r

Each component ωk of the scenario ω is denoted as element of scenario, or exogenous
variable, and it is an elementary quantity that defines an aspect of the scenario.

As for the alternatives, this assumption excludes infinite-dimension scenarios,
but admits scenarios described by parametric functions, qualitative scales, or simple
enumerations.

3.3 Impacts and impact function

The impacts formally describe all aspects that are relevant for the decision. For
instance, in order to regulate the temperature in a room, one can decide the po-
sition of the thermostat knob (that is part of the alternative) and we know that
the temperature will also depend on the external temperature (that is part of the
scenario), but the relevant point for the decision is the internal temperature of the
room. This is the impact, which depends both on the position of the thermostat
knob and on the external temperature.

Since the decision is taken based on the impact, two different configurations
(x, ω) and (x′, ω′) with the same impact (f (x, ω) = f (x′, ω′)) are absolutely in-
different. It is therefore fundamental for the model to explicitate all the elements
that compose the impact, in order to avoid generating a false preference relation.
This sounds obvious, but in practice it often happens that solutions considered ac-
ceptable, when implemented, prove to be mediocre because some elements of the
impact had not been considered in the model. This is the case, for example, of
public works stopped lawsuits or hampered by the public opinion: who modelled
the decision process did not take into account aspects such as the reaction of the
citizens, which is part of the impact. On the one hand, introducing new elements in
the model makes it more complicated and costly to solve (data must be measured
or estimated); on the other hand, an incorrect model leads to a wrong, and costly,
solution.

In the following, we assume that F ⊆ Rp, that is we describe the impacts
quantitatively as (column) vectors of p real numbers:

f = [f1, . . . , fp]
T

with fl ∈ R and l = 1, . . . , p

with the usual warning about infinite-dimension impacts (excluded by this assump-
tion) and qualitative or enumerated impacts (included). In some cases it will be
necessary to refer to some components of the impact, but not all of them. In order
to make the notation smoother, we will denote as P = {1, . . . , p} the set of all their
indices.

Each component fl ∈ R of impact f is denoted as indicator, or criterium, at-
tribute, objective (in the latter cases, usually, it is assumed to represent a benefit
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or a cost, so that the decision-makers prefer higher or lower impacts). Each in-
dicator is an elementary quantity that defines an aspect of the impact. It should
be clearly understandable by each decision-maker, univocal (i. e., non mixing up
different aspects), irredundant (i. e., not repeating information already expressed
by other indicators). Each indicator depends on the chosen alternative and on the
scenario in a way that is computable through function fl = fl (x, ω).

While the other definitions introduced so far all derive from (some field of) the
literature, the expression “impact” is not commonly used: it has been invented on
purpose for this course, in order to distinguish the single indicators fl from their
combination f , wherever this is useful.

3.3.1 Representations of the impact in the finite case

In the finite case, the impact function f can be represented by an evaluation matrix,
whose rows correspond to the configurations (x, ω) and whose columns correspond
to the indicators fl. In the example of Table 7.1, the problem has two solutions
(X = {x′, x′′}) and two scenarios (Ω = {ω′, ω′′}), therefore four configurations
listed on the rows. It also has an impact consisting of p = 4 indicators, reported
on the columns. Ogni cella della matrice fornisce il valore dell’indicatore di colonna
nella configurazione di riga. Each cell of the matrix provides the value assumed by
the column indicator in the row configuration.

f (x, ω) f1 f2 f3 f4 f5 f6

(x′, ω′) 10 5 40 20 24 180
(x′, ω′′) 16 10 60 16 20 190
(x′′, ω′) 20 6 23 8 17 230
(x′′, ω′′) 24 8 50 12 10 100

Table 3.1: An evaluation matrix representing the impact function for a finite prob-
lem with two alternatives, two scenarios and six indicators

In the finite case, the impact function f can also be represented by a radar
chart, that is a two-dimension graph with an axis for each indicator fl, representing
a configuration (x, ω) with a p-vertex polygon which links the points on the axes that
correspond to the values of the indicators in the given configuration (see Figure 3.1).
Notice that each indicator has its own measure unit, independent from the other
ones.

3.4 Decision-makers

A decision-maker is whoever takes part in a decision. The subjects who do not
directly contribute to a decision, but anyway play a role in it with their preferences
are often denoted as stakeholders.

The set of all decision-makers is just a simple finite set D, with no further
characterization. In particular, it is not necessary to assume that it is embedded in
a Euclidean space as the other sets introduced above.

Definition 1 does not explicitly discuss the relation between decision-makers and
decision variables. In fact, this relation depends on the specific problem:

� in some problems, each decision-maker is fully in charge of a subset of decision
variables, disjoint from the subsets controlled by the other ones;
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Figure 3.1: A radar chart representing the impact function for a finite problem with
two alternatives, two scenarios and six indicators

� in other problems, all decision-makers control all decision variables and must
coordinate before assigning their values.

Of course, intermediate problems can also be devised, but they have rarely (if ever)
been discussed in the literature. From the point of view of notation, the distinction
is not very important:

� if the decision variables are independently managed, usually the set of all
feasible solutions is the cartesian product of the feasible solutions sets for the
single decision-makers: X = X(1) × . . .×X(d) × . . . X(|D|).

� if the decision variables are collectively managed, usually, the set of all feasible
solutions is the intersection of the feasible solutions sets for the single decision-
makers: X = X(1) ∩ . . . ∩X(d) ∩ . . . X(|D|).

In both cases, scenarios and impacts work as already described, and the preferences
are defined independently on each decision-maker as described in the next section.
The methods used to tackle and solve the two classes of problems will, on the
contrary, be very different.

3.5 Preference relation

For each decision-maker, preferring impact f ∈ F to impact f ′ ∈ F means consid-
ering acceptable the replacement of f ′ with f , that is the replacement of the latter
impact with the former. This corresponds to establishing a directed relation between
pairs of impacts. In fact, function Π : D → 2F×F associates to each decision-maker
d a subset Π (d) of ordered pairs of impacts. To simplify the notation, this subset
will be denoted as Πd in the following. The meaning of this function is that:

� for each pair (f, f ′) ∈ Πd, decision-maker d prefers f to f ′, that is accepts to
exchange the latter impact f ′ with the former impact f ;

� the list of all pairs in Πd fully describes the preferences of decision-maker d.
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Set Πd can be interpreted as a binary relation on the impact set F :

Πd = {(f, f ′) ∈ F × F : d prefers f to f ′}

When comparing two impacts f and f ′, if decision-maker d prefers f to f ′, instead
of writing (f, f ′) ∈ Πd, it is customary to use the notation1

f �d f ′

In the following, every time there is a single decision-maker or a generic decision-
maker is taken into account, therefore every time a single preference relation is
considered instead of a whole family depending on D, we will suppress index d for
the sake of simplicity, writing Π and � instead of Πd and �d2

Moreover, given a binary relation Π, we define:

� the complementary relation Π̄, that relates all the pairs that are not related
by Π: Π̄ = (F × F ) \ Π, where, instead of (f1, f2) ∈ Π̄, it is customary to
write f1 � f2;

� the inverse relation Π−1, that reverses the order of all the pairs that are related
by Π: Π−1 = {(f1, f2) ∈ F × F : (f2, f1) ∈ Π}, where, instead of (f1, f2) ∈
Π−1, it is customary to write f1 � f2.

3.5.1 Representations of the preference in the finite case

If the impact set F is finite, a generic preference relation Π can be represented by
an incidence matrix of |F | rows and columns (one for each impact), whose element
(f, f ′) is equal to 1 when f � f ′, to 0 otherwise. Table 3.2 represents a preference
relation defined on a set F with five impacts.

f f
′

f
′′

f
′′′

f
′′′′

f 1 0 1 1 1

f
′

0 1 1 1 1

f
′′

0 0 1 1 1

f
′′′

0 0 0 1 0

f
′′′′

0 0 1 1 1

Table 3.2: Incidence matrix for a preference relation Π on a set of five impacts

Alternatively, a preference relation on a finite set can be represented by a dir-
ected graph G = (F,Π), whose nodes correspond to the impacts, whereas the arcs
correspond to the pairs of impacts belonging to the relation. Figure 3.2 reports
the graph associated to the same preference relation represented by the incidence
matrix of Table 3.2.

3.5.2 Derived relations

Given a preference relation Π, three other relations with a relevant meaning can be
derived:

1Economics textbooks sometimes use f �d f
′; this is because they tend to think of the impact

as a profit. We are adopting the opposite view. Of course, the choice is fully arbitrary.
2When denoting by Π a generic relation Πd ⊆ F × F , one must pay attention not to misun-

derstand it for the overall function Π : D → 2F×F . The meaning of symbol Π should be clear
from the context. The use of the same symbol is justified by the definition Πd = Π(d).
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Figure 3.2: Graph associated to a preference relation Π on a set of five impacts

1. the indifference relation IndΠ = Π∩Π−1 = {(f, f ′) ∈ F ×F : f � f ′ , f ′ � f}
collects all pairs of impacts that the decision-maker accepts to exchange in
both directions; when (f, f ′) ∈ IndΠ, we will write more simply f ∼ f ′ ;

2. the strict preference relation StrΠ = Π ∩ Π̄−1 = Π \Π−1 = {(f, f ′) ∈ F × F :
f � f

′
,f
′ � f} collects all pairs of impacts that the decision-maker accepts

to exchange only in the indicated direction; when (f, f ′) ∈ StrΠ, we will write
more simply f ≺ f ′ ;

3. the incomparability relation IncΠ = Π̄∩ Π̄−1 = {(f, f ′) ∈ F ×F : f � f
′
, f
′ �

f}; collects all pairs of impacts that the decision-maker does not accept to
exchange in any direction; when (f, f ′) ∈ IncΠ, we will write more simply
f ./ f

′
.

The meaning of indifference and strict preference are rather obvious. Incomparab-
ility models the situations in which the decision-maker is not indifferent between
two impacts, but is unable or unwilling to choose between them, refusing both the
direct and the opposite exchange. Typical examples in the literature are moral
choices such as killing one person or another, killing an animal or destroying an art
masterpiece, etc. . .

Considering the relation represented in Figure 3.2, the indifference relation links
impacts f

′′
and f

′′′′
, and every impact with itself; the strict preference relation links

the other pairs between which the original preference relation existed; the incom-
parability relation links impacts f e f

′
. The three derived relations are represented

in the three parts of Figure 3.3.

For any pair of impacts (f, f ′), four alternative cases may hold:

1. f ≺ f ′: f is strictly preferable to f ′;

2. f ′ ≺ f : f ′ is strictly preferable to f ;

3. f ∼ f ′: f e f ′ are indifferent;

4. f ./ f ′: f e f ′ are incomparable.
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Figure 3.3: Graphs associated to the relations of indifference (on the left), strict
preference (in the middle) and incomparability derived from the preference relation
of Figure 3.2

Then, strict preference, its opposite, indifference and incomparability form a par-
tition of F × F . As well, strict preference and indifference form a partition of
the original preference. This can be easily verified comparing the three parts of
Figure 3.2 with Figure 3.3.

It is worth noticing that other texts adopt an alternative system of axioms, that
is equivalent to the one introduced above. Instead of starting from a preference rela-
tion and deriving three auxiliary relations, one can start from two disjoint relations
(subsets of F × F ), assign them the meaning of strict preference and indifference,
and derive the two remaining relations: preference (in this case usually denoted as
weak preference) will be defined as the union of strict preference and indifference,
whereas incomparability will be defined as the set of all pairs belonging neither to
preference nor to its opposite.

3.5.3 Properties of the preference relation

So far, a preference relation is a generic binary relation on F , that is a generic
collection of subsets extracted from F×F . Not all binary relations, however, express
reasonable preference relations for a decision-maker. In principle, the preference
relation should be:

� realistic, that is correctly modelling the aims of the decision-maker;

� effective, that is allowing algorithms that yield a safisfactory choice.

Quite surprisingly, the two needs of likelyhood and effectiveness often tend to con-
flict.

Both needs impose suitable additional properties on the preference relation, be-
sides being binary. There is, however, a certain degree of freedom in the choice of
which properties to impose, and several properties involve very important concep-
tual problems. In the end, the choice of the preference model should be motivated
based on the aims of the model itself. First, let us introduce some possible proper-
ties; then, we will discuss the conceptual or techical problem they imply.

A binary relation Π on a set F is:

� reflexive when I ⊆ Π, where I is the identity relation, that is f � f for all
f ∈ F : each impact is preferable to itself (weakly, that is actually indifferent);

� antisymmetric when Π ∩ Π−1 ⊆ I, that is f � f
′

e f
′ � f ⇒ f = f

′
for all

f, f
′ ∈ F : two impacts are indifferent only when they are exactly the same;
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� complete when Π ∪ Π−1 = F × F , that is f � f
′ ⇒ f

′ � f for all f, f
′ ∈ F :

for every pair of impacts, one is certainly preferable to the other (possibly,
they are indifferent);

� transitive when f � f ′ e f
′ � f ′′ ⇒ f � f ′′ for all f, f

′
, f
′′ ∈ F : if an impact

is preferable to another, and this to a third one, the first impact is preferable
to the third one;

� simmetric when f �Π f
′ ⇒ f

′ � f for all f, f
′ ∈ F ; in general, a preference

relation does not enjoy this property (strong preference is even asymmetric:
f ≺ f

′ ⇒ f
′ ⊀ f for all f, f

′ ∈ F ), but we mention it because the derived
relations of indifference and incomparability enjoy it by definition.

Reflexivity In general, it is undisputed that a preference relation should be re-
flexive: it would be rather meaningless to consider a decision-maker unable to com-
pare an impact to itself. As a consequence, indifference is always reflexive, whereas
incomparability and strict preference are never reflexive, that is they are irreflexive.

Antisymmetry Antisymmetry is a rather strong condition: it imposes that two
impacts are indifferent only in the specific case in which they are perfectly identical.
The preference model proposed by Pareto accepts this assumption (see Chapter 6),
whereas other models reject it.

Completeness Completeness is also a rather strong condition: it excludes in-
comparability, that is it requires from the decision-maker to be always able to sort
the impacts from the best one to the worst one, though allowing ties. A typical
example is given by the final results of sports’ leagues. The classical preference mod-
els based on objective functions implicitly accept this assumption, whereas other
models reject it.

Transitivity If the preference is transitive, the derived relations of strict prefer-
ence and indifference are also transitive by consequence. Transitivity is by far the
most delicated and disputed property: some scholars consider it unavoidable, nearly
a sort of equivalent for rationality ; others question it. Several authors tried to prove
by thought experiments that decision problems cannot be solved in a meaningful
way without requiring transitive preferences. Other authors tried to dismantle the
consequences of such experiments by showing experimentally that the preferences
expressed by human beings in the real world are often not transitive. We shall
discuss this point in detail in Section 3.5.5.

3.5.4 The most common preference relations

The most commonly used preference relations are:

� preorder relations: they enjoy reflexivity and transitivity ;

� partial order relations: they enjoy reflexivity, transitivity e antisymmetry ;

� weak order relations: they enjoy reflexivity, transitivity and completeness;

� total order relations: they enjoy reflexivity, transitivity, antsymmetry and
completeness.
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The total orders combine the properties of partial and weak orders. In that case,
therefore, the decision-maker is able to sort the impacts from the best one to the
worst one without ties. A typical example is given by real numbers.

Concerning the derived relations, when the preference is a preorder (reflexive and
transitive), indifference is an equivalence relation: reflexive, transitive and sym-
metric. This relation partitions the impact set F into classes, each composed of
reciprocally indifferent impacts.

3.5.5 Conceptual problems on the transitivity assumption

The transitivity assumption deserves a detailed discussion. Transitivity is the most
common assumption for a preference relation, and is often interpreted as an equival-
ent for rationality. According to the supporters of this thesis, rejecting transitivity
leads to paradoxical effects.

First, let us show with an example what it means to reject transitivity. Let us
assume that a decision-maker, facing the choice between A and B (an apricot and a
banana, for example), state to prefer A and, facing the choice between B and C (a
banana and a coconut, for example), state to prefer B. A transitive decision-maker
should necessarily prefer A to C. A nontransitive decision-maker, on the contrary,
could state to be unable to choose between A and C (the apricot and the coconut),
if not even to strictly prefer C to A. Let us consider these two cases and their
paradoxical implications.

1) Incomparability contradicted by chains of exchanges If the decision-
maker states to prefer A to B and B to C, and yet to be unable to choose between
A and C, it would be quite easy to induce him or her to give up C (the coconut) in
favour of A (the apricot) through a chain of two exchanges using B (the banana)
as an intermediate step. This suggests that the decision-maker is actually able
to choose between the two options, contrary to what stated. According to its
proponents, this thought experiment should prove that such a kind of intransitivity
is not very convincing.

2) Money pump If, on the contrary, the decision-maker states to prefer A to B
and B to C, and to strictly prefer C to A, this could be even exploited to make him
or her accept a cyclic chain of exchanges and even lose money. One could give B to
the decision-maker instead of C, then A instead of B and finally, exploiting the strict
preference, C instead of A plus a sum of money small enough not to reverse the
preference. At that point, the decision-maker would be back to the starting point
(the coconut C) having lost money for nothing. This is what the economists use
to call a money pump. This thought experiment presents various issues to analyse
in depth. In fact, it introduces the concept of money, that is it complicates the
impact including in it an additional element, or indicator. Moreover, it assumes
that money could be split into quantities sufficiently small to guarantee that adding
such a quantity of money to a one of the compared impacts might not modify the
direction of the preference between them. These assumptions must be carefully
evaluated.

The supporters of the possibility to use nontransitive preferences propose on
the one hand alternative thought experiments to give them a reasonable interpret-
ation, on the other hand practical experiments showing that human behaviour is
nontransitive.
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1) The influence of time The different impacts compared by the preference
relation are usually interpreted as nontemporal, that is fixed once for all. In practice,
a decision often consists of several choices made in different instants along time; the
preference could change over time, giving rise to violations of transitivity. For
example, perhaps today the decision-maker prefers A to B, tomorrow B to C and
the day after C to A. This makes the money pump cycle not only possible, but
likely, so much that it could be the basis of financial activities, such as the currency
market. These violations of transitivity can be arranged in a transitive model by
assigning to the impacts a time index, and defining the preference relation between
the extended impacts, that is the impact-time pairs. This, however, would make the
preference model much more complicated. As the aim of the model is to support
decisions, using a very complicated model is in general not desirable.

2) Limited discriminating capacity The decision-maker is not actually able
to perfectly discriminate between all impacts. There are extremely similar impacts
between which the decisin-maker is indifferent because unable to discriminate them.
However, a chain of such impacts could connect very different impacts. For example,
let us assume that the decision-maker prefer unsugared coffee. Facing the choice
between two cups, respectively with n and n + 1 sugar grains, the decision-maker
could be unable to discriminate, and therefore could consider them as indifferent.
Through a chain of cups with a progressively increasing number of sugar grains, it
is possible to prove by transitivity that the decision-maker is indifferent between an
unsugared cup of coffee and a heavily sugared one. In short, either one assumes an
infinite capacity of discrimination or one gives up preference transitivity.

3.5.6 Framing effects*

What is even worse, the way in which impacts are presented can heavily affect the
preferences declared by the decision-makers, even in the case of completely identical
impacts.

In a famous psychology experiment, a sample of individuals was asked to im-
personate the Secretary of Health of a country in which an epidemic has outbroken
and to evaluate the impacts of three possible alternatives:

1. do nothing, and let 600 people die (impact f);

2. enact programme A, saving everybody with probability 1/3 and nobody with
probability 2/3 (impact f

′
);

3. enact programme B, saving 200 people (impact f
′′
).

The majority of the sample chose programme B, showing that they preferred the
corresponding impact. The expected impact is statistically the same of programme
A, but committing to probabilistic games is not the same as choosing a certain
outcome, so it is reasonable that some decision-makers could have a strict preference
such as f

′′ ≺ f ′3. Another sample of decision-makers, considered equivalent to the
former, was asked to evaluate the impacts of the three following alternatives:

1. do nothing, and let 600 people die (impact f);

*This section presents advanced concepts, that are not part of the course syllabus.
3The opposite is also reasonable, only less common in practice. We will discuss this dealing

with the decision under risk. Now the probabilistic aspect is irrelevant for the experiment and
only helps to hide its fundamental aspect.
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2. enact programme A, saving everybody with probability 1/3 and nobody with
probability 2/3 (impact f

′
);

3. enact programme B, letting 400 people die (impact f
′′
).

Everybody can see that the three alternatives are exactly the same as before, but the
third alternative has been described with different words (“letting die” instead of
“saving”). The majority of the second sample chose programme A, thus expressing
the preference f

′ ≺ f ′′ . The context, that is the idea of “saving” people with some
probability, instead of “letting die” people with certainty, modifies the perception
of the impacts.

3.5.7 Preference models: faithful or effective?

We can now draw some conclusions on the problem of how to model the preferences
of the decision-makers. The choice largely depends on the purpose of the model
itself. The aim to have a realistic description of these preferences leads to the idea
of a faithful model, whereas the aim to have an effective description in order to
reach a useful choice leads to the idea of an effective model, that constrains the
freedom of the decision-maker, “teaching” him or her how to take a good decision.
From time to time, it will be preferable to favour either approach, but in general
both the extremes are dangerous.
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3.6 Exercises

Exercise 1

Given a decision problem with impact set F = {a, b, c, d, e, f} and preference rela-
tion Π = {(a, a), (a, b), (a, c), (a, d), (b, b), (b, c), (b, d), (c, b), (c, c), (c, d), (d, d), (e, b),
(e, c), (e, d), (e, e), (f, b), (f, c), (f, d), (f, f)}

a) list the main properties enjoyed by Π;

b) state whether Π is an order relation of some kind;

c) build the derived relations of indifference IndΠ, strict preference StrΠ and in-
comparability IncΠ.

Solution

Figure 3.4 reports the graph representation of relation Π.

a

bc

de

f

Figure 3.4: Graph representation of the preference relation proposed by Exercise 1

From the graph, it is apparent that Π is reflexive (all impacts have a self-loop).
It is not antisymmetric, because impacts b and c are indifferent, but not identical.
It is not complete, because impacts a, e and f are incomparable. It is transitive,
because every triplet of impacts with a pair of weak preferences corresponds to a
weak preference between the two extreme impacts. Consequently, Π is a preorder.

The derived relations are:

� IndΠ = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (b, c), (c, b)}

� StrΠ = {(a, b), (a, c), (a, d), (b, d), (c, d), (e, b), (e, c), (e, d), (f, b), (f, c), (f, d)}

� IncΠ = {(a, e), (a, f), (e, a), (e, f), (f, a), (f, e)}

Exercise 2

Given a decision problem with impact set F = {a, b, c, d, e} and preference relation
Π = {(a, a), (a, b), (a, d), (a, e), (b, b), (c, a), (c, b), (c, c), (c, d), (c, e), (d, b), (d, d), (e, a),
(e, b), (e, d), (e, e)}

a) list the main properties enjoyed by Π;

b) state whether Π is an order relation of some kind and what this allow to assume
about the decision problem;
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c) build the derived relations of indifference IndΠ, strict preference StrΠ and in-
comparability IncΠ.

Solution

Figure 3.5 reports the graph representation of relation Π.

a

b

c

de

Figure 3.5: Graph representation of the preference relation proposed by Exercise 2

From the graph, it is apparent that Π is reflexive (all impacts have a self-loop).
It is not antisymmetric, because impacts a and e are indifferent, but not identical.
It is complete, because no impacts are incomparable. It is transitive, because every
triplet of impacts with a pair of weak preferences corresponds to a weak preference
between the two extreme impacts. Consequently, Π is a weak order.

The derived relations are:

� IndΠ = {(a, a), (a, e), (b, b), (c, c), (d, d), (e, a), (e, e)}

� StrΠ = {(a, b), (a, d), (c, a), (c, b), (c, d), (c, e), (d, b), (e, b), (e, d)}

� IncΠ = ∅

Exercise 3

Given a decision problem with impact set F = {a, b, c, d, e} and preference relation
Π = {(a, a), (a, b), (a, c), (a, d), (a, e), (b, b), (b, c), (b, d), (b, e), (c, b), (c, c), (c, d), (c, e),
(d, d), (e, e)}

a) list the main properties enjoyed by Π;

b) state whether Π is an order relation of some kind and what this allow to assume
about the decision problem;

c) build the derived relations of indifference IndΠ, strict preference StrΠ and in-
comparability IncΠ.

Solution

Figure 3.6 reports the graph representation of relation Π.

From the graph, it is apparent that Π is reflexive (all impacts have a self-loop).
It is not antisymmetric, because impacts b and c are indifferent, but not identical.
It is not complete, because impacts d and e are incomparable. It is transitive,
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a

b

c

d

e

Figure 3.6: Graph representation of the preference relation proposed by Exercise 3

because every triplet of impacts with a pair of weak preferences corresponds to a
weak preference between the two extreme impacts. Consequently, Π is a preorder.

The derived relations are:

� IndΠ = {(a, a), (b, b), (c, c), (d, d), (e, e), (b, c), (c, b)}

� StrΠ = {(a, b), (a, c), (a, d), (a, e), (b, d), (b, e), (c, d), (c, e)}

� IncΠ = {(d, e), (e, d)}

Exercise 4

Given a decision problem with impact set F = {a, b, c, d, e} and preference relation
Π = {(a, a), (a, b), (a, c), (b, b), (b, c), (d, d), (e, a), (e, b), (e, c), (e, d), (e, e)}:

a) list the main properties enjoyed by Π;

b) state whether Π is an order relation of some kind;

c) build the derived relations of indifference IndΠ, strict preference StrΠ and in-
comparability IncΠ.

Solution

Figure 3.7 reports the graph representation of relation Π.

a

b

c

d

e

Figure 3.7: Graph representation of the preference relation proposed by Exercise 4
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From the graph, it is apparent that Π is not reflexive, because impact c has no
self-loops. It is antisymmetric, because the impacts are indifferent only to them-
selves. It is not complete, because d is incomparable with a, b and c. Is it transitive?
Transitivity requires every triplet of impacts with a pair of weak preferences to cor-
respond to a weak preference between the two extreme impacts. Since there is no
such triplet, this property holds. Consequently, Π is not an order of any kind, even
though it would be a partial order if a self-loop on impact c were added.

The derived relations are:

� IndΠ = {(a, a), (b, b), (d, d), (e, e)}

� StrΠ = {(a, b), (a, c), (b, c), (e, a), (e, b), (e, c), (e, d)}

� IncΠ = {(a, d), (b, d), (c, c), (c, d), (d, a), (d, b), (d, c)}

Exercise 5

Given a decision problem with the preference relation Π described by the following
table:

Π a b c d e
a 1 0 1 0 0
b 1 1 0 1 1
c 0 0 1 1 1
d 0 0 0 1 0
e 0 0 1 0 1

a) list the main properties enjoyed by Π;

b) state whether Π is an order relation of some kind;

c) build the derived relations of indifference IndΠ, strict preference StrΠ and in-
comparability IncΠ.

Solution

Figure 3.8 reports the graph representation of relation Π.

a

b

c

d

e

Figure 3.8: Graph representation of the preference relation proposed by Exercise 5

From the graph, it is apparent that Π is reflexive (all impacts have a self-loop).
It is not antisymmetric, because impacts c and e are indifferent, but not identical.
It is not complete, because impacts a, d and e are incomparable. It is not transitive,
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because (among other triplets) the weak preferences (b, a) and (a, c) hold, whereas
(b, c) does not hold. Consequently, Π is not an order of any kind.

The derived relations are:

� IndΠ = {(a, a), (b, b), (c, c), (d, d), (e, e), (c, e), (e, c)}

� StrΠ = {(a, c), (a, d), (a, e), (b, a), (b, d), (b, e), (c, d)}

� IncΠ = {(b, c), (c, b), (d, e), (e, d)}

Exercise 6

Given a decision problem with impact set F = {a, b, c, d, e} and preference relation
Π = {(a, a), (a, b), (a, c), (a, e), (b, b), (b, d), (b, e), (c, b), (c, c), (c, d), (c, e), (d, a), (d, d),
(d, e), (e, e)}:

a) list the main properties enjoyed by Π;

b) state whether Π is an order relation of some kind;

c) build the derived relations of indifference IndΠ, strict preference StrΠ and in-
comparability IncΠ.

Solution

Figure 3.9 reports the graph representation of relation Π.

a

b

c

d

e

Figure 3.9: Graph representation of the preference relation proposed by Exercise 6

From the graph, it is apparent that Π is reflexive (all impacts have a self-loop).
It is antisymmetric, the impacts are indifferent only to themselves. It is complete,
because no impacts are incomparable. It is not transitive, because the preferences
(a, c), (c, d) and (d, a) form a circuit of strict preferences, whereas (a, d) does not
hold. Consequently, Π is not an order of any kind.

The derived relations are:

� IndΠ = {(a, a), (b, b), (c, c), (d, d), (e, e)}

� StrΠ = {(a, b), (a, c), (a, e), (b, d), (b, e), (c, b), (c, d), (c, e), (d, a), (d, e)}

� IncΠ = ∅
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Exercise 7

Given a decision problem with impact set F = {a, b, c, d, e} and preference relation
Π = {(a, a), (b, a), (b, b), (b, c), (b, d), (c, a), (c, c), (c, d), (d, a), (d, d), (e, a), (e, b), (e, c),
(e, d), (e, e)}:

a) list the main properties enjoyed by Π;

b) state whether Π is an order relation of some kind;

c) build the derived relations of indifference IndΠ, strict preference StrΠ and in-
comparability IncΠ.

Solution

Figure 3.10 reports the graph representation of relation Π.

a

b

c

d

e

Figure 3.10: Graph representation of the preference relation proposed by Exercise 7

From the graph, it is apparent that Π is reflexive (all impacts have a self-loop).
It is antisymmetric, the impacts are indifferent only to themselves. It is complete,
because no impacts are incomparable. It is transitive, because every triplet of
impacts with a pair of weak preferences corresponds to a weak preference between
the two extreme impacts. Consequently, Π is a total order.

The derived relations are:

� IndΠ = {(a, a), (b, b), (c, c), (d, d), (e, e)}

� StrΠ = {(b, a), (b, c), (b, d), (c, a), (c, d), (d, a), (e, a), (e, b), (e, c), (e, d)}

� IncΠ = ∅

Exercise 8

Given a decision problem with impact set F = {a, b, c, d, e} and preference relation
Π = {(a, a), (b, b), (c, a), (c, b), (c, c), (d, a), (d, b), (d, d), (d, e), (e, e)}:

a) list the main properties enjoyed by Π;

b) state whether Π is an order relation of some kind;

c) build the derived relations of indifference IndΠ, strict preference StrΠ and in-
comparability IncΠ.
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Solution

Figure 3.11 reports the graph representation of relation Π.

a

b

c

d

e

Figure 3.11: Graph representation of the preference relation proposed by Exercise 8

From the graph, it is apparent that Π is reflexive (all impacts have a self-loop).
It is antisymmetric, because the impacts are indifferent only to themselves. It is
not complete, because impacts a, b and e are incomparable, c and d are incom-
parable, c and e are incomparable. Is it transitive? Transitivity requires every
triplet of impacts with a pair of weak preferences to correspond to a weak prefer-
ence between the two extreme impacts. Since there is no such triplet, this property
holds. Consequently, Π is a partial order.

The derived relations are:

� IndΠ = {(a, a), (b, b), (c, c), (d, d), (e, e)}

� StrΠ = {(c, a), (c, b), (d, a), (d, b), (d, e)}

� IncΠ = {(a, b), (a, e), (b, a), (b, e), (c, d), (c, e), (d, c), (e, a), (e, b), (e, c)}
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Chapter 4

Structured preferences

In this chapter we start to describe how the concepts introduced in the previous one
can be applied to the choice of a solution for a decision problem. We consider the
particular case of a problem with a single scenario (therefore deterministic), and a
single decision-maker: |Ω| = |D| = 1. Additionally, we also require the preference
relation of the single decision-maker to be a weak order (reflexive, transitive and
complete). We will first show that the first two conditions allow to introduce a
well-posed definition of solutions that can be justifiably selected, and the third
one improves upon it by allowing the choice of a single solution. Then, we will
discuss the relation between decision problems with all three conditions and classical
optimisation problems. We will describe some preference models which are weak
orders. These models make very strict assumptions on the preference of the decision-
maker. The final section deals with the problem of deriving a value function (if one
exists) from the preference relation. The technique it presents has a remarkable
degree of sophistication and is the basis of the classical economical theory, but it
requires rather strong assumptions and a very laborious process.

4.1 Dominance between solutions

If the problem has a single scenario and a single decision-maker (|Ω| = |D| = 1),
the impact only depends on the chosen alternative (f : X → F ) and the preference
relation induces a relation between solutions: namely, a solution dominates another
one when the impact of the former is preferable to the impact of the latter.

x � x′ ⇔ f (x) � f (x′) x, x′ ∈ X

Definition 2 We denote as dominated solution a solution x ∈ X such that ∃x′ ∈
X : f (x′) ≺ f (x), nondominated solution any other solution. Finally, we denote
as X∗ ⊆ X the set of all nondominated solutions.

Let us assume that the preference Π be a preorder, that is a reflexive and
transitive relation. It can be proved that the induced relation on the solutions
also enjoys these properties. We observe that also completeness is preserved when
moving from Π to the induced relation on X, whereas antisymmetry could not
be preserved, because the same impact can correspond to different solutions, and
therefore two indifferent impacts are identical, but two indifferent solutions are not
necessarily identical.

It is reasonable to think that, when an impact admits other impacts that are
strictly preferable, all the solutions that generate such an impact can be rejected,

75
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limiting the problem to the solutions whose impacts do not admit strictly preferable
impacts. We consider a strict preference and not a weak one, because we do not
want to reject two solution having indifferent impacts (at least one of them should be
saved). Hence, a rational decision-maker always chooses a nondominated solution.

Theorem 1 If the solution set is finite and nonempty (X 6= ∅) and the preference
relation Π is reflexive and transitive, the nondominated solution set X∗ is nonempty.

This is important because it guarantees that the decision problem admits reasonable
solutions. In some cases, X∗ will contain a single solution or several solutions
reciprocally indifferent; in other cases, it will include incomparable solutions. In
general, therefore, determining set X∗ simplifies the problem, but does not solve it
completely. When X is infinite, every solution could admit a strictly dominating
one, so that the useful property is no longer verified. However, this would imply an
infinite chain of ever-improving solutions. Since in practice that is quite unlikely, it
remains reasonable to restrict the search to nondominated solutions whenever the
preference relation is reflexive and transitive.

Identification of the nondominated solutions

If X is a finite set, it is possible to build the strict preference graph, whose nodes
correspond to solutions, while the arcs correspond to solution pairs whose impacts
are related by a strict preference. In this graph there are no indifferent pairs.
The nondominated solutions correspond to nodes with no ingoing arc. In order to
identify them, it is enough to scan the arc, determine the indegree for each node
and find the nodes with zero indegree. Let O (γ) be the complexity of computing
the preference between two given impacts (not necessarily constant, given that th
two impacts must be first computed and then compared component by component).

The overall complexity of the search for nondominated solutions is O(γ |X|2). Of
course, this procedure cannot be applied to infinite sets and could be impractical
in the case of combinatorial sets.

Example 5 Let us assume to make a trip and to decide which means of transport
to use. There are five alternatives: X = {Airplane,Car,Coach,Train,Taxi} and the
preference relation is Π = {(Airplane,Airplane) , (Airplane,Coach) , (Airplane,Taxi) ,
(Car,Car) , (Car,Coach) , (Car,Taxi) , (Car,Train), (Taxi,Taxi) , (Train,Taxi), (Train,Train)}.
By definition, the preference relation should consist of pairs of impact, not of altern-
atives, but, assuming that each alternative have its own impact, different from the
other ones, for the sake of simplicity we can use the same name for the alternative
and the corresponding impact. The strict preference graph is reported in Figure 4.1:
there are two nondominated solutions, that form set X∗ = {Car,Airplane}.

4.2 Weak orders and value functions

Theorem 2 If the solution set is finite and nonempty (X 6= ∅) and the preference
relation Π is reflexive, transitive and complete, the nondominated solution set X∗

is nonempty and consists of reciprocally indifferent solutions.

This allows to choose any of such solutions as the overall solution of the problem.
That is a very satisfactory result, as the main aspiration of a decision-maker is
actually to “make the right choice”. For infinite sets, the same remark made above
still applies.
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Figure 4.1: Strict preference graph for Example 5

It has already been stated that weak orders allow to sort the impacts on a line,
with possible ties, as if each impact were associated to a degree. If a degree could
actually be defined for each impact, the choice of a good impact would correspond
to the choice of the highest or lowest degree, that is to the maximization of a utility
function, or the minimization of a cost function. This would open the way to the
application of optimization algorithms to solve decision problems.

First, let us verify that the existence of a degree actually implies the properties
of weak orders. Then, we will investigate whether the opposite also holds, that is if
any decision-maker whose preference relation is a weak order can be handled as if
he or she implicitly assigned a degree to each impact. We will see that things are a
bit more complicated, but not very far from this situation.

Definition 3 A value function is a function v : F → R that associates a real value
to each impact. Function v is consistent with preference relation Π when

f � f ′ ⇔ v (f) ≥ v (f ′) per ogni f, f ′ ∈ F (4.1)

or, equivalently

Π = {(f, f ′) ∈ F × F : v (f) ≥ v (f ′)}

The value functions are also called utility functions: the former expression is more
used in mathematics, the latter in economics.

It is easy to see that, if a preference relation admits a consistent value function,
the derived relations of indifference and strict preference correspond to identity and
strict inequality between the values of the value function. The relation with real
numbers guaranteed by a consistent value function induces strong properties on the
preference relation.

Theorem 3 If a preference relation admits a consistent value function, then the
preference relation is a weak order.

The proof is simple, and it is a good exercise to verify one’s understanding. The
point is to show that the preference enjoys reflexivity (because Π includes pair (f, f)
for all f ∈ F ), transitivity (because for all triplets f, f

′
, f
′′ ∈ F such that relation

Π include pairs (f, f
′
) and (f

′
, f
′′
), it also includes pair (f, f

′′
)), and completeness

(because for each pair (f, f
′
) not included in Π, pair (f

′
, f) belongs to it).
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The fact that a value function implies a weak order is interesting, but in prac-
tice not very useful, because in a complicated decision problems the decision-maker
usually has no known explicit value function. On the contrary, it is necessary to
interview the decision-maker in order to investigate the properties of the preference
relation. It is nearly certain that it will be reflexive, and probably it will be trans-
itive. If the decision-maker has a clear idea, the preference relation could even be
complete. In that case, it would be nice to deduce that there exists a consistent
value function (though still unknown), because the decision problem could be re-
duced to the maximization of the value function. As this is not always true, it is
important to understand when it is not.

4.2.1 Weak orders not reducible to a consistent value func-
tion

The lexicographic order is an example of weak order relation (actually, of a strong
order relation) which does not admit a consistent value function. Let us consider
the simplest case, that is the two-dimensional one: the impacts are vectors with
two real components (F = R2) and the preference relation is defined as:[

f1

f2

]
�
[
f ′1
f ′2

]
⇔ f1 < f ′1 or f1 = f ′1 e f2 ≤ f ′2

that is, the decision-maker prefers the impact with the smaller first component, for
any value of the second one; in case of a tie (and only in that case), the decision-
maker prefers the impact with the smaller second component. It can be proved that
this relation does not admit any value function v (f) satisfying Condition (4.1), that
is assigning to each impact in F a real value such that the preference between two
impacts correspond to an inequality between the function values.

The intuitive reason is that lexicographic order requires total incommensurab-
ility between the two components: no improvement of the second can compensate
for a worsening, even very small, of the first. A value function depending on both
components, on the contrary, would allow some reciprocal compensation. We will
see that, if the first component assumed discrete values, instead of continuous ones,
it would become possible to build a consistent value function respecting this incom-
mensurability, because there no variations of the first component would be small
enough to be compensated by large variations of the second.

4.2.2 Weak orders reducible to a consistent value function*

Most weak orders enjoy additional technical conditions that allow to build a con-
sistent value function. In order to introduce such conditions, the following auxiliary
definition is required.

Definition 4 Let F be a set and Π a weak order on F . A subset F̄ ⊆ F is dense
in F when every pair f, f ′ ∈ F \ F̄ such that f ≺ f ′ admits an element f̄ ∈ F̄ such
that f ≺ f̄ ≺ f ′.

In other words, a subset is dense in the set if it contains, for every pair of elements
of the given set, an element with intermediate preference.

Theorem 4 A weak order Π on F admits a consistent value function if and only
if there exists a subset F̄ ⊆ F enumerable and dense in F .

*This section provides advanced concepts, that are not part of the course syllabus.
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The intuitive idea of this theorem is that it is possible to build a value function with
rational values on F̄ and to extend it to the whole of F by exploiting the density
property, according to which any pair of impacts in F has an intermediate impact
in F̄ , for which the value function has a value.

Let us consider again the example of the lexicographic order under the new light
shed by the concept of dense and enumerable subset. If F = R2, no subset F̄ can be
at the same time enumerable and dense in F . By contradiction, let us assume that
such a subset F̄ exist: the projection of F̄ on axis f1 would be a set of real numbers
formed by the first components of all the vectors in F̄ . Since F̄ is enumerable, since
every element has a projection and some projections could coincide, the set of all
projections is also enumerable. This means that there are infinite values of f1 that
do not belong to the set of projections. Let f̃1 be one of those values, and let f̃2

and f̃ ′2 be two real values chosen ad libitum. With these values, let us build the two
impacts [f̃1 f̃2]T and [f̃1 f̃

′
2]T , which by definition belong to F \ F̄ . If F̄ is dense,

it must contain an element with intermediate preference between the two impacts.
By definition of lexicographic order, all elements with intermediate preference must
have the first component equal to f̃1 and the second between f̃2 and f̃ ′2. On the
other hand, by construction no impact in F̄ can have its first component equal to
f̃1. By contradiction, there exist no subset that is both enumerable and dense in
F , and therefore there exists no value function on F consistent with Π.

By slightly changing the definition of F , this becomes possible. Let us assume
that the impact set be F = N × R, that is that the first component of the impact
be an integer. In that case, it is possible to build enumerable subsets dense in
F , and therefore to find value functions consistent with the lexicographic order.
An example is function v (f1, f2) = f1 + tanh (f2) /2: term f1 has integer values,
whereas term tanh (f2) /2 maps the real values of f2 into values limited in the open
interval (−1/2,+1/2).

4.2.3 Multiplicity of the consistent value functions

The existence of a way to build a consistent value function does not imply its unicity.

Theorem 5 Given a value function v : F → R, consistent with a preference rela-
tion Π on F , for any strictly increasing function φ : R→ R the composite function
φ (v (·)) is also consistent with Π.

Therefore is a weak order admits a consistent value function, it admits infinite
equivalent ones, that associate to the same impacts different values, but sorted in
the same way. Table 4.3 reports two value functions that are consistent with the
preference described in Example 5: the former is Borda’s count, whereas the latter
is completely independent, but corresponds to the same preference relation, the
same graph (the one in Figure 4.2) and the same ordering of the alternatives.

4.3 The finite case

It is always possible to solve the finite case by introducing and maximising (by
exhaustive enumeration) a value function known as Borda count1:

v (f) = |{f ′ ∈ F : f � f ′}| f ∈ F (4.2)

1From the name of Jean-Charles de Borda (1733-1799), French mathematician, physicist and
admiral, who invented it.
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X v (f (x)) v′ (f (x))
Airplane 4 20

Car 5 30

Coach 3 10

Taxi 1 5

Train 3 10

Table 4.1: Two equivalent value functions consistent with the preference relation of
Example 5: v is Borda’s count

The value of an impact is set equal to the number of impacts to which it is preferred,
including itself.

Example 6 Let us consider another example concerning a trip with five altern-
ative means of transport: X = {Airplane,Car,Coach,Train,Taxi}. The prefer-
ence relation is different from that of Example 5: Π = {(Airplane,Airplane) ,
(Airplane,Coach) , (Airplane,Taxi) , (Car,Car) , (Car,Coach) , (Car,Taxi) , (Car,Train) ,
(Taxi,Taxi) , (Train,Taxi), (Train,Train)}.

Relation Π is represented by the graph in Figure 4.2. Borda’s count allows to
build a consistent value function: the alternative Taxi is preferred only to itself, so
that its value is v (f (Taxi)) = 1; the alternatives Train and Coach are reciprocally
indifferent and have value 3; the alternative Airplane has value 4 and the alternative
Car, which is preferred to all, has value 5 (see Table 4.2).

Figure 4.2: Preference graph for Example 6

X v (f (x))
Airplane 4

Car 5

Coach 3

Taxi 1

Train 3

Table 4.2: Borda’s count for Example 6
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4.4 The one-dimensional case

When the impact is one-dimensional (F ⊆ R ⇔ p = 1), it is often easy to build a
consistent value function:

� if f represents a profit, u (f) = f is a consistent value function; valore con-
forme;

� if f represents a cost, u (f) = −f is a consistent value function;

� if the preferred values of f are the ones closer to a given value f̄ (for instance,
f is a desired temperature or an ideal level of irrigation for a field), u (f) =

−
(
f − f̄

)2
is a consistent value function.

Even in the one-dimensional case, however, there can be complex situations2.

Example 7 Let us assume that we have to decide the speed x with which to run in
order to catch a bus that passes at regular intervals. The feasible speed is between
a minimum (the slowest pace allowing to arrive at the bus stop in a reasonable
time) and a maximum (that corresponds to the fastest acceptable run). Impact
f (x) is the arrival time at the bus stop. By interviewing the decision-maker, one
can discover that he or she prefers to arrive as soon as possible to the destination,
but hates to wait for the bus. Consequently, given two very close values of f , in
general the preferred one will be the larger, because arriving later at the stop reduces
the waiting time. For some critical pairs of impact, however, the smaller value
will be clearly preferred, because it allows to catch the previous bus, with a zero
waiting time. Therefore, the value function v (f) has a andamento a dente di sega:
it gradually grows with f , suddenly decrease, increases again, suddenly decreases,
etc. . . Sometimes, a deeper analysis can help to simplify the model. For example, in
this case, it is possible to replace the one-dimensional impact (arrival time at the
bus stop) with a two-dimensional one, composed by the arrival time at destination
and the waiting time at the bus stop. Such an impact is no longer expressed by a
single number

4.5 Lexicographic order

The decision-maker is required to fully sort the indicators. The unordered set
P = {1, . . . , p}, therefore, becomes a sequence, which we will denote with the same
symbol, for the sake of simplicity:

P = (π1, . . . , πp)

and that will represent a hierarchy on the indicators. Once this has been done, the
following operations are performed:

� determine all solutions in which the first indicator assumes an optimal value:

X◦π1
= arg min

x∈X
fπ1

(x)

If only one solution remains (
∣∣X◦π1

∣∣ = 1), the process terminates returning it.

2I am not satisfied with this example, because it is not really one-dimensional, but I am keeping
it until I find a more convincing one.
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� If more solutions remain (
∣∣X◦π1

∣∣ > 1), determine among them the optimal ones
with respect to the second indicator:

X◦π1π2
= arg min

x∈X◦π1

fπ2
(x)

If only one solution remains (
∣∣X◦π1π2

∣∣ = 1), the process terminates returning
it.

� . . .

� If even at the p-th step more solutions remain (|X◦π1...πp−1
| > 1), choose any

optimal solution with respect to the last indicator:

x◦π1...πp ∈ arg min
x∈X◦π1...πp−1

fπp (x)

Notice that the first p−1 steps of the method require to find all optimal solutions,
not a single one, as it usually occurs in classical optimisation problems. Violating
this requirement could yield the wrong solution. This makes the method potentially
demanding from the computational point of view, but in practice it is usually enough
to consider the first two or three indicators in order to identify a single solution.

The assumption that the decision-maker be able to provide a total order on the
indicators, considering each of them as absolutely dominating with respect to the
following ones is in general a stretch, but it allows to obtain anyway a somewhat
reasonable decision. Of course, the resulting solution basically depends on the
chosen order.

Example 8 An advanced GPS navigation device offers the possibility to select not
only the fastest path or the cheapest one, but to apply a lexicographic ordering method
on the two indicators (time and cost). If the user specifies the order (cost, time),
the GPS device enumerates all minimum-cost paths (e. g., three paths by 10 Euros,
one by 24 hours, one by 36 hours and one by 28 hours). Then, among these paths it
chooses one of those that require the minimum time (in this case, the optimal path
is only one, and requires 24 hours). Slightly more expensive paths (e. g., 15 or 20
Euros) are ignored even if they are much shorter (e. g., 2 hours).

4.6 Lexicographic order with aspiration levels

The idea that an indicator be absolutely dominating with respect to the other ones
is often too extreme, leading to very unbalanced solutions: optimal with respect to
the first indicator, but very bad with respect to the following indicators. A human
decision-maker often does not search for optimality, but for a satisfactory level of
performance (Herbert Simon called such solutions “satisficing” from “satisfy” and
“sufficing”). This line of thought leads to modify the lexicographic order method
asking the decision-maker to totally order the indicators, but also to set an aspir-
ation level επ` for all of them except the first one (` ∈ {1, . . . , p} \ {π1}). This
determines a restricted feasible region

Xε = {x ∈ X : fπ` (x) ≤ επ` for ` = 2, . . . , p}

For the first indicator, no aspiration level needs to be fixed, because it is still to be
simply minimised. If the restricted feasible region Xε is empty, the decision-maker
must be asked to relax one or more of the aspiration levels.

Then, the process described for the lexicographic order method is applied, op-
erating in the restricted feasible region:
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� determine all solutions in which the first indicator assumes the optimal value
and the following ones assume values not worse than the corresponding aspir-
ation levels:

X◦ε,π1
= arg min

x∈Xε
fπ1 (x)

If a single solution remains (
∣∣X◦ε,π1

∣∣ = 1), the process terminates returning it.

� If more solutions remain (
∣∣X◦ε,π1

∣∣ > 1), determine among them the optimal
ones with respect to the second indicator:

X◦ε,π1π2
= arg min

x∈Xε,π1

fπ2 (x)

If a single solution remains (
∣∣X◦ε,π1π2

∣∣ = 1), the process terminates returning
it.

� . . .

� If even at the p-th step more solutions remain (|X◦ε,π1...πp−1
| > 1), choose any

optimal solution with respect to the last indicator:

x◦ε,π1...πp ∈ arg min
x∈X◦ε,π1...πp−1

fπp (x)

The basic idea of this method is that each indicator dominates the following
ones, but only as far as their aspiration levels are respected. As soon as one of
them reaches its aspiration level, it becomes more important and it is forbidden to
worsen it further.

Of course, the final solution depends on the chosen order, but also on the p− 1
chosen aspiration levels επl (for l = 2, . . . , p). Since all these choices are potentially
arbitrary, it is once again a stretch, that allows to reach in a simple way a somewhat
reasonable decision. The aspiration levels, however, allow to make the final solution
less unbalanced in favour of the first indicator.

Example 9 An advanced GPS navigation device offers the possibility to apply a
lexicographic ordering method with aspiration levels. The users specifies the order
(time, cost), and a threshold equal to ε = 20 Euros on the cost (the method requires
p − 1 thresholds, that is a single one in this case, because the first indicator is
optimised). The GPS device, therefore, excludes all paths with a cost larger than 20
Euros (for example, the three paths by 10 Euros listed in Example 8, that is those
by 24, 36 and 28 hours, and the paths by 15 and 20 Euros seen above). Then, the
device enumerates, among the residual paths, those that require the minimum time:
two paths require 2 hours (and, respectively, 15 and 20 Euros). At this point, the
device minimises the cost, choosing the path by 2 hours and 15 Euros. The threshold
of 20 Euros is obviously arbitrary and implies that slightly more expensive paths are
ignored, even if they could be much shorter.

4.7 Utopia point

Each of the indicators has an optimal value, obtained by completely neglecting all
other indicators

f◦l = min
x∈X

fl (x) l = 1, . . . , p

Determining this value is a classical optimisation problem, sometimes computation-
ally hard, but in general possible to solve.
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The vector composed by the optimal values of all p indicators forms an impact

fU =
[
f◦1 . . . f

◦
p

]T
. If fU ∈ F , it is necessarily the solution to choose (see Ex-

ample 44). In general, however, such in impact does not fall within F , that is,
it cannot be obtained choosing a feasible solution. Such an impact is denoted as
utopia point, because it provides an unreachable ideal.

A heuristic idea to select a solution is to determine one of those whose implied
impact is closer to the utopia point. Thid definition is seemingly harmless and
reasonable. However, it is based on a notion of distance in the space of the indicators
that is quite not obvious. The most frequently used distances are:

� the Manhattan distance (L1):

d (f, f ′) =
∑
l∈P

|fl − f ′l |

� the Euclidean distance (L2):

d (f, f ′) =

√∑
l∈P

(fl − f ′l )
2

� the maximum of the distances referring to the single indicators (L∞):

d (f, f ′) = max
l∈P
|fl − f ′l |

but infinite different distances can be defined.

Figure 4.3: Utopia point and closest impact according to the L2 metric

Example 10 Apply the utopia point method to the decision problem with impact
set F = {(f1, f2) ∈ R2 : f1 ≥ 0, f2 ≥ 0, f1 + 2f2 ≥ 3}, represented in Figure 4.4,
in which both indicators are costs to be minimised. For the sake of simplicity,
we operate directly in the indicator space, without considering the feasible region,
that is, we determine the desired impact, from which in theory one can deduce the
solution that generates it.
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The utopia point is obtained considering the minimum value for each indicator,
independently from the other one. In both cases, this value is zero, so that f◦ =
(0, 0). If we consider the Manhattan distance L1, the problem reduces to

min
f∈F
|f1 − 0|+ |f2 − 0| = min

f∈F
f1 + f2 ⇒ f∗L1

= (0, 3/2)

If we consider the Euclidean distance L2, the problem reduces to

min
f∈F

√
(f1 − 0)

2
+ (f2 − 0)

2
= min

f∈F

√
f2

1 + f2
2 ⇒ f∗L1

= (5/6, 4/3)

Finally, if we consider the L∞ distance, the problem reduces to

min
f∈F

max (|f1 − 0| , |f2 − 0|) = min
f∈F

max (f1, f2)⇒ f∗L∞ = (1, 1)

TO BE ADDED

Figure 4.4: According to the definition adopted for the distance, Example 10 has
different solutions with minimum distance from the same utopia point

Moreover, most definitions of distance combine in a single quantity values asso-
ciated with different indicators, expressed in heterogeneous units of measure. Before
combining them, it is necessary to standardise them by multiplying them by suitable
coefficients. The choice of the coefficients is complex, and at least partly arbitrary,
as we shall see in Section 4.8.9.

4.8 Multi Attribute Utility Theory

The Multi Attribute Utility Theory (MAUT ) assumes that the preference relation of
the decision-maker be actually a weak order, admitting a consistent value function,
but that the decision-maker be unable to make the value function explicit without
help. It poses therefore the problem to derive from the preference relation Π the
consistent value function u : F → R. In the following, we will adopt the economical
notation, denoting u (f) as utility function.

First, we will tackle the problem in its most general form, introducing a graphical
tool and a procedure that in theory should allow to solve the problem, but this
procedure will prove very complicated, expensive and error-prone. We will therefore
focus on a specific family of utility functions, whose characteristics make it simpler
(even if nontrivial) to derive them from the preferences revealed by the decision-
maker. We will then discuss the necessary and sufficient conditions under which the
preference relation can be expressed through a function of such family, and finally
we will describe a procedure to derive the function itself.

4.8.1 Indifference curves

Definition 5 Given an impact set F in the space of the indicators Rp and a pref-
erence relation Π, we denote as indifference curve every subset of impacts that are
reciprocally indifferent.
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Under suitable continuity and regularity assumptions, impacts close to each
other are also similar with respect to preference3. Every subset of reciprocally
indifferent impacts yields a regular hypersurface in Rp. As the indifference curves
are infinitely many, one for each real value u (f), in general each curve is a (p− 1)-
dimension hypersurface. The various curves are linked by a total order relation; in
fact, there are no incomparable impacts and all indifferent impacts belong to the
same curve, so that impacts on different curves are linked by a strict preference, and
all impacts on a curve are strictly preferable to all impacts on the other one. Finally,
the completeness of the relation guarantees that the family of all indifference curves
covers the whole set F (see Figure 4.5).

1 2

5

4
3

2
1

0 3 4 5 6 7 8

f2

f1

F

Figure 4.5: Indifference curves: there are ∞ totally ordered curves that cover the
whole set F ; each curve includes ∞p−1 reciprocally indifferent impacts.

If a value function is known, the family of all indifference curves admit an ana-
lytic representation in the indicator space F through the equation u (f) = c, where
c is a constant parameter that identifies each single curve. This corresponds to an
analytic representation in the solution space X through the parametric equation
u (f (x)) = c.

Indifference curves and utility function

From Theorem 5 in Section 4.2.3 we know that, if a preference relation admits
a consistent value function, it admits infinitely many. The indifference curves of
such functions, however, are always the same. The correspondence between prefer-
ence relations and indifference curve families is one-to-one, that between preference
relations and value functions is one-to-many.

Remark 1 All value functions u consistent with a preference relation Π have the
same indifference curves u (f) = c, where c ∈ R is a real parameter identifying each
curve. Each value function u associates different values of c to each curve, but such
values are ordered in the same way.

3We will not go into details about these assumptions, but we remark that they require a
continuous impact set F . Many of the concepts developed in the following, in fact, make no
sense for discrete problems. In these problems, the impact set must be extended, turning the
indicators that assume discrete values to real values with some form of interpolation (for example,
passing from an integer number of “sweets” to a real number measuring “portions of sweet”). The
indifference curves are defined on this extended impact set, and later restricted to the original
discrete set.
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Example 11 Let us consider the utility functions u (f1, f2) = f2
1 f

3
2 and u′ (f1, f2) =

2 log f1 + 3 log f2. The indicators f1 and f2 used in this example express a benefit,
but the concept holds for any kind of indicator. The two functions are equivalent,
because they are related by the invertible transformation u′ = log u. Figure 4.6 re-
ports the corresponding indifference curves: they coincide perfectly, but the same
curve in the two cases is associated to different utility values.
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u' = 0

f 2

f 1

Figure 4.6: Two different, but equivalent, utility functions: u (f1, f2) = f2
1 f

3
2 and

u′ (f1, f2) = 2 log f1 + 3 log f2. The indifference curves coincide, even though they
correspond to different values.

4.8.2 Determining the utility function

The indifference curves help to estimate a consistent value function for the prefer-
ence relation through the following process:

1. propose a sample of impact F̃ ⊆ F to the decision-maker, requiring to compare
them by pairs;

2. based on the comparisons, classify the impacts:

� collect the reciprocally indifferent impacts into equivalence classes;

� order the equivalence classes based on the preference;

3. based on the shape of the indifference curves in the indicator space, assume a
family of utility functions uα (f1, . . . , fp), defined up to a a vector of numerical
parameters α;

4. determine the values of the parameters αr (r = 1, . . . , s) imposing that recip-
rocally indifferent impacts have the same utility value;

5. make consistency checks, generating new impacts, computing the preferences
between such impacts through the estimated utility function and asking the
decision-maker to confirm or disprove the preferences obtained;

6. in case of errors, modify the family of utility functions and repeat the process.

The process is clearly fragile. If one considers a small sample, it is quite likely
that the estimated curves be incorrect; if the sample is large, the workload required
from the decision-maker quickly becomes huge (if one evaluates k different values
for each indicator, the sample includes kp different impacts, a number that quickly
becomes unmanageable). Moreover, the arbitrariness in the choice of the family of
utility functions opens the way to long trial-and-error loops.
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The only possibility is that the preference relation of the decision-maker be
very simple, and therefore the indifference curves have a very simple analytic form,
depending on few parameters, easy to estimate. We are therefore interested to
evaluate special cases that allow an easier estimate, hoping that they could be
close enough to the practical case to be used as approximation of the reality. The
economy courses discuss several families of utility functions, that correspond to
different assumptions on the preference relation of the decision-maker. Properties
often postulated are:

1. invertibility : for each fixed value of p − 1 indicators, there exist a single
value of the remaining indicator that produces a given utility; under this
assumption, an indifference curve u (f) = c can be written in explicit form as
fl = fl (c, f1, . . . , fp);

2. monotony : in order to compensate for the variations of an indicator, the
other ones must vary in a well-determined direction; for example, when all
indicators represent costs, in order to compensate for an increase of one, at
least another one must decrease, and therefore the curve is decreasing (the
same occurs when all indicators are benefits).

3. convexity (or concavity): the indifference curves compensate for the increase
of an indicator by a certain amount with variations of the other ones that
increase (or decrease) with the value of the first indicator; the basic idea is
that the indicators represent resources: if a resource is scarse, increasing it
brings a large utility, compensated by a strong decrease of other resources;
if on the contrary it is abundant, increasing it by the same amount brings
a small utility, compensated by a weak decrease of other resources; in this
case, the curves are convex (they would be concave in the case of indicators
expressing costs).

Example 12 An individual must decide in which town to live based on two (very
simple) indicators: the pollution level and the local tax level. Two towns with differ-
ent pollution levels will be indifferent only if the more polluted one has a lower tax
level. So, the indifference curves are monotone decreasing and invertible. Moreover,
if the pollution level in a town is small, a given increase of pollution can be com-
pensated by a small tax reduction, whereas if it is high, the same increase will require
a strong fiscal incentive.

Example 13 A family of utility functions frequently used in economics are the
Cobb-Douglas functions, defined as:

uα (f1, . . . , fp) =

p∏
l=1

f αl
l

These functions consider the indicators fl as benefits (they have in fact been proposed
by economists), require a single parameter for each indicator and their indifference
curves are similar to hyperboloids. The utility function u (f1, f2) = f2

1 f
3
2 , whose

indifference curves are reported in Figure 4.6, belongs to this family: its parameters
are, in fact, α1 = 2 and α2 = 3. These functions are invertible (f1 =

√
c/f3

2 e

f2 = 3
√
c/f2

1 for f1 ≥ 0 and f2 ≥ 0), monotone strictly decreasing (compute the
first derivative) and convex (compute the second derivative).

Notice that the infinite multiplicity of the value functions that are equivalent to
a given preference relation implies that the parameters that define a given family of
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value functions cannot be fully fixed based on the empirical analysis of the indifferent
impacts. They must keep a degree of freedom. This degree can be removed only
with an arbitrary condition of normalisation.

Example 14 The preliminary analysis of preference of a decision-maker suggests
that it corresponds to a Cobb-Douglas function. Moreover, the decision-maker states
that the impacts f = (8, 1) and f ′ = (1, 4) are indifferent. As a consequence:

(8, 1) ∼ (1, 4)⇒ uα (8, 1) = uα (1, 4)⇒ 8 α11 α2 = 1 α14 α2 ⇒ 8 α1 = 4 α2 ⇒ 3α1 = 2α2

Since the utility function remains equivalent when it is raised to any positive ex-
ponent, (uα (f))

β
is equivalent to uα (f) for any β > 0. But this corresponds to

multiplying all parameters αl by β, and therefore in order to normalise the Cobb-
Douglas functions it is enough to impose the additional condition that

∑p
l=1 αl = 1.

In conclusion, 3α1 = 2α2 and α1 + α2 = 1 imply that α1 = 2/5 and α2 = 3/5.
Of course, in practice a single pair of indifferent impacts is certainly not enough to
determine with reasonable certainty the value function to use.

4.8.3 Additive utility functions

There are utility functions which are easier to estimate starting from a sampling of
the preference relation on the impact set.

Definition 6 We denote a utility function as additive when it can be expressed as
the sum of functions of the single indicators:

u (f1, . . . , fp) =

p∑
l=1

ul (fl)

Since every utility function admits infinitely many equivalent ones, it is quite
complicated to evaluate whether an additive equivalent function exists or not in
a given situation. A classical example is given by the Cobb-Douglas’ functions,
which are not themselves additive, but which, as already observed in the example
of Figure 4.6, admit equivalent functions which are additive:

u′ (f) = log u (f) = log

p∏
l=1

f αl
l =

p∑
l=1

αl log fl =

p∑
l=1

ul (fl)

where ul (fl) = αl log fl for all l ∈ P .

If the utility function is additive, the problem to estimate it can be reduced to
the estimation of p single-variable functions. Recalling the case studies of Chapter 2,
the number of indicators can be huge, and their nature can be extremely hetero-
geneous, so that the claim to compare impacts extracted from distant point of set
F could become pointless. If one could deal with single-variable functions, the task
to estimate the utility would be much easier; in particular, one could assign the
estimation of each component of the utility function to a different field expert. Of
course, there are intermediate situations, in which the utility function is not com-
pletely additive, but at least it can be decomposed in a sum of functions depending
on small reciprocally independent blocks of few indicators. That would be a step
forward, anyway.

Since a priori the utility function is unknown, but the preference relation is
known, we must investigate what properties of the preference relation allow to
guarantee that an additive utility function actually exist. Next section presents
the property that allows to solve the problem, while the following one describes its
relation with additivity.
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4.8.4 Preferential indipendence

Given the set of attributes P = {1, . . . , p}, preferential independence is a property
of a subset of attributes L ⊂ P with respect to its complement L̄ = P \ L. If, for
the sake of simplicity, we order the attributes, collecting in the first positions those

of subset L, we can write that f =

[
fL
fL̄

]
, where fL and fL̄ are the subvectors of

impact f corresponding, respectively, to the indicators of L and of L̄.

Definition 7 A proper subset of indicators L ⊂ P is preferentially independent
from the complementary subset L̄ when, given two impacts with identical values of
the indicators in L̄, the preference relation between them does not depend on such
values: [

fL
φ

]
�
[
f ′L
φ

]
⇔
[
fL
ψ

]
�
[
f ′L
ψ

]
for all fL, f

′
L, φ, ψ such that[

fL
φ

]
,

[
f ′L
φ

]
,

[
fL
ψ

]
,

[
f ′L
ψ

]
∈ F

Example 15 A decision-maker must choose the menu for a simple lunch, pairing
a single course and a glass of wine. The available courses are: stew, roast, meat-
balls, salmon and swordfish; the available wines are Barolo, Nebbiolo, Erbaluce,
Arneis. We have therefore a feasible region X made up of 20 alternatives, that are
the combinations of 5 courses and 4 wines (see the left side of Figure 4.7). The
decision-maker is rather rough and only perceives the difference between meat and
fish, and the difference between red and white wine. Then, the impact set reduces to
4 elements: F = (meat, red wine), (meat, white wine), (fish, red wine), (fish, white
wine), as is apparent in Figure 4.7, where the impact function f (x) associates two
subsets of 6 solutions and two subsets of 4 soluzioni on the left side to four single
impacts on the right side. Assuming that the decision-maker follows the traditional
use of pairing meat courses with red wine and fish courses with white wine, one ob-
tains the preferences indicated by black arrows on the right side. The double arrows
in grey represent the fact that meat courses with red wine are indifferent with respect
to fish courses with white wine, and that meat courses with white wine are indiffer-
ent with respect to fish courses with red wine. These preferences could be different,
without any consequence on the property we are discussing: we report them only to
stress that the overall preference relation is compete. The same holds for the self-
loops on the single impacts. It is easy to show that the indicators “course” (fcourse)
and “wine” (fwine) are not preferentially independent. In fact, fixing the red wine,
meat courses are preferable to fish courses; fixing the white wine, fish courses are
preferable to meat courses. The same holds in the opposite direction: fixing a meat
course, in fact, red wine is preferable; fixing a fish course, white wine is preferable.

Example 16 A decision-maker must define an industrial process to produce pots
and lids, evaluating it with respect to the attributes “cost”, “number of pots” and
“number of lids”. The preferable process have a smaller cost and a number of pots
and lids as close as possible to each other. The pair (“cost”,“number of pots”) is
not independent from the attribute “number of lids”, because for each fixed number
of lids, it is preferable that the number of pots be equal to that of lids. As well,
the pair (“cost”,“number of lids”) is not independent from the attribute “number of
pots”. By constrast, the pair (“number of pots”,“number of lids”) is independent
from the attribute “cost”, because for each fixed cost the preference relation between
different combinations of pots and lids is always the same.
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Figure 4.7: A preference relation that does not enjoy preferential independence
between the two indicators: if the wine is red, meat is preferable to fish; if the wine
is white, fish is preferable to meat; the same holds for the courses with respect to
the wine

One could assume independence to be a symmetrical property. In other words,
one could assume that when L is independent from L̄, conversely L̄ be independent
from L. The following example shows the contrary.

Example 17 Given the impact set F =
{
f ∈ R2 : f1 ≥ 0, f2 ≥ 1

}
and the utility

function u (f) = (f1 − 5) f2, the indicator f1 is preferentially independent from the
indicator f2 because, fixing f2 = f̄2 ≥ 1, it is always(

f1, f̄2

)
�
(
f ′1, f̄2

)
per f1 ≥ f ′1

On the contrary, f2 is preferentially dependent on f1 because, fixing f1 = f̄1 ≥ 1:
when 0 ≤ f̄1 < 5,

(
f̄1, f2

)
�
(
f̄1, f

′
2

)
for f2 ≤ f ′2

when f̄1 = 5,
(
f̄1, f2

)
∼
(
f̄1, f

′
2

)
for all f2, f

′
2

when f̄1 > 5,
(
f̄1, f2

)
�
(
f̄1, f

′
2

)
for f2 ≥ f ′2

One could also assume that, when an indicator is independent from the other
ones, then all subsets of indicators be reciprocally independent. Also this is not
true, as shown by the following example.

Example 18 Given the impact set F =
{
f ∈ R3 : f1 ≥ 0, f2 ≥ 0, f3 ≥ 1

}
and the

utility function u (f) = 1/ [(f1 + f3) (f2 + f3)], each attribute is independent from
the other ones: they are all costs. However, the pair of attributes (f1, f2) depends
preferentially on the attribute f3. In fact, it is: 1

3
1

 �
 4

1/2
1

 since u (1, 3, 1) =
1

8
<

2

15
= u (4, 1/2, 1)

 1
3
3

 ≺
 4

1/2
3

 since u (1, 3, 3) =
1

24
>

2

49
= u (4, 1/2, 3)

A troubling aspect of this property is the time required to verify it. When L
includes a single indicator, it is often easy to prove its independence from L̄. For
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example, when the indicator represents a cost, or a benefit, it is always preferentially
independent from the other ones, because the decision-maker will always prefer an
impact with smaller cost (or larger benefit), if the other indicators are unchanged,
whatever value they assume. Unfortunately, even when all indicator, considered
one by one, are independent, it is not guaranteed that every subset L of indicators
be independent from its complement. Then, it is necessary to prove preferential
independence for each of the 2p−2 proper subsets (excluding only the empty subset
∅ and the whole set of indicators P ), and this must be done empirically sampling
the impacts and asking many tedious questions to the decision-maker. Luckily, it
is not necessary to consider all subsets.

Theorem 6 A decision problem with p ≥ 3 indicators enjoys mutual preferential
independence if and only if there exists an index l̄ ∈ P such that every pair

{
l̄, l
}

with l 6= l̄ is preferentially independent from its complement P \
{
l̄, l
}

.

Therefore, in order to verify mutual preferential independence, if is not required
to consider all 2p − 2 proper subsets of indicators, but only the p − 1 pairs that
one indicator (chosen ad libitum) forms with the others: as soon as a non inde-
pendent pair is found, the check terminates with a negative result; if all pairs are
independent, the check terminates with a positive result.

4.8.5 Preferential independence and additivity

Preferential independence of relation Π and additivity of function u (f) are strictly
connected, even if not rigorously equivalent.

Definition 8 We say that a problem enjoys mutual preferential independence when
every subset of indicators L ⊂ P is preferentially independent from its complement
L̄.

Mutual preferential independence is a necessary condition for additivity.

Theorem 7 If a preference relation admits an additive utility function, then it
enjoys mutual preferential independence.

Proof. It is enough to apply the definition. For any quadruplet of vectors fL, f
′
L, φ, ψ

producing valid impacts:[
fL
φ

]
�
[
f ′L
φ

]
⇒ u (fL, φ) ≥ u (f ′L, φ)

from which by additivity∑
l∈L

ul (fl) +
∑
l∈L̄

ul (φl) ≥
∑
l∈L

ul (f
′
l ) +

∑
l∈L̄

ul (φl)

where the two identical sums in the two members of the inequality can be replaced
by other two identical sums∑

l∈L

ul (fl) +
∑
l∈L̄

ul (ψl) ≥
∑
l∈L

ul (f
′
l ) +

∑
l∈L̄

ul (ψl)⇒

⇒
[
fL
ψ

]
�
[
f ′L
ψ

]
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However, we need a sufficient condition, because in practice we can verify mutual
preferential independence, and not additivity, as the utility function is unknown.
In this verse, the implication holds nearly always, but not always.

Now, it is timely to ask two questions:

1. is mutual preferential independence also a sufficient condition for additivity?

2. in order to verify mutual preferential independence is it strictly necessary to
verify the preferential independence of every subset L?

Theorem 8 A decision problem with p ≥ 3 indicators enjoying mutual preferential
independence admits an additive utility function u (f).

So, for problems with at least three indicators, mutual preferential independence
is a necessary and sufficient condition for additivity. Unfortunately, in the case of
two indicators, this is no longer true.

Example 19 Figure 4.8 reports the indifference curves of a decision problem with
p = 2 indicators that represent benefits. Mutual preferential independence holds,
because for any fixed value of f2 it is preferable to increase f1, and for each fixed
value of f1 it is preferable that f2 increase. However, no additive utility function is
able to determine such indifference curves.

In fact, one can observe that:

(2, 0) ∼ (1, 1) ∼ (0, 2) and (1, 0) ∼ (0, 1)

By contradiction, let us suppose that an additive utility function exist. Since
(2, 0) and (0, 2) are indifferent impact, they have the same utility; the same occurs
for (1, 0) and (0, 1):{

u (0, 2) = u (2, 0)⇒ u1 (0) + u2 (2) = u1 (2) + u2 (0)

u (0, 1) = u (1, 0)⇒ u1 (0) + u2 (1) = u1 (1) + u2 (0)

Subtracting the corresponding terms, one obtains

u2 (2)− u2 (1) = u1 (2)− u1 (1)

and therefore

u2 (2) + u1 (1) = u1 (2) + u2 (1)⇒ u (1, 2) = u (2, 1)⇒ (1, 2) ∼ (2, 1)

but the two impacts (1, 2) e (2, 1) are not indifferent.

Example 19 and Figure 4.8 do not only suggest that mutual preferential indi-
pendence is insufficient to guarantee additivity when p = 2, but also that the issue
concerns the indifference curves: the presence of two straight lines, followed by other
curved lines (a perfectly possible case as long as the curves do not intersect) makes
it impossible to build an additive utility function.

4.8.6 Marginal rate of substitution

The missing condition to guarantee additivity concerns the steepness of the indif-
ference curves. We therefore need a measure of steepness.
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Figure 4.8: A decision problem with p = 2 indicators that are preferentially inde-
pendent, but with no additive utility function

Definition 9 We denote as marginal rate of substitution ( MRS) of f1 with f2 in
a given impact f the limit

λ12 (f) = lim
δf1→0

−δf2 (f, δf1)

δf1

where δf2 (f, δf1) is such that: f +

[
δf1

δf2 (f, δf1)

]
∼ f .

In other words, the marginal rate of substitution is the limit, for infinitesimal
variations of f1, of the ratio between the variations of f2 and f1 that produce
impacts indifferent with respect to f . The sign of the limit is reversed because it is
quite often negative (for example, when the two indicators are both costs or both
benefits). The definition assumes to start from an impact f , to slightly modify the
value of indicator f1 and to determine the corresponding variation of indicator f2

that allows to stay on the initial indifference curve4.

It is possible to give three different, but equivalent, expressions of the marginal
rate of substitution. The first one is not particularly meaningful, but it is useful
to obtain the other two. Let us assume that the indifference curves be regular arcs
and let us represent them in parametric form:{

f1 = f1 (α)

f2 = f2 (α)

The variations δf1 e δf2 used in the definition of λ12 (f) correspond to a variation
δα of the parameter; in this way, in fact, it is guaranteed that the impact remain
on the indifference curve.

λ12 (f) = lim
δf1→0

−δf2 (f, δf1)

δf1
= lim
δα→0

−f2 (α+ δα)− f2 (α)

f1 (α+ δα)− f1 (α)
= −

df2

dα
df1

dα

(4.3)

4In problems with more than two indicators, a marginal rate of substitution is defined for each
pair of indicators (l, l′), and it is computed assuming that all other indicators remain constant
while fl and fl′ are varied.
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Remark 2 From Equation (4.3) it follows immediately that the marginal rates of
substitution of f1 with respect to f2 and of f2 with respect to f1 are reciprocals:

λ12 (f) = −

df2

dα
df1

dα

e λ21 (f) = −

df1

dα
df2

dα

⇒ λ12 (f) =
1

λ21 (f)
per ogni f ∈ F

Let us see now other two possible expressions for the marginal rate of substitu-
tion.

Marginal rate of substitution and utility function Along an indifference
curve, the utility function is constant: u (f (α)) = c for all α. Therefore, it has a
first derivative equal to zero with respect to α:

du (f1 (α) , f2 (α))

dα
= 0⇒ ∂u

∂f1

df1

dα
+

∂u

∂f2

df2

dα
= 0⇒ −

df2

dα
df1

dα

=

∂u

∂f1

∂u

∂f2

Equation (4.3) implies that:

λ12 (f) =

∂u

∂f1

∂u

∂f2

(4.4)

that is, the marginal rate of substitution of f1 with f2 is the ratio of the partial
derivatives of the utility function with respect to f1 and f2. If the utility depends
strongly on f1 and weakly on f2, the marginal rate of substitution is large, that is,
a large variation of f2 is required to compensate for a small variation of f1

5.

Marginal rate of substitution and indifference curves If the indifference
curves are invertible, then each value of parameter α corresponds to a different
value of f1 and f2, and one can define function α = α (f1), which implies an explicit
expression for the indifference curve: f2 = f2 (α (f1)). The first derivative of that
expression is:

df2

df1
=
df2

dα

dα

df1
=

df2

dα
df1

dα

from which

λ12 (f) = −df2

df1
(4.5)

The marginal rate of substitution is the steepness of the indifference curves, with a
reverse sign.

4.8.7 Additivity and marginal rate of substitution

Let us go back to the problem of which preference relations with p = 2 indicators
are additive. By combining two distinct values for indicator f1 (respectively, f ′1 and
f ′′1 ) and two distinct values for indicator f2 (f ′2 and f ′′2 ), one can build four different
impacts. In general, the marginal rates of substitution λ12 in these four impacts
are fully independent. However, it can happen that they are related.

5Equation (4.4) also holds for p ≥ 3 indicators, given that the rate of substitution is defined
keeping all indicators constant, except for two.
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Definition 10 We denote as corresponding trade-off condition the following prop-
erty:

λ12(f ′1, f
′
2)λ12 (f ′′1 , f

′′
2 ) = λ12 (f ′′1 , f

′
2)λ12 (f ′1, f

′′
2 )

for every quadruplet of impacts (f ′1, f
′
2), (f ′′1 , f

′′
2 ), (f ′′1 , f

′
2), (f ′1, f

′′
2 ) ∈ F .

For any rectangle in F , the corresponding trade-off condition requires that the
products of the marginal rates of substitution in opposite vertices be the same. The
relation can be expressed also in the following equivalent ways:

λ12 (f ′1, f
′
2)

λ12 (f ′′1 , f
′
2)

=
λ12 (f ′1, f

′′
2 )

λ12 (f ′′1 , f
′′
2 )

and
λ12 (f ′1, f

′
2)

λ12 (f ′1, f
′′
2 )

=
λ12 (f ′′1 , f

′
2)

λ12 (f ′′1 , f
′′
2 )

In other words, when moving from f ′1 to f ′′1 , the marginal rate of substitution varies
by the same multiplying factor for any value of f2; as well, when moving from f ′2 to
f ′′2 , the marginal rate of substitution varies by the same multiplying factor for any
value of f1.

Figure 4.9 shows the condition: in the four points P , Q, R and S the marginal
rates of substitution are, respectively, equal to −a/c, −b/c, −a/d and −b/d. The
product of the rates in P and S is ab/cd, and it coincides with the product of
the rates in points Q and R. In fact, moving from P to Q the marginal rate of
substitution changes by a multiplying factor equal to b/a; moving from R to S the
two substitution rates are still different, but related by the same multiplying factor
b/a. The same occurs moving along axis f2, that is from P to R and from Q to S.

f 1

f 2

f '1

f '2

f ''1

f ''2

a b
c

d

a b

c

d

P Q

R S

Figure 4.9: The corresponding trade-off condition holds: the ratio between the
variations of f2 and f1 increases with f1 in a regular way (independent from f1)
and decreases as f2 increases, also in a regular way (independent from f2)

Example 20 Let us consider the preference relation of Figure 4.8:

(2, 2) ≺ (2, 1) ≺ (1, 2) ≺ (2, 0) ∼ (1, 1) ∼ (0, 2) ≺ (1, 0) ∼ (0, 1) ≺ (0, 0)

which enjoys mutual preferential independence, but not additivity. Let us consider
the four points (1, 0), (2, 0), (1, 1) and (2, 1): in the first three points, the rate of
substitution is 1 (in order to counterbalance an increase in f1, it takes an identical
increase in f2; in (2, 1), on the contrary, the rate of substitution is strictly larger
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than 1 (in order to counterbalance an increase in f1 it is not enough to increase
f2 by the same amoung). Therefore, the corresponding trade-off condition does not
hold.

Example 21 Let us consider the preference relation whose indifference curves are
described by in Figure 4.6 by Cobb-Douglas’ utility function u (f1, f2) = f2

1 f
3
2 . The

marginal rate of substitution is:

λ12 (f) =

∂u

∂f1

∂u

∂f2

=
2f1f

3
2

3f2
1 f

2
2

=
2f2

3f1

which enjoys the corresponding trade-off condition:

λ12 (f ′1, f
′
2)λ12 (f ′′1 , f

′′
2 ) =

2f ′2
3f ′1

2f ′′2
3f ′′1

=
2f ′2
3f ′′1

2f ′′2
3f ′1

= λ12 (f ′1, f
′′
2 )λ12 (f ′′1 , f

′
2)

In fact, this relation can also be expressed with an additive utility function, as already
shown.

Now, let us explore the relation between the corresponding trade-off condition
and additivity.

Theorem 9 If a preference relation admits an additive utility function, it enjoys
the corresponding trade-off condition with respect to any pair of indicators.

Proof. Once again, it is a matter of applying the definition:

λ12(f ′1, f
′
2)λ12 (f ′′1 , f

′′
2 ) =

∂u

∂f ′1
∂u

∂f ′2

∂u

∂f ′′1
∂u

∂f ′′2

Since u (f1, f2) = u1 (f1) + u2 (f2):

λ12(f ′1, f
′
2)λ12 (f ′′1 , f

′′
2 ) =

∂u1

∂f ′1
∂u2

∂f ′2

·

∂u1

∂f ′′1
∂u2

∂f ′′2

=

∂u1

∂f ′1
∂u2

∂f ′′2

·

∂u1

∂f ′′1
∂u2

∂f ′2

and getting back to function u (f1, f2) one obtains:

λ12(f ′1, f
′
2)λ12 (f ′′1 , f

′′
2 ) =

∂u

∂f ′1
∂u

∂f ′′2

∂u

∂f ′′1
∂u

∂f ′2

= λ12(f ′1, f
′′
2 )λ12 (f ′′1 , f

′
2)

Therefore, the corresponding trade-off condition is necessary for additivity. One
can wonder whether it is also sufficient, at least under suitable conditions. The
answer is positive, exactly in the missing case.

Theorem 10 If p = 2 and the two indicators enjoy the corresponding trade-off
condition, there exists an additive utility function.

Example 22 The Cobb-Douglas’ functions enjoy the corresponding trade-off con-
dition even though they are not additive utility function. However, they are equival-
ent to the additive functions u′ (f) =

∑p
l=1 αl log fl, obtained by applying the simple

transformation u′ (f) = log u (f).
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Uniform marginal rate of substitution

A remarkable special case which enjoys the corresponding trade-off condition is that
in which the marginal rate of substitution does not depend on f , but is uniform
(λ12 (f) = λ̄), that is when the decision-maker is always willing to replace a unit of
f1 with a fixed number λ̄ of units of f2. In that case, there exist the additive utility
function:

u (f1, f2) = w1f1 + w2f2

and the marginal rate of substitution is λ12 =
w1

w2
. The indifference curves form a

family of parallel straight lines.

4.8.8 Building an additive utility function

Let us assume that theory guarantee the existence of an additive utility function
u (f) =

∑p
l=1 ul (fl). It does not, however, provide the terms ul (fl) and it is

not enough to find general utility functions that work for each attribute; it is also
necessary to combine them correctly. The process to do that can be decomposed
into two phases:

1. build functions ũl (fl) that respect the corresponding trade-off condition, but
do not specify the absolute scale of the utility values;

2. estimate the substitution rates, so as to rescale the ũl functions before sum-
ming them.

In other words, first one determines a single-variable function ũl (fl) for each indic-
ator; then, one determines scaling coefficients wl in order to sum them:

u (f) =

p∑
l=1

wlũl (fl)

where coefficients wl yield a convex combination: wl ≥ 0 for each l ∈ P and∑p
l=1 wl = 1. In general, the ũl (fl) functions are normalized, that is, they assume

values that:

1. are pure adimensional numbers;

2. fall within the interval [0, 1].

The main advantage of such functions is that they remove the scale, that is the
starting value (offset) and the unit of the measure.

The bisection method

Building a utility function for a one-dimension impact (F ⊆ R) is much easier than
for a multidimensional one. In fact, it only takes to compare pairs of numbers and
wondering which of the two is better: it can be boring, but not impossible, to give
consistent answers to all the required questions.

However, the function we want to build must respect a condition stronger than
the simple requirement to sort all impacts. We want the difference between the
utilities of two impacts to measure the strength of the relative preference: nearly
indifferent impacts should have very similar utility values, even though the values
of the indicators are very different; conversely, impacts well distinguished from the
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preferential point of view should have very different utility values, even though the
values of the indicators are very close.

The bisection method builds such a function with a dicothomic approach, by
subsequent bisections. Let us suppose that we must tune the air conditioning of a
room, and let us focus on the temperature. It is neither a cost nor a benefit, since
the preferred value is neither the lowest nor the highest one. First, it is necessary to
determine the projection on the f1 axis (reporting the temperature) of the impact
set F , fixing the extreme feasible values (for example, between f = 16 and f = 30
degrees). Now, asking a decision-maker to directly assign utility values to all impacts
in F would require an excessive optimism on human capacities: we would obtain
random numbers. On the other hand, if the preference relation is a weak order
and the impacts do not form an infinite sequence more and more preferable (very
rare in practice), the decision-maker is certainly able to indicate the best and worst
impacts, that is the temperatures corresponding to the maximum and the minimum
utility. The worst temperatures (that can be several) are conventionally associated
to a zero utility, the best ones to a value equal to 1. For example, let u (30) = 0
and u (22) = 1. To proceed, we assume that the decision-maker is able to indicate
temperatures having a utility exactly intermediate between the extreme ones. This
is stronger than requiring to sort the impacts, but weaker than requiring to assign
them absolute utility values.0 We assign the intermediate impacts a utility value
equal to 0.5. Let us suppose that u (27) = u (18) = 0.5. The process continues
asking to indicate impacts intermediate between the best and the intermediate ones
and assigning them value 0.75. We assign the impacts halfway between the worst
and the intermediate with value 0.25, and so on, progressively halving the utility
intervals (0.125, 0.375, 0.625, 0.875. . . ) When enough points have been obtained,
we attempt an interpolation with an analytic expression ũ (f) drawn from a suitable
family of functions.

Utility proportional to the indicator

When the indicator represents a benefit, sometimes it is possible to assume that the
utility grow uniformly with the value of the indicator. A common way to generate
a normalized utility function in this case is the following one:

û (f) =
f −min

x∈X
f (x)

max
x∈X

f (x)−min
x∈X

f (x)

For indicators that represent costs, one can do the same, keeping into account
the opposite behaviour:

û (f) =
max
x∈X

f (x)− f

max
x∈X

f (x)−min
x∈X

f (x)

Example 23 Consider the decision problem with two indicators (time and cost)
discussed in Example 35 of Chapter 6. Let us assume the utility to be additive and
to have a linear dependence both on the time and the cost.

Table 4.3 reports the original values of the indicators and their corresponding
normalized utilities for the five alternatives of the problem. In order to build the
overall utility function of the problem, it remains to determine the coefficients wl
with which to combine the normalized utilities.
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f1 (ore) f2 (Euro) ũ1 ũ2

Train 5.5 100 0.00 1.00
Car 4.0 150 0.33 0.83
Airplane 1.0 300 1.00 0.33
Coach 5.0 180 0.11 0.73
Taxi 4.0 400 0.33 0.00

Table 4.3: Times and costs associated to different means of transport which can be
used for a trip, and their normalized utilities under the assumption of an additive
and linear utility

Problems related to normalization

If the feasible region is infinite or combinatoric, quite often it is not trivial to
determine the worst and the best impacts, because it requires to solve optimisation
problems. In order to handle this complication, one can replace the extreme values
with an underestimate of the minimum and an overestimate of the maximum. This
also yields a normalized utility function, that is different from the above mentioned
one, because it does not cover the whole interval [0; 1]. If the estimates are loose,
the values of this normalized utility end up being “compressed” in a smaller range,
which can create problems when combining the function with those associated to
other indicators.

To be absolutely rigorous, a worst and a best impact could even not exist: the
situation could degrade or improve indefinitely (which does not mean unboundedly,
as the utility could anyway converge to a limit value without ever reaching it). In
these cases, conventional limits could be fixed, beyond which any further improve-
ment or worsening is simply neglected. For example, in the case of the concentration
of pollutants, there will be a minimum value under which it is assumed (presum-
ably on the basis of historical investigations) that the pollutant be innocuous, and a
maximum value above which the concentration is declared absolutely unacceptable.
The choice of these values, as we shall see, can influence the result of the decision
process.

Also notice that the normalized utility intrinsically depends on the definition of
the impact set F . This could look like an innocuous truism, as F is given. However,
we know from the case studies that in complicated decision processes quite often the
alternatives are not known a priori. New alternatives, and therefore, new impacts
can appear in following phases of the decision process. If the values of the indicator
in the new impacts exceed the previous maximum or minimum in F , the normalized
utility must be recomputed, and this can influence the following computations.
However, many other properties can be established on this point.

4.8.9 Determining the weights

Given the single components of an additive utility function, the weigths wl with
which to combine them are still to be determined. This requires to identify a
sufficient number of pairs of indifferent impacts. Equalling the utilities of the two
impacts imposes a constraint on the weights wl. When the constraint system admits
a single solution, this provides the values of the weights. This process is the same
described in Section 4.8.2 for general utility functions, but there is a strong differ-
ence: the equation system to be solved is linear, instead of general and dependent
on the family of utility functions chosen. Moreover, the coefficients wl have a much
more intuitive meaning than the parameters αr required by the general method.
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The pairwise comparison matrix

If the single-variable utility functions ũl (fl) have been correctly estimated, the
overall utility fuction u (f) has a very useful property. The indifference curves in
the indicator space f are general curves, but their images in the utility space ũ (f)
are straight lines. This is trivially due to the fact that u (f) = c corresponds to∑p
l=1 wlũl = c: the transformations ũl = ũl (fl) rescale the axes so as to incorporate

all nonlinearities and make them disappear.

Following this line, it is possible to define marginal rates of substitution λ̃lm
between the components of the utility function, ũl, instead of between the indic-
ators fl. These rates of substitution are uniform and each one coincides with the
ratio of the weights of the two components:

λ̃lm =

∂u

∂ũl
∂u

∂ũm

=
wl
wm

Definition 11 We denote as pairwise comparison matrix Λ̃ = {λ̃lm} the matrix
reporting all rates of substitution between the normalized utilities.

A very simple way to determine every rate λ̃lm is to find a pair of indifferent
impacts, having the same values for all indicators except for fl and fm. The equation
that forces their utility to be the same relates wl and wm by fixing their ratio, that
is the marginal rate of substitution λ̃lm = wl/wm

In p−1 steps, all the weights can be determined up to a multiplying factor, that
will be determined by the normalization condition

∑
l wl = 1. This requires to avoid

pairs (l,m) for which the substitution rate is implicitly determined by other ratios.
For example, once λ̃12 = w1/w2 and λ̃23 = w2/w3 are known, it is not necessary
to determine λ̃13 = w1/w3, since λ̃13 = w1/w3 = (w1/w2) · (w2/w3) = λ̃12λ̃23. In
order to avoid such pairs, it is enough to build an auxiliary graph, whose vertices
represent the attributes and whose edges represent the marginal substitution rates.
Since every cycle in the graph corresponds to a subset of substitution rates whose
overall product is equal to 1, and in which any rate coincides with the reciprocal of
the product of the others, cycles should be avoided: the subset of p − 1 computed
rates should form a spanning tree. The following example applies such a process.

Example 24 Suppose that the interviews with the decision-maker have established
the validity of the mutual preferential independence assumption for a problem with
four attributes. Also suppose that the following normalized utility functions have
been determined with the bisection method:

ũ1 = 2f1 +
1

2
, with f1 ∈

[
−1

4
;

1

4

]
ũ2 =

log2 f2 − 2

8
, with f2 ∈ [4; 1024]

ũ3 =
20− f3

15
, with f3 ∈ [5; 20] ũ4 =

√
f4

6
, with f4 ∈ [0; 36]

Finally, suppose that the following p− 1 = 3 pairs of indifferent impacts have been
identified:

A = (0, 8, 10, 9) ∼ B =

(
1

4
, 8, 10, 4

)
C =

(
−1

4
, 256, 10, 0

)
∼ D =

(
−1

4
, 256, 20, 16

)
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E = (0, 4, 5, 25) ∼ F =

(
−1

4
, 64, 5, 25

)
Notice that the two impacts of each selected pair differ only for two of the four
indicators: A and B differ for the first and fourth indicator, C and D for the third
and fourth, E and F for the first two. This is not rigorously necessary, but it
simplifies the computations.

First of all, we have to convert the impact into the corresponding utility func-
tions.

ũA =

(
1

2
,

1

8
,

2

3
,

1

2

)
ũB =

(
1,

1

8
,

2

3
,

1

3

)
ũC =

(
0,

3

4
,

2

3
, 0

)
ũD =

(
0,

3

4
, 0,

2

3

)
ũE =

(
1

2
, 0, 1,

5

6

)
ũF =

(
0,

1

2
, 1,

5

6

)
Additivity allows to express the overall utility as a convex combination of the

single components:
u = w1ũ1 + w2ũ2 + w3ũ3 + w4ũ4

from which the three equalities

u (A) = u (B)⇒ 1

2
w1 +

1

8
w2 +

2

3
w3 +

1

2
w4 = 1w1 +

1

8
w2 +

2

3
w3 +

1

3
w4

u (C) = u (D)⇒ 0w1 +
3

4
w2 +

2

3
w3 + 0w4 = 0w1 +

3

4
w2 + 0w3 +

2

3
w4

u (E) = u (F )⇒ 1

2
w1 + 0w2 + 1w3 +

5

6
w4 = 0w1 +

1

2
w2 + 1w3 +

5

6
w4

⇒

⇒



1

6
w4 =

1

2
w1

2

3
w3 =

2

3
w4

1

2
w1 =

1

2
w2

⇒


w4 = 3w1

w3 = w4

w1 = w2

Since the impacts have been chosen with only two different indicators, the equalities
relate two weights at a time. In this way, each one determines a rate of substitution
λ̃lm = wl/wm. For example, λ̃41 = 3. Notice that weight w4 is larger than weight
w1, suggesting that the utility ũ4 is more relevant than utility ũ1. In fact, moving
from impact A to impact B, utility ũ4 varies less than utility ũ1. If we directly
considered indicators f4 and f1, we would notice exactly the opposite (the value of
f4 varies strongly with respect to that of f1), but the indicators depend on the units
of measure and they influence the utility in a different way in different impacts.

Adding the normalization condition to the equalities determined by the pairs of
indifferent impacts allows to determine the weights:

w1 + w2 + w3 + w4 = 1⇒ w2 + w2 + 3w2 + 3w2 = 1⇒ w2 =
1

8

which implies

w =

[
1

8

1

8

3

8

3

8

]T
Since the pairwise comparison matrix is composed of the ratios wl/wm of the

weights of the normalized utilities, it necessarily enjoys the following properties:
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1. positivity : the rates of substitution between normalized utilities are positive

λ̃lm > 0 per ogni l,m ∈ P

2. reciprocity : the rate of substitution of a utility with respect to another one is
the reciprocal of the rate of the second with respect to the first one

λ̃lm =
1

λ̃ml
per ogni l,m ∈ P

3. consistency : two rates of substitution with “sequenced” indices determine the
third one

λ̃ln = λ̃lmλ̃mn per ogni l,m, n ∈ P

The definition builds the elements of matrix Λ̃ starting from the weights. In
practice, the converse occurs: the elements of the matrix are empirically measured
as described in the example, whereas the weights are unknown, and must be re-
constructed starting from the former. The following properties allow to do that
without solving a linear system of equations.

Proposition 1 Matrix Λ̃ has:

� rank 1 and p− 1 eigenvalues equal to zero;

� a main diagonal of elements equal to 1 and a dominant eigenvalue µmax = p;

� a dominant eigenvector xmax proportional to the weight vector.

Proof. The ratio between corresponding elements of columns m and n is λ̃mn, that
is the same for all elements. In fact, consistency implies:

λ̃ln

λ̃lm
= λ̃mn for each l ∈ P

Since all columns are proportional, the rank of the matrix is 1. Moreover, it coincides
with the number of nonzero eigenvalues, so that p − 1 eigenvalues are null. The
dominant eigenvalue µmax coincides therefore with the sum of all eigenvalues, which
on its turn coincides with the trace of the matrix, that is with the sum of the
p elements of the main diagonal. These are all equal to 1, because reciprocity
imposes λ̃2

lm = 1 and positivity forbids the negative solution. Finally, the dominant
eigenvector xmax solves the equation:

Λ̃xmax = µmaxxmax ⇒
p∑

m=1

wl
wm

xmax
m = pxmax

l for each l ∈ P ⇒

⇒ xmax
l

wl
=

1

p

p∑
m=1

xmax
m

wm
for each l ∈ P

so that xmax
l /wl does not depend on l: vector xmax is proportional to w.

Remark 3 In order to find the weight vector w, it is not necessary to determine
the dominant eigenvector: it is enough to normalize any column of Λ̃.
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Proof.

λ̃lm
p∑
l=1

λ̃lm

=

wl
wm
p∑
i=1

wi
wm

=
wl
p∑
i=1

wi

= wl

The process that computes the weights by normalizing the elements of column l
corresponds to using as a spanning tree the star centred in the vertex corresponding
to indicator fl.

Example 25 A decision-maker has been asked to indicate the rates of substitu-
tion between three normalized utility functions ũ1, ũ2 and ũ3. The answers of the
decision-maker generate the following matrix.

ũ1 ũ2 ũ3

ũ1 1 2 6

Λ̃ = ũ2 1/2 1 3
ũ3 1/6 1/3 1

It can be verified that the matrix is positive, reciprocal and consistent. Therefore,
it is possible to build from it an additive utility function u =

∑p
l=1 wlũl. The weight

vector is w = [0.6 0.3 0.1]
T

, and it coincides, up to a multiplying factor, with each
of the columns of Λ̃ (the constant is 6/10 for the first column, 3/10 for the second
one and 1/10 for the third).

Studying the characteristic polynomial of Λ̃

∣∣∣µI − Λ̃
∣∣∣ =

∣∣∣∣∣∣
µ− 1 −2 −6
−1/2 µ− 1 −3
−1/6 −1/3 µ− 1

∣∣∣∣∣∣ = (µ− 1)
3−1−1−(µ− 1)−(µ− 1)−(µ− 1) =

= µ3 − 3µ2 + 3µ− 1− 1− 1− 3µ+ 3 = µ3 − 3µ2 = µ2 (µ− 3)

we verify that two eigenvalues are equal to zero, and that the dominant one is equal
to p = 3. The corresponding eigenvector solves the system of equtions:

(
3I − Λ̃

)
x = 0⇒

 3− 1 −2 −6
−1/2 3− 1 −3
−1/6 −1/3 3− 1

 x1

x2

x3

 =

 2x1 − 2x2 − 6x3

−1/2x1 + 2x2 − 3x3

−1/6x1 − 1/3x2 + 2x3

 = 0

and is proportional to the weight vector w.

4.8.10 The process in summary

Summarising, the process to determine the utility function is composed of the fol-
lowing steps:

1. interview the decision-maker in order to understand whether mutual prefer-
ence independence holds (asking him/her to compare different pairs of indic-
ators with the complementary subset);

2. in the positive case, focus on each attribute, fixing the other ones to any value,
and build a single-variable component of the utility function with a method
respecting the entity of the relative preference gaps;

3. determine the weights with which to combine such functions, sampling the
impacts until a sufficient number of pairs of indifferent impacts has been
found;
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4. check a posteriori that the obtained utility function is valid, testing it on
impacts not used before.

In any moment, it can be necessary to go back to correct the single components
of the utility or even rejecting the additivity assumption, in which case the whole
process is invalidated.
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4.9 Exercises

Exercise 1

A community centre is looking for a new location: there are four alternatives (A, B,
C and D) besides alternative 0 (staying in the present location). It has been decided
that the choice among the five alternative should be definitive and that it shall be
taken based on three factors: space, accessibility and prestige of the location. The
following table provides the values of the indicators associated to each alternative,
that must be considered as benefits.

Indicators A B C D 0
Space 90 90 90 0 100

Accessibility 12 13 100 100 37
Prestige 30 0 5 100 10

Sort the alternatives based on:

� the lexicographic method with respect to sequence P = (2, 3, 1);

� the lexicographic method with aspiration levels, with respect to sequence P =
(2, 3, 1) with levels ε1 = 5 and ε3 = 10;

� the utopia point method with the Manhattan distance;

� the utility function u (f) = w1f1+w2f2+w3f3 with weights obtained assuming
that (50, 100, 0) ∼ (50, 20, 40) and (40, 60, 20) ∼ (60, 40, 20).

For each of the previous cases, build the associated Borda count.

Solution

The lexicographic method sorts all the alternatives with respect to the first indicator
in the given sequence. Ties are solved considering the second indicator, then the
third, and so on. Contrary to the assumption made in Section 4.5, the indicator
here must be considered as benefits, instead of costs. In the specific case, indicator
2 yields the nontotal order C ∼ D ≺ 0 ≺ B ≺ A. Indicator 3 allows to order
the indifferent alternatives, obtaining total order: D ≺ C ≺ 0 ≺ B ≺ A. The
corresponding Borda count is: B(A) = 1 (because A is weakly preferred only to
itself), B(B) = 2 (because B is weakly preferred to itself and to A), B(C) = 4,
B(D) = 5 and B(0) = 3.

Since the indicators are benefits, the given aspiration levels require f1 (x) ≥ ε1
e f3 (x) ≥ ε3. This removes alternatives B and C because they are unsatisfactory
with respect to ε3 and alternative D because it is unsatisfactory with respect to
ε1. The lexicographic order of the remaining alternatives is determined only by the
second indicator and is: 0 ≺ A. The corresponding Borda count is: B(A) = 1 and
B(0) = 2.

The utopia point for the given problem is f◦ = (100, 100, 100). The Manhattan
distances for the alternatives are reported in the following table.

A B C D 0
Distance 168 197 105 100 153
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For example, the distance of A from f◦ is d(A, f◦) = |90− 100| + |12− 100| +
|30− 100| = 10 + 88 + 70 = 168. As a consequence, the order of the alternatives is
D ≺ C ≺ 0 ≺ A ≺ B, because better alternatives have smaller distance from the
utopia point. The corresponding Borda count is: B(A) = 2, B(B) = 1, B(C) = 4,
B(D) = 5 e B(0) = 3.

In theory, the components of the utility function should be normalised before
combining them, but the text does not require it, probably because the values
reported in the table are already normalised. That they are normalised between 0
and 100, instead of between 0 and 1, of course, does not change anything. The two
pairs of indifferent impacts are sufficient (and strictly necessary) to determine the
weights, together with the normalisation condition on the weights themselves:
u (50, 100, 0) = u (50, 20, 40)

u (40, 60, 20) = u (60, 40, 20)

w1 + w2 + w3 = 1

⇒


50w1 + 100w2 + 0w3 = 50w1 + 20w2 + 40w3

40w1 + 60w2 + 20w3 = 60w1 + 40w2 + 20w3

w1 + w2 + w3 = 1

from which 
100w2 = 20w2 + 40w3

40w1 + 60w2 = 60w1 + 40w2

w1 + w2 + w3 = 1

⇒


2w2 = w3

w2 = w1

w1 + w2 + w3 = 1

which implies w3 = 2w1, w2 = w1 and w1 + w1 + 2w1 = 1, that is w1 = w2 = 1/4
and w3 = 1/2. The following table reports the values of the utility function for all
alternatives.

A B C D 0
u 40.5 25.75 50 75 39.25

For example, u (f (A)) = 1/4 · 90 + 1/4 · 12 + 2/4 · 30 = 162/4. As a consequence,
the order of the alternatives is D ≺ C ≺ A ≺ 0 ≺ B. The corresponding Borda
count is: B(A) = 3, B(B) = 1, B(C) = 4, B(D) = 5 e B(0) = 2. Notice that the
Borda count and the utility function u are equivalent, even if the transformation
that relates them has no simple analitic form.

Exercise 2

Given the following decision problem

min f1(x) = x2 − 4x

min f2(x) = −x2

0 ≤ x ≤ 3

find and represent the utopia point U in the space of the indicators and determine
which between solutions x′ = 0 e x′′ = 1 is preferable with respect to the L1

(Manhattan), L2 (Euclidean) and L∞ distance from U .

Solution

In order to determine the utopia point, one must solve separately the problems
min f1(x) = x2− 4x con 0 ≤ x ≤ 3 and min f2(x) = −x2 con 0 ≤ x ≤ 3. Since they
are problems in a single variable, the student is expected to be able to solve them,
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obtaining f◦1 = −4 (for x = 2) and f◦2 = −9 (for x = 3). Therefore, the utopia
point is f◦ = (−4,−9).

The impacts corresponding to x′ and x′′ are f (x′) = (0, 0) e f (x′′) = (−3,−1).
The distances indicated in the text are reported in the following table.

Distance from f◦ f (x′) f (x′′)
L1 13 9

L2

√
97

√
65

L∞ 9 8

According to all three distances, the preferable solution is x′′.

Exercise 3

Given the following decision problem:

min f1(x) = x2
1 + x2

2 − 2x1

min f2(x) = −x2

x2
1 + 4x2

2 ≤ 8

x1 − 2x2 ≥ 0

indicate the solution preferred by a decision-maker with the lexicographic preference
determined by the index sequence P = (2, 1).

Apply again the method assuming an aspiration level equal to ε1 = 1/4.

Determine the utopia point U and the preferred solution chosen according the
utopia point method based on the Manhattan distance (L1), the Euclidean distance
(L2) and the L+∞ distance, not in the entire feasible region, but only among the
three following alternatives: A = (0, 0), B = (2, 1/2) e C = (1/2, 1).

Solution

The problem can be solved graphically or applying the techniques described in
Chapter 5. Figure 4.10 shows the feasible region X.

FIGURE TO BE ADDED: ELLIPSIS CENTRED IN THE ORIGIN WITH
SEMIAXES 2

√
2 AND

√
2, LINE THROUGH THE ORIGIN WITH SLOPE 2, f1

POINTS TOWARDS (1, 0), f2 UPWARDS

Figure 4.10: Feasible region for the problem of Exercise 3

The lexicographic method orders completely the indicators and determines all
the optimal solutions with respect to the first indicator. In this case, min f2(x) =
−x2 corresponds to maximising x2. Graphically, we obtain a single globally optimal
point: x◦ = C = (1/2, 1), so it is not necessary to proceed with the optimisation of
f1(x) in set X◦2 .

The method with aspiration levels adds to the problem constraints that guaran-
tee acceptable values for the secondary indicators. Since f1 must be minimised, the
associated constraint is f1(x) = x2

1 + x2
2 − 2x1 ≤ ε1 = 1/4, that can be rewritten as

(x1 − 1)
2

+ x2
2 ≤ 1/4, and therefore imposes to the solutions to have a distance not

larger than 1/2 from point (1, 0).
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The utopia point is obtained optimising separately the indicators. The two
optimal values are f◦1 = 1, obtained in (1/2, 1), and f◦2 =, obtained in (1, 0). It is
not actually necessary to compute the optimal solutions: the value of the optimum
is enough, because the utopia point is in the indicator space. Therefore, the utopia
point is U = (−1,−1). The three solutions indicated in the text generate the
following impacts: f (A) = (0, 0), f (B) = (1/4,−1/2) e f (C) = (1,−1). Their
distances from the utopia point are reported in the following table.

Distance from f◦ f (A) f (B) f (C)
L1 13 9 9

L2

√
97

√
65

√
65

L∞ 9 8 8

The preferred solution is B for L1 and L2, A for L∞.

Exercise 4

The following table represents the performance of five alternatives with respect to
four decision criteria (all of them to be maximised), in a scale from 0 to 100.

a1 a2 a3 a4 a5

f1 100 70 60 40 20
f2 60 45 40 100 80
f3 60 25 20 80 100
f4 20 100 90 50 40

Which alternative is the best one if the indifference curves belong to the family:

w1f1 + w2f2 + w3f3 + w4f4 = c with wi = 0.25 for i = 1, . . . , 4

How much should the value of w1 increase (keeping the values of the other weights
constant) so that a1 become the best alternative? And the value of w4?

Solution

Indicator f1 is considered a benefit, contrary to the assumption made in Section 4.5.
With respect to it, the alternatives follow the order: a1 ∼ a2 ∼ a3 ≺ a4 ≺ a5. This
order can be refined considering first indicator f4 (a2 ∼ a3 ≺ a1), then indicator f3

(a2 ≺ a3), obtaining the lexicographic order: a2 ≺ a3 ≺ a1 ≺ a4 ≺ a5.

The aspiration levels impose the following constraints: f4 ≥ ε4 = 30, f3 ≥ ε3 =
30 e f2 ≥ ε2 = 30, removing solutions a1, a2 e a3. This generates the order: a4 ≺ a5.

The given indifference curves (hypersurfaces) imply that f1 + f2 + f3 + f4 = c.
Since by definition an indifference curve is the set of impacts in which the utility
function assumes a constant value, one can write u (f) = f1 + f2 + f3 + f4, that is
already additive. In order to normalise this expression, it is enough to normalise
the weights of the single components, that are all equal at first: u (f) =

∑p
l=1 wlfl

con
∑p
l=1 wl = 1. Since wl = w for all l ∈ P , we have wl = 1/4, and therefore

u (f) =
1

4
f1 +

1

4
f2 +

1

4
f3 +

1

4
f4

This function determines the following utility values for the alternatives:
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a1 a2 a3 a4 a5

u(f(a)) 60 61.25 65 67.5 60

so that the order is a4 ≺ a3 ≺ a2 ≺ a1 ∼ a5.

Exercise 5

Given the following decision problem:

max f1(x) = x1 − 3x2

max f2(x) = −4x1 + x2

−2x1 + 2x2 ≤ 7

2x1 + 2x2 ≤ 11

x1 ≤ 4

x1, x2 ≥ 0

determine its optimal assuming that the decision-maker has a uniform marginal
rate of substitution of 4 units of f1 for 1 unit of f2.

Solution

The marginal rate of substitution between two indicators is the ratio between the
variation of the second indicator and the corresponding variation of the first one
along an indifference curva (keeping all the other possible indicators constant). In
the specific case, therefore µ12 = 1/4. A uniform rate corresponds to a linear utility
function u (f) = w1f1 + w2f2 con µ12 = ∂u

∂f1
/ ∂u∂f2

, that is

µ12 =

∂u
∂f1

∂u
∂f2

=
w1

w2
=

1

4

from which w2 = 4w1. The normalisation condition w1 +w2 = 1 implies w1 = 1/5 e
w2 = 4/5, that is u (f) = f1 +4f2. Graphically, one can obtain the optimal solution
x∗ = (0, 7/2).

Exercise 6

Given the following decision problem:

min f1(x) = x2
1 + x2

2

max f2(x) = x2

x2 ≤ 10

determine the utopia point, considering the two indicators as independent.

Determine the optimal solution with respect to an additive utility function whose
component associated to f1(x) is:

u1 (f1) =

10− f1

20
per 0 ≤ f1 ≤ 200

0 per f1 ≥ 200

(that is, linearly decreasing to zero until f1 = 200 and constant after that), while
the component associated to f2 coincides with the value of f2. The two components
have equal weight.
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Solution

Considering the two indicators as independent, the utopia point corresponds to the
minimum feasible value for f1 and the maximum one for f2, therefore f◦ = (0, 10).

In order to deal with the indicated utility function, it is advisable to solve the
problem separately in the two parts in which its definition divides the feasible region:

� for f1(x) = x2
1 + x2

2 ≥ 200, the utility function is:

u (x) =
1

2
u1 (x) +

1

2
u2 (x) =

1

2
· 0 +

1

2
x2

that has maximum value in x2 = 10 (and any x1 in [−10, 10]) equal to u (x′) =
5;

� for f1(x) = x2
1 + x2

2 ≤ 200, the utility function is:

u (x) =
1

2
u1 (x) +

1

2
u2 (x) =

1

2
·
(

10− x2
2

40

)
+

1

2
x2

Since x1 is unconstrained, we can maximise the utility setting x1 = 0, obtain-
ing

u (x) =
1

2
·
(

10− x2
2

20

)
+

1

2
x2 = 10 + 10x2 −

x2
2

40
= 10

(
1− x2

2

)2

that has maximum value in x2 = 2, equal to u (x′) = 0.

The globally optimal points, therefore, are x1 ∈ [−10, 10] and x2 = 10.

Exercise 7

The following decision problem has three alternatives and four indicators:

Indicatori a1 a2 a3

f1 100 0 20
f2 10 10 100
f3 30 80 0
f4 60 0 80

Determine the best alternative with the lexicographic method with respect to the
sequence of indicators P = (2, 1, 3, 4), considering them as costs.

Apply again the method introducing the aspiration levels ε1 = 90, ε3 = 85 and
ε4 = 70.

Determine the best alternative with respect to the additive utility function that
combines components equal to the indicators (ul = fl) or to their squares (ul = f2

l )
with the following weights: w1 = 0.25, w2 = 0.30, w3 = 0.40 e w1 = 0.05. For the
sake of simplicity, we use nonnormalised utilities.

Solution

The lexicographic method first uses indicator f2 to sort the alternatives: a1 ∼ a2 ≺
a3. Since there are equivalent alternatives, we use f1 to distinguish them: a2 ≺ a1.
Overall, the final order isa2 ≺ a1 ≺ a3.
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Since the indicators represent costs, the aspiration levels turn into constraints:
f1 ≤ ε1 = 90 (that forbids alternative a1), f3 ≤ ε3 = 85 and f4 ≤ ε4 = 70 (that
forbids alternative a3). Only alternative a2 remains: in this case, the aspiration
levels do not modify the choice.

The following table reports the utility values for the three alternatives based on
the two indicated functions.

Utility a1 a2 a3

u(f) =
∑
l∈P wlfl -43 -35 -39

u(f) =
∑
l∈P wlf

2
l -3070 -2590 -3420

Hence, the first function determines the order a2 ≺ a3 ≺ a1, while the second
determines the order a2 ≺ a1 ≺ a3.

Exercise 8

Given the following evaluation matrix:

Indicatori a1 a2 a3

f1 80 20 60
f2 10 90 50

determine the ordering of the alternatives with the utopia point method using the
L1, L2 and L∞ distances and considering the values of the indicators as costs.

Consider an additive utility function in which components associated to the
two indicators are the indicators themselves with the opposite sign. Determine
the order of the alternatives normalising the two components with respect to the
extreme values assumed by the indicators in the feasible region and combining them
with weights w1 = 0.7 and w2 = 0.3.

Solution

The utopia point is f◦ = (20, 10) and its distances from the alternatives are indic-
ated in the next table.

Distances a1 a2 a3

L1 60 80 80
L2 60 80 56.6
L∞ 60 80 40

The order of the alternatives is therefore:

� a1 ≺ a2 ∼ a3 for L1;

� a3 ≺ a1 ≺ a2 for L2 and L∞.

The normalised components of the utility function:

ũl =
max
x∈X

fl(x)− fl(x)

max
x∈X

fl(x)−min
x∈X

fl(x)

are reported in the following table:

a1 a2 a3

ũ1(x) 0 1 1/3
ũ2(x) 1 0 1/2
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so that the alternatives have utility ũ(a1) = 0.3, ũ(a2) = 0.7 e ũ(a3) = 23/60 =
0.383, and their order is a2 ≺ a3 ≺ a1.
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Chapter 5

Mathematical Programming

This chapter deals with the simplest class of decision problems:

� the system is deterministic, that is there is a single scenario:

Ω = {ω̄}

and, since the exogeneous variables are constant (ωk = ω̄k), the impact f only
depends on the alternative x and can be indicated simply as f (x);

� there is a single decision-maker:

|D| = 1

� the preference relation Π admits a known consistent value function:

∃v : F → R : Π = {(f, f ′) ∈ F × F : v (f) ≥ v (f ′)}

This class of problems is mainly treated in the mathematical literature, where it
is more common to express preference with a cost function, instead of a value
function. The only difference is that such a function associates the preferred impacts
to smaller values, instead of larger ones and it must therefore be minimized, instead
of maximized. Since the cost can be defined as the opposite of the value (c = −v),
we could formulate the problem as the minimisation of c (x) = −v (f (x, ω̄)) with
respect to x ∈ X. For the sake of briefness, we will directly denote with f the cost
(which is not in general equal to the impact f : this is an abuse of notation), and
we will write

min f (x)

x ∈ X

We will also make an additional assumption on the structure of the solution set X,
that is, that it can be described through a finite system of inequalities:

X = {x ∈ Rn : gj (x) ≤ 0 for j = 1, . . . ,m}

where gj : X → R e gj ∈ C1 (X) for j = 1, . . . ,m, that is, the constraint functions gj
are real-valued continuous functions with a continuous first derivative in the feasible
solution set of the problem. Finally, we will assume that also the cost function be
continuous with its first derivative in the same set: f ∈ C1 (X).

This class of problems (sometimes with more or less strict assumptions on the
continuity of functions and derivatives) are denoted under the large label of Math-
ematical Programming problems. The reason is that describing both the preference
and the feasible region through real-valued functions allows to apply to these de-
cision problems the whole machinery of mathematical analysis.

115
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5.1 Basic concepts

Definition 12 Given a set X ⊆ Rn and a function f : X → R, we denote as global
optimum point a point x◦ ∈ X such that

f (x◦) ≤ f (x) for all x ∈ X

Figure 5.1: Graph of a function f (x) with a feasible region X and the global
optimum point x◦

Figure 5.1 shows an example of function defined in an interval, with a global
optimum point. From the remarks of Section 4.1, it clearly derives that the solutions
of a decision problem falling under the class of Mathematical Programming are
the global optimum points. As it is not easy to identify such points, we consider
a second, larger, set of points, for which it is possible to develop computational
methods.

Definition 13 Given a set X ⊆ Rn and a function f : X → R, we denote as local
optimum point a point x∗ ∈ X such that

∃ε > 0 : f (x∗) ≤ f (x) for all x ∈ X ∩ Ux∗,ε

where Ux∗,ε = {x ∈ Rn : ‖x− x∗‖ < ε} is a neighbourhood of x∗ of width ε.

Remark 4 A global optimum point is by definition also a local optimum point:

X◦ ⊆ X∗

Figure 5.2 shows an example of function defined in an interval, with several local
optimum points, one of which is also a global optimum point.

Since there is no general method to identify neither X∗ nor X◦, we will search
for necessary conditions for local optimality. These conditions identify points that
are candidate to being local optimum points, and therefore global optimum points.
In this way, we weaken twice our request:

Global optimum ⇒ Local optimum ⇒ KKT conditions

X◦ ⊆ X∗ ⊆ XKKT

The conditions we will tackle are known as Karush-Kuhn-Tucker conditions (in
short, KKT conditions, from the names of their discoverers1.

1William Karush (1917-1997) discovered the conditions in 1939 in his Master’s degree thesis,
without publishing them; Harold William Kuhn (1925-2014) and Albert William Tucker (1905-
1995) rediscovered them in 1951, when nobody yet knew Karush’ work.
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Figure 5.2: Graph of a function f (x) with a feasible region X and a local optimum
point x∗ (the other two points are x◦ and the maximum of set X)

We will proceed as follows:

1. lay out the conditions as a system of equalities and inequalities;

2. solve the system, to find the set of candidate points XKKT;

3. evaluate the points of XKKT one-by-one, keeping only the best ones.

The best points of XKKT will yield X◦. The method requires XKKT to be a finite
set, or at least a set which can be analytically described, in order to determine X◦.

The KKT conditions are based on approximating the objective function and the
constraint functions with linear functions of the decision variables, and on deducing
necessary conditions that such approximating functions must satisfy in a given
point x̃ so that x̃ be a local optimum point. Appendix A recalls the basic concepts
on mathematical analysis that are necessary tofollow the derivation of the KKT
conditions.

5.1.1 Taylor’s series expansion

Every sufficiently regular function (that is, a continuous function with continuous
derivatives up to a suitable order k) can be locally approximated with a polynomial
of degree k.

Theorem 11 Let f ∈ Ck (Ux̃,ε) be a function of a real variable x ∈ R. For all
x ∈ Ux̃,ε, Taylor’s series expansion holds:

f (x) =

k∑
i=0

f (i) (x̃)

i!
(x− x̃)

i
+Rk (x− x̃)

with f (0) = f , f (i) =
dif

dxi
for all i ∈ N+, and lim

x→x̃

Rk (x− x̃)

‖x− x̃‖k
= 0.

The condition on the limit of Rk means that the approximation error incurred
considering only the first k + 1 terms, that is the polynomial of degree k, is small
for x ≈ x̃, and moreover tends to zero more quickly than x tends to x̃. This property
will allow to ignore such an error in many cases when using such a limit.
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We will only use the expansion up to k = 1. Any function that is regular up to
the first order admits a linear approximation:

f (x) = f (x̃) + f ′ (x̃) (x− x̃) +R1 (|x− x̃|)

which can be generalized from a single-variable function to multiple-variable func-
tions (x ∈ Rn) writing:

f (x) = f (x̃) + (∇f (x̃))
T

(x− x̃) +R1 (‖x− x̃‖) (5.1)

5.1.2 Directions

Given a point x̃ ∈ Rn, a vector d ∈ Rn is named direction if it is interpreted as a
term to add to x̃ in order to move to other points; its length can be tuned with a
suitable coefficient α so as to decide how much to move.

Definition 14 A feasible direction in x̃ ∈ X is a vector d ∈ Rn such that

∃ᾱ > 0 : x̃+ αd ∈ X ∀α ∈ [0; ᾱ)

In other words, moving from x̃ little enough (less than ᾱ) towards d, the solution
reached will always be feasible. Figure 5.3 shows that the same direction d =
[−1 2 ]

T
is feasible in point (0, 2) and unfeasible in point (2, 0).

Definition 15 An improving direction in x̃ ∈ X for f (·) is a vector d ∈ Rn such
that

∃ᾱ > 0 : f (x̃+ αd) < f (x̃) ∀α ∈ (0; ᾱ)

In other words, moving from x̃ little enough (less than ᾱ) towards d, the solution
reached will always be strictly better than the starting one. Referring again to
Figure 5.3, if the objective function is f

(
x2

1 + x2
2

)
that is the distance (squared)

from the origin, direction d is improving in point (2, 0) and not improving in point
(0, 2).

Figure 5.3: Given the objective function f (x) =
(
x2

1 + x2
2

)
and the feasible region

X = {x ∈ R2 : x2
1 + x2

2 ≥ 4}, direction d = [−1 2 ]
T

is feasible and nonimproving in
point (0, 2), unfeasible and improving in point (2, 0)
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5.2 Necessary conditions for local optimality

This section introduces a necessary condition for local optimality, derives from it an
algorithmic intuition on how to find candidate points and reformulates it in order
to make the algorithmic intuition implementable in practice.

Theorem 12 Let x̃ be a local optimum point and d a feasible direction in x̃. Then,
d is not an improving direction in x̃.

Proof. If x̃ is a local optimum point, then f (x) ≥ f (x̃) for all x ∈ Ux̃,ε ∩ X.
By contradiction, let us assume that there exists a direction d both feasible and
improving. Then, there exist two coefficients ᾱ1 e ᾱ2 > 0 such that:

� x̃+ αd ∈ X for all α ∈ [0; ᾱ1)

� f (x̃+ αd) < f (x̃) for all α ∈ (0; ᾱ2)

Now, let us set α = 1
2 min (ε/ ‖d‖ , ᾱ1, ᾱ2) > 0 and x = x̃+αd. The three terms

in the minimum operator imply tha:

� ‖x− x̃‖ = ‖αd‖ = α ‖d‖ ≤ 1
2ε < ε⇒ x ∈ Ux̃,ε

� x ∈ X

� f (x) < f (x̃)

but, since x ∈ X ∩ Ux̃,ε, necessarily f (x) ≥ f (x̃), which is a contradiction.

5.2.1 An algorithmic approach

Theorem 12 suggests an algorithmic approach (see also Figure 5.4):

1. consider all feasible points as candidates: C := X;

2. scan the set of candidate points C;

3. for each candidate point x̃, scan all feasible directions;

4. for each direction d feasible in x̃, check whether the direction is improving for
f (·): if it is, remove x̃ from the candidate set;

5. in the end, scan the remaining candidate points, keeping only the best ones.

This is a fake algorithm, because the set of feasible points and feasible directions
are in general infinite; moreover, in order to check whether a direction is improving,
one must analyse function f (x̃+ αd) on a whole interval of values of α. This method
is even worse than the exhaustive method, that would simply scan all feasible points
keeping the best ones (another infinite process). In order to make this process
practical, the various conditions that compose it must be replaced with conditions
that can be computed in finite time. These conditions should be equivalent, but,
since this is not always possible, we will need a number of additional remarks. The
computable conditions will be obtained exploiting the linear approximation of the
objective function f and of the constraint functions gj provided by Taylor’s series
expansion.

Before doing that, however, we must face a further obstacle: the approach de-
scribed is a total failure in a very important special case, that is when the problem
has nonlinear equality constraints.
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Algorithm FindCandidates(f,X)

XKKT := X;

For each x̃ ∈ XKKT do

{ Reject the points that violate the necessary conditions }
For each direction d feasible in x̃ do

If d is improving respect to f then XKKT := XKKT \ {x̃}
{ Return the remaining candidate points }
Return XKKT;

Figure 5.4: Pseudocode of the process to reduce the feasible set X to the candidate
set XKKT.

Example 26 Let us assume that the feasible region be the circumference of radius
2 with its centre in the origin (see Figure 5.5):

X =
{
x ∈ R2 : x2

1 + x2
2 = 4

}
and let us focus on the feasible point x̃ = (0, 2).

Figure 5.5: Given the feasible region X = {x ∈ R2 : x2
1 + x2

2 = 4}, in all feasible
points no direction d is feasible

There is no feasible direction in this point (nor in any other feasible one). As-
sume by contradiction that d is a feasible direction:

x̃+ αd = [0 + αd1 2 + αd2]
T ∈ X for all α ∈ [0; ᾱ)

This requires (0 + αd1)
2

+ (2 + αd2)
2

= 4 ⇒ 4αd2 + α2
(
d2

1 + d2
2

)
= 0, from which

α = 0 or α = −4d2/
(
d2

1 + d2
2

)
, that are two fixed values. But the condition should

hold for any α in a suitable interval. As this is not possible, no direction d is feasible
in x̃, and that point cannot be rejected. The same holds for all other point in X:
the process, therefore, ends with XKKT = X.

The consequence on the algorithmic approach is that at step 3 no feasible dir-
ection exists, and therefore no candidate point is removed at step 4: in the end,
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all feasible points must still be explored. Luckily, it is possible to generalise the
concept of feasible direction so as to remove most feasible points even in the case
of nonlinear equality constraints.

Feasible arcs

Fortunately, it is possible to extend Theorem 12, considering not only linear tra-
jectories from x̃ in a fixed direction, but also curved trajectories (for example, along
an arc of circumference).

Definition 16 We denote as feasible arc in a point x̃ ∈ X a parametric line ξ :
R+

0 → Rn, starting from x̃ and belonging to X:

ξ (0) = x̃
ξ (α) ∈ X for all α ∈ [0; ᾱ)

Definition 17 We denote as tangent direction of an arc ξ (α) feasible in x̃ the
vector composed of the first derivatives of the components ξi with respect to para-
meter α, evaluated in the starting point of the arc:

pξ =

[
dξ1
dα

∣∣∣∣
0

. . .
dξn
dα

∣∣∣∣
0

]T
Example 27 Given X =

{
x ∈ R2 : x2

1 + x2
2 = 4

}
, arc

ξ (α) =

[
2 sinα
2 cosα

]
is feasible in point x̃ = (0, 2) because ξ (0) = x̃ and ξ (α) ∈ X for all α ∈ [0; +∞).

The tangent direction of this arc is

pξ =

[
2 cos 0
−2 sin 0

]
=

[
2
0

]
Definition 18 We denote as improving arc in a point x̃ ∈ X for function f (·) a
parametric line ξ : R+

0 → Rn starting from x̃ and for which there exists a value
ᾱ > 0 such that

f (ξ (α)) < f (ξ (0)) = f (x̃) for all α ∈ (0, ᾱ)

Parametric arcs are an obvious generalization of directions. In fact, any direction
d in x̃ can be associated to an arc ξ (α) = x̃ + αd, that is a half-line. The tangent
to this arc is the direction itself: pξ = d. Thus, directions (in particular, feasible,
improving, etc. . . ) are a (very small) subset of the arcs, or more precisely of their
tangent vectors.

Now, the algorithmic approach can be reformulated by replacing the exploration
of all feasible directions in each feasible point, at step 3, with the exploration of all
feasible arcs. This makes the task even more impossible to perform directly. In the
next sections, we will proceed as follows:

1. replace the nonimprovement condition with a condition on the gradient of the
objective function;
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2. replace the feasibility condition with a condition on the gradients of the con-
straint functions (this will yield a first geometric interpretation of the modified
conditions);

3. replace these conditions in the KKT conditions, applying a suitable lemma
so as to relate the gradient of the objective and those of the constraints (also
these conditions will have a geometric interpretation).

5.2.2 Nonimprovement condition

The first step concerns the objective function: as it is difficult to verify that a given
direction d is nonimproving in x̃, we will write a condition much easier to verify.
This condition is not equivalent, but only necessary, as it is a consequence of the
former. Therefore, the points which satisfy it are not local optimum point, but
simply candidate points.

Theorem 13 Let f ∈ C1 (X), x̃ ∈ X be a feasible point and ξ : R → Rn an arc
feasible and nonimproving in x̃. Then:

(∇f (x̃))
T
pξ ≥ 0

Proof. If ξ (α) is a feasible arc, there exists a coefficient ᾱ such that ξ (α) ∈ X for
all α ∈ [0; ᾱ) and

f (ξ (α)) ≥ f (x̃)⇒

⇒ f (ξ (0)) +
df

dα

∣∣∣∣
α=0

α+R1 (‖ξ (α)− ξ (0)‖) ≥ f (x̃)⇒

⇒ (∇f (x̃))
T
pξ +

R1 (‖ξ (α)− ξ (0)‖)
α

≥ 0

where the derivation exploits the properties of derivatives for composite functions
of multiple variables (see Appendix A).

If α converges to 0, by continuity the inequality is preserved:

lim
α→0

(
(∇f (x̃))

T
pξ +

R1 (ξ (α)− ξ (0))

‖ξ (α)− ξ (0)‖
‖ξ (α)− ξ (0)‖

α

)
≥ 0⇒ (∇f (x̃))

T
pξ ≥ 0

Condition (∇f (x̃))
T
d ≥ 0 has a simple geometric interpretation: direction d

forms an angle≤ 90◦ with the gradient of the objective function, that is the direction
of quickest worsening (i. e., increase). Therefore, d is nonimproving.

Notice that, in order to verify this condition, it is enough to compute ∇f (x̃),
which is a constant vector, and compute its scalar product with d, that is given. On
the contrary, applying the definition to verify that d is nonimproving is impossible
in practice, because it requires to verify an inequality for infinite values of α. On
the other hand, the condition on the gradient holds also for directions that are
actually improvin. This happens when (∇f (x̃))

T
d = 0 and the improvement is

due to the rest R1. This means that in some limit cases, some points will turn out
to be candidate even though they are not local optimum points.

Example 28 Let us consider once again Example 26 about problems with non-
linear equality constraints. Let X =

{
x ∈ R2 : x2

1 + x2
2 = 4

}
be the feasible re-

gion and f (x) = −x1 + x2 the objective function, with a uniform gradient equal
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to (∇f (x̃)) = [−1 1]
T

. If one considers point x̃ = (0, 2) and the feasible arc

ξ (α) = [2 sinα 2 cosα]
T

, with tangent vector pξ = [2 0]
T

, it can be verified that:

(∇f (x̃))
T
pξ = [−1 1]

T

[
2
0

]
= −2 < 0

and therefore the point can be rejected. On the contrary, point x◦ =
(√

2,−
√

2
)

admits two feasible arcs: ξ (α) =
[
2 cos

(
α− π

4

)
2 sin

(
α− π

4

)]T
, with tangent vector

pξ =
[√

2
√

2
]T

, and ξ̄ (α) =
[
2 cos

(
α− π

4

)
2 sin

(
α− π

4

)]T
, with tangent vector

pξ̄ =
[
−
√

2 −
√

2
]T

, and it can be verified that:

(∇f (x̃))
T
pξ = [−1 1]

T

[ √
2√
2

]
= 0 (∇f (x̃))

T
pξ′ = [−1 1]

T

[
−
√

2

−
√

2

]
= 0

This is a candidate point in X, and it is actually the global optimum point.

Example 29 Let us consider the following problem:

min f (x) = (x1 − 1)
2

+ x2
2

g1 (x) = −x2
1 − x2

2 + 4 ≤ 0

g2 (x) = x1 − 3/2 ≤ 0

whose feasible region is reported in Figure 5.6.

Figure 5.6: Feasible region of the problem reported in Example 29

The gradient of the objective function is ∇f (x) = [2 (x1 − 1) 2x2]
T

and in every
point it is directed to move away from point (1, 0). For example2, in point x̃ = (0, 2)

the gradient is ∇f (0, 2) = [−2 4]
T

, while in point x̃ = (−2, 0) the gradient is

∇f (−2, 0) = [−6 0]
T

. A necessary condition for a direction to be improving is that
it be confined in the half-space identified by the dotted semicircumference. Moving
from x̃ = (0, 2) rightwards in direction p = [1 0]

T
, the objective function improves.

In fact:

(∇f (0, 2))
T
p = [−2 4]

[
1
0

]
= −2 < 0

2For the sake of simplicity, the figure represents all gradients with the same length, because
only the direction in which they point is relevant for the identification of candidate points.
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On the contrary, moving upwards in direction p = [0 1]
T

, the objective function does
not improve. In fact:

(∇f (0, 2))
T
p = [−2 4]

[
0
1

]
= 4 ≥ 0

A limit case can be observed in point x̃ = (−2, 0): moving downwards along the

tangent vector p = [0 − 1]
T

, the condition becomes:

(∇f (−2, 0))
T
p = [−6 0]

[
0
−1

]
= 0

In fact, this direction is worsening, but there are objective functions with the same
gradient for which it would become improving (for instance, f (x) = −6x1 + x2

2).

And there are curved trajectories that have the same tangent vector and are
improving for the same objective function: just consider the arc that runs downwards
along the circumference of radius equal to 2 marked in grey. Along that arc, the
distance from point (1, 0) strictly decreases, and therefore the arc is improving,
but the tangent vector is the same, and therefore the nonimprovement condition is
satisfied to equality.

The conclusion is that the conditions are only necessary, and that limit directions
cannot be used to reject candidate points, since in such points the conditions can
hold both for local optimum points and for points that are not locally optimal.

The resulting “algorithm” (which is still fake because it still contains two infinite
nested loops) is reported in Figure 5.7.

Algorithm FindCandidates(f,X)

XKKT := X;

For each x̃ ∈ XKKT do

{ Reject the points that violate the necessary conditions }
For each d ∈ Rn feasible in x̃ do

If (∇f (x̃))
T
d < 0 then XKKT := XKKT \ {x̃}

{ Return the best candidate point }
Return XKKT;

Figure 5.7: Pseudocode of the process to reduce the feasible set X to the candidate
set XKKT.

5.2.3 Feasibility condition

It is possible to replace with an algebraic condition also the condition that d be
a feasible direction, but the process is more complicated, because the feasibility
condition is a hypothesis of Theorem 12, whereas the nonimprovement condition
was the thesis. Therefore, one cannot just replace it with a weaker condition, as we
have done with the other one, but only with equivalent or stronger conditions.

First, we need to distinguish the constraints satisfied with an equality in a given
point from those strictly satisfied. The reason is that, since the conditions are based
on local approximations, it is as though the latter constraints did not exist; in fact,
they do not forbid any sufficiently short trajectory.
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Definition 19 We denote as active constraint in a point x̃ ∈ X any constraint
gj (x) ≤ 0 such that gj (x̃) = 0. We will indicate by Ja (x) = {j ∈ {1, . . . ,m} : gj (x) = 0}
the set of indices of the active constraints.

Example 30 Let us consider the example of Figure 5.6. In point (−2, 2) no con-
straint is active (Ja (−2, 2) = ∅); in fact, g1 (−2, 2) = −4 and g2 (−2, 2) = −7/2. In
point (0, 2) only the first constraint is active (Ja (0, 2) = {1}), since g1 (0, 2) = 0 and
g2 (0, 2) = −3/2. In point (3/2, 2) only the second constraint is active (Ja (3/2, 2) =
{2}), since g1 (3/2, 2) = −9/4 and g2 (3/2, 2) = 0. In point

(
3/2,
√

7/2
)

both con-

straints are active (Ja
(
3/2,
√

7/2
)

= {1, 2}), as g1

(
3/2,
√

7/2
)

= 0 e g2

(
3/2,
√

7/2
)

=
0.

Theorem 14 Let ξ (α) be an arc feasible in x̃ ∈ X, pξ its tangent vector. Then

(∇gj (x̃))
T
pξ ≤ 0 for all j ∈ Ja (x̃)

Proof. If ξ (α) is an arc feasible in x̃, there exists a coefficient ᾱ > 0 such that

gj (ξ (α)) ≤ 0 for all α ∈ [0; ᾱ) and j = 1, . . . ,m

that is

gj (ξ (α)) = gj (ξ (0)) +
dgj
dα

∣∣∣∣
0

α+R1 (‖ξ (α)− ξ (0)‖) =

= gj (x̃) + α (∇gj (x̃))
T
pξ +R1 (‖ξ (α)− ξ (0)‖) ≤ 0

The inequality is obvious for all constraints which are not active in x̃, because
gj (x̃) < 0 and the other two terms converge to zero as α → 0. Therefore, by
continuity, when α is sufficiently small, they cannot reverse the inequality. For the
constraints which are active in x̃, on the contrary, the inequality introduces a strict
condition. In fact, for such constraints gj (x̃) = 0, so that

gj (ξ (α)) = α (∇gj (x̃))
T
pξ +R1 (‖ξ (α)− ξ (0)‖) ≤ 0

Dividing both terms by α and considering the limit, by continuity the thesis
follows:

lim
α→0

[
(∇gj (x̃))

T
pξ +

R1 (‖ξ (α)− ξ (0)‖)
‖ξ (α)− ξ (0)‖

‖ξ (α)− ξ (0)‖
α

]
= (∇gj (x̃))

T
pξ ≤ 0

This property is interesting, but cannot replace the requirement that pξ be the
tangent vector of a feasible arc in the hypothesis of Theorem 13, because it is not
an equivalent or sufficient condition for such a requirement, but only a necessary
condition. Luckily, it can be proved that, in suitable situations, the condition is
actually equivalent.

Regular points

Definition 20 We denote as regular point for a given system of constraints gj (x) ≤
0 a point in which all active constraints have linearly independent gradients ( constraint
qualification condition).

In a regular point, the conditions on the gradients of the active constraints are
not only necessary, but also sufficient to guarantee that there exists a feasible arc
with the given tangent vector.
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Theorem 15 Let x̃ be a regular point. There exists an arc ξ (α) feasible in x̃ with
tangent direction pξ = p if and only if

(∇gj (x̃))
T
p ≤ 0 for all j ∈ Ja (x̃)

This implies that in a regular point we can rewrite Theorem 13 replacing the
assumption of having a feasible arc with the conditions on the gradients of the
active constraints. In other words, we can use the analytical conditions on the
gradients to identify the directions that are useful for sifting the candidate points.
The nonregular points must be dealt with specifically. Luckily, they are in general
a small minority of the feasible points, and we will therefore include them directly
in the candidate set withouth further analysis.

Corollary 1 Let f ∈ C1 (X), x̃ ∈ X be a regular and local optimum point and p a
vector such that

(∇gj (x̃))
T
p ≤ 0 for all j ∈ Ja (x̃)

Then:
(∇f (x̃))

T
p ≥ 0

Example 31 Consider the following problem:

min f (x) = x2

g1 (x) = (x1 − 1)
3

+ (x2 − 2) ≤ 0

g2 (x) = (x1 − 1)
3 − (x2 − 2) ≤ 0

g3 (x) = −x1 ≤ 0

whose feasible region is represented in Figure 5.8.

In point A = (1, 2), the first two constraints, g1 (x) = (x1 − 1)
3

+ (x2 − 2) ≤ 0

and g2 (x) = (x1 − 1)
3 − (x2 − 2) ≤ 0 are active. Their gradients are ∇g1 (A) =

[ 0 1 ]
T

and ∇g2 (A) = [ 0 − 1 ]
T

. Direction p = [ 1 0 ]
T

is orthogonal to both, and
thus satisfies the feasibility conditions. In spite of that, no feasible arc admits p
as a tangent vector. This is possile because point A is non regular. In fact, the
two gradients ∇g1 (A) and ∇g2 (A) are opposite, and therefore linearly dependent.
In intuitive terms, describing the constraints with their gradients corresponds to
linearizing them, that is to treating them as straight lines, which makes it look like
it were possible to move rightwards remaining inside the feasible region.

The case of equality constraints

A further complication is introduced by equality constraints, but it can be easily
solved by making an exception. In general, an equality constraint can always be
replaced by two inequality constraints expressed by opposite functions:

h (x) = 0⇔

{
h (x) ≤ 0

−h (x) ≤ 0

The complication arises from the fact that, of course, the gradients of these
two constraints are exactly opposite (±∇h (x̃)), and therefore linearly dependent.
One could conclude that in the problems with equality constraints all points are
nonregular, and therefore candidate, which would make the algorithmic approach
useless. Fortunately, this is too strict: each single equality constraint, being h (x) ∈
C1 (X), allows the existence of feasible arcs in every feasible point. Such arcs run
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(1,2)

B

(0,1)

(0,3)

A

C

Figure 5.8: A feasible region with a nonregular point: the gradients of the two
constraints active in A point in opposite directions

“along” the constraint, following exactly its profile. Only other constraints can
make such arcs unfeasible. Therefore, the whole derivation above remains valid
with two warnings:

1. the definition of regular point considers just one gradient for each equality
constraint ;

2. the condition on tangent vector pξ for each equality constraints, merges the
conditions on the two associated inequalities into a simpler single one:{

(∇hi (x̃))
T
pξ ≤ 0

− (∇hi (x̃))
T
pξ ≤ 0

⇔ (∇hi (x̃))
T
pξ = 0

that is, the tangent vector pξ for a feasible arc is orthogonal to the gradients
of equality constraints.

The algorithmic approach in algebraic form

Now we can summarise the conclusions reached so far, before making the last step.
The process we are defining is reported in Figure 5.9 (compare it with the one
described in Figure 5.7). It consists of the following steps:

1. find the set Xnr of nonregular points and save them aside;

2. consider all regular points as candidates: C := X \Xnr;

3. scan the set of candidate points C;

4. for each candidate point x̃ ∈ C
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5. for each vector p that satisfies the feasibility conditions on the gradients of the
active constraints, if the condition on the gradient of the objective function is
violated, remove x̃ from the candidate set;

6. add the nonregular points to the candidate set;

7. scan the candidate points to find the best ones.

Algorithm FindCandidates(f, g1, . . . , gm)

Xnr := NonRegular(g);

C := X \Xnr;

For each x̃ ∈ C do

{ Remove the points that violate the conditions }
For each p ∈ Rn : (∇gj (x̃))

T
p ≤ 0 for all j ∈ Ja (x̃) do

If (∇f (x̃))
T
p < 0 then C := C \ {x̃};

{ Return the candidate set }
XKKT := C ∪Xnr;

Return XKKT;

Figure 5.9: Pseudocode of the process to reduce the feasible region X to the can-
didate set XKKT .

The only remaining problem is given by the two infinite loops on x and p. We
will solve it replacing the corresponding conditions with a system of equalities and
inequalities, whose solutions are the candidate points.

5.2.4 A first geometric interpretation

The property of Corollary 1 has a geometric interpretation that makes it quite
intuitive. For each point x taken into account, two sets of vectors are considered:

1. the feasible cone Cfeas (x) is the set of vectors that form angles ≥ 90◦ with
the gradients of all active constraints:

(∇gj (x))
T
p ≤ 0 for allj ∈ Ja (x)

It is a cone because each active constraint identifies a half-space of directions
pointing “on the opposite side” of its gradient, and intersecting them yields a
cone. In regular points, these are the directions tangent to feasible arcs.

2. the improving half-space Cimpr (x): is the set of vectors that form angles > 90◦

with the gradient of the objective function:

(∇f (x))
T
p < 0

Corollary 1 states that the feasible cone must not intersect the improving half-
space. Notice that the former is close, whereas the latter is open, so that the two sets
can touch, but not share internal points. The reason is that the directions in which
the two cones touch have zero scalar product with the gradient of the objective and
with the gradient of some active constraints; in that case, the first-order information
is insufficient to determine whether the direction is actually improving or not and
actually feasible or not. Therefore, such points cannot be rejected and must remain
candidate.
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Example 32 Consider the following mathematical programming model:

min f (x) = (x1 − 1)
2

+ x2
2

g1 (x) = −x2
1 − x2

2 + 4 ≤ 0

g2 (x) = x1 − 3/2 ≤ 0

whose feasible region is represented in Figure 5.10. We now discuss the geometric
interpretation of the necessary conditions for local optimality in four significant
points. First, we compute the gradients of the objective function and of the two
constraint functions:

∇f (x) =

[
2 (x1 − 1)

2x2

]
∇g1 (x) =

[
−2x1

−2x2

]
∇g2 (x) =

[
1
0

]

Then, let us focus on point (0, 2). Only the first constraint is active and the feas-
ible cone Cfeas consists of the directions that form angles ≥ 90◦ with ∇g1 (0, 2) =

[ 0 − 4 ]
T

, that form the half-plane pointing upwards, marked with a green half-
circumference in Figure 5.12. The improving half-space Cimpr consists of the dir-

ections that form angles > 90◦ with ∇f (0, 2) = [−2 4 ]
T

, that form the half-plane
pointing downwards and on the right, marked with a blue half-circumference. They
clearly intersect (check the scalar products with vector p = [ 3 1 ]

T
), and therefore

point (0, 2) is not candidate.

Now, consider point
(
3/2,−

√
7/2
)
. Both constraints are active and the feasible

cone Cfeas consists of the directions that form angles ≥ 90◦ with ∇g1

(
3/2,−

√
7/2
)

=[
−3
√

7
]T

and with ∇g2

(
3/2,−

√
7/2
)

= [ 1 0 ]
T

that form the cone pointing down-
wards and on the left, marked with a green arc in Figure 5.12. The improving
half-space Cimpr consists of the directions that form angles > 90◦ with ∇f (0, 2) =[

1 −
√

7
]T

, that form the half-plane pointing upwards and on the left, marked with

a blue half-circumference. Since they do not intersect, point
(
3/2,−

√
7/2
)

is can-
didate (it is actually one of the two global optimum points).

Then, consider point (−2,−2). No constraint is active and the feasible cone
Cfeas consists of the whole plane (marked with a green circumference), because every
vector satisfies any arbitrary condition with respect to an empty set. The improving
half-space Cimpr consists of the directions that form angles > 90◦ with ∇f (0, 2) =

[−6 − 4 ]
T

, that form the half-plane pointing upwards and on the right, marked with
a blue half-circumference. The two sets clearly intersect, and point (−2,−2) cannot
be a candidate.

Finally, consider point (−2, 0). Only the first constraint is active and the feasible

cone Cfeas consists of the directions that form angles ≥ 90◦ with ∇g1 (0, 2) = [ 4 0 ]
T

,
that form the half-plane pointing leftwards, marked with a green half-circumference
in Figure 5.12. The improving half-space Cimpr consists of the directions that form

angles > 90◦ with ∇f (0, 2) = [−6 0 ]
T

, that form the half-plane pointing rightwards,
marked with a blue half-circumference. They touch, but do not intersect (remember
that the improving half-space is open), and therefore point (−2, 0) is a candidate.
Notice that this point is not globally optimal, but not even locally optimal, because
an arc moving along the circumference would be feasible and also strictly improv-
ing. However, the first-order conditions approximate the circumference as a line
and therefore cannot reveal this possibility. Indeed, the candidate set XKKT can be
strictly larger than the set of local optimum points X∗.
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Figure 5.10: Feasible cones and improving cones in four sample points: two non-
candidate points, a global optimum point and a candidate point that is not even
locally optimal

5.3 Karush-Kuhn-Tucker conditions

This section turns the conditions of Corollary 1 into equivalent conditions that are
computationally tractable, that is into the solution of a system of equalities and
inequalities. In order to do that, it exploits a theoretical result that is apparently
very far from the problems here considered, as it concerns the properties of families
of vectors in multidimensional Euclidean spaces. It is just a matter of correctly
mapping such objects onto the ones we are manipulating. In order to express the
lemma briefly, the concept of conical combination of vectors is required. For this
concept (and other ones in linear algebra), we address the reader to Appendix B.

5.3.1 Farkas’ Lemma

Theorem 16 (Farkas’ Lemma) Let f ∈ Rn and gj ∈ Rn with j = 1, . . . ,m be a
vector and a family of vectors in the Euclidean n-dimensional space. Then:

∃µj ≥ 0 : f =

m∑
j=1

µjgj ⇔ pT f ≤ 0 for all p : pT gj ≤ 0 per j = 1, . . . ,m

In words, vector f is a conical combination of vectors gj if and only if all vectors
pointing on the opposite side of all gj also point on the opposite side of f .

Proof. It is trivial to prove the direct implication of this theorem (the “only if”
part): replacing f with

∑m
j=1 µjgj , one can observe that pT f = pT

∑m
j=1 µjgj =∑m

j=1 µj
(
pT gj

)
. Any vector p such that pT gj ≤ 0 guarantees that all terms in the

sum be nonpositive, and therefore also the sum be nonpositive. The thesis follows.

The inverse implication, on the contrary, that we will exploit, is much more
involved, and we will not provide the proof.

Also this lemma has a geometric interpretation, which can make it more intuit-
ive. Figure 5.11 provides an example with m = 3 vectors gj in a n = 2-dimensional
space:

� for each vector gj , the set of vectors p that form scalar products gTj p ≤ 0 is
the half-plane opposite to gj ;
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� the intersection of such half-planes is the cone marked in grey in the lower
left;

� the set of vectors p that form scalar products fT p ≤ 0 is the half-plane
opposite to f , that is in the lower left with respect to the red oblique line;

� the set of vectors that are conical combinations of vectors gj is the cone marked
in grey in the upper right.

Farkas’s lemma states that:

� if f falls within the cone of vectors g, then the cone that is opposite to vectors
gj falls in the half-plane opposite to f ;

� if the cone that is opposite to vectors gj falls in the half-plane opposite to f ,
then f falls within the cone of vectors g.

Figure 5.11: Example of application of Farkas’ lemma: f falls within the cone of
vectors gj if and only if the cone opposite to vectors gj falls within the half-plane
opposite to f .

5.3.2 Standard form of Karush-Kuhn-Tucker conditions

Now, let us apply Farkas’ lemma to the vectors we are using to sift the candidate
points. Specifically, let us map:

� the vectors gj onto the gradients of the active constraints ∇gj (x̃);

� vector f onto the antigradient of the objective function −∇f (x̃).

Notice the negative sign applied to vector ∇f : the antigradient is the opposite of
the gradient. The statement of Farkas’ lemma becomes:

∃µj ≥ 0 : ∇f (x̃) +
∑

j∈Ja(x̃)

µj∇gj (x̃) = 0

if and only if

(∇f (x̃))
T
p ≥ 0 for all p : (∇gj (x̃))

T
p ≤ 0 for all j ∈ Ja (x̃)
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The second member of the implication means that the feasible directions are nonim-
proving. In the local optimum points, the second member of Farkas’ lemma holds;
therefore, also the first member holds: if x∗ is a regular local optimum point, then
the antigradient of the objective function falls in the cone of the gradients of the
active constraints:

∃µj ≥ 0 : ∇f (x∗) +
∑

j∈Ja(x∗)

µj∇gj (x∗) = 0

In general, the KKT-conditions are reported in an equivalent standard form,
that has two small modifications. First, the conical combination of the active con-
straints can be extended to a conical combination of all constraints, provided that
the multipliers of the nonactive constraints are set to zero. This can be done by
introducing additional conditions which relate the multipliers and the constraints,
the so called complementarity conditions:∑

j∈Ja(x∗)

µj∇gj (x∗) =

s∑
j=1

µj∇gj (x∗) with µjgj (x) = 0, for all j

Second, usually the equality constraints are not decomposed into pairs of inequality
constraints, because two opposite gradients with multipliers µ+ ≥ 0 and µ− ≥ 0
can always be replaced by a single gradient with a multiplier equal to the difference
of the original two, that is a real-valued multiplier:

hi (x) = 0⇔

{
gj′i (x) = hi (x) ≤ 0

gj′′i (x) = −hi (x) ≤ 0

. . .+ µj′i∇hi (x) + µj′′i (−∇hi (x)) + . . . with µj′i , µj′′i ≥ 0

. . .+ λi∇hi (x) + . . . with λi = µj′i − µj′′i ∈ R

Theorem 17 (KKT-conditions) Let X = {x ∈ Rn : hi (x) = 0, gj (x) ≤ 0, with i =
1, . . . , s e j = 1, . . . ,m} and f, hi, gj ∈ C1 (X) for i = 1, . . . , s and j = 1, . . . ,m. If
x∗ is a regular point in X and a local optimum point for f in X, then there exist
free multipliers λi and nonnegative multipliers µj ≥ 0 such that:

∇f (x∗) +

s∑
i=1

λi∇hi (x∗) +

m∑
j=1

µj∇gj (x∗) = 0 (5.2a)

µjgj (x∗) = 0 j = 1, . . . ,m (5.2b)

hi (x∗) = 0 i = 1, . . . , s (5.2c)

gj (x∗) ≤ 0 j = 1, . . . ,m (5.2d)

µj ≥ 0 j = 1, . . . ,m (5.2e)

The sifting algorithm, therefore, does not consist in scanning all points x ∈ X
and all directions p ∈ Rn, verifying whether they satisfy suitable conditions, but
in solving a system of equalities and inequalities, identifying the points that satisfy
it. It can be remarked that the system binds n + s + m variables (x, λ, µ) with
n+s+m equalities (5.2a, 5.2c, 5.2b), plus 2m inequalities (5.2d, 5.2e). The system
is therefore balanced, and it can be expected to have in general a finite number of
solutions (not a single one, because it is nonlinear).

As a concluding remark, the conditions in standard form are also sometimes
described introducing an auxiliary function, named generalized Lagrangean function

` (x, λ, µ) = f (x) +

s∑
i=1

λihi (x) +

m∑
j=1

µjgj (x)
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Given this definition, the Equations (5.2) can be interpreted stating that they set
to zero the partial derivatives of ` (x, λ, µ) with respect to the x variables, while
the Equations (5.2c) set to zero the partial derivatives of ` (x, λ, µ) with respect to
the λ variables. The complementarity conditions (5.2d) and the sign conditions on
the multipliers (5.2e), however, have no interpretation related to the generalized
Lagrangean function.

5.3.3 A second geometric interpretation

From a geometric point of view, the antigradient of the objective function, −∇f (x),
is the direction in which the objective f decrease most quickly, that is the most
improving direction. The gradients of the active constraints, ∇gj (x∗), are the
directions in which the constraint functions gj increase most quickly, that is the
directions of maximum violation of the constraints. When the antigradient of the
objective falls within the cone of the gradients of the active constraints, the objective
can improve only violating at least one constraint.

Example 33 Consider again the problem of Example 32 and Figure 5.10. In point
(0, 2), only the first constraint is active and the cone of its gradient consists of
the half-line going downwards (that is, the green arrow). The antigradient of the
objective function points downwards and on the right, as it is opposite to the gradient
(blue arrow). It does not belong to the cone, and therefore the point is not candidate.

In point
(
3/2,−

√
7/2
)
, both constraints are active, and the cone of the two

gradients points upwards, on the right and partly on the left (between the two green
arrows). The antigradient of the objective function points upwards and on the left
(opposite to the blue arrow). Therefore, it falls inside the cone and the point is
candidate.

In point (−2,−2), no constraint is active and the cone of the gradients is empty.
The antigradient of the objective function points upwards and on the right, as it is
opposite to the gradient (blue arrow). Of course, it does not belong to the empty
cone, and therefore the point is not candidate.

Finally, in point (−2, 0), only the first constraint is active and the cone of its
gradient consists of the half-line going rightwards (that is, the green arrow). The
antigradient of the objective function also points rightwards (opposite to the blue
arrow). Therefore, it belongs to the cone, and the point is candidate.

5.4 Interesting special cases*

Several special cases are interesting for various reasons.

Unconstrained problems If the problem has no constraints, the KKT-conditions
reduce to

∇f (x∗) = 0

that is, setting the gradient of the objective to zero. This conditions simply general-
izes the classical condition of setting the first derivative to zero in order to compute
the local optimum points for single-variable functions. The candidate points thus
determined can be global minimum points, simply local minimum points, inflection
points, and even local maximum points.

*This section presents advanced concepts, that are not part of the course syllabus.
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Linear problems If the problem is linear (f (x) =
∑n
i=1 cixi and gj (x) =∑n

i=1 aijxi − bj ≤ 0, the KKT-conditions become:
ci + µjaij = 0 i = 1, . . . , n

µj (
∑n
i=1 aijxi − bj) = 0 j = 1, . . . ,m

µj ≥ 0 per j = 1, . . . ,m∑n
i=1 aijxi − bj ≤ 0 j = 1, . . . ,m

The first family of constraints is part of the feasibility conditions for the dual
problem, provided that the multipliers µj be interpreted as dual variables with a
reversed sign (they are equality constraints because the primal problem has free
variables). The second family of constraints are the complementary slackness con-
ditions. The third family of constraints are the remaining feasibility conditions for
the dual problem: since the primal constraints are of the ≤ type and the problem
is a minimization problem, the dual variables should be nonpositive, but here they
are nonnegative because we have reversed their sign. Finally, the fourth family of
constraints are the feasibility conditions for the primal problem. A fundamental
theorem of Linear Programming guarantees that these conditions determine the
optimal solution, both of the primal and the dual problem.

Discrete problems

When the feasible region of the problem consists of isolated point (for example,
points with integer coordinates: X ⊆ Zn), it is anyway possible to describe it
through inequalities. For example, an integrality constraint on a decision vari-
able xi can be formulated as hi (x) = sin (πxi) = 0, a binarity constraint as
hi (x) = xi (1− xi) = 0. As such formulations are regular, they allow to apply
the KKT-conditions, which however prove useless in practice. In fact, the equality
constraints hi (x) = 0 introduce in every equality of the system an additional term
λi
∂hi
∂xi

, which appears only in that equality. This means that in any point x it is
possible to assign each multiplier λi a value that satisfies the corresponding equa-
tion: in discrete problems, all points are candidates. This is intuitively obvious: in
a discrete problem, every point is isolated, and therefore admits a sufficiently small
neighbourhood such that it is the only feasible point belonging to it. therefore, in
a discrete problem every point is a local optimum point.



5.5 Applications of the KKT-conditions 135

5.5 Applications of the KKT-conditions*

5.5.1 Big-Data system planning

Big-Data management systems such as Hadoop/YARN deal with computational
processes whose characteristics and required levels of service are very heterogeneous.
This makes it more complex to decide how many and which resources to assign to
the computation requests, and how to distribute along time the operations, so as to
obtain both a high level of resource use and a good satisfaction of the computation
requests. In the following, we describe a small management subproblem to which
the KKT-conditions can be directly applied3.

Let J be a set of n = |J | jobs to perform. Each job j ∈ J is associated to
an overall workload wj , that can be sudivided among several resources so that the
work proceed in parallel. We will assume perfectly splittable jobs, that is, divisible
completely ad libitum at every time, provided that a minimum and maximum length
(tmin
j and tmax

j ) of the computation, as well as a minimum and maximum resource

occupation (rmin
j and rmax

j ) in every phase of the computation are respected. Of
course, this is an approximation, which can be justified for heavily parallelizable
jobs. The jobs of J must be performed in a preassigned sequence, so that they form
a completely ordered chain. The chain of jobs must be performed minimizing the
overall variation of the resource use during the time horizon T . The variation of the
resource use is defined at each time step as the absolute value of the variation in
the resource use with respect to the previous time step. The idea is that, even if we
neglect the time required to activate and deactivate the resources, these operations
have a cost that we want to minimize.

We can represent the jobs are two-dimensional geometric figures, where the ho-
rizontal axis corresponds to time, while the vertical one corresponds to the amount
of resource used at each time. It is quite intuitive that the best solution with re-
spect to the variation of resource use correspond to a rectangular figure, where the
job j is divided among rj resources working for tj time steps, after which the job
terminates. This is because, once the workload (that is, the figure’s area) is fixed,
increasing and decreasing several times the height of the figure, that is the amount
of resources used, would only produce a larger variation. On the other hand, slowly
increasing or decreasing the resource use would only produce an extension of the
time required to perform the whole job.

At this point, we want to find the basis and the height of each rectangle in J so
as to minimize the sum of their heights (counting them twice, because the resourced
used have equal (but opposite) variations at the beginning and at the end of each
job. The rectangles representing the jobs must be sequentially ordered along time
(the horizontal axis) and the total width of the chain must not exceed L. The

*This section presents advanced concepts, that are not part of the course syllabus.
3This application derives from R. Cordone, G. M. Fumarola, M. Mazzucchelli, M. Rabozzi, M.

Santambrogio, Preemption-aware planning on Big-Data Systems, PPoPP ’16 Proceedings of the
21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Article No.
48.



136 5 Mathematical Programming

following model is implied:

min
r,t

f (r, t) =
∑
j∈J

2rj

rjtj = wj j ∈ J∑
j∈J

tj ≤ T

rmin
j ≤ rj ≤ rmax

j j ∈ J
tmin
j ≤ tj ≤ tmax

j j ∈ J

The problem has 2|J | variables, 4|J | + 1 inequality constraints and |J | equality
constraints.

The direct application of KKT-conditions yields a far-from-trivial system. It is,
however, possible to make some simplification:

1. divide by 2 the objective function, which does not affect the optimal solution;

2. use constraints rjtj = wj to compute variables rj as a function of variables
tj ; this removes |J | variables and all |J | equality constraints;

3. remark that constraints rmin
j ≤ rj ≤ rmax

j , after the replacement, become

wj/r
max
j ≤ tj ≤ wj/rmin

j ; these new constraints can be combined with the old
ones on tj , choosing case-by-case the tighter constraint.

This simplified formulation follows:

min f (t) =
∑
j∈J

wj
tj∑

j∈J
tj ≤ T

t̄min
j ≤ tj ≤ t̄max

j j ∈ J

where t̄min
j = max

(
tmin
j , wj/r

max
j

)
and t̄max

j = min
(
tmax
j , wj/r

min
j

)
. This formula-

tion has |J | variables and 2|J |+ 1 inequality constraints.

Assigning a multiplier µ ≥ 0 to constraint
∑
j∈J tj ≤ T and multipliers νmin

j ≥
0 and νmax

j ≥ 0 to the constraints which impose bounds on tj , one obtains the
following system of KKT-conditions:

−wj
t2j

+ µ− νmin
j + νmax

j = 0 j ∈ J

µ

(∑
j∈J

tj − T
)

= 0

νmin
j

(
tj − t̄min

j

)
= 0 j ∈ J

νmax
j

(
tj − t̄max

j

)
= 0 j ∈ J∑

j∈J
tj ≤ T

t̄min
j ≤ tj ≤ t̄max

j j ∈ J
µ, νmin

j , νmax ≥ 0 j ∈ J

which is still not trivial.
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Now we should consider the complementarity conditions and divide the problem
into subproblems. Each subproblem corresponds to a different region of the solution
space, in which different families of constraints are active or inactive.

We will apply a very practical approach: we will analyse only one subproblem,
that appears to be the most likely. Most inequality constraints require the length
of a job to fall within a given range

[
tmin
j ; tmax

j

]
. If the minimum values tmin

j are
small enough and the maximum values are large enough, that is, if the jobs are
sufficiently malleable, it is likely that all these constraints will be inactive in the
optimal solution. In fact, jobs with very small lengths tj imply a strong use of
resources rj , which strongly affects the objective. On the other hand, jobs with very
long lengths tj exhaust the overall available time T , and therefore strongly affect the
remaining constraint

∑
j∈J tj ≤ T . In summary, if instead of analysing all 2|J |+ 1

complementarity conditions, producing (in the worst case) 22|J|+1 subproblems, we
will analyse just one condition. The risk is to neglect candidate solutions, and
possibly the optimal one.

If we restrict the analysis to the subproblems in which νmin
j = νmax

j = 0 for
every j ∈ J , the simplified system becomes:

−wj
t2j

+ µ = 0 j ∈ J

µ

(∑
j∈J

tj − T
)

= 0

∑
j∈J

tj ≤ T

t̄min
j ≤ tj ≤ t̄max

j j ∈ J
µ ≥ 0 j ∈ J

The first constraint imposes µ = 2wj/t
2
j > 0, and therefore

∑
j∈J tj = T :

the time horizon is fully exploited (this is rather intuitive, since it allows to use
less resources, and therefore to limit the variations of resource use). Solving with
respect to the tj variables, we compute their values as a function of µ:

µ =
wj
t2j
⇒ t2j =

wj
µ
⇒ tj =

√
wj
µ

Now, the constraint on the time horizon provides the value of µ:

∑
j∈J

tj =
∑
j∈J

√
wj
µ

= T ⇒ √µ =

∑
j∈J

√
wj

T

from which

tj =

√
wj∑

j∈J

√
wj
T for allj ∈ J

that is a very elegant solution, as it distributes the time horizon T among the jobs
proportionally not to the workload (that is an “area”, in a sense), but to its square
root (that is, sort of a “length”).

What about the resources?

rj =

wjtj =
√
wj
∑
j∈J

√
wj

T
for allj ∈ J
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They are also proportional to the square root of the workload. In a sense, the
workload of each task affects in a balanced way the amount of resources and the
amount of time allotted.

The corresponding value of the objective is:

f∗ =
∑
j∈J

2r∗j = 2
∑
j∈J

wj
t∗j

= 2T
∑
j∈J

√
wj
∑
j∈J

√
wj = 2T

(∑
j∈J

√
wj

)2

This solution is feasible if each tj is actually included between tmin
j e tmax

j . If
even one of these values exceeds the corresponding interval, the solution must be
rejected. Moreover, even if it is feasible, there could still be other solutions (worse,
or better ones) in the other subproblems: in order to know, we should analyse them
all. To be complete, it is possible to prove, exploiting second-order conditions (that
are not treated in these notes) that the problem is convex, and therefore admits a
single candidate solution, that is globally optimal. Therefore, if the solution found is
feasible, it is also globally optimal. If it is not, there exist efficient algorithms (which
we do not describe here) to extend the simplex algorithm from linear programming
to the problems with a convex objective function and linear constraints, so as to
find the global optimum without exploring all the subproblems.
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5.6 Exercises

Exercise 1

A nuclear waste dump must be located as close as possible to the plant that produces
the waste (point x̄ = (1, 0)). On the other hand, the dump must be at least at 2
km from a town in point x̃ = (0, 0) and must be outside a park: the buffer zone is
parallel to line x = 3/2 and the plant must be on the left of this line.

Solution

Model and graphical representation

Let x = (x1, x2) be the position of the dump. The problem admits the following
mathematical programming model:

min f (x) = (x1 − 1)
2

+ x2
2

g1 (x) = −x2
1 − x2

2 + 4 ≤ 0

g2 (x) = x1 − 3/2 ≤ 0

Figure 5.12 represents the feasible region.

(0,0) (1,0) 3/2(-2,0)

A

B

C

Figure 5.12: Feasible region

Nonregular points

All points in which the gradients of the active constraints are linearly independent
are regular. Notice that only the active constraints must be considered. Therefore,
the interior of the feasible region is fully composed by regular points. The points
through which a single constraint passes are regular when its gradient is nonzero,
and so on.

The gradients of the two constraints are:

∇g1 (x) = [ −2x1 − 2x2 ]
′

∇g2 (x) = [ 1 0 ]
′
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The first gradient is zero only in the origin, where the constraint is nonactive
(g1 (0, 0) = 4 > 0). The second gradient is never zero. We are therefore interested
only in the points in which both constraints are active (such points are denoted as
A and B in the figure):{

g1 (x) = −x2
1 − x2

2 + 4 = 0

g2 (x) = x1 − 3/2 = 0
⇒

{
x1 = 3/2

x2
2 = 4− x2

1 = 7/4

from which A =
(
3/2,
√

7/2
)

e B =
(
3/2,−

√
7/2
)
.

In A, ∇g1 (x) =
[
−3 −

√
7
]′

and the gradients of the two constraints are linearly
independent. This can be verified in two ways: applying the definition or evaluating
the rank of the matrix whose columns are the gradients. The first way consists in
imposing

α1∇g1 (A) + α2∇g2 (A) = 0

from which {
−3α1 + α2 = 0

−
√

7α1 = 0
⇒ α1 = α2 = 0

Since the only way to fix to zero a linear combination of the two vectors is to set
both coefficients to zero, the two vectors are linearly independent by definition.

On the other hand, matrix [
−3 1

−
√

7 0

]
has rank equal to 2, because its determinant is nonzero: −3 0 +

√
7 1 =

√
7 6= 0

Karush-Kuhn-Tucker conditions

The KKT-conditions (also known as necessary first-order conditions) state that, if
a point is regular and locally minimal, the

1. the partial derivatives of the generalized Lagrangean function with respect to
the x variables (∂`/∂xi = 0) are equal to zero;

2. the partial derivatives of the generalized Lagrangean function with respect to
the λ multipliers (∂`/∂λj = hj = 0) are equal to zero, that is, the equality
constraints are respected;

3. the products of the functions expressing the inequality constraints, times the
corresponding multipliers (µkgk = 0) are equal to zero;

4. all inequality constraints are satisfied (gk ≤ 0);

5. all multipliers of the inequality constraints are nonnegative (µk ≥ 0).

Let us use these conditions to reject the points that do not satisfy them, hoping
that few candidate points remain. The nonregular points shall be added to the
candidate set, since the KKT-conditions are not necessary in these points. In the
present case, however, all points are regular.
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The generalized Lagrangean function is ` (x) = f (x) + µ1g1 (x) + µ2g2 (x) =

(x1 − 1)
2

+ x2
2 + µ1

(
−x2

1 − x2
2 + 4

)
+ µ2 (x1 − 3/2), for which

∂`/∂x1 = 2 (x1 − 1)− 2µ1x1 + µ2 = 0

∂`/∂x2 = 2x2 − 2µ1x2 = 0

µ1g1 = µ1

(
−x2

1 − x2
2 + 4

)
= 0

µ2g2 = µ2 (x1 − 3/2) = 0

g1 = −x2
1 − x2

2 + 4 ≤ 0

g2 = x1 − 3/2 ≤ 0

µ1 ≥ 0

µ2 ≥ 0

In order to solve this system without exhaustively exploring all possible cases,
one can set up a search tree, whose nodes divide the feasible region in disjoint
parts. In order to do that, we build on the stricter conditions, that are the products
µkgk = 0. Given a constraint, we can distinguish three cases:

1. µk = 0 and gk < 0

2. µk = 0 and gk = 0

3. µk > 0 and gk = 0

but in general the computations are much simpler if the second case is merged with
the first one, instead of treating it alone or merging it with the third one. We
therefore set:

1. µk = 0 and gk ≤ 0

2. µk > 0 and gk = 0

As for the constraint, it is better to choose the simplest one, that is the second,
splitting the original problem P 0 into P 1 (µ2 > 0 and g2 = 0) and P 2 (µ2 = 0 and
g2 ≤ 0).

P1 (µ2 > 0 and g2 (x) = 0)
Since g2 (x) = 0⇒ x1 = 3/2:

1− 3µ1 + µ2 = 0

x2 (1− µ1) = 0

µ1

(
7/4− x2

2

)
= 0

7/4− x2
2 ≤ 0

µ1 ≥ 0

As µ1 = (µ2 + 1) /3 ≥ 1/3 > 0, it is x2
2 = 7/4. This yields two candidate points:

A =
(
3/2,
√

7/2
)

with µA = (1, 2) and B =
(
3/2,−

√
7/2
)

with µB = (1, 2).
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P2 (µ2 = 0 and g2 ≤ 0)

x1 (1− µ1) = 1

x2 (1− µ1) = 0

µ1

(
−x2

1 − x2
2 + 4

)
= 0

x2
1 + x2

2 ≥ 4

x1 ≤ 3/2

µ1 ≥ 0

The first constraint guarantees that µ1 6= 1, so that x2 = 0

x1 (1− µ1) = 1

x2 = 0

µ1

(
4− x2

1

)
= 0

x2
1 ≥ 4

x1 ≤ 3/2

µ1 ≥ 0

As x2
1 ≥ 4 e x1 ≤ 3/2, it is x1 ≤ −2, and therefore 1 − µ1 = 1/x1 < 0, which

implies µ1 > 1. Then 4 − x2
1 = 0 ⇒ x1 = −2. This yields the candidate point

C = (−2, 0) with µC = (3/2, 0).

We therefore have overall three candidate points, among which we must choose
the one in which the objective function assumes the minimum value.

A =
(
3/2,
√

7/2
)
⇒ f (A) = 2

B =
(
3/2,−

√
7/2
)
⇒ f (B) = 2

C = (−2, 0)⇒ f (C) = 9

which implies that A and B are both globally optimal points.
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Exercise 2

Solve the following problem with the KKT-conditions:

min f (x) = x1 + x2

g1 (x) = −x2
1 + x2

2 + 1 ≤ 0

g2 (x) = x2
1 − 4 ≤ 0

g3 (x) = −x2 ≤ 0

Solution

Figure 5.13 represents the feasible region.

(0,0) (1,0) (2,0)(-1,0)
EH

(-2,0)

(2,√3)(-2,√3)
A

B

C

D

GF

Figure 5.13: Feasible region

Nonregular points

The regular points are all the points in which the gradients of the active constraints
are linearly independent. Notice that only the active constraints must be taken into
account. Therefore, the internal points of the feasible region are all regular, those
in which a single constraint is active are regular when the gradient is nonzero, and
so on.

The gradients of the three constraints are:

∇g1 (x) = [ −2x1 2x2 ]
′

∇g2 (x) = [ 2x1 0 ]
′

∇g3 (x) = [ 0 − 1 ]
′

The first and second gradient are zero only in the origin, where the corresponding
constraints are nonactive. The intersections of the constraints two-by-two are:

� g1 (x) = g2 (x) = 0

g1 (x) = −x2
1 + x2

2 + 1 ≤ 0

g2 (x) = x2
1 − 4 ≤ 0
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which yields the points A =
(
2,
√

3
)
, B =

(
2,−
√

3
)
, C =

(
−2,
√

3
)

and

D =
(
−2,−

√
3
)
. The gradients ∇g1 and ∇g2, evaluated, in these four points,

are linearly independent. Let us verify it for A (the process is similar for the
other three points):

∇g1 =
[
−4 2

√
3
]′
∇g2 = [ 4 0 ]

′

which are linearly independent because the matrix obtained lining them up is
nonsingular: [

−4 4

2
√

3 0

]
⇒
∣∣∣∣ −4 4

2
√

3 0

∣∣∣∣ = −8
√

3 6= 0

� g1 (x) = g3 (x) = 0

g1 (x) = −x2
1 + x2

2 + 1 ≤ 0

g3 (x) = −x2 ≤ 0

which yield the points E = (1, 0) and F = (−1, 0). The gradients ∇g1 e ∇g3,
evaluated in these two points, are also linearly independent.

� g2 (x) = g2 (x) = 0

g2 (x) = x2
1 − 4 ≤ 0

g3 (x) = −x2 ≤ 0

whichi yield the points G = (2, 0) and H = (−2, 0), where the gradients ∇g2 e ∇g3

are linearly independent.

Finally, there is no intersection of all three constraints. Hence, all points are
regular.

Karush-Kuhn-Tucker conditions

The generalized Lagrangean function is ` (x, µ) = x1 + x2 + µ1

(
−x2

1 + x2
2 + 1

)
+

µ2

(
x2

1 − 4
)

+ µ3 (−x2). Therefore, the KKT conditions are:

∂`/∂x1 = 1− 2µ1x1 + 2µ2x1 = 0

∂`/∂x2 = 1 + 2µ1x2 − µ3 = 0

µ1g1 = µ1

(
−x2

1 + x2
2 + 1

)
= 0

µ2g2 = µ2

(
x2

1 − 4
)

= 0

µ3g3 = µ3x2 = 0

g1 = −x2
1 + x2

2 + 1 ≤ 0

g2 = x2
1 − 4 ≤ 0

g3 = −x2 ≤ 0

µ1 ≥ 0

µ2 ≥ 0

µ3 ≥ 0

The simplest constraint is µ3g3 (x) = 0, so that we split the original problem P 0

into P 1 (µ3 = 0 and g3 ≤ 0) and P 2 (µ3 > 0 and g3 = 0).
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P1 (µ3 = 0 and g3 ≤ 0)

2 (µ1 − µ2)x1 = 1

1 + 2µ1x2 = 0

µ1

(
−x2

1 + x2
2 + 1

)
= 0

µ2

(
x2

1 − 4
)

= 0

−x2
1 + x2

2 + 1 ≤ 0

x2
1 ≤ 4

x2 ≥ 0

µ1 ≥ 0

µ2 ≥ 0

Since µ1 ≥ 0 e x2 ≥ 0, it is 1 + 2µ1x2 ≥ 1 > 0. Then, the second constraints cannot
be satisfied and this subproblem does not include candidate points.

P2 (µ3 > 0 and g3 = 0⇒ x2 = 0)

2 (µ1 − µ2)x1 = 1

1− µ3 = 0⇒ µ3 = 1

µ1

(
−x2

1 + 1
)

= 0

µ2

(
x2

1 − 4
)

= 0

−x2
1 + 1 ≤ 0

x2
1 − 4 ≤ 0

µ1 ≥ 0

µ2 ≥ 0

Let us further decompose the subproblem P 2, using constraint µ1g1 (x) = 0: we
obtain P 11 (µ1 = 0 and g1 ≤ 0) and P 12 (µ1 > 0 and g1 = 0).

P11 (µ1 = 0 and g1 ≤ 0)

−2µ2x1 = 1

µ3 = 1

µ2

(
x2

1 − 4
)

= 0

1 ≤ x2
1 ≤ 4

µ2 ≥ 0

Since −2µ2x1 = 1, µ2 6= 0, which implies x2
1 = 4. On the other hand, −2µ2x1 = 1

and µ2 > 0 means that x1 < 0. Then, the only candidate point is H = (−2, 0),
which corresponds to µH = (0, 1/4, 1).

P12 (µ1 > 0 and g1 = 0⇒ x2
1 = 1)

2 (µ1 − µ2)x1 = 1

1− µ3 = 0⇒ µ3 = 1

x2
1 = 1

µ2

(
x2

1 − 4
)

= 0⇒ µ2 = 0

x2
1 − 4 ≤ 0

µ2 ≥ 0
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Conditions 2 (µ1 − µ2)x1 = 1 and µ2 = 0 imply 2µ1x1 = 1, which implies x1 > 0.
Then, the only candidate point is E = (1, 0), with µE = (1/2, 0, 1).

Of the two candidate points, the globally optimal point is H:{
E = (1, 0)⇒ f (E) = 1

H = (−2, 0)⇒ f (H) = −2
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Esercise 3

Solve the following problem with the KKT-conditions:

min f (x) = x2
1 + x2

2

g1 (x) = x2
1 + x2

2 − 4 ≤ 0

g2 (x) = −x1 − x2 − 2 ≤ 0

Solution

Figure 5.14 represents the feasible region.

(0,0) (1,0)(-1,0)
AC O = (0,0)A = (-2,0)

B = (0,-2)

Figure 5.14: Feasible region

Nonregular points

The internal points of the feasible region are all regular. The points through which
a single points passes are regular wherever the gradient is nonzero. The gradients
of the two constraints are:

∇g1 (x) = [ 2x1 2x2 ]
′

∇g2 (x) = [ −1 − 1 ]
′

The former is zero only in the origin, where the constraint is nonactive; the
latter is never zero. The two constraints intersect in

g1 (x) = x2
1 + x2

2 − 4 = 0

g2 (x) = −x1 − x2 − 2 = 0

that is, in A = (−2, 0) and B = (0,−2). Their gradients are

∇g1 (A) = [ −4 0 ]
′ ∇g2 ≡ [ −1 − 1 ]

′ ∇g1 (B) = [ 0 − 4 ]
′ ∇g2 ≡ [ −1 − 1 ]

′

linearly independent. Then, all points are regular.
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Karush-Kuhn-Tucker conditions

The generalized Lagrangean function is ` (x, µ) = x2
1 + x2

2 + µ1

(
x2

1 + x2
2 − 4

)
+

µ2 (−x1 − x2 − 2). Therefore, the first-order necessary conditions are:

∂`/∂x1 = 2x1 + 2µ1x1 − µ2 = 0

∂`/∂x2 = 2x2 + 2µ1x2 − µ2 = 0

µ1g1 = µ1

(
x2

1 + x2
2 − 4

)
= 0

µ2g2 = µ2 (−x1 − x2 − 2) = 0

g1 = x2
1 + x2

2 − 4 ≤ 0

g2 = −x1 − x2 − 2 ≤ 0

µ1 ≥ 0

µ2 ≥ 0

Subtracting the second constraint from the first one, one obtains

2 (x1 − x2) (1 + µ1) = 0

Since µ1 ≥ 0⇒ 1 + µ1 ≥ 1 > 0, it is x1 = x2 = x.

2x (1 + µ1) = µ2

µ1

(
x2 − 2

)
= 0

µ2 (x+ 1) = 0

x2 ≤ 2

x ≥ −1

µ1 ≥ 0

µ2 ≥ 0

The simplest constraint is µ2 (x+ 1) = 0, based on which the original problem
P 0 can be split into P 1 (µ2 = 0) and P 2 (µ2 > 0 e x = −1).

P1 (µ2 = 0)

2x (1 + µ1) = 0

µ1

(
x2 − 2

)
= 0

x2 ≤ 2

x ≥ −1

µ1 ≥ 0

Since µ1 ≥ 0, it is x = 0. This corresponds to the candidate point O = (0, 0),
with µ0 = (0, 0). Notice that no constraint is active in O, and correspondingly all
multipliers are zero.

P2 (µ2 > 0 e x1 = x2 = x = −1)

−2 (1 + µ1) = µ2

µ1 = 0

x1 = x2 = −1

x2 ≤ 2

x ≥ −1

µ1 ≥ 0
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which implies µ2 < 0, and is therefore unfeasible. In fact, in point (−1,−1) the
gradient of the objective function is ∇f (−1,−1) = [ −2 − 2 ]

′
, and it is parallel to

the gradient of the only active constraint ∇g2 ≡ [ −1 − 1 ]
′
, but it has the same

orientation, instead of the opposite one. This corresponds to the wrong sign of µ2.

There is, therefore, a single candidate point, that is the globally optimal point:
O = (0, 0), with f (O) = 0.
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Exercise 4

Solve the following problem with the KKT-conditions:

min f (x) = x1 + x2

h1 (x) = x2
1 − x2 = 0

g1 (x) = x1 ≤ 0

Solution

Figure 5.15 represents the feasible region.

A= (-1/2,1/4)
O = (0,0)

Figure 5.15: Feasible region

Nonregular points

The gradients of the constraints are:

∇h (x) = [2x1 − 1]
′ ∇g (x) = [1 0]

′

and are never equal to zero. The only potentially nonregular point, therefore, is the
intersection of the two constraints, that is the origin, where both constraints are
active. The two vectors, however, are linearly independent in the origin:

∇h (O) = [0 − 1]
′ ∇g (O) = [1 0]

′

Hence, all points are regular.

Karush-Kuhn-Tucker conditions

The generalized Lagrangean function is ` (x, λ, µ) = x1 + x2 + λ
(
x2

1 − x2

)
+ µx1.

∂`/∂x1 = 1 + 2λx1 + µ = 0

∂`/∂x2 = 1− λ = 0⇒ λ = 1

∂`/∂λ = h = x2
1 − x2 = 0

µg = µx1 = 0

g = x1 ≤ 0
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which implies µ = −2x1 − 1

x2 = x2
1

(2x1 + 1)x1 = 0

x1 ≤ 0

so that x1 = −1/2 e x1 = 0. The first solution is feasible, and corresponds to the
candidate point A = (−1/2, 1/4) with λ = 1 and µ = 0. The second solution is
unfeasible, because point x = (0, 0) corresponds to multipliers λ = 1 and µ = −1 <
0, which is unfeasible.

Hence, the only candidate point is A = (−1/2, 1/4), and it is globally optimal.
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Exercise 5

Solve the following problem with the KKT-conditions:

min f (x) = x2

g1 (x) = (x1 − 1)
3

+ (x2 − 2) ≤ 0

g2 (x) = (x1 − 1)
3 − (x2 − 2) ≤ 0

g3 (x) = −x1 ≤ 0

Solution

Figure 5.16 represents the feasible region.

(1,2)

B

(0,1)

(0,3)

A

C

Figure 5.16: Feasible region

Nonregular points

The regular points are the points in which the gradients of the active constraints are
linearly independent. Notice that only the active constraints must be considered.
Then, all internal points of the feasible region are regular; the points through which
a sigle constraint passes are regular wherever its gradient is nonzero, and so on.

The gradients of the three constraints are:

∇g1 (x) =
[

3 (x1 − 1)
2

1
]′

∇g2 (x) =
[

3 (x1 − 1)
2 − 1

]′
∇g3 (x) = [ −1 0 ]

′
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Since no gradient ever becomes zero, we are only interested in the points in
which at least two constraints are active. There are three such points, labelled as
A, B and C in Figure 5.16.

g1 (A) = 0 ⇒ (x1 − 1)
3

= − (x2 − 2)

g2 (A) = 0 ⇒ (x1 − 1)
3

= + (x2 − 2)

from which − (x2 − 2) = (x2 − 2), that is x2 = 2 and (x1 − 1)
3

= 0, that is x1 = 1.
In short, A = (1, 2).

g1 (B) = 0 ⇒ (x1 − 1)
3

= − (x2 − 2)

g3 (B) = 0 ⇒ x1 = 0

from which −1 = 2− x2, that is x2 = 3 and therefore B = (0, 3). Finally,

g2 (C) = 0 ⇒ (x1 − 1)
3

= (x2 − 2)

g3 (C) = 0 ⇒ x1 = 0

which implies 1 = 2− x2, that is x2 = 1 and therefore C = (0, 1).

In A, the two gradients ∇g1 (A) = [ 0 1 ]
′

and ∇g2 (A) = [ 0 − 1 ]
′

are opposite.
Therefore, they are linearly dependent: A is nonregular. In the nonregular points,
the Karush-Kuhn-Tucker conditions lose validity, that is they provide no informa-
tion. Therefore, we are forced to consider all nonregular points as candidates.

In B, the two gradients ∇g1 (B) = [ 3 1 ]
′

and ∇g3 (B) = [ −1 0 ]
′

are linearly
independent. Instead of evaluating the determinant of the matrix composed by
lining up the two vectors, one can also use the definition of linear independence,
and search for a linear combination of the two vectors equal to zero. In other words,
setting α1∇g1 (B) +α2∇g3 (B) = 0, one looks for the values of α1 e α2 that satisfy
the condition: the result is [ 3α1 − α2 α1 ]

′
, that is zero only for α1 = α2 = 0.

Hence, the two vectors are linearly indipendent.

Finally, in C the two vectors ∇g2 (C) = [ 3 − 1 ]
′

and ∇g3 (C) = [ −1 0 ]
′

are
linearly indipendent. In fact, setting α1∇g2 (C) + α2∇g3 (B) = 0 one obtains
[ 3α1 − α2 − α1 ]

′
, that is zero only for α1 = α2 = 0.

Karush-Kuhn-Tucker conditions

The generalized Lagrangean function is ` (x, µ) = x2 + µ1 (x1 − 1)
3

+ µ1 (x2 − 2) +

µ2 (x1 − 1)
3 − µ2 (x2 − 2)− µ3x1, per cui

∂`/∂x1 = 3µ1 (x1 − 1)
2

+ 3µ2 (x1 − 1)
2 − µ3 = 0

∂`/∂x2 = 1 + µ1 − µ2 = 0

µ1g1 = µ1

[
(x1 − 1)

3
+ (x2 − 2)

]
= 0

µ2g2 = µ2

[
(x1 − 1)

3 − (x2 − 2)
]

= 0

µ3g3 = −µ3x1 = 0

g1 ≤ 0 = (x1 − 1)
3

+ (x2 − 2) ≤ 0

g2 ≤ 0 = (x1 − 1)
3 − (x2 − 2) ≤ 0

g3 ≤ 0 = −x1 ≤ 0

µ1 ≥ 0

µ2 ≥ 0

µ3 ≥ 0
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Before selecting a complementarity constraint to split the problem, we observe
that the second equation allows to prove the strict positivity of a multiplier: since
1 + µ1 − µ2 = 0, it is µ2 = µ1 + 1 ≥ 1 > 0. This implies that µ2 can be removed
from its complementarity constraint, and therefore (x1 − 1)

3 − (x2 − 2) = 0. The
system simplifies to:

3 (2µ1 + 1) (x1 − 1)
2 − µ3 = 0

µ2 = 1 + µ1

µ1 (x2 − 2) = 0

(x1 − 1)
3

= (x2 − 2)

µ3x1 = 0

2 (x2 − 2) ≤ 0

x1 ≥ 0

µ1 ≥ 0

µ2 ≥ 0

µ3 ≥ 0

Now it advantageous to select the simplest complementarity constraint, that is
the third one, and to split the original problem P 0 into P 1 (µ3 = 0 and g3 ≤ 0) and
P 2 (µ3 > 0 and g3 = 0).

P1 (µ3 = 0 and g3 ≤ 0)

(2µ1 + 1) (x1 − 1)
2

= 0

µ2 = 1 + µ1

µ1 (x2 − 2) = 0

(x1 − 1)
3

= (x2 − 2)

x2 ≤ 2

x1 ≥ 0

µ1 ≥ 0

µ2 ≥ 0

In the first constraint, term (2µ1 + 1) is clearly positive, and therefore implies
that x1 = 1, and consequently x2 = 2. The remaining constraints do not allow
to find a single value for all multipliers: any nonnegative value µ1 ≥ 0 and the
corresponding value µ2 = µ1 + 1 are good. Solution A = (1, 2) satisfies Karush-
Kuhn-Tucker conditions. Strictly speaking, however, this point should be excluded
from the computation, because it is nonregular, and should be considered as can-
didate for that reason, and not because it satisfies the conditions.
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P2 (µ3 > 0 and g3 = 0, that is x1 = 0)

3µ1 + 3µ2 − µ3 = 0

1 + µ1 − µ2 = 0

µ1 [−1 + (x2 − 2)] = 0

µ2 [−1− (x2 − 2)] = 0

−1 + (x2 − 2) ≤ 0

−1− (x2 − 2) ≤ 0

µ1 ≥ 0

µ2 ≥ 0

µ3 > 0

Since µ2 = 1 + µ1 ≥ 1 > 0, the fourth constraint (µ2 (1− x2) = 0) becomes x2 = 1,
which implies µ1 [−1 + (x2 − 2)] = −2µ1 = 0 for µ1 = 0, that implies µ2 = 1 and
µ3 = 3. Solution C = (0, 1) satisfies Karush-Kuhn-Tucker conditions, and therefore
is a candidate point.

Out of the two candidate points, the globally optimal one is C because{
A = (1, 2)⇒ f (A) = 2

C = (0, 1)⇒ f (C) = 1
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Exercise 6

Solve the following problem with the KKT-conditions:

min f (x) = −x1

g1 (x) = (x1 − 1)
3

+ (x2 − 2) ≤ 0

g2 (x) = (x1 − 1)
3 − (x2 − 2) ≤ 0

g3 (x) = −x1 ≤ 0

Solution

The problem has the same constraints, and therefore the same feasible region of
Exercise 6. Figure 5.17 represents it.

(1,2)

B

(0,1)

(0,3)

A

C

Figure 5.17: Feasible region

Nonregular points

Since the feasible region is the same as that of Exercise 6, the nonregular points are
also the same: the only nonregular point is A = (1, 2).
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Karush-Kuhn-Tucker conditions

The generalized Lagrangean function is ` (x, µ) = −x1 +µ1 (x1 − 1)
3
+µ1 (x2 − 2)+

µ2 (x1 − 1)
3 − µ2 (x2 − 2)− µ3x1, so that

∂`/∂x1 = −1 + 3µ1 (x1 − 1)
2

+ 3µ2 (x1 − 1)
2 − µ3 = 0

∂`/∂x2 = µ1 − µ2 = 0

µ1g1 = µ1

[
(x1 − 1)

3
+ (x2 − 2)

]
= 0

µ2g2 = µ2

[
(x1 − 1)

3 − (x2 − 2)
]

= 0

µ3g3 = −µ3x1 = 0

g1 ≤ 0 = (x1 − 1)
3

+ (x2 − 2) ≤ 0

g2 ≤ 0 = (x1 − 1)
3 − (x2 − 2) ≤ 0

g3 ≤ 0 = −x1 ≤ 0

µ1 ≥ 0

µ2 ≥ 0

µ3 ≥ 0

Since µ1 = µ2 = µ, the first constraint becomes 6µ (x1 − 1)
2

= µ3 + 1 ≥
1 > 0, which implies that µ > 0. Computing the sum and the difference of the
third and fourth constraints, one obtains that x1 = 1 and x2 = 2. Therefore,
the first constraint would require µ3 = −1 and the fourth would require µ3 = 0, a
contradiction. Consequently, no point satisfies the Karush-Kuhn-Tucker conditions.

On the other hand, a globally minimum point certainly exists, because the
feasible region is close and limited, and the objective function is continuous. The
globally optimal point is A, that can be optimal and violate the KKT-conditions
because it is nonregular. Notice that in the previous exercise the same nonregular
point actually satisfied the KKT-conditions: both cases are possible. This is why
it is always necessary to keep into account the nonregular points as candidates.
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Exercise 7

Solve the following problem with the KKT-conditions:

min z = (x1 + 1)
2

+

(
x2 +

1

2

)2

x2
1 − x2

2 ≤ 0

x1 − x2 ≤ 0

Solution

This problem has a very peculiar feasible region, that consists in the upper quadrant
included between the bisectors of the axes, plus the half-line x2 = x1 with x1 ≤ 0.
Figure 5.6 represents the feasible region.

(0,0)

B = (-3/4,-3/4)

A = (-1/4,1/4)

C = (-1,-1/2)

Figure 5.18: Regione ammissibile

Nonregular points

The gradients of the constraints g1 (x) = x2
1 − x2

2 ≤ 0 and g2 (x) = x1 − x2 ≤ 0 are

∇g1 =

[
2x1

−2x2

]
∇g2 =

[
1
−1

]

The points in which neither constraint is active are regular by definition. Those
in which only g1 is active, that is those of the bisector of the second and fourth
quadrant, excluding the origin (x2 = −x1, with x1 6= 0) are regular as long as the
gradient is nonzero. This would require x1 = x2 = 0, that is impossible. Then,
these points are all regular. There is no point in which only g2 is active. The points
in which both constraints are active, that is those of the bisector of the first and
third quadrant (x2 = x1 = ξ) are all nonregular, because the two gradients are

proportional: ∇g1 = [2ξ − 2ξ]
T

and ∇g2 = [1 − 1]
T

.
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Karush-Kuhn-Tucker conditions

The generalized Lagrangean function ` (x, µ) = (x1 + 1)
2
+
(
x2 + 1

2

)2
+µ1

(
x2

1 − x2
2

)
+

µ2 (x1 − x2) yields the following conditions:

∂`

∂x1
= 2 (x1 + 1) + 2µ1x1 + µ2 = 0

∂`

∂x1
= 2

(
x2 +

1

2

)
− 2µ1x2 − µ2 = 0

µ1g1 (x) = µ1

(
x2

1 − x2
2

)
= 0

µ2g2 (x) = −µ2 (x1 − x2) = 0

µ1 ≥ 0

µ2 ≥ 0

g1 (x) ≤ 0

g2 (x) ≤ 0

We set apart all points of the bisector of the first and third quadrant, because
they are nonregular, and consequently candidate: x1 − x2 < 0. As a result, the
fourth constraint implies that µ2 = 0: the multiplier of a nonactive constraint (g2)
is always zero.

2 (x1 + 1) + 2µ1x1 = 0

2

(
x2 +

1

2

)
− 2µ1x2 = 0

µ1 (x1 + x2) = 0

0 = 0

µ1 ≥ 0

µ2 = 0

x1 + x2 ≥ 0

x1 − x2 < 0

We split the problem into two subproblems based on the third constraint.

Problem µ1 = 0 The first two constraints yield point C = (−1,−1/2). This
violates constraint g1 ≤ 0, so that is must be rejected. On the other hand, it is
a reasonable result, given that it would be the point of minimum of the objective
function without the constraints.

Problem µ1 > 0 In this subproblem x2 = −x1, so that

2 (x1 + 1) + 2µ1x1 = 0

2

(
−x1 +

1

2

)
+ 2µ1x1 = 0

The difference of the two constraints yields x1 = −1/4 and x2 = 1/4, while µ1 = 3.
This is the only points suggested by the Karush-Kuhn-Tucker conditions.

Now, it is necessary to compare point A = (−1/4, 1/4) and the nonregular points
of line x2 = x1 = α. In order to do that, first we determine the point of minimum
among the latter, and then we compare it to A.
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min f (α) = (α+ 1)
2

+

(
α+

1

2

)2

The solution is obtained setting to zero the derivative of f with respect to parameter
α: f ′ (α) = 2 (α+ 1) + 2

(
α+ 1

2

)
= 0, which implies α = −3/4, and therefore

B = (−3/4,−3/4), where the objective function value is f (B) = 1/8. The value of
the objective function in A, on the other hand, is f (A) = 9/8. Hence, the globally
optimal point is the nonregular point B = (−3/4,−3/4).
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Chapter 6

The Paretian preference

This chapter considers a more complex decision framework: we still assume that
there is a single decision-maker and a single scenario, but the preference relation is
no longer a weak order described by a consistent value (or cost) function.

In order to state something useful, we must make some assumptions on the
structure of the preference relation. Of course, different assumptions will yield
different models. The first model proposed in history, that is still among the most
important ones is that proposed in the second half of the 19th century by Pareto1.
We remind that we have assumed the impact to be a vector in a p-dimension space
(F ⊆ Rp).

Definition 21 We denote as Paretian preference the relation:

Π = {(f, f ′) : fl ≤ f ′l for each l ∈ {1, . . . , p}}

that is
f � f ′ ⇔ fl ≤ f ′l for each l ∈ {1, . . . , p}

In Pareto’s theory, an impact is preferred to another one when all the elements of
the first impact do not exceed the corresponding elements of the second. Substan-
tially, we assume that all indicators fi represent costs. Of course, there is also a
Paretian case in which all indicators represent benefits and the preference relation
is defined consequently; here we adopt the same convention adopted to deal with
Mathematical Programming.

The Paretian case is a rather reasonable model of practical situations: if the
indicators represent costs, it is natural to prefer impacts with small values to im-
pacts with large values. However, this model only allows to compare impacts with
elements that dominate each other all in the same orientation. This is called in-
comparable indicators assumption, meaning that the decision-maker is unable to
compare two impacts when different indicators give opposite suggestions. This lim-
itation can make the Paretian model unrealistic.

At first sight, the model is also not very useful to reach the actual choice of a
solution, given that it terminates proposing several incomparable ones. In practice,
the decision-maker could be able to say something more, besides the fact that
the indicators, taken one-by-one are costs (or benefits), but could also find hard
to provide a complete preference relation. At this point, presenting the Paretian
region (as a list of solutions or with a suitable graphic representation), instead of the

1Vilfredo Pareto (1848-1923), Italian economist, mathematician and engineer, who was born
in France and lived in Italy and Switzerland.
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whole feasible region, could help the decision-maker to clarify his/her ideas and to
refine the preference relation in a following step, enriching it with new comparable
pairs while keeping the ones defined by the Paretian assumption, without retracting
from his/her actual feelings. It is even possible to arrive in this way to a complete
relation without facing the complications of the multiple-attribute utility theory.

6.1 Formal properties of the Paretian preference

Theorem 18 The Paretian preference relation is a partial order.

Proof. In fact, it is

� reflexive: f � f for all f ∈ F

fl = fl for all l ∈ {1, . . . , p} ⇒ fl ≤ fl for all l ∈ {1, . . . , p} ⇒ f � f

� transitive: f � f ′ and f ′ � f ′′ ⇒ f � f ′′ for all f, f ′, f ′′ ∈ F{
f � f ′

f ′ � f ′′
⇒

{
fl ≤ f ′l for all l ∈ {1, . . . , p}
f ′l ≤ f ′′l for all l ∈ {1, . . . , p}

⇒

⇒ fl ≤ f ′′l for all l ∈ {1, . . . , p} ⇒ f � f ′′

� antisymmetric: f � f ′ and f ′ � f ⇒ f = f ′ for all f, f ′ ∈ F{
f � f ′

f ′ � f
⇒

{
fl ≤ f ′l for all l ∈ {1, . . . , p}
f ′l ≤ fl for all l ∈ {1, . . . , p}

⇒

⇒ fl = f ′l for all l ∈ {1, . . . , p} ⇒ f = f ′

The proofs are very simple, because they exploit the properties of real numbers,
and the indicator, considered one-by-one, enjoy the same properties. They can
appear as trivial notation tricks, but they are not, because the translation from the
relation on the impacts (denoted as �) to the relation on the indicators (denoted
as ≤) is crucial, and is allowed only by Pareto’s definition.

Remark 5 In general, the Paretian preference relation is not complete.

Example 34 A trivial counterexample to completeness is provided by the two fol-
lowing impacts:

f =

[
1
2

]
f ′ =

[
2
1

]
where f is preferred to f ′ according to the first indicator, but it is worse accord-
ing to the second. Then, the Paretian preference does not hold in any of the two
orientations: the two impacts are incomparable (f ./ f ′).

6.2 Paretian dominance

As discussed in Section 4.1, the strict preference relation between impacts induces
a dominance relation between solutions, in which a solution dominates another one
if and only if the impact of the former is strictly preferred to the impact of the
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latter. We use strict preference because in general there can be several solutions
with the same impact, which are reciprocally indifferent; stating that such solutions
dominate each other would require to reject them all, and this does not appear
reasonable.

In the Pareto case, dominance between solutions is therefore expressed as follows:

x′ ≺ x⇔ f (x′) ≺ f (x)⇔

{
fl (x

′) ≤ fl (x) for all l ∈ {1, . . . , p}
∃l̄ ∈ {1, . . . , p} : fl̄ (x

′) < fl̄ (x)

and this allows to divide the feasible solutions x ∈ X into two groups, one of which
shall be rejected in every reasonable decision, whereas the other one shall be taken
into account.

Definition 22 We denote as dominated solution every feasible solution x ∈ X that
admits another solution x′ ∈ X which dominates it:

∃x′ ∈ X, l̄ ∈ {1, . . . , p} :

{
fl (x

′) ≤ fl (x) for all l ∈ {1, . . . , p}
fl̄ (x

′) < fl̄ (x)

Definition 23 We denote as Paretian solution every feasible solution x ∈ X such
that no other solution x′ dominates it:

∀x′ ∈ X,∃l̄ ∈ {1, . . . , p} : fl̄ (x) < fl̄ (x
′) or f (x′) = f (x)

Definition 24 We denote as Paretian region X◦ the set of all Paretian solutions.

The Paretian region corresponds to the set of globally optimal points in Math-
ematical Programming, with two small, but not negligible, differences, due to the
incompleteness of the Paretian preference:

1. the Paretian solutions are not preferable to all other solutions, whereas the
globally optimal points are;

2. the Paretian solutions are not reciprocally indifferent, whereas the globally
optimal points are.

This means that, while in Mathematical Programming usually it is enough to find
a globally optimal point and the other ones can be simply ignored, in the Paretian
case it is appropriate to find all Paretian solutions.

6.3 Identification of the Paretian region

The fundamental problem now is how to determine the Paretian region. There are
several ways to obtain it, which have different application fields, different advantages
and disadvantages and in general provide different results. This is because, instead
of providing exactly the Paretian region X◦, they usually generate an underestimate
(i. e., a subset) or an overestimate (i. e. a superset). There is no method that applies
in general and yields exactly X◦. In the following, we describe:

1. the direct application of the definition, that holds only for the finite case;

2. the inverse transformation method, that holds only for problems with two
indicators (f ∈ R2);
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3. the Karush-Kuhn-Tucker conditions, that hold only for the continuous case
and provide an overestimate of X◦;

4. the weighted-sum method, that holds in all cases, but provides an underestim-
ate of X◦;

5. the ε-constraint method, that holds in all cases, but provides an overestimate
of X◦.

Table 6.1 summarises the methods here considered, the problems to which they can
be applied, their disadvantages and the kind of estimate they provide.

Method Generality Disadvantages Estimate
Definition Finite problems Inefficient for Exact

combinatorial problems
Inverse transformation p = 2 indicators Human intervention Exact
KKT conditions Regualar problems Solving a system Overestimate
Weighted sum Complete Parametric problem Underestimate
ε-constraint Complete Parametric problem Underestimate

Table 6.1: Some methods to determine the Paretian region: generality, disadvant-
ages and kind of estimate obtained

6.3.1 The application of the definition

In the finite case, the Paretian region can be found in finite time by applying the
definition that is by building the solution dominance graph, whose nodes correspond
to the solutions and whose arcs correspond to the dominance relation, as done in
Section 4.1 dealing with general preference relations. In this graph, the Paretian
solutions are the nodes with no ingoing arc.

Example 35 Let us consider once again the problem about a trip introduced in
Example 5 of Chapter 4, and let us assume that the impact f be completely described
by the travel time f1 (measured in hours) and by the travel cost f2 (measured in
Euros), with the values reported in Table 6.2. The indicators are both interpreted
as cost functions and are reciprocally incomparable.

Time (hours) Cost (Euros)
Train 5.5 100
Car 4.0 150
Airplane 1.0 300
Coach 5.0 180
Taxi 4.0 400

Table 6.2: Travel times and costs associated to different means of transport available
for a trip

The resulting preference relation is

Π = {(Car,Coach) , (Car,Taxi) , (Airplane,Taxi)}

The Paretian solutions are therefore Train, Airplane and Car. Let us remind that
Example 5 in Section 4.1 assumed that Car and Train could be compared, so that
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the latter was dominated by the former. The difference here is that the preference
relation here is mechanically built on the basis of the values of the two indicators,
whereas in that case it was given explicitly listing each pair of impacts.

Example 36 Consider the following evaluation matrix, in which the indicators
should all be maximised, instead of minimized.

Indicators
Alternatives f1 f2 f3

a1 100 60 60
a2 70 75 25
a3 60 40 20
a4 40 100 80
a5 20 80 100

Performing pairwise comparison, it can be verified that alternative a3 is domin-
ated by alternatives a1 and a2. The other four alternatives are all Paretian.

6.4 Inverse transformation method

This method also consists in applying the definition, but it can be used also on
continuous problems, provided that they can be graphically represented in the in-
dicator space. In fact, the method consists in a graphical solution of the problem,
and requires to:

� determine the inverse φ : F → X of the transformation f : X → F ;

� replace x = φ (f) in the expression of the constraints to obtain an analytic
expression of region F in the indicator space;

� determine the subset F ◦ of the nondominated impacts, that is the image of
the Paretian region X◦ in the indicator space; these impact are those whose
lower left quadrant does not intersect F ;

� determining through the inverse transformation φ : F → X the Paretian
region X◦ in the variable space.

Since in general set F ◦ must be determined graphically, this method can be applied
only in the case in which there are two indicators (p = 2).

Example 37 Consider the following problem:

min f1 (x) = x1 + x2

min f2 (x) = −x1

g1 (x) = 3x2
1 + 4x2 − 12 ≤ 0

g2 (x) = −x2 ≤ 0

Figure 6.1 shows the feasible region and the antigradients of the two indicators.

First, we determine the inverse transformation φ : F → X:{
f1 (x) = x1 + x2

f2 (x) = −x1

⇒

{
x1 (f) = −f2

x2 (f) = f1 − x1 = f1 + f2
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f2

A B

f1

-2 2

3
x2

x1

−∇
−∇

Figure 6.1: Feasible region

which identifies region F (represented in Figure 6.2):{
g1 (x (f)) = 3f2

2 + 4 (f1 + f2)− 12 ≤ 0

g2 (x (f)) = −f1 − f2 ≤ 0
⇒

f1 ≤ −
3

4
f2

2 − f2 + 3

f1 + f2 ≥ 0

It is easy to identify graphically the image of the Paretian region: it is enough to
find the impacts whose lower left quadrant include no other impact. These points
form segment CD, with C = (−2, 2) and D = (2,−2).

f2

C

D

f1

(-2,2)

(2,-2)

Figure 6.2: The impact set of the problem (in red, the image of the Paretian set)

Then, we apply the inverse transformation to get back to the decision variable
space. Since the inverse transformation is linear, is is possible to make a simplified
discussion: the line segment CD in the indicator space certainly corresponds to
another line segment in the decision variable space. In order to find this segment,
it is enough to transform the two extreme points: the Paretian region X◦ is the
segment identified by x (C) = A = (−2, 0) and x (D) = B = (2, 0).

In general, we should express the region F ◦ in parametric form as f (α) and apply
the inverse transformation to its points so as to obtain the parametric expression
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x (f (α)) = x (α) of the Paretian region. In the present case{
f1 (α) = α

f2 (α) = −α
⇒

{
x1 (α) = −f2 (α) = α

x2 (α) = f1 (α) + f2 (α) = α− α = 0

with α ∈ [−2; 2].

6.5 Karush-Kuhn-Tucker conditions

These conditions extend the corresponding conditions defined for Mathematical
Programming. They are, once again, local conditions, because they exploit a local
definition of Paretian dominance. And they are necessary, but not sufficient, condi-
tions, so that they yield a set XKKT of solutions that are candidate to be Paretian,
but not certainly such. This set, therefore, is in general larger than the Paretian
region: XKKT ⊇ X◦. The candidate set needs to be refined in a following step, by
sifting away the dominated points.

In the following, we summarise the process, that follows the lines of the pro-
cess already described in Chapter 5. First, an analytic description of the feasible
region X is introduced, that exploits the same inequality constraints and regularity
assumptions on the functions that define impact and constraints:

X = {x ∈ Rn : gj (x) ≤ 0 for j ∈ {1, . . . ,m}} ⊆ Rn

and
f = [f1 f2 . . . fp]

T

where gj (x) ∈ C1 (X) are regular functions for all j ∈ {1, . . . ,m} and fl ∈ C1 (X)
are regular functions for l ∈ {1, . . . , p}.

Locally Paretian solutions

Definition 25 We denote as locally Paretian solution a feasible solution x ∈ X
that admits a neighbourhood Ux,ε in which no other solution dominates it:

∃Ux,ε : x′ ⊀ x for all x′ ∈ Ux,ε ∩X

A Paretian solution is always locally Paretian, but the converse is not always true,
just as the globally optimal points are always locally optimal, but not the other way
round.

Figure 6.3 marks in white on a grey background the set F of the impacts of a
decision problem in the indicator space Rp. In this space it is easy to check whether
an impact f corresponds to a dominated or a Paretian point x: it is enough to
build the lower left quadrant based on f (that is, the set of points with coordinates
≤ fl for each l ∈ {1, . . . , p}) and to verify that this quadrant does not include other
point of F besides f . For example, in Figure 6.3 solutions A and B are Paretian.
Solutions C and D are dominated, since every neighbourhood of the impacts f (C)
and f (D) contains points with coordinates not larger, and at least one coordinate
strictly smaller (for instance, the points of the segment between f (B) and f (C)
are better than f (C) with respect to indicator f1 and equally good with respect to
f2

2. Finally, point E is locally Paretian, given that no impact in the intersection
of the impact set F and the image of the neighbourhood UE,ε represented by the

2Point C is denoted as weakly Paretian because it is not possible to strictly improve all indicator
remaining in set F . This concept is out of the scope of the course.
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circle falls within the lower left quadrant of f (E), delimited by the dashed lines.
However, E is not a globally Paretian point, because impact f (E) is dominated by
many other impact, among which f (A), f (B), f (C) and f (D).

Figure 6.3: Points A and B are globally Paretian points; C is dominated (more
precisely, it is weakly Paretian); D is dominated; E is locally, but not globally
Paretian (the other four points dominate it).

If X is discrete (see Figure 6.4), all feasible solutions are isolated points. This
means that, assigning suitably small values to ε, the neighbourhood Ux,ε intersectsX
only in point x. Therefore, in a discrete problem, every solution is locally Paretian.
The same occurred in Mathematical Programming. This is consistent with the fact
that in general the KKT-conditions return an overestimate of the Paretian solution
set, but in the discrete case they return the whole of X, and are therefore completely
useless.

)

*

B

Bf

f

f(A)

f(B)

2

1

Figure 6.4: In discrete problems, all feasible points are locally Paretian

Sketch of the proof

The development of the conditions is very similar to that of the single-objective
case. As in Mathematical Programming, the KKT-conditions are only necessary
and provide
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1. Definition If a point x is locally Paretian, all the arcs ξ feasible in x are
nonimproving.

2. Nonimproving condition Now, we replace all indicators with their first-
order approximations through Taylor’s series. The directions in which indicator
fl is nonimproving satisfy condition (∇fl (x))

T
p ≥ 0. As in Mathematical Pro-

gramming, we admit the equality because the higher-order terms could worsen the
indicator also along directions orthogonal to the gradient. These conditions are only
necessary and could classify as candidates also dominated points (we shall see an
example further on). By contrast, the directions that violate all such conditions are
strictly improving for all indicators, and therefore sufficient to identify an improving
arc and filter out a point from the candidate set.

3. Feasibility condition The feasible arcs are replaced by the associated tan-
gent vectors pξ, that (in the regular points) are exactly the directions such that

(∇gj (x))
T
p ≤ 0 for all active constraints (gj (x) = 0). Once again, we consider all

nonregular points as candidates, because in such points the conditions are unreli-
able.

4. First geometric interpretation Combining feasibility and nonimprovement
implies that, if point x̃ is regular and locally Paretian and p is a vector such that
(∇gj)T p < 0 for all constraints active in x̃ (that is, a vector tangent to a feasible

arc), then there exists at least one indicator fl such that (∇fl)T p ≥ 0 (that is, an
indicator that does not strictly improve along the arc).

From the geometric point of view the vectors p such that (∇gj)T p ≤ 0 for all

active constraints form the feasible cone, while the vectors such that (∇fl)T p ≤ 0
for all indicators also form a cone, composed by the directions in which all the
indicators strictly improve. In the single-indicator case, these directions formed a
half-space, that we have denoted as improving half-space. By extension, we will
denote the new set improving cone. The theorem states that no direction of the
former cone falls in the interior of the latter: the feasible cone and the improving cone
share no internal points; they can touch each other, because the KKT-conditions
are unreliable in the extreme directions, where some scalar products are zero.

Example 38 Consider the following problem:

min f1 = −2x1 − x2

min f2 = −x1 − 2x2

g1 (x) = −x1 ≤ 0

g2 (x) = −x2 ≤ 0

g3 (x) = x2
1 + x2 − 4 ≤ 0

Let us compute the gradients of the indicators and of the constraint functions:

∇f1 (x) =

[
−2
−1

]
∇f2 (x) =

[
−1
−2

]

∇g1 (x) =

[
−1
0

]
∇g2 (x) =

[
0
−1

]
∇g3 (x) =

[
2x1

1

]
Figure 6.5 shows two typical situations: in point A = (2, 0), the feasible cone

intersects the improving cone. In fact, moving from A upwards and leftwards one
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Figure 6.5: Interpretazione geometrica delle condizioni di KKT: il cono ammissibile
e il cono migliorante non devono avere direzioni interne comuni

can find a cone of directions which allow to keep in X while decreasing both the
value of f1 and of f2. In point B = (1/2, 15/4), on the contrary, the two cones do
not intersect. In fact, moving from B in any direction, either one gets out of X or
one of the two indicators worsens.

5. Farkas’ lemma The application of Farkas’ lemma is somewhat more complic-
ated than in Mathematical Programming, because there is no longer a single vector
on one hand and a cone on the other. The workaround is to introduce an auxiliary
vector and apply the lemma twice: the first time to the auxiliary vector and the
feasible cone, the second to the opposite of the auxiliary vector and the improving
cone.

The existence of two cones that do not intersect, but can touch each other, is
equivalent to the existence of a hyperplane separating them. Let γ be one of the
two vectors normal to the separating hyperplane: one of the two cones lies on the
same side of γ with respect to the hyperplane, and the other lies on the opposite
side. With no loss of generality, we assume that the feasible cone lie on the opposite
side of γ, that is

pT γ ≤ 0 for all p : pT∇gj (x) ≤ 0

By Farkas’ lemma, γ lies inside the cone of the gradients of the active constraints:

∃µj ≥ 0 : γ =

m∑
j=1

µj∇gj (x) for all j : gj (x) = 0

Conversely, the improving cone lies on the side of vector −γ, and therefore the
gradients of the indicators lie on the opposite side:

pT (−γ) ≤ 0 for all p : pT∇fl (x) ≤ 0 for all l
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Therefore, by Farkas’ lemma, −γ lies inside the cone of the gradients of the indic-
ators:

∃wl ≥ 0 : −γ =

p∑
l=1

wl∇fl

Summing the two equations, one obtains the thesis:

∃wl ≥ 0, µj ≥ 0 :

p∑
l=1

wl∇fl +

m∑
j=1

µj∇gj = 0

These are the KKT-conditions for the Paretian case.

6. Second geometric interpretation From the geometric point of view, the
KKT-conditions for Mathematical Programming were interpreted stating that the
antigradient of the objective function must fall inside the cone of the gradients of
the active constraints. In the Paretian case, the KKT-conditions can be interpreted
stating that the cone of the antigradients of the indicators intersects the cone of the
gradients of the active constraints.

Example 39 Taking again into account Figure 6.5, it can be remarked that in A
the two cones do not intersect, whereas in B they do. In fact,...3

Figure 6.6: Second geometric interpretation of KKT-conditions: the cone of the
antigradients of the indicators must intersect the cone of the gradients of the active
constraints

7. Standard form of the KKT-conditions As in Mathematical Program-
ming, the nonactive constraints can be reintroduced in the system of conditions by
imposing that their multipliers be zero, thanks to the usual complementarity con-
ditions µjgj (x) = 0, and the equality constraints can be treated without explicitly
replacing them with pairs of inequalities through the use of free multipliers.

3THIS EXAMPLE MUST BE COMPLETED: COEFFICIENTS µ and w CONFIRMING
THE INTERSECTION ARE (for example) µ3 = 1 and w1 = w2 = 1/3.
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Notice that, given a point x and a set of multipliers wl and µj that satisfy
the conditions, the same point x satisfies them for multipliers αwl and αµj for
any factor α > 0. In other words, the multipliers nave a degree of freedom that
does not affect the solution. In order to remove this useless degree of freedom,
a normalization condition can be imposed. Usually, this is done by dividing all
multpliers by

∑p
l=1 wl, so that

p∑
l=1

wl = 1

Of course, this requires to prove that
∑
l wl > 0, but this is true because the

gradients of the active constraints are linearly independent in all regular points,
and therefore

∑
j µj∇gj 6= 0.

Example 40 APPLY THE NORMALIZATION TO POINTS A AND B

The Paretian region as a parametric hypersurface

In Mathematical Programming, applying the KKT-conditions means to determine
n decision variables xi and m multipliers µj , solving a system of n+m equations:
the n equation that set to zero the partial derivatives of the generalized Lagrangian
function and the m equations that impose the complementarity conditions. Since
the number of equations and variables is the same4, the system has in general a
finite number of solutions. The 2m inequalities that impose the feasibility of the
candidate points and the nonnegativity of the multipliers µj can affect that number
reducing it.

The KKT-conditions for the Paretian case yield a system with n decision vari-
ables xi, m multipliers µj and p multipliers wl, which are constrained by n+m+ 1
equations (the last one is the normalization condition on the wl multipliers). In
general, the system has ∞p−1 solutions, which can be interpreted as a parametric
(p− 1)-dimension hypersurface expressed in the form x = x (w).

Example 41 Consider the following problem:

min f1 = −2x1 − x2

min f2 = −x1 − 2x2

g1 (x) = −x1 ≤ 0

g2 (x) = −x2 ≤ 0

g3 (x) = x2
1 + x2 − 4 ≤ 0

Figure 6.7 represents the feasible region. The two indicators f1 and f2 are cost
functions, to be minimised, and their gradients are

∇f1 (x) =

[
−2
−1

]
∇f2 (x) =

[
−1
−2

]
The arrows in the figure represent the antigradients, that is the improvement direc-
tions. The gradients of the constraints are:

∇g1 (x) =

[
−1
0

]
∇g2 (x) =

[
0
−1

]
∇g3 (x) =

[
2x1

1

]
4It remains the same if equality constraints are treated with free multipliers, since there are s

additional variables λ and s equality constraints hi (x) = 0
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A= (1/4,63/16)
B = (1,3)

f2−∇

f1−∇

x2

x1

Figure 6.7: Identification of the Paretian region

Since w1 + w2 = 1, we can set w1 = w e w2 = 1 − w. The inequalities w1 ≥ 0
and w2 ≥ 0 therefore reduce to 0 ≤ w ≤ 1. The KKT-condition system reduces to:

−2w − 1 + w − µ1 + 2µ3x1 = 0

−w − 2 + 2w − µ2 + µ3 = 0

µ1g1 (x) = −µ1x1 = 0

µ2g2 (x) = −µ2x2 = 0

µ3g3 (x) = −µ3

(
x2

1 + x2 − 4
)

= 0

0 ≤ w ≤ 1

µ1 ≥ 0

µ2 ≥ 0

µ3 ≥ 0

g1 (x) = −x1 ≤ 0

g2 (x) = −x2 ≤ 0

g3 (x) = x2
1 + x2 − 4 ≤ 0

From the first condition, 2µ3x1 = w+1+µ1 ≥ 1 > 0. Then, x1 > 0 and µ3 > 0.
The third condition guarantees that µ1 = 0 and the fifth that x2 = 4− x2

1. Now we
know that the Paretian region is an arc of the parabola g3 (x) = 0.
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x1 =
w + 1

2µ3

µ2 = w − 2 + µ3

µ1 = 0

µ2

(
4− x2

1

)
= 0

0 ≤ w ≤ 1

µ2 ≥ 0

µ3 > 0

0 < x1 ≤ 2

Let us split problem P0 into subproblems P1 (µ2 = 0) and P2 (µ2 > 0 and
4− x2

1 = 0)

P1 (µ2 = 0) From the second constraints, we obtain µ3 = 2−w, and therefore the
parametric line in (x1, x2) (that is an hypersurface in p− 1 = 1 dimension):

x1 =
w + 1

2 (2− w)

x2 = 4−
[

w + 1

2 (2− w)

]2 with w ∈ [0; 1]

The Paretian region is an arc of the parabola x2 = 4−x2
1. To identify the arc, we

have to determine which points correspond to the values of w included between 0 and
1. For w = 0, it is x (0) = A = (1/4, 63/16). For w = 1, it is w (1) = B = (1, 3).
In order to be sure that intermediate values of w correspond to intermediate points
along the arc, it is enough to observe that x1 (w) is increasing, given that

dx1

dw1
=

1 · 2 (2− w) + 2 (w + 1)

4 (2− w)
2 =

3

2 (2− w)
2 > 0

P2 (µ2 > 0 and 4− x2
1 = 0⇒ x1 = 2)

µ3 =
w + 1

4

µ2 = w − 2 +
w + 1

4
=

5w − 7

4

Since w ∈ [0; 1], µ2 < 0, which is unfeasible. Hence, this problem does not
provide any candidate locally Paretian point.

From the geometric point of view, it can be remarked that, in all points of the
Paretian region, the cone of the feasible directions does not intersect the cone of the
improving directions. Moreover, the cone of the gradients of the active constraints
intersects the cone of the antigradients of the indicators.

In the following example, the KKT-conditions determine a set that is strictly
larger than the Paretian region. This confirms that they are only necessary condi-
tions.
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Example 42 Consider the following problem:

min f1 = −x2

min f2 = −x1 − x2

g1 (x) = x1 − 1 ≤ 0

g2 (x) = −x1 ≤ 0

g3 (x) = −x2
1 + x2 − 1 ≤ 0

Figure 6.8 represents the feasible region of the problem. The arrow indicate the
antigradients of the indicators, that is the directions of quickest improvement.

A= (0,1)

B = (1,2)

x2

x1

f1−∇

f2−∇

Figure 6.8: Identification of the Paretian region: point A respects the KKT-
conditions, and is therefore candidate, even though it is not even locally Paretian

The gradients of the objective functions are:

∇f1 (x) =

[
0
−1

]
∇f2 (x) =

[
−1
−1

]

while the gradients of the constraints are

∇g1 (x) =

[
1
0

]
∇g2 (x) =

[
−1
0

]
∇g3 (x) =

[
−2x1

1

]

As in the previous example, we take into account the normalization of the mul-
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tipliers wl. The overall system to solve is:

w − 1 + µ1 − µ2 − 2µ3x1 = 0

−w + w − 1 + µ3 = 0

µ1g1 (x) = µ1 (x1 − 1) = 0

µ2g2 (x) = −µ2x1 = 0

µ3g3 (x) = −µ3

(
−x2

1 + x2 − 1
)

= 0

0 ≤ w ≤ 1

µ1 ≥ 0

µ2 ≥ 0

µ3 ≥ 0

g1 (x) = x1 − 1 ≤ 0

g2 (x) = −x1 ≤ 0

g3 (x) = −x2
1 + x2 − 1 ≤ 0

The second condition implies that µ3 = 1, so that constraint g3 (x) = 0 is active:
the Paretian region lies on the parabola.

w − 1 + µ1 − µ2 − 2x1 = 0

µ1 (x1 − 1) = 0

µ2x1 = 0

x2 = x2
1 + 1

0 ≤ w ≤ 1

µ1 ≥ 0

µ2 ≥ 0

0 ≤ x1 ≤ 1

Let us split the problem P0. Given the form of the conditions, we split P0 into
three subproblems: P1 (x1 = 0 and µ1 = 0), P2 (0 < x1 < 1 and µ1 = µ2 = 0) and
P3 (x1 = 1 and µ2 = 0).

P1 (x1 = 0 and µ1 = 0) The first constraints implies that µ2 = w − 1. Since
µ2 ≥ 0, the only feasible value is w = 1, from which µ2 = 0. Point A = (0, 1)
is candidate, with µ = (0, 0, 1) and w = 1. Yet, A is not even locally Paretian,
because moving rightwards f1 keeps constant and f2 improves (and moving slightly
upwards, it is even possible to improve f1). In fact, this is consistent with the
KKT-conditions, given that they only require that at least one of the indicators
do not improve when approximated by its first-order Taylor expression. Just to be
sure, we must consider as a candidate a point in which even a single indicator keeps
constant at the first order while all the other ones improve.

P2 (0 < x1 < 1 and µ2 = 0) The first constraint implies that µ1 = µ2 = 0,
and therefore x1 = (w − 1) /2. However, the constraint 0 < x1 < 1 would require
1 < w < 3, that is unfeasible. Hence, this subproblem does not provide any candidate
point.

P3 (x1 = 1 and µ2 = 0) The first constraints implies that µ1 = 3−w, the fourth
one implies that x2 = 2. Then, Point B = (1, 2) is candidate, with µ = (3− w, 0, 1)
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for each w ∈ [0; 1]. This is a degenerate case, in which infinite solutions of the
KKT-conditions correspond to a single candidate point.

In summary, the problem has two candidate points; only B is actually Paretian.

6.6 The weighted-sum method

The weighted-sum method consists in building a linear combination of the indicators
and minimising it. The following theorem proves that using combinations with
strictly positive coefficients always yields a Paretian solution. It is a very simple
and frequently used method, but we shall see that it has several disadvantages.

Theorem 19 Let z (x) =
∑p
l=1 wlfl (x) be a convex combination of the indicators,

with coefficients wl > 0 for l ∈ {1, . . . , p} and
∑p
l=1 wl = 1. If x◦ is a globally

optimal point for problem

min z (x) =

p∑
l=1

wlfl (x)

x ∈ X

then x◦ is a globally Paretian point with respect to the impact f (x).

Proof. The proof is by contradiction. If x◦ were not a Paretian point, by Defin-
ition 22 there should exist another point x′ ∈ X such that x′ ≺ x◦, that is
fl (x

′) ≤ fl (x
◦) for each l ∈ {1, . . . , p} and an index l̄ such that fl̄ (x

′) < fl̄ (x
◦).

But this would imply{
wlfl (x

′) ≤ wlfl (x◦) for all l ∈ {1, . . . , p} \
{
l̄
}

wl̄fl̄ (x
′) < wl̄fl̄ (x

◦)

Notice that the second property holds only if wl̄ is strictly positive. Summing the
p inequalities, one obtains

p∑
l=1

wlfl (x
′) <

p∑
l=1

wlfl (x
◦)⇒ z (x′) < z (x◦)

and therefore x◦ cannot be a globally optimal point for z (x). From the contradic-
tion, the thesis follows.

This result appears very similar to the KKT-conditions, but it is on the contrary
quite different:

1. the hypothesis of the theorem requires that solution x◦ be a globally optimal
point, not simply to satisfy the KKT-conditions;

2. the coefficients wl used in the combination must be strictly positive, and not
simply nonnegative.

For these two reasons, the assumptions of the weighted-sum method are much
stricter than the KKT-conditions. This makes them sufficient to guarantee that
a point satisfying them be Paretian, instead of only necessary. Consequently, the
resulting set Xws is a subset of X◦, instead of a superset.
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Remark 6 Should Theorem 19 only require x◦ to be a globally optimal point, without
imposing to the weights wl to be strictly positive, there could exist a point x′ with
values fl (x

′) = fl (x
◦) for the indicators with positive weight and with values

fl (x
′) < fl (x

◦) for the indicators with zero weight; point x◦ would still be a globally
optimal point for z (x), but it would be dominated by x′, and therefore the thesis
would no longer hold.

Example 43 Let us consider once again the problem of Example 41, represented
in Figure 6.7. We apply the weighted-sum method combining the two indicators f1

e f2 with coefficients wl > 0. The objective function

z (x) = w1f1 + w2f2

has an antigradient which is equal to the combination of the antigradients ∇f1 and
∇f2 with the same coefficients w1 e w2.

As the coefficients vary, this vector always falls inside the cone identified by the
two combined antigradients. This suggests how to solve the problem graphically: one
obtains a single globally optimal point, that, as the coefficients vary, moves along
the arc AB of the parabola in Figure 6.7. The method does not provide the whole
Paretian region, that would be the whole arc, but only the arc deprived of its two
extreme points. In fact, these points, that correspond to w = [1 0]

T
and w = [0 1]

T

cannot be obtained using strictly positive coefficients.

Example 44 Let us consider once again the problem of Example 41. Applying the
weighted-sum method, we obtain for all values of the coefficients wl point B. This
is correct, because that point is the only Paretian one. Then, in this case the subset
identified by the method coincides with the whole Paretian region.

In order to discuss the strengths and the limitations of the weighted-sum method,
we need some definitions.

Definition 26 Given a Paretian solution x◦ ∈ X◦, we denote as support of x◦

the set Supp (x◦) ⊂ Rp of all vectors w such that wl > 0 for all l ∈ {1, . . . , p},∑p
l=1 wl = 1 and x◦ is a globally optimal point for the problem min

x∈X

∑p
l=1 wlfl (x).

Definition 27 We denote as supported solution a Paretian solution x◦ ∈ X◦

whose support is nonempty: Supp (x◦) 6= ∅.

Example 45 Consider the minimum spanning tree problem on the complete graph
K3 (that is trivially a triangle with three vertices and three edges) with the two cost
functions reported in Table 6.3.

f1 1 2 3 f2 1 2 3
1 - 1 3 1 - 13 10
2 1 - 6 2 13 - 8
3 3 6 - 3 10 8 -

Table 6.3: Two cost functions defined on the edges of graph K3

The KKT-conditions are useless in this case, because the problem is discrete, and
therefore all solutions are locally Paretian. The inverse transformation method is
usually impossible to apply in combinatorial problem, because X consists of an expo-
nential number of isolated points in the decision variable space, and corresponds to
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an exponential set of isolated impacts in the indicator space R2. Finding the image
of the Paretian region in this space requires to survey all the possible impacts. In
this specific case, however, the task is easy, because the problem has only n = 3 de-
cision variables, associated to the three edges of the graph: x12, x13, x23 ∈ {0, 1}, and
the feasible region includes only three solutions: X = {(1, 1, 0) , (1, 0, 1) , (0, 1, 1)}.
These three solutions correspond to three different impacts, represented in Fig-
ure 6.9. All three impacts have an empty lower left quadrant, and therefore all

4

A = (4,23)

f

f

1

2

C = (9,18)

B = (7,21)

18

w = 1

21
23

7 9

Figure 6.9: All three feasible solutions are globally Paretian, but B, that is the tree
{(1, 2) , (2, 3)}, which is not optimal for any value of w

three feasible solutions are globally Paretian.

Let us apply the weighted-sum method, combining the objectives f1 and f2 with
the weights w and (1− w), where w ∈ (0, 1), and solving the minimum spanning
tree problem for each value of w. The costs of the edges are

� f (1, 2) = w · 1 + (1− w) · 13 = 13− 12w

� f (1, 3) = w · 3 + (1− w) · 10 = 10− 7w

� f (2, 3) = w · 6 + (1− w) · 8 = 8− 2w

Let us compute the optimal solution with Prim’s algorithm, starting from vertex 1
and applying it parametrically, that is considering all possible values of parameter
w ∈ (0, 1) and gradually subdividing all the cases and subcases that this implies5.
The minimum cost edge incident in vertex 1 can be either (1, 2) or (1, 3) according
to the value of w, and in particular to the sign of the difference f (1, 2)− f (1, 3) =
(13− 12w)− (10− 7w) = 3− 5w:

1. if w ≤ 3/5, edge (1, 3) is cheaper, and becomes the first edge of the minimum
spanning tree. At this point, we must find the minimum cost edge in the cut
that separates vertices 1 and 3 from vertex 2, that is the minimum between
f (1, 2) and f (3, 2):

f (1, 2)− f (3, 2) = (13− 12w)− (8− 2w) = 5− 10w

The comparison generates two subcases:

(a) if w ≤ 1/2, edge (3, 2) is cheaper, so that the minimum spanning tree is
{(1, 3) , (3, 2)}, which costs 18− 9w

(b) if 1/2 ≤ w ≤ 3/5, edge (1, 2) is cheaper, so that the minimum spanning
tree is {(1, 3) , (1, 2)}, which costs 23− 19w

5Of course, any other correct algorithm for the minimum spanning tree problem could be
applied, for example Kruskal’s algorithm.
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2. if w ≥ 3/5, edge (1, 2) is cheaper, and becomes the first edge of the minimum
spanning tree. At this point, we must find the minimum cost edge in the cut
that separates vertices 1 and 2 from vertex 3, that is the minimum between
f (1, 3) = 10− 7w and f (2, 3) = 8− 2w:

f (1, 3)− f (2, 3) = (10− 7w)− (8− 2w) = 2− 5w

Since this expression is always negative for w ≥ 3/5, the minimum spanning
tree is {(1, 2) , (1, 3)}, which costs 23− 19w.

In summary, only two Paretian points have been found.

However, the convex combination of the two objectives yields a value of the
combined objective function equal to 21 − 14w in the third solution. This value is
always larger than the value of the other two Paretian solutions. Hence, the third
solution cannot be determined with the weighted-sum method: it is nonsupported.

6.6.1 Advantages and disadvantages

The weighted-sum method has some strong advantages:

1. it can be applied to any problem, even the ones for which the KKT-conditions
are useless (e. g., the discrete problems);

2. it is very intuitive, as often the decision-makers find it natural to combine the
indicators by summing them, after choosing units of measure for which their
numerical values are not too different;

3. it only requires to build an auxiliary objective for the problem, keeping every
other feature, and in particular the feasible region; quite often, a valid al-
gorithm for the optimization of the single indicators is also valid for the op-
timization of the auxiliary objective.

At the same time, however, it has strong disadvantages:

1. it requires to consider all possible values of the weight vector w, which form a
continuous infinite set; this requires a parametric solution, that is in general
nontrivial, and for large-size problems can become intractable;

2. it requires to find all globally optimal solutions for each value of w (one is not
enough, contrary to Mathematical Programming);

3. it does not provide the whole Paretian region X◦, but only the supported
solutions, which could even be a very restricted underestimate.

Theorem 20 In a combinatorial problem, the number of nonsupported solutions
can grow exponentially with respect to the number n of the decision variables; cor-
respondingly, the weighted-sum method can provide a fraction of the Paretian region
gradually converging to zero.

Example 46 * An example illustrating Theorem 20 can be rather easily built for the
biobjective shortest path problem. Examples for other combinatorial problems with
any number of indicators can be built applying similar ideas. Consider the graph
reported in Figure6 composed by 2k+3 nodes: an origin node s, an intermediate node

*This example provides advanced concepts, that are not part of the course’s syllabus.
6THE FIGURE WITH THE GRAPH IS NOT YET AVAILABLE.
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i0, a destination node t and k pairs of nodes ir and i′r for r = 1, . . . , k. Three arcs go

from node s to nodes ik (with cost f (s, ik) =
[
2k + 1 0

]T
), i′k (with cost f (s, i′k) =[

0 2k + 2
]T

) and i0 (with cost f (s, ik) = [1 1]
T

). Two arcs exit from each of the
nodes ir with r = 0, . . . , k − 1 and from each of the nodes i′r with r = 1, . . . , k − 1,
and go to the nodes of the following pair, ir+1 and i′r+1, with cost f (ir, ir+1) =

f (i′r, ir+1) = [2r 0]
T

and f
(
ir, i
′
r+1

)
= f

(
i′r, i
′
r+1

)
= [0 2r]

T
. Finally, a single

arc connects nodes ik and i′k to node t, with cost f (ik, t) = f (i′k, t) = [2 2]
T

. By
construction, there are 2k+2 different paths from node s to node t: the path (s, ik, t),

whose cost is
[
2k + 2 0

]T
, the path (s, i′k, t), whose cost is

[
0 2k + 2

]T
and 2k paths

go from s to i0 crossing the sequence of the node pairs (ir, i
′
r) visiting exacty one

node of each pair. By construction, each of these paths costs
[
h+ 2 2k + 1− h

]T
,

with h = 0, . . . , 2k−1, so that in these paths f1 assumes all integer values from 2 to
2k + 1, while f2 correspondingly assumes the complementary value, and their sum
is always f1 +f2 = 2k +1. If all these impacts are drawn in plane f1f2, one realizes
that the image of the family of paths passing by i0 consists of the integer points
of a segment of the line f1 + f2 = 2k + 1, whereas the other two paths represent
extreme points lying on the axes f1 and f2. All solutions are Paretian. On the other
hand, for every convex combination of weights, the optimal solution of the single-
objective auxiliary problem is one of the two extreme paths; all other solutions are
non supported. Their number grows exponentially with k, that is with the number
of decision variables of the problem, that is equal to the number of arcs, 4k+5. The
fraction of nonsupported solutions is 2k over 2k + 2, and obviously converges to the
whole solution set as the number of variables increases.

In order to avoid the need for a parametric algorithm, a possible approach is
to sample the set of weights w ∈ (0; 1)

p
and to list the optimal solutions found

for each considered weight. This approach simplifies the computation, because the
algorithm used is the same that optimises the single indicators, but it introduces
two new difficulties:

1. the result is not even guaranteed to include all supported solutions, so that
further Paretian solutions are lost;

2. several different sampled values of the weights could produce the same Pare-
tian solution, so that the method can be computationally inefficient, even
when compared to the parametric one.

Relations between the weighted-sum method and MAUT

There are strong similarities between the weighted-sum method to determine the
Paretian region and the MAUT, but the context is completely different:

1. the weighted-sum method does not require complete preferences, nor mutual
preferential independence or the corresponding trade-off condition, but only
that the attributes be costs or benefits;

2. the weighted-sum method does not require to determine a specific weight
vector w, but it scans all possible vectors with strictly positive components;

3. the weighted-sum method does not provide an “optimal” solution, but a subset
of the Paretian region;

4. the weighted-sum method directly combines the attributes, without filtering
them through utility functions suitably built so as to reflect the relative utilit-
ies associated to different values of an indicator; consequently, it cannot access
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the nonsupported solutions; on the contrary, suitable utility functions (that
is, suitably shaped indifference curves) allow the overall utility function to
admit such solutions as optimal.

Example 47 Consider the minimum spanning tree problem discussed in Example 45
of Section 6.6, and assume that the two attributes, which both represent costs, are
associated to the following utility functions

u1 (f1) =
√

9− f1 u2 (f2) =
√

23− f3

The problem admits only three feasible solutions, corresponding to impacts fA =
(4, 23), fB = (7, 21) and fC = (9, 18).

FIGURA DA AGGIUNGERE, CON LE CURVE DI INDIFFERENZA NELLO
SPAZIO DEGLI INDICATORI E NELLO SPAZIO DELLE UTILITA’

All three solutions are Paretian, but the weighted sum method is able to identify
only A and C, because B is an unsupported solution, nested inside a concavity of
the impact set, and is nonoptimal for any linear combination of the two costs. By
contrast, nonlinear indifference curves could imply that f (B) is actually preferable
to f (A) and f (C). Correspondingly, a nonlinear utility functions, such as the one
above mentioned, allows to bend the indifference curves in the utility component
space, making it explicit that B is also Paretian, and that it can be optimal for
suitable utility functions. In fact,

u (f) = u1 (f1) + u2 (f2)⇒


u (f (A)) =

√
5

u (f (B)) = 2
√

2

u (f (C)) =
√

5

so that u (f (B)) > u (f (A)) = u (f (C)), and f (B) ≺ f (A) ∼ f (C).

In principle, any Paretian solution admits a utility function for which it is op-
timal.

6.6.2 The weighted-sum method in Linear Programming*

Since the globally optimal points of Linear Programming problems are the vertices
of the feasible region (or the faces identified by optimal vertices), and since the
weighted-sum method provides solutions that are optimal for some combination of
the objectives with weights wl, the Paretian solution thus obtained will always fall
on the vertices or, possibly, on the faces. It can be proved that in this case the
method provides the whole Paretian region, and that therefore it is only necessary
to determine the Paretian vertices. To this purpose, there exist ad hoc methods,
which we do not treat. Let us see an example, solved with an explicit parametric
method (analysis of cases and subcases).

Example 48 Consider the folowing problem with linear indicators and constraints:

min f1 = −x1 + 3x2

min f2 = 4x1 − x2

−x1 + x2 ≤ 7/2

x1 + x2 ≤ 11/2

2x1 + x2 ≤ 9

x1 ≤ 4

x1, x2 ≥ 0

*This section provides advanced concepts, that are not part of the course’s syllabus.
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for which Figure 6.10 reports the feasible region and the improving directions of the
objective functions.

f
1

f
2

A= (4,0)

B = (0,7/2)

O = (0,0)

Figure 6.10: In Linear Programming problems, the Paretian region coincides with
the part of frontier of the feasible regione that is identified by the vertices which
are globally optimal for suitable values of the weights

The weighted-sum method combines the objectives with a coefficient vector w ∈
(0; 1)

p
, obtaining a single objective function z (x) = (4− 5w)x1+(4w − 1)x2. Then,

it solves to optimality the resulting problem, for example with the simplex algorithm
applied parametrically. Luckily, the problem is already in a feasible canonical basis
form, with the following tableau:

0 4− 5w 4w − 1 0 0 0 0
7/2 -1 1 1 0 0 0
11/2 1 1 0 1 0 0

9 2 1 0 0 1 0
4 1 0 0 0 0 1

Case 0 < w < 1/4 The reduced cost of the second column is negative, so that it
is necessary to perform a pivot operation on element a12 = 1, letting variable x2

replace variable x3 in the basis. The resulting tableau is

7/2 (1− 4w) 3− w 0 1− 4w 0 0 0
7/2 -1 1 1 0 0 0
2 2 0 -1 1 0 0

11/2 3 0 -1 0 1 0
4 1 0 0 0 0 1

where all reduced costs are positive. The optimal solution is x◦ = (0, 7/2) and its
value is z∗ = 7/2 (4w − 1).

Case w = 1/4 This limit case corresponds to the situation in which the canonical
form with respect to basis x3, x4, x5, x6 is optimal, but variable x2 can enter the
basis without worsening the current solution, so that the basis x2, x4, x5, x6 is also
optimal. In fact, all solutions that are convex combination of (0, 0) and (0, 7/2) are
optimal. It is an infinite set of Paretian points, forming a whole segment. Notice
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that the gradient of the combined objective function is perfectly perpendicular to
constraint x1 = 0. In fact, for w = 1/4, it is f (x) = 15/4x1.

Case 1/4 < w < 4/5 The current canonical form corresponds to an optimal basis.
The optimal solution is x◦ = (0, 0), whose value is zero.

Case w = 4/5 This limit case corresponds to the situation in which the canonical
form with respect to basis x3, x4, x5, x6 is optimal, but variable x1 can enter the
basis without worsening the current solution, so that the basis x1, x3, x4, x5 is also
optimal. In fact, all solutions that are convex combinations of (0, 0) and (4, 0) are
optimal. It is an infinite set of Paretian points, forming a whole segment. Notice
that the gradient of the combined objective function is perfectly perpendicular to
constraint x2 = 0. In fact, for w = 4/5, it is f (x) = 12/5x2.

Case 4/5 < w < 1 The reduced cost of the first column is negative, and therefore
it is necessary to perform a pivot operation on element a41 = 1, letting variable x1

replace variable x6 in the basis.

4 (5w − 4) 0 4w − 1 0 0 0 5w − 4
15/2 0 1 1 0 0 1
3/2 0 1 0 1 0 -1
1 0 1 0 0 1 -2
4 1 0 0 0 0 1

Luckily, the optimality conditions are now satisfied (since w > 4/5, all reduced
costs are nonnegative). The optimal solution is x◦ = (4, 0) and its value is z∗ =
4 (4− 5w).

6.6.3 Sensitivity analysis

.

Sensitivity analysis is in general the study of how the solution of a problem
changes as one or more numerical parameters are modified. In the weighted-sum
method, sensitivity analysis consists in partitioning the region {w ∈ Rp : wl > 0,

∑p
l=1 wl = 1}

into the supports of the single solutions, that is into the subsets corresponding to
which each supported solution is optimal for the single-objective problem

∑p
l=1 wlfl.

If the problem is finite, the cardinality of these subsets is finite. If, in addition,
it has only two objectives, the set of all possible weight vectors w is the line segment
identified by points (0, 1) and (1, 0) in plane w1w2. In that case, it is possible to
plot the profile of the objective function for each given solution depending on one
of the two weights (the other weight is determined by the normalization condition).
This study allows to easily determine the support of each solution, that is a closed
interval of values of the remaining weight.

Example 49 Consider once again Example 45, which concerned a minimum span-
ning tree problem. Figure 6.11 shows the behaviour, as weight w varies between 0
and 1, of the combined objective fw (x) = wf1 (x) + (1− w) f2 (x) for each of the
three solutions x ∈ X. We remind that in this case the problem has two weights, but
the normalization condition reduces them to a single independent one. For each fixed
x, then, the objective fw (x) is a simple function of a single variable w. Moreover,
such a function is linear by construction. Therefore, in order to plot it, it is enough
to compute its values in two points, such as w = 0 and w = 1.
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w  f  + (1 - w)  f1                        2
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Figure 6.11: The support of solution C is (0, 1/2]; the support of solution A is
[1/2, 1); solution B is globally Paretian, but has an empty support.

The figure shows that the three linear profiles evolve so that for small values of
w the Paretian solution identified is C and for large values it is A. Solution B is
never identified, even though it is Paretian, because its support is empty.

6.7 The ε-constraint method

The ε-constraint method consists in replacing all indicators but one with constraints
that require the solution to respect a quality threshold, and in solving the resulting
auxiliary problem. The following theorem proves that all Paretian solutions are
optimal points for a problem of this family, provided that the thresholds are suitably
determined. It is a frequently used method, with an intuitive interpretation, given
that it corresponds to keep a single indicator and to replace the search for an optimal
value of the other ones with the search for a satisfying value.

Theorem 21 If x◦ is a globally Paretian point for indicators fl (x) in X, then for
any index l∗ ∈ {1, . . . , p}, chosen ad libitum, x◦ is a globally optimal point for
problem:

min fl∗ (x)

fl (x) ≤ εl l ∈ {1, . . . , p} \ {l∗}
x ∈ X

where εl = fl (x
◦) for all l ∈ {1, . . . , p} \ {l∗}.

Proof. By contradiction, assume that x◦ is not a globally optimal point for this
problem. Then, there exists a point x′ ∈ X such that fl (x

′) ≤ εl for all l 6= l∗ and
fl∗ (x′) < fl∗ (x◦). Since εl = fl (x

◦), such a point dominates x◦ according to the
definition of Paretian dominance. Since this contradicts the hypothesis, x◦ must be
a globally optimal point.

As in the weighted-sum method, a globally optimal point for an auxiliary prob-
lem is taken into account. The idea is to solve the auxiliary problem parametrically
for all values of the coefficients εl. This time, however, the condition appears as
the thesis of the theorem, and is therefore a necessary condition, not a sufficient
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one. Each solution, then, is a candidate point, instead of a certainly Paretian point;
computing all globally optimal points for all values of the parameters, the candidate
set provides a superset of the Paretian region. A candidate point x◦ could be non
Paretian for the original problem. This happens when there exists another globally
optimal point x◦′, in which fl∗ has the same value and at least one of the other
indicators has a better value. Notice that each indicator l∗ provides in general a
different superset, and it is possible to intersects them to get a more precise estim-
ate of the Paretian region7. Anyway, the method generates only weakly Paretian
points.

The coefficients εl are also denoted as standards (and the method is also called
the standards method) because the technique corresponds to focusing on a single
objective, neglecting the other ones, but setting for each of them a performance
threshold. Since there are p−1 standards, reciprocally independent, the set obtained
letting them vary parametrically is a (p− 1)-dimension parametric hypersurface,
exactly as in the weighted-sum method8.

Example 50 A nuclear waste dump must be located at a distance not larger than
2 from the plant that produces it, that is situated in point (1, 0)). Moreover, the
dump must keep north of the plant and out of a park whose border runs along line
x1 + x2 = 3. The park lies in the north-east side of the line. While respecting such
constraints, the dump must be as far as possible from a town situated at the origin
of the axes, and at the same time as far as possible from the park.

max f1 (x) = x2
1 + x2

2

min f2 (x) = x1 + x2

g1 (x) = (x1 − 1)
2

+ x2
2 ≤ 4

g2 (x) = x1 + x2 ≤ 3

g3 (x) = −x2 ≤ 0

Figure 6.12 represents the feasible region of the problem. The first objective aims
to keep the dump far away from the origin, so that its improving direction varies
from point to point and is oriented radially. The second objective, on the contrary,
improves moving towards the lower left.

We can set up the ε-constraint method by turning either indicator f1 or indicator
f2 into a constraints. In general, it is preferable to operate on linear objectives,
because the resulting constraints are easier to deal with, especially in a graphical
resolution process. Let us proceed, therefore, with respect to f2

9.

max f1 (x) = x2
1 + x2

2

g1 (x) = (x1 − 1)
2

+ x2
2 ≤ 4

g2 (x) = x1 + x2 ≤ 3

g3 (x) = −x2 ≤ 0

g4 (x) = x1 + x2 ≤ ε

Any solution method is acceptable. For example, one could apply the KKT-
conditions, but their solution is quite hard, so that we resort to a graphical approach.

7My feeling is that the intersection provides exactly the Paretian region, but as long as I do
not provide a proof, I prefer to avoid stating this property.

8In general, it is a larger surface, but it has the same number of dimensions.
9In this case, selecting f1 would probably be viable: the additional constraint would be x21 +

x22 ≥ ε1, which would force the solution of the auxiliary problem to stay outside a circle centred
in the origin and having a suitable radius.
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0 (1,0) 3-1
A

B
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E = (1,2)

O

x2

x1

Figure 6.12: Feasible region and Paretian region

It is clear that the parametric constraint x1 + x2 ≤ ε corresponds to a half-space
gradually restricting the feasible region as ε decreases. Moreover, the separating line
is parallel to the border of the park. In detail:

� for ε ≥ 3, the ε-constraint does not remove any feasible solution. The globally
optimal point is the farthest one from the origin: it is not difficult to see that
such point is A = (3, 0).

� for
√

3 < ε < 3, the ε-constraint becomes tighter than the park constraint
(g2 (x) ≤ 0): the globally optimal point lies on axis x1, and it is point (ε, 0),
which gradually moves from A to D =

(√
3, 0
)
.

� for ε =
√

3, the intersections of the ε-constraint, respectively with the circum-
ference g1 (x) = 0 (point B =

(
0,
√

3
)
) and with axis x1 (point D =

(√
3, 0
)
)

have the same distance from the origin, and are both globally optimal points.

� for −1 ≤ ε ≤
√

3, the intersection of the ε-constraint with the circumference
g1 (x) = 0 becomes farther from the origin than the intersection with the axis
x1; the globally optimal point lies therefore on the circumference and gradually
moves from B =

(
0,
√

3
)

to C = (−1, 0).

� for ε < −1, there are no longer feasible solutions.

As a consequence, the ε-constraint method returns as a candidate Paretian set the
union of segment AD and of circumference arc BC. In fact, that is exactly the
Paretian set.

Notice that the points of segment between (1, 0) and D are locally Paretian, given
that the improving directions for both indicators are the directions oriented towards
the lower right more downwards than rightwards), and are all unfeasible.

Other points would satisfy KKT-conditions, even though they are not even locally
Paretian. The points of the bisector of the first quadrant are not locally Paretian
(moving orthogonally with respect to the bisector gets farther away from the origin
while keeping the same distance from the park), but they are candidate anyway,
because the two indicators have opposite gradients, and therefore w1∇f1+w2∇f2 = 0
(the gradients of the constraints play no role, because no constraint is active in these
points).
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Example 51 Consider the same problem of the previous exercise, but reverse the
sign of indicator f2 (for example, line g2 (x) = 0 might represent a state border
which cannot be trespassed, but to which one wants to get as close as possible so as
to dump abroad the negative effects of the waste.

max f1 (x) = x2
1 + x2

2

max f2 (x) = x1 + x2

g1 (x) = (x1 − 1)
2

+ x2
2 ≤ 4

g2 (x) = −x1 − x2 ≤ −3

g3 (x) = −x2 ≤ 0

Rather intuitively, this problem has a degenerate Paretian region, that consists only
of point A = (3, 0), that is at the same time the farthest one from the town and the
closest one to the border.

Let us solve the problem turning indicator f1 (with the opposite sign, as it must
be maximised) into a constraint.

min f2 (x) = −x1 − x2

g1 (x) = (x1 − 1)
2

+ x2
2 ≤ 4

g2 (x) = −x1 − x2 ≤ −3

g3 (x) = −x2 ≤ 0

g5 (x) = −x2
1 − x2

2 ≤ ε

The ε-constraint corresponds to requiring a minimum distance from the origin,
that is to excluding the points of a circle centred in the origin:

� for ε ≥ −9/2, all points of segment AE, with A = (3, 0) and E = (1, 2) are
feasible for the threshold and optimal with respect to the remaining objective;
therefore, they are all candidate.

� for −5 ≤ ε < −9/2, circumference g5 (x) = 0 removes some of those points:
the only globally optimal points are those on the segment between A and((

3 +
√
−2ε− 9

)
/2,
(
3−
√
−2ε− 9

)
/2
)

and those on the segment between E

and
((

3−
√
−2ε− 9

)
/2,
(
3 +
√
−2ε− 9

)
/2
)
.

� for −9 ≤ ε ≤ −5, the globally optimal points are those on the segment between
A and

((
3 +
√
−2ε− p

)
/2,
(
3−
√
−2ε− p

)
/2
)
.

� for ε < −9, there is no feasible solution.

Therefore, the ε-constraint method returns the whole segment AE as a candidate,
though only point A is Paretian. It is true that, using indicator f1 as an objective
and imposing a threshold on f2 would provide the correct region.

6.7.1 Advantages and disadvantages

The ε-constraint method has some strong advantages:

1. it can be applied to any problem, even the ones for which the KKT-conditions
are useless (e. g., the discrete problems);

2. it is very intuitive, as often the decision-makers find it natural to focus on a
single indicator and to translate their preferences into minimum satisfaction
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thresholds (see again in Figure 1.2 the iterative decision process according
to Simon, which terminates when the decision-makers are satisfied with the
result);

3. it provides an overestimate of the Paretian region that is often quite tight and
that can be easily refined applying again the method with a different choice
of the main indicator.

At the same time, however, it has strong disadvantages:

1. it requires to consider all possible values of the thresholds ε, which form a
continuous infinite set; this requires a parametric solution, that is in general
nontrivial, and for large-size problems can become intractable;

2. it requires to find all globally optimal solutions for each value of ε (one is not
enough, contrary to Mathematical Programming);

3. in combinatorial problems, while changing the objective function usually does
not affect the computational complexity of the problem (the polynomial ones
remain polynomial), introducing additional constraints nearly always increases
the complexity (for example, a polyomial problem turns into an NP-complete
one).

Relations between the ε-constraint method and the lexicographic prefer-
ence with aspiration levels

Notice the affinity between the ε-constraint method to determine the Paretian re-
gion and the lexicographic preference with aspiration levels: the aspiration levels
correspond to a special choice of the thresholds used in the ε-constraint method.
The main difference is that the thresholds εl assume all possible values, instead
of being fixed once for all at the beginning. It must be admitted, however, that
the decision-maker might also make some experiment, adapting the choice of the
aspiration levels based on the results they produce. This makes the method even
closer to a variant of the ε-constraint method based on sampling. The relation
between the two methods suggests that the generated solution be, if not Paretian,
at least candidate; in fact, optimizing the indicators step-by-step guarantees that
the generated solution is actually Paretian.

Remark 7 The lexicographic order method with aspiration levels generates by con-
struction a Paretian solution, for any chosen order and any value of the aspiration
levels that produce a nonempty restricted feasible region.

Proof. The property can be proved by contradiction, assuming the generation
of a dominated solution, which would respect the same aspiration levels of the
dominating one and at the same time would be worse for one or more indicators,
thus contradicting the selection process.

6.7.2 The ε-constraint method in Linear Programming*

As for the weighted-sum method, Linear Programming is an easier special case,
in which ad hoc methods identify exactly the Paretian region. This requires some
adaptation, because the basic method still returns an overestimate (contrary to
the weighted-sum method). The adaptations, however, are rather straighforward.

*This section presents advanced material; it is not part of the exam programme.
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We do not treat the ad hoc methods, but simply show an example of an explicit
parametric method, analysing cases and subcases.

Example 52 Let us solve again, this time with the ε-constraint, the Linear Pro-
gramming problem considered in Example 48.

min f1 = −x1 + 3x2

min f2 = 4x1 − x2

−x1 + x2 ≤ 7/2

x1 + x2 ≤ 11/2

2x1 + x2 ≤ 9

x1 ≤ 4

x1, x2 ≥ 0

Figure 6.13 reports the feasible region of the problem and the improving directions
of the objective functions.

f1

A= (4,0)

B = (0,7/2)

O = (0,0)

x2

x1

−∇

Figure 6.13: Feasible region and improving directions in a linear problem

Let us translate objective f2 into an inequality:

min f1 = −x1 + 3x2

−x1 + x2 ≤ 7/2

x1 + x2 ≤ 11/2

2x1 + x2 ≤ 9

x1 ≤ 4

4x1 − x2 ≤ ε

x1, x2 ≥ 0
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Luckily, we are already in a feasible canonical basis form. The corresponding
tableau is:

0 -1 3 0 0 0 0 0
7/2 -1 1 1 0 0 0 0
11/2 1 1 0 1 0 0 0

9 2 1 0 0 1 0 0
4 1 0 0 0 0 1 0
ε 4 -1 0 0 0 0 1

First of all, let us make all reduced costs nonnegative: this requires to pivot
either on a41 = 4 or on a51 = 1, respectively for 4 < ε/4 and 4 ≥ ε/4.

Case ε > 16 A simplex iteration on a41 = 4 returns the following tableau.

4 0 3 0 0 0 1 0
15/2 0 1 1 0 0 1 0
3/2 0 1 0 1 0 -1 0
1 0 1 0 0 1 -1 0
4 1 0 0 0 0 1 0
ε-16 0 -1 0 0 0 -1 1

which corresponds to a global optimum in x = (4, 0).

Case ε ≤ 16 A pivot operation on a51 returns the following tableau.

ε/4 0 11/4 0 0 0 0 1/4
7/2+ε/4 0 3/4 1 0 0 0 1/4
11/2-ε/4 0 5/4 0 1 0 0 -1/4

9-ε/2 0 3/2 0 0 1 0 -1/2
4-ε/4 0 1/4 0 0 0 1 -1/4
ε/4 1 -1/4 0 0 0 0 1/4

If the right-hand-sides are all nonnegative, we have reached the optimum. Oth-
erwise, the dual simplex method must be applied. The former situation holds foor
0 ≤ ε ≤ 16, so that there are two subcases.

Subbase 0 ≤ ε ≤ 16 We reached the optimum with solution x◦ (ε) = (ε/4, 0),
which means that the Paretian region runs along the x1 axis from A to O.

Subcase ε < 0 A dual simplex iteration must be performed on a52 = −1/4,
yielding:

3ε 11 0 0 0 0 0 3
7/2+ε 3 0 1 0 0 0 1
11/2+ε 5 0 0 1 0 0 1

9+ε 6 0 0 0 1 0 1
4 1 0 0 0 0 1 0
-ε -4 1 0 0 0 0 -1

Once again, we have two subcases: if −7/2 ≤ ε < 0, we reached the optimum in
x = (0,−ε), which means that the Paretian region runs along the x2 axis from O to
B.
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If, on the contrary, ε < −7/2, we should make a further step, but there is no
feasible (nonnegative) pivot element. This corresponds to the situation in which
the dual problem is unlimited, which implies that the primal problem is unfeasible.
In fact, the first constraint has only nonnegative coefficients and a strictly negative
right-hand side, so that there is no way to satisfy it. This corresponds to the case
in which no solution respects the quality threshold.

In conclusion, the Paretian region consists of the two line segments AO and OB,
as already determined with the weighted-sum method.
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6.8 Exercises* �

The following exercises are often solved only with one of the methods described
in the chapter, but they can be solved also with other ones. Of course, different
methods can provide different approximations of the Paretian region. In particular,
the finite problems can be solved with all methods, but the KKT-conditions return
the whole feasible region. The infinite two-dimensional problems can be solved with
all methods, except for the definition.

Exercise 1

Consider the following biobjective problem:

min f1 =
1

4
(x1 − 4)

2
+

1

4
x2

2

min f2 = 2− x2

2x1 + x2 ≤ 4

x1, x2 ≥ 0

Draw the feasible region in plane (x1, x2) and the impact region in plane (f1, f2).

Determine the Paretian region with the ε-constraint method.

Solution

The problem can be solved graphically

The Paretian region X∗ is the segment of line 2x1 + x2 = 4 included between
points A = (2, 0) and B = (0, 4). Its image F ∗ is the arc of parabola . . . included
between points A′ = (1, 2) and B′ = (8,−2).

Exercise 2

Consider the following biobjective problem:

max f1 = x1 − x2

max f2 = x2

x1 + x2 ≤ 3

0 ≤ x1 ≤ 2

x2 ≥ 0

Draw the feasible region in plane (x1, x2) and the impact region in plane (f1, f2).

Determine the Paretian region with the ε-constraint method.

Solution

The Paretian region X∗ is the poly-line (spezzata poligonale) ABC, with A = (2, 0),
B = (2, 1) and C = (0, 3). Its image F ∗ is the poly-line (spezzata poligonale) A′B′C ′

with A′ = (2, 0), B′ = (1, 1) and C ′ = (−3, 3).

*The solutions of these exercises have not yet been revised: error reports are welcome.
�I owe several of these exercises to exam texts of professor Alberto Colorni.
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Exercise 3

Consider the following biobjective problem:

min f1 = x′Ax+ b′x

min f2 = c′x

x ∈ X =
{
x ∈ R2 : x1 ≥ 0, x2 ≥ 0

}
con

A =

[
1 0
0 4

]
b =

[
−4
−8

]
c =

[
1
1

]
Draw the feasible region in plane (x1, x2) and the impact region in plane (f1, f2).

Determine the Paretian region with the ε-constraint method.

Solution

The Paretian region X∗ is the poly-line (spezzata poligonale) ABC, with A = (0, 0),
B = (0, 1/2) and C = (2, 1).

Exercise 4

Consider the following problem:

max f1 = x1 + 3x2

max f2 = −3x1 − 2x2

2x1 + x2 ≤ 32

x1 + x2 ≤ 20

x1 + 5x2 ≤ 72

x1, x2 ≥ 0

Determine the Paretian region with the weighted-sum method and with the
ε-constraint method.

Draw the Paretian region in the decision variable space and its image in the
impact space.

Solution

The Paretian region X∗ is the poly-line (spezzata poligonale) ABC, with A = (0, 0),
B = (0, 72/5) and C = (7, 13). Its image F ∗ is the poly-line (spezzata poligonale)
A′B′C ′ with A′ = (0, 0), B′ = (216/5,−144/5) and C ′ = (46,−47).

Exercise 5

Determine the Paretian region of the following problem:

max f1 = −x1 − x2

max f2 = x1

3x2
1 + 4x2 ≤ 12

x2 ≥ 0
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Draw the Paretian region in the decision variable space and its image in the
impact space.

Solution*

The Paretian region X∗ is the line segment AB, with A = (−2, 0) and B = (0, 2).
Its image F ∗ is the line segment A′B′ with A′ = (?, ?) and B′ = (?, ?).

Exercise 6

A fire station must be located as close as possible to a dangerous point in which
the cartesian axes are centred. A river flows approximately along a straight line
from east to west three kilometres north of that point. The river could be used as
a source of water for the station, building a dedicated aqueduct, which should be
as short as possible in order to limit its cost. For the sake of a quick intervention,
the station cannot be located north of the river, nor south-west of a large road
represented by line 2x1 + x2 = 4.

Determine the Paretian region in the space of the decision variables and its
image in the space of the indicators.

Solution

In synthesis, the problem imposes two constraints on the location of the service and
two choice criteria: the closeness to the dangerous points and the closeness to the
river. The Paretian region X∗ is segment AB, with A = (1/2, 3) and B = (8/5, 4/5).

Exercise 7

Consider the following biobjective problem:

max f1 = 9x2
1 + 4x2

2 − 18x1 − 16x2

max f2 = −x1

3x1 + x2 ≤ 6

3x1 + 2x2 ≤ 9

x2 ≥ 0

Draw the Paretian region in the decision variable space and its image in the
indicator space.

Solution

The Paretian region X∗ is the poly-line (spezzata poligonale) ABC, with A = (1, 2),
B = (4/3, 2) and B = (2, 0). Its image F ∗ is the curve line (spezzata curva) A′B′C ′

with A′ = (−25,−1), B′ = (−24,−4/3) and C ′ = (0,−2).

Exercise 8

The following table represents the performance of five alternatives with respect to
four indicators (all of them to be maximised), in una scala di valori tra 0 e 100.

*This problem is equivalent to the one solved in Example 37 with the inverse transformation
method.
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a1 a2 a3 a4 a5

f1 100 70 60 40 20
f2 60 45 40 100 80
f3 60 25 20 80 100
f4 20 100 90 50 40

Identify the dominated alternatives (if any exists) and specify by which other
alternatives they are dominated.

Solution

Alternative a3 is dominated by alternative a2.

Exercise 9

Consider the following biobjective problem:

max f1(x) = −x1 + 2x2

max f2(x) = 2x1 − x2

x1 ≤ 4

x2 ≤ 4

x1 + x2 ≤ 7

−x1 + x2 ≤ 3

x1 − x2 ≤ 3

x1 ≥ 0

x2 ≥ 0

Draw the Paretian region in the decision variable space and its image in the
indicator space.

Solution

The Paretian region X∗ is the polyline (spezzata poligonale) FEDC, with C =
(1, 4), D = (3, 4), E = (4, 3) and F = (4, 1).

Exercise 10

Consider the following biobjective problem:

max f1(x) = x1 − 3x2

max f2(x) = −4x1 + x2

−2x1 + 2x2 ≤ 7

2x1 + 2x2 ≤ 11

x1 ≤ 4

x1, x2 ≥ 0

Draw the Paretian region in the decision variable space and its image in the
indicator space.
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Solution

The Paretian region X∗ is the poly-line (spezzata poligonale) AOB, with A =
(0, 7/2), O = (0, 0) and B = (4, 0).

Exercise 11

Consider the following biobjective problem:

min f1(x) = x2
1 + x2

2

max f2(x) = x2

x2 ≤ 10

Draw the Paretian region in the decision variable space and its image in the
indicator space.

Solution

The Paretian region X∗ is segment OA, with O = (0, 0) and A = (0, 10).

Exercise 12

A club is looking for a new site: there are four alternatives (A, B, C and D), besides
alternative 0 (staying in the present site). The choice among the five alternatives is
definitive and will be based on three factors: cost, accessibility and prestige. The
following table indicates the benefits associated to each alternative and factor on a
scale between 0 and 100.

Indicatori A B C D 0
Cost 90 90 90 1 100

Accessibility 12 13 10 100 37
Prestige 30 1 5 100 10

Identify the dominated alternatives and state by which other alternatives they
are dominated.

Solution

Alternative C is dominated by alternative A, while alternative B is dominated by
alternative 0.

Exercise 13

Consider the following biobjective problem:

min f1(x) = x2 − 4x

min f2(x) = −x2

0 ≤ x ≤ 3

Draw the Paretian region in the decision variable space and its image in the
indicator space.
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Solution

The Paretian region X∗ is the interval x ∈ [2; 3]. Its image F ∗ is the arc of the
parabola ... included between points A′ = (−4,−4) and B′ = (−3,−9).

Exercise 14

Consider the following biobjective problem:

min f1(x) = x2
1 + 4x2

2 − 2x1 − 16x2

min f2(x) = −5x1 − x2

x2
1 + x2

2 ≤ 8

x2 ≥ 0

Give an analytical description of the feasible cone Df and of the improving cone
Di in point P = (2, 2). Based on the two cones, can point P be Paretian? Why?

Solution

The feasible cone and the improving cone are:

Df =
{
d ∈ R2 : d1 + d2 ≤ 0

}
Di =

{
d ∈ R2 : d1 ≤ 0, 5d1 + d2geq0

}
The two cones have no common direction. Then, P satisfies the necessary KKT-

conditions for local paretianity: it can be Paretian, even if it is not guaranteed to
be.

.

Exercise 16

Given the following decision problem with three alternatives and four attributes
(benefits):

Attributi A B C
u1 0 100 80
u2 100 83 0
u3 70 20 100
u4 40 100 20

Identify the dominated alternatives and state by which other alternatives they
are dominated.

Solution

There are no dominated alternatives.

Exercise 17

Consider the following biobjective problem:

min f1(x) = x2
1 + x2 − 2x1

min f2(x) = −x2

x2
1 + 4x2 ≤ 8

x1 − 2x2 ≥ 0
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Draw the Paretian region in the decision variable space and its image in the
indicator space.

Solution

The Paretian region X∗ is the poly-line (spezzata poligonale) ABC, with A = (1, 0),
B = (1, 1/2) and C = (2, 1). Its image F ∗ is the curve line (spezzata curva) A′B′C ′,
with A′ = (−1, 0), B′ = (−3/4,−1/2) and C ′ = (1,−1).
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Chapter 7

Weak rationality methods

7.1 Partially inconsistent decision-makers

Applying the machinery of Multiple Attribute Utility Theory to the additive case,
if each passage is performed with due precision, the result consists of p normalized
utility functions ũl and p weights wl that tune their contribution to the overall
utility function. The marginal rates of substitution between the normalized utility
components are uniform and equal to the ratios of the weights (λ̃lm = wl/wm), and
the indifference curves in the utility space form families of parallel hyperplanes.

In pratice, the problem is that the decision-maker is usually unable to estimate
correctly the rates of substition as required by the theory, because he/she considers
indifferent also pairs of impacts between which there is on the contrary a slight
preference. The result is that the computation of the weights wl based on p − 1
pairs of indifferent impacts is unreliable.

Example 53 A decision-maker has been asked to indicate the rates of substitu-
tion between three normalized utility functions ũ1, ũ2 and ũ3. The answers of the
decision-maker generate the following matrix.

ũ1 ũ2 ũ3

ũ1 1 2 4

Λ̃ = ũ2 1/2 1 3
ũ3 1/4 1/3 1

The matrix is positive and reciprocal, but not consistent, since λ̃31 6= λ̃32λ̃21.
Each column suggests a different weight vector

w(1) =

 0.571
0.286
0.143

 w(2) =

 0.6
0.3
0.1

 w(3) =

 0.5
0.375
0.125


The difference between the three vectors is relevant, and it could lead to choose

different solutions.

In an inconsistent matrix, each spanning tree produces its own weight estimate,
in general different from the one base on the other trees.

203
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7.1.1 Reconstructing consistent matrices

If the attributes are numerous, in practice no human decision-maker is able to keep
perfectly consistent. The weights derived from p− 1 comparisons are therefore un-
reliable. One can, howerver, build the whole pairwise comparison matrix, evaluate
the amount of the inconsistency and build a more reliable weight vector. Such a
vector w allows, therefore, to reconstruct a consistent comparison matrix. If one
wants to use the weight vector w for a decision, it is necessary that the comparison
matrix generated from it be as close as possible to the measured one. In other
words, one wants to solve the following minimisation problem:

min
w

∥∥∥W − Λ̃
∥∥∥

Wlm =
wl
wm∑

l∈P

wl = 1

wl ≥ 0 l ∈ P

where the unknown variables are the weights wl, W denotes the matrix composed
by the ratios wl/wm, Λ̃ the matrix denoted by the ratios estimated by the decision-
maker and ‖W − Λ̃‖ is the norm of matrix W − Λ̃.

Definition 28 We denote as norm any function associating to a matrix a real
value such that:

� it is nonnegative for any matrix:

‖M‖ ≥ 0 for each M

� it is zero if and only if the matrix is null:

‖M‖ = 0⇔M = 0

� if all elements of the matrix are multiplied by a constant factor, the norm is
multiplied by the absolute value of such a constant:

‖αM‖ = |α| ‖M‖

� satisfies the triangle inequality:

‖M1 +M2‖ ≤ ‖M1‖+ ‖M2‖

There are infinitely many different definitions of norm that respect these prop-
erties; each one provides a different solution to the problem. The most common
ones in the literature are:∥∥∥W − Λ̃

∥∥∥
1

=
∑
l∈P

∑
m∈P

∣∣∣∣ wlwm − λ̃lm
∣∣∣∣

∥∥∥W − Λ̃
∥∥∥

2
=

√√√√∑
l∈P

∑
m∈P

∣∣∣∣ wlwm − λ̃lm
∣∣∣∣2

∥∥∥W − Λ̃
∥∥∥
∞

= max
l∈P,m∈P

∣∣∣∣ wlwm − λ̃lm
∣∣∣∣
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In particular, norm ‖W−Λ̃‖2 is the Euclidean norm, which gives rise to the classical
least-squares method.

The basic idea of all these methods is to start from the information provided by
the decision-maker and to modify it as little as possible in order to reach consistency.
The optimal value of the objective function can be assumed as a measure of the initial
inconsistency. In fact, it is zero if and only if the estimated matrix Λ̃ is consistent.

In order to keep into account the uncertainty of the decision-maker, it has also
been proposed to replace the estimated values λ̃lm with intervals and to define the
norm by combining the distances between each ratio wl/wm and the corresponding
interval, instead of the corresponding value.

The eigenvalue method

A method frequently used in the literature was proposed by Saaty1, the founder of
the Analytic Hierarchy Process (see Section 7.2). Is is based on the eigenvalues of the
estimated matrix Λ̃. Since this is positive, Perron-Frobenius’ theorem guarantees
that the dominant eigenvalue µmax (that is, the eigenvalue whose absolute value is
maximum) is real and positive. If Λ̃ is also reciprocal (an easy condition to impose
in practice), µmax ≥ p and µmax = p if and only if the matrix is consistent.

The inconsistency of matrix Λ̃ can therefore be measured by

γ =
µmax − p
p− 1

that is the opposite of the average value of the other p− 1 eigenvalues, since their
sum is equal to the trace, that is to p.

If the matrix is weakly inconsistent, µmax ≈ p and the other eigenvalues are close
to zero. The eigenvector xmax associated with µmax, normalized, provides a vector of
weights with which a consistent matrix can be built. Saaty also suggested to consider
as acceptable an inconsistency not larger than 10% of the average inconsistency
obtained from random positive and reciprocal matrices of the required size p. Such
average inconsistency is a function of p whose empirical values have been tabulated.

This method has been severely criticised in recent times, because it has been
proved that it can produce dominated matrices: it sometimes computes a matrix
whose elements are farther away (one-by-one) from the estimated matrix than an
alternative consistent matrix obtained with alternative methods. Such an alternat-
ive matrix is strictly better than the dominant eigenvector matrix with respect to
any definition of norm.

Example 54 Consider the pairwise comparison matrix:

u1 u2 u3

u1 1 2 4

Λ̃ = u2 1/2 1 3
u3 1/4 1/3 1

whose eigenvalues are µ1 = 3.108, µ2 = −0, 0091 + 0, 2348i and µ3 = −0, 0091 −
0, 2348i. The inconsistency is γ = 0.054, rather limited, and the consistent matrix
suggested by the method is:

ũ1 ũ2 ũ3

ũ1 1 1.747 4.579

Λ̃ = ũ2 0.572 1 2.621
ũ3 0.218 0.381 1

1Thomas. L. Saaty (1926-2017), Iranian mathematician working in the United States.
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Example 55 Consider the pairwise comparison matrix:

ũ1 ũ2 ũ3

ũ1 1 2 1/2

Λ̃ = ũ2 1/2 1 3
ũ3 2 1/3 1

whose eigenvalues are µ1 = 3.7262, µ2 = −0.3631 + 1.6044i and µ3 = −0.3631 −
1.6044i.

The inconsistency is γ = 0.3631, quite strong. Evidently, the first attribute is
more important than the second, and the second is more important than the third,
but the third is more important than the first one: not only consistency, but even
transitivity is violated.

The consistent matrix suggested by the eigenvector method is:

u1 u2 u3

u1 1 0.874 1.145

Λ̃ = u2 1.145 1 1.310
u3 0.874 0.763 1

but in this case it is doubtful whether it is a meaningful matrix.

7.1.2 Consistency at any cost?

The replacement of the given pairwise comparison matrix Λ̃ with a consistent matrix
W in general distorts the information provided by the decision-maker. Part of
the literature reports that the new matrix W can be more appreciated by the
decision-maker than the original one, as if the operation were able to help him/her
reach a hard to attain, but desired, consistency. Part of the literature, on the
contrary, reports that the new matrix W can be less appreciated, as if the operation
contradicted the preferences of the decision-maker under some important aspects.

So far, the only established conclusion is that it is better to perform this op-
eration in an interactive way, instead of as a black-box. Possibly, it is also better
to proceed by subsequent iterations, submitting the results to the decision-maker
for a confirmation, and asking to modify himself/herself the indications provided in
order to approach consistency.

7.2 Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) was introduce in 1980, based on the follow-
ing criticisms made by Saaty to the classical methods to build utility functions:

1. the reconstruction of the single-variable normalized utility functions is subject
to strong approximation errors;

2. the estimation of the weights is subject to strong approximation errors when
the number of attributes p is large;

3. the various approximation errors combine in cascade.

The approximations in the normalized utility functions are particularly strong in
the case of qualitative attributes, for which it is easy to sort the impact, but much
harder to measure the relative strength of the preference between different impacts If
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the normalized utility functions are not correct, however, the subsequent operations
of weight estimation and linear combination in order to evaluate the overall utility
become meaningless. In fact, any Paretian alternative of a problem can be the
winner if a suitable utility function is chosen. These practical difficulties risk to
reduce the classical methods to pure “number-crunching”, that is manipulation of
numbers without any practical meaning and out of the control of the decision-maker.

The AHP aims to define in a simpler and more natural way the measure of
preference between alternative impacts. Its characteristic elements are:

1. the evaluation of solution utility with respect to each attribute through pair-
wise comparisons, instead of direct absolute measures;

2. the use of qualitative scales, instead of quantitative ones;

3. the evaluation of the attribute weights through pairwise comparisons;

4. the hierarchical structuring of attributes;

5. the multiplicative recombination of the weights at different levels of the hier-
archy.

Even if it does not properly make sense to speak of preferential independence
and of the corresponding trade-off condition, the operations performed by the AHP
implicitly assume that each indicator contribute in an additive way to the overall
utility of each solution. In fact, the fundamental concepts of the AHP can be
interpreted as an approximated and qualitative version (but a more robust one with
respect to modelling errors) of the fundamental concepts of the classical theory.

7.2.1 Computation of the utilities with pairwise comparisons

Given an indicator fl, the classical method tries to reconstruct the whole absolute
profile of utility as a function ũl (fl). The criticism by Saaty is based on cognitive
psychology results according to which it is very difficult for a human decision-
maker to associate quantitative utility values to the values of the indicator. The
AHP, therefore, focuses on pair of solutions and on the strength of the relative
preference betewen the values of an indicator in the two solutions of the pair. A

matrix Λl = {λ(l)
xy} is built, whose element λ

(l)
xy is associated to a pair of alternatives

(x, y) ∈ X × X and evaluates how much fl (x) is preferable to fl (y). Therefore,
the process does not reconstruct the whole normalized utility function with respect
to an indicator, but evaluates the strength ratio between given pairs of alternative
values, that is something similar to a utility ratio ũl (fl (x)) /ũl (fl (y)).

Since it requires the explicit enumeration of all solution pairs, the AHP can be
applied only to finite problems and with a small number of solutions, or to problems
whose solution set has been preliminarly pruned reducing it to a small finite set.

7.2.2 Qualitative scales

The second basic idea of the AHP is to simplify the evaluation process by measuring
the preference between two values fl (x) and fl (y) not with a quantitative scale,
but a qualitative one, denoted as Saaty’s scale:

1. λ
(l)
xy = 1: fl (x) e fl (y) are indifferent ;

2. λ
(l)
xy = 3: fl (x) is moderately preferable to fl (y);
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3. λ
(l)
xy = 5: fl (x) is strongly preferable to fl (y);

4. λ
(l)
xy = 7: fl (x) is very strongly preferable to fl (y);

5. λ
(l)
xy = 9: fl (x) is absolutely preferable to fl (y).

The weights 2, 4, 6 and 8 are used for intermediate evaluations. Symbol λ is used
by analogy with the marginal rate of substitution, but it is clearly a much more
empirical and approximated measure. The values of Saaty’s scale are absolutely
arbitrary, but derive from psychology studies, according to which it is inappropriate
to ask a decision-maker to indicate exact quantitative values for the preference
ratios, because the human beings are unable to discriminate more than 5− 9 levels
in a sensible and consistent way.

Moreover, the use of a qualitative scale allows to compare heterogeneous quant-
ities, or quantities which are not expressed in a quantitative way, translating verbal
judgments into numerical values. The idea is to give for granted that the numerical
values used are only a rough approximation of reality; knowing it, automatically
raises an alert against trusting them too much, a risk that is easily taken with
the normalized utilities estimated by the classical methods. Moreover, building a
whole pairwise comparison matrix also allows to evaluate its inconsistency and to
tune it a posteriori in order to make it consistent, instead of forcing a fictitious
consistency since the beginning, which could introduce unamendable errors in the
following phases.

The methods described in Section 7.1.1 allow to derive from the pairwise com-
parison matrix a consistent matrix, and from the latter a vector ul that associates
to each value considered for the indicator, that is to each feasible solution x ∈ X, a
positive and normalized numerical value uxl.

Definition 29 We denote as evaluation matrix a matrix U = {uxl} containing
the evaluation uxl of each alternative x ∈ X with respect to each indicator l ∈ P ,
obtained starting from the pairwise comparison matrix Λl.

The values uxl obtained in this way replace the values of the normalized utility
functions ũl (fl (x)) used in the classical theory. These values also fall in [0, 1] and
are larger for the preferred alternatives, but in general the worst and the best value
of an indicator will not correspond to the extreme values 0 e 1.

7.2.3 Computation of the weights with pairwise comparisons

Also the attribute weights are built starting from pairwise comparison matrices
filled with qualitative values drawn from Saaty’s scale. The comparison between
two attributes aims to evaluate the relative weight of the former with respect to the
latter. With the methods described in Section 7.1.1 one can derive from the pairwise
comparison matrix of the attributes a vector of normalized weights wl, associated
to the attributes of the problem. This vector, therefore, does not derive from the
identification of pairs of indifferent impacts, but from the processing of judgments
(provided by the decision-maker) on the relative weights of the attributes. The
practical meaning of these weights, however, is the same: they are used to combine
in an additive way the evaluations uxl, so as to obtain the overall evaluation of
ux =

∑p
l=1 uxl for each alternative x ∈ X, based on which the choice will be made.
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7.2.4 Hierarchical structuring of the attributes

Building a pairwise comparison matrix between all attributes of a problem can
be impractical if the number of attributes is large. As anticipated in Chapter 2,
however, one can collect the attributes of the problem into homogeneous categories,
structured in a hierarchy:

1. the level of the leaves includes the elementary attributes;

2. at the upper levels summarising attributes appear, progressively more general;

3. the root corresponds to a sort of general objective.

Each attribute of the problem, in other words, is summarised into a more gen-
eral objective and decomposed into more specialised objectives. For example, in
an Environmental Impact Assessment (EIA) the general objective of satisfying the
decision-maker is often decomposed into macro-objectives guaranteeing a positive
impact in the environmental, economic and social sectors, respectively. The envir-
onmental impact, on its turn, can be decomposed into sectors concerning water,
ground, air and noise; the sector “air” into the different kinds of pollutants, the
latter into the different geographical areas, and so on. Figure 7.1 provides a (sim-
plified) example concerning the tram-train in the town of Como, where environment,
economy and society were completed by an additional sector conerning traffic.

Figure 7.1: The hierarchical structure of the EIA problem for the tram-train of
Como (strongly simplified version)

The advantages of structuring the attributes into a hierarchy are:

1. only homogeneous attributes are compared with each other (for example, the
pollution by CO with the pollution by NOx, and not with the increase in
employment or the financial costs);

2. each subset of pairwise comparisons can be assigned to an expert subdecision-
maker specialised in a specific field, so as to obtain more meaningful indica-
tions;

3. the total number of pairwise comparisons strongly decreases.

The fundamental disadvantage is that the pairwise comparisons at the level of the
leaves consider concrete and well-defined attributes, whereas those at the upper
levels consider abstract and general objectives, for which a quantitative measure
does not even make sense. For example, at the level of the leaves the weight of
the pollution by CO is compared with that of the pollution by NOx, whereas at
the upper levels the environmental impact of a project if compared with its social
impact. The latter comparison, even though it is expressed with a numerical scale,
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is obviously qualitative. Typically, the upper levels are assigned to the political
decision-makers, as experts of trade-offs between general themes.

7.2.5 Hierarchical recomposition

The use of a hierarchical structure slightly complicates the computation of the
weights of the attributes. In fact, only the attributes that are children of the same
node in the tree are compared with each other. This gives rise to weights that are
normalized within eah group of children nodes, but are not comparable with those
of the other groups. The tree structure, however, allows to progressively build the
attribute weight vector scanning the tree level-by-level from the leaves up to the
root.

At each level, one builds a pairwise comparison matrix between the children of
the same node, and derives from it a vector of weights with the methods described
above. The weights in each vector have sum equal to one, and describe the relative
weight between each other. In order to compare such weights with those of the
other nodes of the whole tree, it is enough to renormalize them so that their sum
coincides with the weight of the father node, that is simply to multiply them by the
weight of the father node. If the tree has several levels, it is enough to multiply the
weight of each leaf attribute by those of all the nodes visited along the path that
leads to the root of the tree. In this way, the sum of the weights of all nodes on a
level is always equal to one; in particular, the sum of the weights wl of the leaves is
equal to one.

Once the weights wl have been reconstructed, th evaluation matrix uxl provides
a value for each alternative and each elementary attribute. As in the classical theory,
the overall utility u (x) of each alternative x is obtained with a convex combination
of the utilities with the weights. This corresponds to multiplying the evaluation
matrix U by the weight vector w:

ux =

p∑
l=1

uxlwl ⇔ u = U · w

The utility values thus obtained are used to sort the alternatives and solve the
decision problem.

Example 56 Let us consider the purchase of a house. Let us suppose that there
are three alternatives, named a1, a2 and a3, and that the choice depends on four
attributes (price, size, life quality in the area, purchase conditions). The hierarchy
of the problem, therefore, includes a root, corresponding to the global objective, from
four leaves are appended (the attributes).

With respect to each of the four attributes, the pairwise comparison phase between
the alternatives leads to the following matrices, and therefore to the following weight
vectors (since there are few alternatives, we suppose to obtain consisten matrices,
independent from the method used to build the utilities):

1. price

Λp =

 1 1/9 1/8
9 1 9/8
8 8/9 1

⇒ up =

 1/18
9/18
8/18


2. size

Λd =

 1 9 9
1/9 1 1
1/9 1 1

⇒ ud =

 9/11
1/11
1/11
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3. life quality in the area

Λq =

 1 1/9 1/4
9 1 9/4
4 4/9 1

⇒ uq =

 1/14
9/14
4/14


4. purchase condition

Λc =

 1 3 3/5
1/3 1 1/5
5/3 5 1

⇒ uc =

 3/9
1/9
5/9


Let us assume that the four attributes have the same weight according to the

decision-maker.

Λw =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⇒ w =


1/4
1/4
1/4
1/4


Since the tree has a single level, it is not necessary to recombine the weights. It

is enough to reconstruct the evaluation matrix, using as columns the vectors which
express the utility of the alternatives with respect to the attributes:

U = [up |ud |uq |uc]

and performing the convex combination of the utilities with the weights, multiplying
the evaluation matrix by the weight vector.

u = Uw =

 1/18 9/11 1/14 3/9
9/18 1/11 9/14 1/9
8/18 1/11 4/14 5/9

 ·


1/4
1/4
1/4
1/4

 =

 0.320
0.336
0.344


which leads to choose alternative a3, even though the other two are not far away.
If the coefficients assigned during the pairwise comparison were not very reliable,
this suggests the opportunity to perform a sensitivity analysis to evaluate possible
variations, as in Example 49 of Section 6.6.3.

If the tree has several levels, it is also completely equivalent to evaluate the
alternatives in each node of the tree, that is with respect to the corresponding
attribute: it is enough to go up the tree terminating the recombination in the node
that corresponds to the attribute considered. For instance, if one wants to know
the environmental utility of the alternatives, it is enough to go up the tree until
the node Environment, and to renormalize the weights only for the environmental
attributes, multiplying them only by the weights of the nodes visited along the path
from the leaves to such a node, and finally to perform the convex combination of
the environmental utilities with such weights.

7.2.6 Hybridisations with the utility theory

The hierarchical structuring of the attributes is an innovation introduced by the
AHP, that has later been adapated to the body of the classical methods. It can
in fact happen that the estimated normalized utility functions are reliable, but
tha the indicators are too many to determine their weights by comparing them
in a meaningful way. In this case, it is possible to accept the normalised utility
values, but to estimate the weights with pairwise comparisons, qualitative scales
and multiplicative recombination, as proposed by the Analytic Hierarchy Process.
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Example 57 Let us consider a very simplified problem concerning the case study
of the tram-train in Como, introduced in Chapter 2. For the sake of simplicity, we
consider a limited number of alternatives and attributes, but we keep a multilevel
attribute tree. The chosen alternatives are:

0. Alternative zero: no intervention;

1. Railway shuttle;

2. Tram-train (having chosen one of the paths);

3. Ring tramway.

Alternatives
Submatrix Sector Subsector 0 1 2 3

Air 0.0 0.1 0.6 0.8
Noise 0.4 0.2 0.4 0.6

UTa Environment Vibrations 0.4 0.2 0.4 0.6
Landscape 1.0 1.0 0.8 0.5

Territ. struct. 0.0 0.3 1.0 0.6
Costs 1.0 0.9 0.6 0.0

UTe Economy Revenues 0.0 0.3 0.7 1.0
Housing values 0.0 0.5 1.0 1.0
Appreciation 0.0 0.2 0.7 0.9
Discomfort 1.0 1.0 0.7 0.2

UTs Society Accessibility 0.0 0.1 0.7 0.9
Employment 0.0 0.5 1.0 1.0

Induced effects 0.0 0.3 0.6 1.0
Security 0.0 0.2 0.6 1.0

UTt Transportation Congestion 0.0 0.4 0.9 1.0
Interferences 1.0 0.8 0.6 0.2

Table 7.1: Evaluation matrix (transposed) for the (simplified) problem of the tram-
train of Como

Once the impacts have been estimated for each alternative and the normalized
utility functions have been built, we suppose to obtain the evaluation matrix U re-
ported in Table 7.1. The matrix has been transposed for ease of representation, and
it has been hierarchically divided into submatrices. Each column of the matrix (row
in the table) provides the normalized utility of an indicator, with values included
between 0 (for the worst performance) and 1 (for the best one).

We can therefore proceed building the weights of the attributes with pairwise
comparisons and qualitative evaluations. In a first phase, four specialised decision-
makers evaluate the relative importance of the subsectors collected in each sector.
Let us assume that the pairwise comparison matrices obtained for each sector are
the ones represented in Tables 7.2, 7.3, 7.4 and ??.

From each matrix, we derive the corresponding subsector weight vector. As the
decision-makers are not completely consistent, each matrix must be made consisten,
before deriving the weight vector. This has been done with the least-square method.
The four resulting vectors are reported in Table 7.6 and added to the overall tree
structure in Table 7.7

In a second phase, a political decision-maker evaluates the relative importance of
the sectors, once again by pairwise comparisons. Table 7.8 reports the comparisons.
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Λa Air Noise Vibrations Landscape Territ. struct.
Air 1 1 1 5/4 1
Noise 1 1 1 3/4 1
Vibrations 1 1 1 3/4 3/4
Landscape 4/5 4/3 4/3 1 1
Territ. struct. 1 1 4/3 1 1

Table 7.2: Pairwise comparison matrix for the subsectors of sector Environment

Λe Costs Revenues Housing values
Costs 1 5/4 5/4
Revenues 4/5 1 1
Housing values 4/5 1 1

Table 7.3: Pairwise comparison matrix for the subsectors of sector Economy

Λs Apprec. Discomfort Access. Empl. Ind. eff.
Appreciation 1 1 1 5/4 1
Discomfort 1 1 5/4 3/4 1
Accessibility 1 4/5 1 3/2 1
Employment 4/5 4/3 2/3 1 3/4
Induced effects 1 1 1 4/3 1

Table 7.4: Pairwise comparison matrix for the subsectors of sector Society

Λt Security Congestion Interferences
Security 1 3/4 1
Congestion 4/3 1 5/4
Interferences 1 4/5 1

Table 7.5: Pairwise comparison matrix for the subsectors of sector Transportation

Environment Economy Society Transportation
Subsect. wa Subsect. we Subsect. ws Subsect. wt
Air 0.209 Costs 0.384 Apprec. 0.209 Secur. 0.301
Noise 0.188 Revenues 0.308 Discomfort 0.197 Congest. 0.392
Vibrations 0.178 Housing values 0.308 Access. 0.207 Interf. 0.307
Landscape 0.214 Empl. 0.176
Territ. Struct. 0.211 Ind. eff. 0.211

Table 7.6: Weight vectors for the subsectors of the four sectors
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Alternatives
Submatrix Sector Subsector 0 1 2 3

Air 0.209 0.0 0.1 0.6 0.8
Noise 0.188 0.4 0.2 0.4 0.6

UTa Environment Vibrations 0.178 0.4 0.2 0.4 0.6
Landscape 0.214 1.0 1.0 0.8 0.5

Territ. struct. 0.211 0.0 0.3 1.0 0.6
Costs 0.384 1.0 0.9 0.6 0.0

UTe Economy Revenues 0.308 0.0 0.3 0.7 1.0
Housing values 0.308 0.0 0.5 1.0 1.0
Appreciation 0.209 0.0 0.2 0.7 0.9
Discomfort 0.197 1.0 1.0 0.7 0.2

UTs Society Accessibility 0.207 0.0 0.1 0.7 0.9
Employment 0.176 0.0 0.5 1.0 1.0

Induced effects 0.211 0.0 0.3 0.6 1.0
Security 0.301 0.0 0.2 0.6 1.0

UTt Transportation Congestion 0.392 0.0 0.4 0.9 1.0
Interferences 0.307 1.0 0.8 0.6 0.2

Table 7.7: Evaluation matrix (transposed) for the (simplified) problem of the tram-
train of Como, with the weights computed for the subsectors of the four sectors

Environment Economy Society Transportation
Environment 1 3/2 3/4 1

Economy 2/3 1 1/2 3/4
Society 4/3 2 1 1

Transportation 1 4/3 1 1

Table 7.8: Pairwise comparison matrix among the four sectors
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This matrix yields the weights w(1) of the sectors at level 1 in the tree (see
Table 7.9), once again applying the least-square method to solve the inconsistencies
of the decision-maker. Table 7.10 reports the overall tree structure with the weights
at both levels.

Sectors w(1)

Environment 0.252
Economy 0.173
Society 0.312

Transportation 0.263

Table 7.9: Weight vector of the four sectors

Alternatives
Submatrix Sector Subsector 0 1 2 3

Air 0.209 0.0 0.1 0.6 0.8
Noise 0.188 0.4 0.2 0.4 0.6

UTa Environment Vibrations 0.178 0.4 0.2 0.4 0.6
0.252 Landscape 0.214 1.0 1.0 0.8 0.5

Territ. struct. 0.211 0.0 0.3 1.0 0.6
Costs 0.384 1.0 0.9 0.6 0.0

UTe Economy Revenues 0.308 0.0 0.3 0.7 1.0
0.173 Housing values 0.308 0.0 0.5 1.0 1.0

Appreciation 0.209 0.0 0.2 0.7 0.9
Discomfort 0.197 1.0 1.0 0.7 0.2

UTs Society Accessibility 0.207 0.0 0.1 0.7 0.9
0.312 Employment 0.176 0.0 0.5 1.0 1.0

Induced effects 0.211 0.0 0.3 0.6 1.0
Security 0.301 0.0 0.2 0.6 1.0

UTt Transportation Congestion 0.392 0.0 0.4 0.9 1.0
0.263 Interferences 0.307 1.0 0.8 0.6 0.2

Table 7.10: Evaluation matrix (transposed) for the (simplified) problem of the tram-
train of Como, with the weights computed for the subsectors of the four sectors

At this point, two equivalent ways are possible. The former consists in computing
the weight of each subsector by multiplying its relative weight for the corresponding
sector (Table 7.6) by the weight of the sector, and so on for every other weight
visited along the path to the root of the attribute tree (in this case, there are only
two levels). This provides an overall vector of 5 + 3 + 5 + 3 = 16 weights summing
to one, represented in Table 7.11.

With these weights the utility of Table 7.1 can be combined, simply multiplying
the evaluation matrix by the overall vector. This produces the utilities of Table 7.13.

The second way allows also to evaluate the partial utilities of each alternative
with respect to the single sectors. In order to do that one gradually scans the tree,
multiplying the utility submatrices by the normalised weight subvectors level-by-level.
In this way, one obtains the utilities of the alternatives normalised with respect to
each sector. Table 7.12 reports the aggregated matrix U (1) of the utilities for the
first level of the tree+.

From this matrix, the global utility for each alternative (referring to the root of
the tree) can be obtained by multiplying the aggregated first-level matrix by the sector
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Alternatives
Sectors w 0 1 2 3

Air 0.053 0.0 0.1 0.6 0.8
Noise 0.047 0.4 0.2 0.4 0.6

Vibrations 0.045 0.4 0.2 0.4 0.6
Landscape 0.054 1.0 1.0 0.8 0.5

Territ. struct. 0.053 0.0 0.3 1.0 0.6
Costs 0.066 1.0 0.9 0.6 0.0

Revenues 0.053 0.0 0.3 0.7 1.0
Housing values 0.053 0.0 0.5 1.0 1.0
Appreciation 0.065 0.0 0.2 0.7 0.9
Discomfort 0.061 1.0 1.0 0.7 0.2

Accessibility 0.065 0.0 0.1 0.7 0.9
Employment 0.055 0.0 0.5 1.0 1.0

Induced effects 0.066 0.0 0.3 0.6 1.0
Security 0.079 0.0 0.2 0.6 1.0

Congestion 0.103 0.0 0.4 0.9 1.0
Interferences 0.081 1.0 0.8 0.6 0.2

Table 7.11: Evaluation matrix (transposed) for the (simplified) problem of the
tram-train of Como, with the overall weight vector

Alternatives
Submatrix Sector 0 1 2 3

UTa Environment 0.360 0.371 0.654 0.620
0.252

UTe Economy 0.385 0.593 0.755 0.616
0.173

UTs Society 0.197 0.411 0.732 0.801
0.312

UTt Transportation 0.307 0.463 0.718 0.754
0.263

Table 7.12: Evaluation matrix of the alternatives, aggregated with respect to the
four sectors
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weight vector, once again obtaining the values reported in Table 7.13.

Alternatives
Utilities 0 1 2 3

u = U (1)w(1) 0.299 0.446 0.713 0.711

Table 7.13: Overall utility vector

7.2.7 Rank reversal

The main defect of the Analytic Hierarchy Process, which has given rise to a lively
debate, also involving philosophical aspects, is the phenomenon of rank reversal :
the order of the alternatives substantially depends on what alternatives are present.
The reason is that the evaluations uxl are not absolute utility values, but derive
from pairwise comparisons, and therefore depend on the values actually compared.

The same problem occurs in the soccer championship, which is actually an order-
ing system based on pairwise comparisons, even if the computation of the ordering
function is performed in a different way. Let us suppose that teams A and B win
over different subsets of other teams, and that A is slightly stronger than B; if a
new team C is admitted, which is dominated by both, but plays slightly better in
the matches against A than in those against B, this induces a redistribution of the
weights that can lead to the final victory of B. Similar phenomena occur in electoral
competitions, where the presence of a losing candidate can hamper in a different
measure the stronger candidates, thus modifying the final result of the elections.

The problem also occurs in the case of perfectly consistent pairwise comparison
matrices. In particular, there are examples in which even splitting an alternative
into two perfectly identical alternatives, which yields a problem absolutely equi-
valent to the original one, modifies the final order. Of course, in such a situation,
the two identical alternatives should simply end up in the same position without
influencing the order of the other ones.

Example 58 Let us consider a variation of Example 56, which concerned the pur-
chase of a house. Without any modification with respect to the three alternatives,
let us introduce a fourth alternative a4. The new pairwise comparison matrices are
identical to the original ones, except that they are framed with an additional row
and column providing the comparisons which concern a4.

1. price

Λp =


1 1/9 1/8 1/4
9 1 9/8 9/4
8 8/9 1 2
4 4/9 1/2 1

⇒ up =


1/22
9/22
8/22
4/22


2. size

Λd =


1 9 9 9

1/9 1 1 1
1/9 1 1 1
1/9 1 1 1

⇒ ud =


9/12
1/12
1/12
1/12


3. life quality in the area

Λq =


1 1/9 1/4 1/8
9 1 9/4 9/8
4 4/9 1 1/2
8 8/9 2 1

⇒ uq =


1/22
9/22
4/22
8/22
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4. purchase conditions

Λc =


1 1/3 3/5 3/5

1/3 1 1/5 1/5
5/3 5 1 1
5/3 5 1 1

⇒ uc =


3/14
1/14
5/14
5/14


The new alternative subtracts from the other ones part of the utility with respect

to each attribute. Its performance is rather scarse on the first two attribute, whereas
it is the second-best for attribute “quality” and the first on a par with a3 for the
attribute “conditions”. The new evaluation matrix and global utility vector are as
follows:

u = Uw =


1/22 9/12 1/22 3/14
9/22 1/12 9/22 1/14
8/22 1/12 4/22 5/14
4/22 1/12 8/22 5/14

 ·


1/4
1/4
1/4
1/4

 =


0.264
0.243
0.246
0.246


which leads to choose alternative a1. Alternative a4, in fact, performing badly with
respect to the second attribute (where a1 is the first) and well with respect to the third
attribute (where a2 is the first) and the fourth (where a3 is the first), in practice
opens the way to a1.

The rank reversal is unavoidable, unless by assuming an absolute scale of values.

7.2.8 Absolute scales, or a priori estimate method

In order to face the rank reversal problem, Saaty proposed a system based on
pairwise comparisons not between single alternatives, but between predefined classes
of alternatives.

For instance, when evaluating a group of candidates for a job which requires the
knowledge of English and of computer software, the human resource department will
not compare pairs of candidates with respect to their skills in these two aspects,
but will establish standard skill levels (such as, “scarse”, “sufficient”, “fairly good”,
“good” and “very good”) and will compare pairs of levels. Thus, a very good
knowledge of English could be worth 7 times a fairly good knowledge, whereas a
very good skill in computer software could be worth 3 times a fairly good knowledge,
and so o. Then, the method will consist in assigning each alternative (that is, each
candidate) to one of the classes.

The method has the additional advantage to reduce the number of comparisons
required, as the size of the comparison matrix is given by the number of the classes,
instead of the number of the alternatives. This also allows to apply the AHP to
problems with a large number of alternatives. As the method allows to evaluate in
advance the utility of each class, it can even be applied when not all alternatives are
known since the beginning. For example, the candidates might show up in a long
period of time, but should be immediately accepted or rejected, without knowing
the following candidates. In such a situation, establishing that candidate A is 5
times better than candidate B is impossible if candidate B is still unknown and
could be difficult even in the case of an already known candidate because a possible
future candidate might make that ratio too small or too large.

The disadvantage of the method resides in the arbitrariety of the classes: moving
the border of a class even by a small amount could move some alternatives from
class to class, and consequently change their evaluation, possibly by a large amount.
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Example 59 Let us condider the hiring of a worker. There are four choice criteria:
studies, curriculum, experience and proficiency in English. A priori, we do not know
how many candidates will show up. Consequently, it is not possible to assign values
to the pairwise comparisons until they have all been performed. We can, however
establish, for each attribute, some predefined levels:

� studies (S)

1. very good (vg)

2. good (g)

3. fairly good (fg)

� curriculum (C)

1. excellent (e)

2. very good (vg)

3. good (g)

� experience (E)

1. very relevant (vr)

2. relevant (r)

3. irrelevant (i)

� English proficiency (P )

1. professional (p)

2. basic (b)

The fact that no level of studies below “fairly good” is considered could indicate
that such levels are considered as unacceptable, so that the candidate is immediately
discarded. In other words, such solutions are not part of the feasible region X and
the associated impact is not part of its image F .

Now, before even interviewing the first candidate, we compare the levels by pairs,
and obtain a vector of relative weights among them. For the studies:

ΛS =

vg g fg
vg 1 3 6
g 1/3 1 2
fg 1/6 1/2 1

⇒ uS =

 6/9
2/9
1/9


A very good level of studies is considered moderately preferable to a good one (weight
3 on Saaty’s scale) and somewhat intermediate between strongly and very strongly
preferable to a fairly good one (weight 6).

As for the curriculum:

ΛC =

e vg g
e 1 4 6
vg 1/4 1 3/2
g 1/6 2/3 1

⇒ uC =

 12/17
3/17
2/17


As for experience:

ΛE =

vr r i
vr 1 2 4
r 1/2 1 2
i 1/4 1/2 1

⇒ uE =

 4/7
2/7
1/7
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As for the proficiency in English

ΛP =
p b

p 1 3
b 1/3 1

⇒ uI =

[
3/4
1/4

]

Then, as usual, we will build a pairwise comparison matrix for the attributes,
from which a weight vector will be derived.

Λw =

S C E P
S 1 1 3 4
C 1 1 3 4
E 1/3 1/3 1 4/3
P 1/4 1/4 3/4 1

⇒ w =


12/31
12/31
4/31
3/31


So, a candidate with very good studies, an excellent curriculum, irrelevant ex-

perience and a basic proficiency in English receives an evaluation equal to

uS = 6/9 uC = 12/17 uE = 1/7 uP = 1/4

from which, as U = [uS uC uE uP ]

Uw =
[

6/9 12/17 1/7 1/4
]
·


12/31
12/31
4/31
3/31

 = 0.574

On the other hand, a candidate with good studies, a very good curriculum, very
relevant experience and a professional proficiency in English receives an evaluation
equal to

uS = 2/9 uC = 3/17 uE = 4/7 uP = 3/4

from which

Uw =
[

2/9 3/17 4/7 3/4
]
·


12/31
12/31
4/31
3/31

 = 0.301

and is therefore considered as less preferable. All this holds a priori, even before the
candidates start showing up.

7.2.9 Rank reversal in utility theory

In the classical utility theory, the rank reversal phenomenon is impossible if the
normalised utility functions are correctly built. However, the phenomenon can occur
if the construction if incorrect. The most typical case is that in which a subsequent
modelling phase introduces new alternatives in X, whose impact falls outside of the
original region F , modifying the extreme values of some attributes, and therefore
affecting their normalisation2. As a consequence, the other alternatives change
their normalised utility with respect to such attributes, and their variations are

2New solution can appear during the modelling process due to the fact that such a process is
not linear, but goes by subsequent loops. For example, in a big project, the solutions are detailed
and modified in order to make them more agreeable as the analysis proceeds and determines their
properties. Usually, the new solutions are not very far away from the original region F , so that
the effect is negligible, but in general it should be taken into account.
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not uniform. In particular, if the new solution is very good for an attribute, the
best original solutions become much worse, whereas the worst original solutions are
scarsely affected. It is possible that these variation modify the order of the solutions.
In principle, the marginal rates of substitution should change to keep into account
the new scaling, but this requires to tune them correctly.

Example 60 A problem has two alternatives A and B, with impacts f (A) =
(100, 0) and f (B) = (90, 100), that represent costs and have linear utility func-
tions. The normalised utilities are UA = (1, 0) and UB = (0, 1). If the weights of
the two components of the utility function are w1 = 0.6 and w2 = 0.4, the utilities
of the two alternatives are:

u (A) = 0.6 · 1 + 0.4 · 0 = 0.6 u (B) = 0.6 · 0 + 0.4 · 1 = 0.4

and A is the best one.

If a new alternative C is introduced, with impact f (C) = (50, 0) and the utility
u1 is renormalised withouth updating the weights (and this is the mistake), UA
remains the same, whereas UB = (0.8, 1). Therefore, utility uA remains 0.6 and
utility uB grows from 0.4 to uB = 22/25 = 0.88, becoming the best one. In fact, the
variation in the range of f1 should have implied the retuning of the weights, as if
the unit of measure of the two components of the utility had changed.

7.3 ELECTRE methods

The ELECTRE methods (ELimination Et Choix Traduisant la REalité3), developed
by Roy4 since the Sixties, start from a basic criticism of the assumption that the
decision-maker be able to compare all pairs of impacts.

A typical example of this criticism is the coffee paradox, briefly presented in
Section 3.5.5: two cups of coffee contain the same quantity of the same kind of
coffee, but the former contains a given quantity f of sugar, whereas the latter
contains a grain more (f ′ = f + ε). For a sufficiently small value of ε, the two cups
are obviously indifferent. As well, the latter cup is indifferent with respect to a
third one, containing a quantity of sugar equal to f ′′ = f + 2ε, which is indifferent
with respect to a fourth cup, containing a quantity of sugar equal to f + 3ε, and so
on. . . By transitivity, two cups at the opposite extremes of the chain, and containing
amounts of sugar equal to f and 2f , respectively, must also be indifferent. But this
is obviously false. The classical theory of utility avoids the paradox assuming that
the decision-maker be able to discriminate each link of the chain, always indicating
the better between the two cups.

Let us extend the concept to a multi-attribute framework, in order to introduce
the solution proposed by the ELECTRE methods. Let us assume that the cup
of coffee A contains a superior quality coffee with one grain more than the ideal
quantity of sugar, whereas the cup of coffee B contains an average quality coffee
with the ideal quantity of sugar. According to the approach of Pareto, the two cups
would be incomparable. According to the classical multi-attribute utility theory,
they can be compared by establishing a marginal rate of substitution between the
attributes “coffee quality” and “sugar quantity”. The ELECTRE methods follow
yet another way. We talk of ELECTRE methods, with a plural, because several
different methods have been proposed along the time. In the following, we present
a summary of their main concepts, without referring explicitly to specific methods.

3Elimination and choice translating reality
4Bernard Roy (1934), French mathematician.
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7.3.1 The outranking relation

The ELECTRE methods start from the Pareto preference relation which considers
A preferable to B when it is not worse for all attributes, and enrich it by admitting
that A could be preferable to B also when it is worse for some attributes, provided
that the difference does not exceed a given threshold. This special kind of preference
relation is usually denoted as outranking relation S (in French, surclasser). In the
following, we assume that all indicator correspond to benefits for the decision-
maker5. Moreover, we deal with finite problems, in which alternatives and impacts
are in one-to-one correspondence, so that the distinction between the two concepts
is blurred.

Definition 30 Given two impacts f, f ′ ∈ F ⊆ Rp, we say that f outranks f ′

(f �S f ′), based on the thresholds εl ≥ 0 when impact f is not exceedingly worse
than f ′ for all indicators l ∈ P with respect to the thresholds:

f �S f ′ ⇔ fl ≥ f ′l − εl for all l ∈ P

It is easy to see that, setting εl = 0 for all l ∈ P , the outranking relation becomes
the Paretian preference. Since usually εl > 0, the outranking relation is richer, that
is, it contains a larger set of pairs. The Paretian preference, therefore, implies the
outranking relation, but not the opposite.

The outranking relation is clearly reflexive, but in general it does not have the
transitive property, as shown in the following example.

Example 61 Table 7.14 reports the benefits associated to four solutions A, B, C
and D, with respect to four attributes fl.

f1 f2 f3 f4

A 0.50 0.50 0.50 0.60
B 0.45 0.45 0.45 0.70
C 0.40 0.40 0.40 0.80
D 0.35 0.35 0.35 0.90

Table 7.14: Evaluation matrix (example)

Assuming that εl = 0.05 (l = 1, . . . , 4), the impacts of alternatives A and B
differ less than the threshold εl for the first three attributes, while B is clearly better
than A for the fourth one. So, B outranks A (B �S A), but not vice versa. For
the same reason, C outranks B and D outranks C. It would seem to be possible
to conclude that D outranks A, but this is false, because D is clearly worse than A
with respect to three of the four criteria; indeed, D and A are incomparable.

D �S C �S B �S A but D �S B,D �S A,C �S A

In summary, in this case the Paretian preference would be completely empty and
would provide no useful information. On the contrary, the outranking relation,
translated into a directed graph, would correspond to a path going from D to C, to
B, to A. This does not mean that solution D is the best and solution A the worst:
in fact, A is better than D for at least three indicators. While in the Paretian case
the solutions with no ingoing arcs dominate the other ones, the outranking relation
is harder to deal with.

5Notice that we have made the opposite assumption for the Paretian case.
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7.3.2 Refinement of the outranking relation

The definition of outranking introduced above easily produces relations too weak
and too similar to the Paretian one when the thresholds εl are very small, or relations
too rich, in which all impacts outrank each other, when the thresholds are too large.
In both cases, the relation gives little information to the decision-maker.

The ELECTRE methods, therefore, propose to combine the basic definition with
other conditions: the final outranking relation will include the pairs of impact that
verify all conditions. Each condition is a relaxation of the Paretian preference, so
that the Paretian preference implies each of them. Consequently, the Paretian pref-
erence is always a sufficient condition for the outranking relation. The conditions
allow to take into account additional remarks, for example expressing the relative
importance of the indicators through suitable weights wl. The decision-maker must
indicate both the thresholds εl and the other parameters that rule the outranking
conditions. The values attributed to these parameters influence the result of the
decision process. The weights wl are positive and have a sum equal to one, as in
the multi-attribute utility theory and in the AHP, but they are not used as mult-
pliers in a convex combination. On the contrary, they are used with an approach
that recalls the elections: an impact is considered preferable to another when the
indicators with respect to which it is better have larger weights.

For each pair of impacts (f, f ′), it is possible define the following three values:

� the sum of the weights for the attributes for which fl is better than f ′l

w+
ff ′ =

∑
l∈P :fl>f ′l

wl

� the sum of the weights for the attributes for which fl is indifferent to f ′l

w=
ff ′ =

∑
l∈P :fl=f ′l

wl

� the sum of the weights for the attributes for which fl is worse than f ′l

w−ff ′ =
∑

l∈P :fl<f ′l

wl

Thanks to the normalisation assumption, the following property holds:

w+
ff ′ + w=

ff ′ + w−ff ′ =
∑
l∈P

wl = 1 for all f, f ′ ∈ F

Outranking conditions

Given a set of conditions, the outranking relation is given by the pair of impacts that
satisfy all of them, and is therefore obtained by intersecting the relations defined
by each condition. Some of these conditions are the following:

1. the satisfaction of comparability thresholds: impact f is not much worse than
impact f ′ for all attributes:

f �Sε f ′ ⇔ fl ≥ f ′l − εl for all l ∈ P

where εl ≥ 0 for all l ∈ P . This is the basic condition introduced above.
Notice that for εl = 0 this relation coincides with the Paretian preference,
whereas for εl > 0 it grows to include other pairs of impacts, without losing
any Paretian pair.
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2. the concordance condition: a subset of attributes of sufficient weight agree
that f is not worse than f ′:

f �Sc f ′ ⇔ cff ′ = w+
ff ′ + w=

ff ′ ≥ αc with αc ∈ [0; 1]

For αc = 1, this yields the Paretian preference, since w−ff ′ ≤ 1 − αc = 0.
For smaller values of αc (down to 0), the relation includes larger and larger
subsets of pairs.

3. the discordance condition: no attribute rejects with exceeding strength the
statement that f is better than f ′:

f �Sd f ′ ⇔ dff ′ =


max
l∈P

[max (f ′l − fl, 0)]

max
l∈P
|fl − f ′l |

(for f 6= f ′)

0 (for f = f ′)

≤ 1−αd with αd ∈ [0; 1]

The numerator measures the maximum difference between the two impacts
with respect to the indicators for which f ′ is better, that is f ′l > fl. The
denominator measures the overall maximum difference between the two im-
pacts. The ratio varies between 0, when f is never worse than f ′, and 1, when
f is worse than f ′ for the indicator with the maximum difference. This index
expresses the regret that one would feel rejecting f ′ in favour of f . For αd = 1,
one obtains the Paretian preference6, for other values the relation enlarges in-
cluding other pairs of impacts. Since different attributes are combined in the
index, it is important that they are normalised in advance, in order to make
the comparison independent from the units of measure adopted.

The fundamental rationale of the ELECTRE methods consists in taking into
account both the values of the indicators fl and of their weights wl, but dealing
with them separately. This allows to avoid the linear combination process of weights
and indicators, that makes sense only under rather strict assumptions, that is when
the indicators are somehow turned into utility functions, which must be summable,
adimensional (that is, normalised), etc. . . Moreover, this also allows to tune the
relative influence of indicators and weights on the final result. If the values estimated
for the weights appear more reliable, one can tighten the concordance threshold (or
similar thresholds defined on the weights), so that the corresponding conditions
remove from the outranking relation several pairs of impacts. On the other hand,
if the values estimated for the indicators appear more reliable, one can tighten
the discordance threshold (or similar thresholds defined on the indicators), so that
the conditions on the indicators remove from the outranking relation several pairs
of impacts. This allows to obtain outranking relations that depend more on the
weights than on the indicator and vice versa. It should be noticed that, contrary
to this rationale, some authors have proposed conditions in which weights and
indicators are combined (in particular, there is a weighted definition of discordance,
in which the differences between the values of the indicators are multiplied by the
corresponding weights), but we do not go into details about these variants.

The values of the parameters strongly influences the final result. This requires,
unless there is a strong consensus, a sensitivity analysis showing the appearance and
disappearance of preference pairs as the parameters vary. If the analysis suggests
that the results have a weak dependence on the parameter values, the choice is
correct. For the concordance and discordance thresholds, in particular, it has been

6The textbooks usually report αd on the right-hand-side of the inequality. Here, we have
preferred to write 1−αd so that all conditions reduce to the Paretian preference when the threshold
is equal to 1, as it was for the concordance condition.
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proposed to set the thresholds in an adaptive fashion, assigning them the average
values of the concordance and discordance coefficients with respect to all the pairs
of impacts:

αc =

∑
f,f ′∈F

cff ′

|F | (|F | − 1)
αd = 1−

∑
f,f ′∈F

dff ′

|F | (|F | − 1)

These values have a good probability to remove a large, but not excessive, fraction
of the potential pairs, thus yielding a final relation that is neither too rich nor too
poor7.

Example 62 Let us consider a simple example with three solutions, evaluated on
the basis of four indicators. Table 7.15 reports their performance under the form of
adimensional benefits in an evaluation matrix {fxl} and the normalised weights of
the indicators in a vector w.

fxl f1 f2 f3 f4

a1 1 0.7 0.6 0.8
a2 0.8 0.5 1 1
a3 0.4 1 0.6 0.6

w 0.3 0.4 0.2 0.1

Table 7.15: Evaluation matrix for an application of the ELECTRE methods

Let us suppose that the comparability thresholds be large (εl = 0.5): all three
solutions outrank each other, with the exception of the pair (a3, a1) (see the upper
left graph in Figure 7.2).

Let us now consider the weights of the indicators and build the concordance
matrix C, including all coefficients cff ′ :

C a1 a2 a3

a1 1 0.7 0.6
a2 0.3 1 0.6
a3 0.6 0.4 1

Let us set a concordance threshold equal to αc = 0.5. The relation Sc includes all
pairs with concordance cff ′ ≥ αc, that is

a1 �Sc a2, a2 �Sc a3 and a3 ∼Sc a1

besides the obvious reflexive pairs ai �Sc ai for all ai ∈ X (see the upper left graph
in Figure 7.2).

Finally, from the indicator values we derive the discordance matrix D, which
includes all coefficients dff ′ :

D a1 a2 a3

a1 0 1 0.5
a2 0.5 0 1
a3 1 0.8 0

7But they make the threshold dependent on the considered impacts, therefore reproposing the
insidious problem of rank reversal : a bad alternative can lower the thresholds, introducing new
outranking pairs that can modify the result of the decision process.
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Figure 7.2: Combination of the outranking relations generated by the comparability
thresholds (upper left graph), the concordance condition (upper right graph) and
the discordance condition (lower left graph) in a resulting outranking relation (lower
right graph)

Let us set a discordance threshold equal to αd = 0.5. The relation Sd includes all
pairs with discordance dff ′ ≤ 1− αd, that is

a1 �Sd a3 and a2 �Sd a1

besides the obvious reflexive pairs ai �Sd ai for all ai ∈ X (see the lower left graph
in Figure 7.2).

Intersecting the three relations, one obtains the final outranking relation

a1 �S a3

besides the reflexive pairs ai �Sc ai for all ai ∈ X (see the lower right graph in
Figure 7.2).

7.3.3 Kernel identification

Given a finite problem, the impacts in F can be described as a graph whose arcs
represent the preference relation. The Paretian region corresponds in that graph
to the subset of nodes with zero indegree. The outranking relation, by contrast, is
not transitive, and this forbids to apply the same simple criterium to determine the
subset of plausible alternatives for the decision process. In the ELECTRE methods,
such a subset is obtained with a slightly more complex, iterative procedure.

Definition 31 We denote as kernel the subset of alternatives obtained with the
following procedure:

1. start with an empty kernel (K := ∅);

2. add to the kernel the subset of all solutions with no ingoing arcs in the current
graph (K := K ∪ {x ∈ X : @x′ ∈ X : x′ ≺S x});
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3. remove from the graph all solutions outranked by a kernel solution (X :=
X \ {x ∈ X : ∃x′ ∈ K : x′ ≺S x});

4. if the reduced graph contains only the kernel, terminate; otherwise, go back to
step 2.

Example 63 Given the graph in Figure 7.3, at the first step G, D and E enter the
kernel. Then, B is removed from the graph (it is outranked by E), as well as C and
F (outranked by D and E). Now, A enters the kernel. The algorithm terminates.

Figure 7.3: A possible outranking graph (self-loops not reported for the sake of
simplicity)

The presence of A in the kernel could look strange, since it is outranked by B
and C, that do not belong to the kernel. The reason is that being outranked is a
weaker condition than being dominated. If the plausible alternatives are the ones in
the kernel and none of them outranks A, this means that there is no strong reason
to reject A.

The case of cyclic graphs

If the outranking graph contains circuits, that is directed outranking cycles, it is
possible that the procedure does not terminate. For example, there could be pairs
of alternatives that outrank each other, which correspond to circuits of two arcs in
the graph. Sometimes, such circuits can be removed by asking the decision-maker
to choose between the two alternatives, or to tune the compatibility thresholds and
the weights, and therefore the graph. In general, however, the problem concerns
longer circuits, that are harder to remove.

The following matrix evaluates three alternatives with respect to three indicat-
ors.

f (x) f1 f2 f3

A 3 2 1
B 2 1 3
C 1 3 2
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If we set thresholds εl = 2 for l = 1, . . . , 3, the three impacts outrank each other
with respect to the comparability thresholds. If the three indicators have the same
weights, the concordance condition can only leave all pairs unchanged or remove all
of them from the relation, and the same occurs for the discordance condition. The
symmetry of the problem imposes to keep or reject all pairs.

The literature has proposed different, more or less satisfactory, approaches to
deal with the case of cyclic graphs. The simplest one is to merge each circuit into a
supernode, dealing with the single nodes as if they were indifferent, that is including
or excluding all of them from the kernel.

Outranking regions

It is useful to perform a sensitivity analysis with respect to the concordance and
discordance thresholds, αc and αd, in order to determine for each solution the limit
values that imply its being outranked by another solution8

Definition 32 We denote as outranking region of a solution the set of all pairs
(αc, αd) given which the solution is outranked only by itself.

We remark that decreasing the thresholds increases the number of impact pairs
in the outranking relation, and therefore makes it easier for each solution to be
outranked. Every potential arc (f ′, f) entering a node f admits a minimum value
for αc under which the arc exists and above which it does not exist. The same holds
for αd. Consequently, the region of plane αcαd in which an arc exists is a rectangle
including the origin. The region in the plane in which a node is outranked, that is
it has an ingoing arc, is the union of all such rectangles. The outranking region of
a solution, therefore, is the complement of that union.

The stronger solutions are hard to outrank, and therefore have larger outranking
areas, which get close to the origin, whereas the weaker solutions have smaller areas,
limited to the region around the opposite corner (1, 1). The outranking regions allow
to sort the solutions with a reflexive and transitive, but not complete, relation, that
is a partial order.

Example 64 Let us consider again Example 62. The outranking area of alternative
a1 is determined by the two arcs (a2, a1) and (a3, a1), that is by the two outranking
relations a2 �S a1 and a3 �S a1. These arcs exist, respectively, for

a2 �S a1 ⇔

{
c21 = 0.3 ≥ αc
d21 = 0.5 ≤ 1− αd

⇔

{
αc ≤ 0.3

αd ≤ 0.5

and

a3 �S a1 ⇔

{
c31 = 0.6 ≥ αc
d31 = 1 ≤ 1− αd

⇔

{
αc ≤ 0.6

αd ≤ 0

Figure 7.4 represents these two regions as grey rectangles (one of them is reduced
to a segment of the horizontal axis). The white area complementary to these two
rectangles is the outranking area of alternative a1.

As for alternative a2, the arcs (a1, a2) and (a3, a2) correspond to the outranking
relations a1 �S a2 and a3 �S a2 and to the rectangles{

c12 = 0.7 ≥ αc
d12 = 1 ≤ 1− αd

⇔

{
αc ≤ 0.7

αd ≤ 0

8In principle, the analysis should refer only to the alternatives of the kernel, because only in
that case the outranked alternative would be expelled from the kernel, but the textbooks are not
clear under this respect. For the sake of simplicity, we consider a generic outranking.
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and {
c32 = 0.4 ≥ αc
d32 = 0.8 ≤ 1− αd

⇔

{
αc ≤ 0.4

αd ≤ 0.2

and therefore the outanking area is the region depicted in Figure 7.5.

Finally, the outranking area for alternative a3 is determined by the arcs (a1, a3)
and (a2, a3), the outranking relations a1 �S a3 and a2 �S a3 and the rectangles{

c13 = 0.6 ≥ αc
d13 = 0.5 ≤ 1− αd

⇔

{
αc ≤ 0.6

αd ≤ 0.5

and {
c23 = 0.6 ≥ αc
d23 = 1 ≤ 1− αd

⇔

{
αc ≤ 0.6

αd ≤ 0

and reported in Figure 7.6.

The area of alternative a1 is clearly larger than that of alternative a3, whereas
other relations are not strictly given.

Figure 7.4: Outranking region of the alternative a1

7.3.4 Creation of a weak ordering

Some ELECTRE methods include a final phase in which additional criteria are
introduced to sort the solutions of the kernel. As in the Paretian case, this requires
to perform a partial stretching.

Topological ordering

The nodes with no ingoing arcs correspond to nonoutranked solution; such solutions
naturally stand out as the best ones. Similarly, the nodes with no outgoing arcs
stand out as the worst ones9.

Any topological ordering of the graph respects the outranking relation, meaning
that it sets the outranking nodes in positions preceding the outranked ones. Notice
that the topological order requires an acyclic graph, so that circuits must have been

9Of course, a node could fall under both categories.
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Figure 7.5: Outranking region of the alternative a2

Figure 7.6: Outranking region of the alternative a3
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removed in a previous step, as already discussed in Section 7.3.3. Such a graph
is partially ordered. The topological ordering introduces a stretching, because it
selects one of the several total orders that are consistent with the original partial
order. Notice that starting from the nodes with zero indegree and proceeding for-
ward (forward ordering) produces a different result with respect to starting from
the nodes with zero outdegree and proceeding backward (backward ordering). It
has been proposed to determine both orderings, to assign to each node a ranking
index in each of them (from n = |X| down to 1 as in the Borda count), to make an
average of the two indices and to use such an average to generate the final ordering.
They are obviously highly empirical methods.

In the example of Figure 7.3, the forward ordering starts from G, D and E, that
cannot be distinguished; the ordering goes on with B and F , then C and finally A.
The backward ordering starts from A and G, then C, the pair B and F , and the
pair D and E. The two orderings are similar, but (for example) the position of the
isolated node G is completely different. If there are circuits with no ingoing arcs
from the rest of the graph, all the nodes of the circuit are extracted together.

A B C D E F G
Forward ordering 1 3.5 2 6 6 3.5 6

Backward ordering 1.5 4.5 3 6.5 6.5 4.5 1.5
Composition 1.25 4 2.5 6.25 6.25 4 3.75

The average of the ranking indices of the nodes in the two orderings suggests D
and E as the best solutions, followed by B and F , G, C, ending with A.

Ordering with aggregated indices

This method builds for each impact a concordance and a discordance aggregated
index, starting with those associated with the pairs of impacts:

� concordance index : it tries to describe the satisfaction associated to the choice
of an impact; its values is large when the impact prevails on the other ones for
many weighty attributes, while the other impacts prevail on it for few light
attributes:

Cf =
∑
g∈F

(cfg − cgf ) f ∈ F

� discordance index : it decreases when the regret for a victory of the impact is
small, while the regret for the defeat is large:

Df =
∑
g∈F

(dfg − dgf ) f ∈ F

The utopia point, that is the impact that dominates (according to Pareto) all other
impacts, and that is in general unfeasible, would have the maximum theoretical
value of concordance: C∗ = n − 1. The distopia point, that is the impact that is
dominated by all other impacts, would on the contrary have the minimum theoret-
ical value: C† = 1− n.

It has been proposed to sort the impacts, and therefore the alternatives, by
decreasing concordance indices Cf , or by decreasing discordance indices Df . As
well, it has been proposed to build a biobjective programming problem with the
two indices as objectives. The strength of the two indices resides in the fact that
the former refers to the weights, while the latter refers to the attribute values.
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Example 65 In Example 62, the aggregate indices values are:

C =

 1 + 0.7 + 0.6− 1− 0.3− 0.6
0.3 + 1 + 0.6− 0.7− 1− 0.4
0.6 + 0.4 + 1− 0.6− 0.6− 1

 =

 0.4
−0.2
−0.2


and

D =

 0 + 1 + 0.5− 0− 0.5− 1
0.5 + 0 + 1− 1− 0− 0.8
1 + 0.8 + 0− 0.5− 1− 0

 =

 0
−0.3

0.3


Therefore, the ranking based on the aggregated concordance index (by decreasing

values) puts a1 before a2 and a3 in a tie. The ranking based on the aggregated
discordance index (by increasing values) puts a2 before a1 and a1 before a3.
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7.4 Exercises* � �

Exercise 1

Consider the following decision problem with 5 alternatives and 3 criteria, charac-
terized by the following impacts (benefits) and weights:

Attributes a1 a2 a3 a4 a5 weights
f1 30 0 60 90 120 w1 0.1
f2 5 6 4 2 7 w2 0.6
f3 18 26 17 20 16 w2 0.3

Normalise the matrix for each criterium between the minimum ad maximum
value, and compute the concordance and discordance matrices.

Build the outranking graph based on the three following conditions:

1. concordance with αc = 0.75, that is w+
ff ′ + w=

ff ′ ≥ 0.75;

2. discordance with αd = 0.25, that is
maxl∈P :fl<f ′l

|fl − f ′l |
maxl∈P |fl − f ′l |

≤ 0.75

with arbitrarily large comparability thresholds (εl = +∞ for all l ∈ P ).

Determine the kernel of the outranking graph.

Sort the alternatives based on the concordance index and on the discordance
index.

Solution

The normalised evaluation matrix is:

Attributes a1 a2 a3 a4 a5

f̃1 0.25 0.00 0.50 0.75 1.00

f̃2 0.6 0.8 0.4 0.0 1.0

f̃3 0.2 1.0 0.1 0.4 0.0

The outranking graph associated to the comparability thresholds is a complete
graph of 5 nodes that correspond to the alternatives.

The concordance matrix is:

C =


1 0.1 0.9 0.6 0.3

0.9 1 0.9 0.9 0.3
0.1 0.1 1 0.6 0.3
0.4 0.1 0.4 1 0.3
0.7 0.7 0.7 0.7 1


The corresponding outranking graph includes 5 nodes corresponding to the altern-
atives, and the following arcs (cij ≥ αc = 0.75): (a1, a3), (a2, a1), (a2, a3), (a2, a4),
plus all self-loops (ai, ai) for i = 1, . . . , 5.

*The solutions of these exercises have not yet been revised: error reports are welcome.
�I owe several of these exercises to exam texts of professor Alberto Colorni.
�Welcome in the roaring Nineties. Even though I was a student in those years, I am astonished

at the idea that exam exercises could take so many calculations.



234 7 Weak rationality methods

The discordance matrix is:

D =


0 1 1 0.8333 1

0.3125 0 0.5555 0.9375 1
0.8 1 0 0.75 1
1 1 1 0 1

0.2666 1 0.1666 0.4 0


The corresponding outranking graph includes 5 nodes and the following arcs (dij ≤
1−αd = 0.75): (a2, a1), (a2, a3), (a5, a1), (a5, a3), (a5, a4), plus all self-loops (ai, ai)
for i = 1, . . . , 5.

The overall outranking graph includes 5 nodes and the arcs (a2, a1) and (a2, a3),
plus all self-loops (ai, ai) for i = 1, . . . , 5.

Its kernel is therefore the subset K = {a2, a4, a5).

The concordance indices of the alternatives are:

Cf =
∑
f ′∈F

cff ′ −
∑
f ′∈F

cf ′f = [−0.2 2.0 − 1.8 − 1.6 1.6]

which implies the ordering a2 ≺ a5 ≺ a1 ≺ a4 ≺ a3.

The discordance indices of the alternatives are:

Df =
∑
f ′∈F

dff ′ −
∑
f ′∈F

df ′f = [1.4542 − 1.1945 0.8279 1.0792 − 2.1668]

which implies the ordering a5 ≺ a2 ≺ a3 ≺ a4 ≺ a1.

Exercise 2

A community centre is looking for a new location: there are four alternatives (A, B,
C and D) besides alternative 0 (staying in the present location). It has been decided
that the choice among the five alternative should be definitive and that it shall be
taken based on three factors: costs, accessibility and prestige of the location. The
following table provides the utilities associated to each alternative and factor, on a
scale from 0 to 100. It provides also a weight vector for the three factors.

Indicators A B C D 0 weights
Costs 90 90 90 1 100 w1 1/3

Accessibility 12 13 10 100 37 w2 1/3
Prestige 30 1 5 100 10 w3 1/3

Represent the problem with the AHP, expressing the pairwise comparison matrices
between the alternatives with Saaty’s scale (i. .e., when assigning the values, always
choose the closest available one in Saaty’s scale).

State whether any of the matrices is consistent, indicating the associated order-
ing vector.

Compute the concordance and the discordance matrices according to the ELECTRE
methods.

Solution

Solution not available.
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Exercise 3

Consider the following hierarchy in a multiple criteria decision problem:

� the decision-maker wants to optimise two main criteria f1 and f2, for which
the following pairwise comparison matrix built with Saaty’s scale is known:

f1 f2

f1 1 4
f2 1/4 1

� criterium f1 combines two subcriteria s11 and s12 with the following pairwise
comparison matrix:

s11 s12

s11 1 1/9
s12 9 1

� criterium f2 combines two subcriteria s21 and s22 with the following pairwise
comparison matrix:

s21 s22

s21 1 3
s22 1/3 1

� there are three alternatives a1, a2 e a3;

� the pairwise comparison matrix between the alternatives according to subcri-
terium s11 are:

s11 a1 a2 a3

a1 1 3 6
a2 1/3 1 2
a3 1/6 1/2 1

� the pairwise comparison matrix between the alternatives according to subcri-
terium s12 are:

s12 a1 a2 a3

a1 1 1/4 1/4
a2 4 1 1
a3 4 1 1

� the pairwise comparison matrix between the alternatives according to subcri-
terium s21 are:

s21 a1 a2 a3

a1 1 1/4 2
a2 4 1 8
a3 1/2 1/8 1

� the pairwise comparison matrix between the alternatives according to subcri-
terium s22 are:
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s22 a1 a2 a3

a1 1 7 2
a2 1/7 1 1/3
a3 1/2 3 1

State whether all the matrices are consistent, motivating the answer.

If there are inconsistent matrices, turn them into consistent ones, modifying only
the pair of values λ13 and λ31.

Once the matrices are consistent, compute the corresponding weight vectors.

Reapply the hierarchy in order to obtain the final ordering of the alternatives,
indicating the single passages.

Insert a new alternative so as to provoke a rank reversal.

Solution

All matrices are consistent, except for the pairwise comparison matrix with respect
to subcriterium s22.

That matrix can be made consistent by replacing it with:

s11 a1 a2 a3

a1 1 7 7/3
a2 1/7 1 1/3
a3 3/7 3 1

The weight vectors are:

� for criteria f1 and g2: [ 0.8 0.2 ]
T

;

� for subcriteria s11 and s12: [ 0.1 0.9 ]
T

;

� for subcriteria s21 and s22: [ 0.75 0.25 ]
T

;

� for the alternatives with respect to subcriterium s11: [ 0.66 0.22 0.11 ]
T

;

� for the alternatives with respect to subcriterium s12: [ 0.11 0.44 0.44 ]
T

;

� for the alternatives with respect to subcriterium s21: [ 0.18 0.72 0.09 ]
T

;

� for the alternatives with respect to subcriterium s22: [ 0.63 0.09 0.27 ]
T

.

This provides the following pseudoutilities.

� ua1 = 0.053 + 0.079 + 0.027 + 0.031 = 0.190;

� ua2
= 0.018 + 0.317 + 0.108 + 0.005 = 0.448;

� ua3
= 0.009 + 0.317 + 0.013 + 0.014 = 0.362.

that imply the ordering: a2 ≺ a3 ≺ a1.

In order to provoke a rank reversal, it is necessary to introduce an alternative
that behaves “nearly” as the winning alternative a2 in the four pairwise comparison
matrices between the alternatives 10

10My guess is that in this way the pseudoutilities of a2 are approximately halved, thus favouring
a3, but I have not checked yet.
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Exercise 4

Consider the following decision problem with three alternatives and four attributes
(benefits), associated with the weights wi (i = 1, . . . , 4):

Attributes A B C weights
u1 0 100 80 w1 0.25
u2 100 83 0 w2 0.30
u3 70 20 100 w3 0.40
u4 40 100 20 w3 0.05

State whether there are outranking relations, with concordance threshold αc =
0.70 and discordance threshold α = 0.60.

Solution

The concordance matrix of the problem is:

C =

 1 0.7 0.35
0.3 1 0.6
0.65 0.4 1


The discordance matrix is:

D =

 0 1 0.8
0.5 0 0.9638
1 1 0


There is no outranking, because the discordance values are all > 1−αd. There-

fore, the outranking graph only includes the self-loops.

If considered alone, the concordance matrix would imply the outranking relation
A ≺Sc B.

Exercise 5

Determine the kernel according to the ELECTRE methods for a problem which
has seven alternatives ai (i = 1, . . . , 7) and an outranking graph with arcs: (a1, a2),
(a1, a4), (a2, a4), (a2, a7), (a4, a3), (a4, a6), (a3, a7).

Solution

The kernel is a set of alternatives that do not outrank each other and such that
every other alternative is outranked by at least one kernel alternative.

Based on this definition, the procedure:

1. includes a1 and a5 in the kernel;

2. removes a2 and a4 from the kernel;

3. includes a3 and a6 in the kernel;

4. removes a7 from the kernel

so that in the end K = {a1, a3, a5, a6}.
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Chapter 8

Models of uncertainty

The Programming in conditions of uncertainty deals with decision problems in which
the choice is among alternatives whose impact depends not only on the choice of
the decision-maker, but also on external factors that cannot be exactly predicted.
These problems are characterised by having:

� a single decision-maker;

� a single objective;

� an uncertain environment: the impact of the decision depends also on variables
which are not under the control of the decision-maker and about whose value
only partial information is available.

Such problems can be formulated as:

min
x∈X

f (x, ω)

ω ∈ Ω

where

� X is the set of the alternatives or solutions x;

� Ω is the set of the scenarios ω (in statistics, sample space);

� f (x, ω) is the impact of solution x and of scenario ω, and is a real number;

� lower impacts are preferable to higher impacts (or vice versa).

It is important to observe that the decision-maker can choose the alternative
x, but not the scenario ω, and that the choice of x precedes the unravelling of
the scenario ω. If x were chosen after ω is known, the problem would reduce to a
Mathematical Programming problem parameterised in ω, that is to solving

min
x∈X

f (x, ω)

for each single value of ω ∈ Ω. The solution would then be a strategy x∗ (ω).

Some typical examples of decision problems in conditions of uncertainty are:

� finance: selection of a stock portfolio (uncertainty on the future value of the
stocks);
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� marketing: development of new products and advertising campaigns (uncer-
tainty on the response of the customers);

� research and development: opportunity of performing researches (uncertainty
on the amount of costs and revenues);

� contract competitions: definition of the price of an offer (uncertainty on the
costs and on the entity of the offers of the competitors);

� oil drillings: choice of where and when to drill (uncertainty on the size of the
oilfield).

The problems in conditions of uncertainty include two main classes, though other
ones have been proposed:

1. decisions in conditions of ignorance: the only information on scenario ω is
that it falls within Ω;

2. decisions in conditions of risk : the probability πω of each scenario ω ∈ Ω is
known (if Ω is a discrete set) or the probability density π (ω) is known (if Ω is
a continuous set).

In all these classes, it is possible to define relations of dominance that allow to
reduce the set of interesting solutions. In general, these relations will not lead to a
single choice, as they typically are partial orders, that is reflexive and transitive for
the usual basic rationality considerations, but incomplete).

8.1 Dominance relations

Definition 33 We say that alternative x strongly dominates alternative x′ when
its impact is at least as good in all scenarios ω ∈ Ω

x � x′ ⇔ f (x, ω) ≤ f (x′, ω) for all ω ∈ Ω

There is a clear formal analogy here with the concept of Paretian preference (see
Definition 21 in Section 6): the scenarios are treated as distinct attributes, and one
would like to achieve an optimal performance with respect to each of them. The
fundamental difference is that the scenarios can be infinitely many, possibly even
a continuous infinity. The conclusion, however, is the same: the alternative that
are strictly dominated (that is dominated, but not dominating) can be rejected a
priori ; rejecting them is the only rational action that can be performed if no further
information is added to the problem.

Notice that the term “strong” here is not meant to exclude the opposite relation
(as in “strong” preference relations): unfortunately, the word is used to distinguish
this kind of dominance from the probabilistic dominance discussed in the following.

Definition 34 In the finite case, the impact f (x, ω) can be represented with an
evaluation matrix U , having the alternatives x on the rows and the scenarios ω on
the columns.

This matrix has the same name as the matrix that represents the multidimen-
sional impacts as a function of the alternatives x in multiple attribute problems
(see Section 3.3.1), with the scenarios taking the place of the attributes. The two
matrices are not equivalent, but there are some formal similarities in the way to deal
with them. The first one is that, in order to find the nondominated alternatives,
one must perform pairwise comparisons on the rows of the matrix, exactly as in the
Paretian case (see Section 6.3.1).
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Example 66 Let us consider an investment on a given time horizon. There are
four alternatives:

1. stock fund

2. bond fund

3. treasuries

4. “toxic” bonds

and a single objective, the ROI ( return-on-investment), that must be maximised.
Therefore, the best values are the larger ones, contrary to what assumed in Defin-
ition 33: either one adapts the definition of strong dominance of one reverts the
sign of the objective function. The ROI of each alternative, however, is unknown
a priori, as it depends also on the behaviour of economy in the considered period,
which we will model with three possible scenarios:

1. recession

2. moderate growth

3. strong growth

ROI Recession Moderate growth Strong growth
Stock fund -25% 0% 35%
Bond fund -10% 5% 15%
Treasuries 8% 8% 8%
“Toxic” bonds -5% 6% 8%

Table 8.1: Evaluation matrix for an investment problem with four alternatives and
three scenarios (the impact is the ROI)

Table 8.1 reports the evaluation matrix of the investment problem. The “toxic”
bonds are dominated by the treasuries. In fact, the latter have a strictly better
ROI in case of recession and moderate growth (8% versus −5% and 8% versus 6%)
and identical in case of strong growth (8%). Therefore, the “toxic” bonds can be
rationally excluded from the choice, whereas all other alternatives are rationally
defensible.

8.1.1 Probabilistic dominance*

An alternative definition of dominance, that is weaker (i. e., it is always respected
when the strong dominance holds) is based on the probability function, and therefore
can be used only in conditions of risk.

Definition 35 We say that alternative x probabilistically dominates alternative x′

when for any threshold f̄ the probability that x have impacts not worse than the
threshold is not inferior to that of x′.

x � x′ ⇔ P
[
f (x, ω) ≤ f̄

]
≥ P

[
f (x′, ω) ≤ f̄

]
per ogni f̄ ∈ R

*This section provides advanced concepts, that are not part of the course’s syllabus.
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This definition is not trivial to apply, given that it requires to verify a property
on two distributions of probability. It is often applied, however, in the comparison
of algorithms or models, where it is very rare that strong dominance hold.

Definition 36 Supponse that three bets on the throw of a die are available, indic-
ated with X = {a1, a2, a3}. The corresponding gains are reported in Table 8.2, of
course with respect to the six possible outcomes of the throw. Notice that, since
they are gains, we have to modify suitably the definitions of strong and probabilistic
dominance.

ω1 ω2 ω3 ω4 ω5 ω6

a1 1 1 2 2 2 2
a2 1 1 1 2 2 2
a3 3 3 3 1 1 1

Table 8.2: Choice among three bets on the throw of a die

Alternative a1 strongly dominates alternative a2, because it yields at least as good
a gain for any outcome of the throw. Alternative a3 does not dominate strongly al-
ternative a2, because the latter is better in the scenarios from ω4 to ω6. It dominates
the latter, however, probabilistically, because

� P [B ≥ 1] = P [C ≥ 1] = 1

� P [B ≥ 2] = P [C ≥ 2] = 3/6

� P [B ≥ 3] = 0 < P [C ≥ 3] = 3/6

By contrast, a1 and a3 have no probabilistic dominance since

� P [A ≥ 2] = 4/6 > P [C ≥ 2] = 3/6

� P [C ≥ 3] = 3/6 > P [A =≥ 3] = 0

8.2 Models of uncertainty

There are two main ways to describe uncertain situations, that reflect into two main
forms of the scenario set Ω:

1. scenario description: Ω is a finite set, in which the single scenarios are expli-
citly listed;

2. interval description: Ω is the Cartesian product of a finite number of intervals,
that is each exogeneous variable ωk varies in a given interval, independently
from the values of the other variables.

These are not the only possible cases: Ω could assume much more sophisticated
forms. However, they are two very frequent special cases, which it is interesting to
discuss in more detail.

Example 67 Consider a shortest path problem between two nodes of a directed
graph. Let us assume that the uncertainty be modelled by two exogeneous variables
ω1 and ω2, that provide the travel time on two arcs of the graph, which represent
two streets in the network on which the traffic congestion is particularly uncertain.
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A scenario description could consist in listing the possible combinations of the
values of the two variables. For example, Ω could consist of three scenarios, rep-
resented by the pairs ω(1) = (2, 1), ω(2) = (5, 1) and ω(3) = (2, 6), that are reported
as red squares in Figure 8.1. The three scenarios correspond to situations in which,
respectively, there is low congestion in both streets, high congestion in the former
and low in the latter, or low congestion in the former and high in the latter. This
model excludes the possibility of having high congestion in both streets.

Figure 8.1: Scenario description of uncertainty in a shortest path problem

An interval description, on the contrary, could define a range of possible values
for each of the two variables ω1 and ω2. Figure 8.2 shows as a dashed region the
scenario set Ω obtained as the Cartesian product of the intervals [2, 5] and [1, 6].
This is a continuous set.

Figure 8.2: Interval description of uncertainty in a shortest path problem

The main difference between the two description is that often in the interval
description the worst scenario is shared by all solutions (not always: it depends on
the problem), whereas in the scenario description in general every solution has its
own worst scenario. We shall see in Section 9.9 that this can make it easier to solve
the interval models, with strong implications on the computational complexity.
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8.3 Exercises*

Exercise 1

Solution

*The solutions of these exercises have not yet been revised: error reports are welcome.



Chapter 9

Decisions in conditions of
ignorance

Full ignorance is the most problematic situation for a decision-maker, since the
information on the exogenous part of the problem reduces to knowing that tha
scenario falls within a given set. In order to optimise the objective, one should
choose the best pair (x, ω), that is fix the best alternative and impose the best
scenario. In the example of the financial investment, in order to maximise the
return, it is necessary to invest in stocks and to guarantee that the economy grow
strongly. However, this is out of the control of the decision-maker, who can fix only
the x variables, and not the ω variables. This problem has no solution.

The approaches proposed in the literature consist in redefining the problem,
replacing f (x, ω) with an auxiliary function φΩ (x), that depends on x and on the
overall set Ω, but not on the (unknown) value of ω, and then optimising the latter.

Definition 37 We denote as choice criterium every definition of φΩ (x) aimed to
replace the impact f (x, ω).

We now survey several choice criteria proposed in the literature. We shall see
that each of these criteria has some advantage, but none satisfies all the properties
that would be desirable for a rationally founded decision. The choice among them,
therefore, only depends on the attitude of the decision-maker. We will apply each
criterium to an example with four alternatives (X = {x(1), x(2), x(3), x(4)}) and
four scenarios (Ω = {ω(1), ω(2), ω(3), ω(4)}), whose evaluation matrix is reported in
Table 9.1 (the values reported are costs).

f (x, ω) ω(1) ω(2) ω(3) ω(4)

x(1) 2 2 4 3
x(2) 3 3 3 3
x(3) 4 0 4 6
x(4) 3 1 4 4

Table 9.1: Sample evaluation matrix: costs associated to the four alternatives and
the four possible scenarios
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9.1 Worst-case criterium

This criterium, also known as pessimism criterium or Wald criterium1, consists in
being pessimist and assuming that for each chosen solution x the future prepare the
scenario implying the largest cost ω†(x) = arg max

ω∈Ω
f (x, ω). This assumption allows

to compute the impact as a function only of the decision variable x (and of the overall
set Ω), that is to reduce the problem to the minimisation of φworst(x) = f

(
x, ω†(x)

)
min
x∈X

φworst (x) = min
x∈X

max
ω∈Ω

f (x, ω)

Table 9.2 reports for each alternative the value of the criterium and the scenario
that produces it.

ω(1) ω(2) ω(3) ω(4) φworst (x) ω†(x)

x(1) 2 2 4 3 4 ω(3)

x(2) 3 3 3 3 3 ω(1), ω(2) , ω(3) , ω(4)

x(3) 4 0 4 6 6 ω(4)

x(4) 3 1 4 4 4 ω(3), ω(4)

Table 9.2: Application of the worst-case criterium to a sample problem with four
alternatives and four scenarios (cost minimisation)

Now, it is enough to select the best alternative, that is the cheapest one. The
worst-case criterium suggests to order the alternatives as follows: x(2) ≺ x(1) ∼
x(4) ≺ x(3).

9.2 Best-case criterium

The best-case criterium, also known as optimism criterium, is complementary to
that of the worst-case: it consists in assuming that, for each solution x chosen
by the decision-maker, the future answer by proposing the best scenario ω∗(x) =
arg min

ω∈Ω
f (x, ω). This assumption allows to compute the impact as a function only

of the decision variables x (and of the overall set Ω), reducing the problem to the
minimisation of function φbest(x) = f (x, ω∗(x))

min
x∈X

φbest (x) = min
x∈X

min
ω∈Ω

f(x, ω)

Table 9.3 reports for each alternative the value of the criterium and the scenario
that produces it. Then, one selects the best alternative, that is the one of minimum
cost. The optimism criterium suggests to order the alternatives as follows: x(3) ≺
x(4) ≺ x(1) ≺ x(2).

9.3 Hurwicz criterium

The first two criteria look rather unbalanced in the evaluation of the scenarios. In
order to guarantee a stronger balance, Hurwicz2 proposed to build a choice criterium

1Abraham Wald (1902-1950), Hungarian Jew mathematician, fled to the United States after
the annexion of Austria to Nazi Germany.

2Leonid Hurwicz (1917-2008), Polish Jew economist, who was stuck abroad by the Nazi invasion
of Poland, and later took shelter in the United States.
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ω(1) ω(2) ω(3) ω(4) φbest (x) ω∗(x)

x(1) 2 2 4 3 2 ω(1), ω(2)

x(2) 3 3 3 3 3 ω(1), ω(2) , ω(3) , ω(4)

x(3) 4 0 4 6 0 ω(2)

x(4) 3 1 4 4 1 ω(2)

Table 9.3: Application of the best-case criterium to a sample problem with four
alternatives and four scenarios (cost minimisation)

making a convex combination of the two:

min
x∈X

φHurwicz (x) = min
x∈X

[
αmax
ω∈Ω

f(x, ω) + (1− α) min
ω∈Ω

f(x, ω)

]
where the pessimism coefficient3 α ∈ [0; 1] weighs the worst impact, while the
complementary value 1− α weighs the best one.

Such a coefficient allows to tune the weight of the two extreme scenarios in the
choice: setting α = 1 corresponds to the pessimism criterium, whereas setting α = 0
corresponds to the optimism criterium.

Table 9.4 reports for each alternative the value of the criterium under the as-
sumption that the pessimism coefficient be α = 0.6, that is, that the decision-maker
be slightly pessimistic. The resulting order is x(4) ≺ x(2) ≺ x(1) ≺ x(3).

ω(1) ω(2) ω(3) ω(4) φHurwicz (x) (α = 0.6)

x(1) 2 2 4 3 0.6 · 4 + 0.4 · 2 = 3.2
x(2) 3 3 3 3 0.6 · 3 + 0.4 · 3 = 3
x(3) 4 0 4 6 0.6 · 6 + 0.4 · 0 = 3.6
x(4) 3 1 4 4 0.6 · 4 + 0.4 · 1 = 2.8

Table 9.4: Application of Hurwicz criterium with α = 0.6 to a sample problem with
four alternatives and four scenarios (cost minimisation)

9.3.1 Tuning the pessimism coefficient

Since the solution depends on the value of the pessimism coefficient α, it is useful
to discuss how it is possible to tune this parameter. A possible approach, similar
to that used to determine the weight coefficients in the utility function for multi-
attribute problems, is to find (possibly, to invent) a pair of reciprocally indifferent
alternatives, to impose the equality of the corresponding values of the criterium
φHurwicz (x) and to solve the resulting equation in α. The simplest way to do that
is to choose an alternative x, to ask the decision-maker to indicate its certainty
equivalent, that is an alternative y, that in general is not a true alternative of the
problem, with a uniform impact in all scenarios and that is overall indifferent to x.

In the example we are studying, let us choose the alternative x(3): its cost is 6 in
the worst case and 0 in the best one. If the decision-maker states that an alternative
y with a uniform cost equal to 4 would be indifferent to x(3), we can conclude that

3Of course, some authors define an optimism coefficient, that multiplies the best value of the
impact, and use the complementary value as a multiplier of the worst impact. As well, if the
impact is a benefit, instead of a cost, the maximum and minimum operations must be suitably
modified.
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φHurwicz

(
x(3)

)
= φHurwicz (y), that is

αmax
ω∈Ω

f(x(3), ω) + (1− α) min
ω∈Ω

f(x(3), ω) = αmax
ω∈Ω

f(y, ω) + (1− α) min
ω∈Ω

f(y, ω)⇒

⇒ 6α+ 0 (1− α) = 4α+ 4 (1− α)⇒ α =
2

3

It is not at all obvious that the decision-maker is able to indicate a certainty
equivalent, given that we suppose not to have any information on the scenarios,
besides the fact that they exist.

9.3.2 Sensitivity with respect to the pessimism coefficient

Given the uncertainty of the pessimism coefficient, it is in general adviceable to
perform a sensitivity analysis showing whether the chosen solution would remain
the same under small variations of its value. The analysis requires to build for each
alternative x ∈ X the function φHurwicz (x), that depends on parameter α ∈ [0; 1]:

� φHurwicz(x(1)) = 4α+ 2(1− α) = 4α+ 2− 2α = 2α+ 2

� φHurwicz(x(2)) = 3α+ 3(1− α) = 3α+ 3− 3α = 3

� φHurwicz(x(3)) = 6α+ 0(1− α) = 6α

� φHurwicz(x(4)) = 4α+ 1(1− α) = 4α+ 1− 1α = 3α+ 1

Figure 9.1: Sensitivity analysis with respect to the pessimism coefficient for a sample
problem

Figure 9.1 reports the graph of the four functions. For every α ∈ [0; 1], one
must choose the solution, that is the function, that minimises the cost. We must
therefore determine the values of α that identify point A, intersection of φ(x(3)) and
φ(x(4)):

φ(x(3)) = φ(x(4))⇒ 6α = 3α+ 1⇒ α =
1

3
⇒ A = (

1

3
, 2)

and point B, intersection of φ(x(2)) and φ(x(4)):

φ(x(2)) = φ(x(4))⇒ 3 = 3α+ 1⇒ α =
2

3
⇒ B = (

2

3
, 3)
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Consequently, if 0 ≤ α ≤ 1
3 the best alternative is x(3) (as with the optimism cri-

terium); if 1
3 ≤ α ≤

2
3 the best alternative is x(4); if 2

3 ≤ α ≤ 1 the best alternative

is x(2) (as with the pessimism criterium). The extreme values of α obviously con-
firm the results of the optimism and pessimism criteria. For intermediate values,
however, Hurwicz criterium selects an alternative that the two previous criteria do
not take into account.

The graph in Figure 9.1 also shows that alternative x(1) is always worse than
alternative x(4), because the function associated to the former is above that asso-
ciated to the latter. This does not mean that x(1) is dominated by x(4) (in fact,
is is better in scenario ω(3)): the situation is similar to that of the Paretian, but
unsupported, solutions, which were never optimal for any linear combination of the
attributes (see Section 6.6). This is an intrinsic limitation of Hurwicz criterium: it
is unable to generat all the nondominated solution by tuning its only parameter.
The limitation is even worse than in the Paretian case, because the criterium only
considers the two extreme scenarios, whereas the weighted-sum method combines
all the attributes of the problem. On the other hand, the aim of Hurwicz criterium
is not to generate the solutions, but only to order them.

9.4 Equiprobability criterium

The equiprobability criterium, also known as Laplace criterium, modifies Hurwicz
criterium considering all the scenarios, instead of only the extreme ones. Without
any information on the likelyhood of the scenarios, it combines the impacts applying
the same weight to all of them:

min
x∈X

φLaplace (x) = min
x∈X

∑
ω∈Ω

f(x, ω)

|Ω|

This expression presumes that the scenario set is finite4. The Laplace criterium
can be interpreted as the minimisation of the expected cost under the assumption
that all scenarios have the same probability to occur (hence the first name of the
criterium). We remind, however, that we are assuming to have no information on
the probability of the scenarios.

Table 9.5 reports for each alternative the value of the criterium, that is the
arithmetic mean of the impacts in the various scenarios. The resulting order is
x(1) ≺ x(2) ∼ x(4) ≺ x(3).

ω(1) ω(2) ω(3) ω(4) φLaplace (x)

x(1) 2 2 4 3 (2+2+4+3)/4 = 2.75
x(2) 3 3 3 3 (3+3+3+3)/4 = 3.00
x(3) 4 0 4 6 (4+0+4+6)/4 = 3.50
x(4) 3 1 4 4 (3+1+4+4)/4 = 3.00

Table 9.5: Application of Laplace criterium to a sample problem with four altern-
atives and four scenarios (cost minimisation)

4A generalisation to infinite sample spaces is possible, but exceeds the limits of this course.
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9.5 Regret criterium

This criterium, also known as Savage criterium5, consists in evaluating the regret
that the decision-maker would feel if the decision taken were wrong. The criterium
works in subsequent phases:

1. determine the best alternative for each scenario x∗ (ω)

x∗ (ω) = arg min
x∈X

f (x, ω)

2. evaluate the regret ρ (x, ω) associated to each alternative x and each scenario
ω, defined as the loss incurred choosing x instead of the best alternative in
scenario ω:

ρ (x, ω) = f (x, ω)− f (x∗ (ω) , ω) = f (x, ω)−min
x∈X

f (x, ω)

3. assign to each solution the value of the maximum regret over all scenarios:

φSavage (x) = max
ω∈Ω

ρ (x, ω)

4. choose the solution with the smallest worst regret:

min
x∈X

φSavage (x) = min
x∈X

max
ω∈Ω

[
f (x, ω)−min

x∈X
f (x, ω)

]
The main idea is to adopt a worst-case perspective, as in Wald criterium, but

defining the worst case not as the one in which the cost is maximum, but as the one
which maximises the difference between the cost incurred and the cost that could
have been paid with a better choice. In other words, this criterium is relative and
opportunistic, instead of absolute and conservative: it does not aim to lose as little
as possible, but to keep as close as possible to the best alternative.

Table 9.6 reports the best alternative for each scenario and its cost.

f(x, ω) ω(1) ω(2) ω(3) ω(4)

x(1) 2 2 4 3
x(2) 3 3 3 3
x(3) 4 0 4 6
x(4) 3 1 4 4

x∗ (ω) x(1) x(3) x(2) x(1),x(2)

f(x∗ (ω) , ω) 2 0 3 3

Table 9.6: Application of Savage criterium to a sample problem with four alternat-
ives and four scenarios (cost minimisation): determination of the best alternative
for each scenario

From this table, one can derive Table 9.7, that reports the regret associated
to each alternative and scenario, that is the difference between the impact of each
alernative and the best alternative for the same scenario. The last column of the
table reports the worst-case regret for each alternative. Now we try to minimise
that regret: the resulting order is x(4) ≺ x(1) ≺ x(2) ∼ x(3).

5Leonard Jimmie Savage, born Leonard Ogashevitz (1917-1971), American mathematician and
statistician; his parents were Russian Jews fled from tsarist Russia.
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ρ(x, ω) ω(1) ω(2) ω(3) ω(4) φSavage (x)

x(1) 0 2 1 0 2 (ω(2))
x(2) 1 3 0 0 3 (ω(2))
x(3) 2 0 1 3 3 (ω(4))
x(4) 1 1 1 1 1 (ω(1), ω(2), ω(3), ω(4))

Table 9.7: Application of Savage criterium to a sample problem with four altern-
atives and four scenarios (cost minimisation): computation of the regret for each
alternative and scenario and determination of the maximum regret for each altern-
ative

9.6 Surplus criterium

This criterium is complementary to the regret criterium: it considers in each scen-
ario the surplus that the decision-maker obtains with respect to the worst altern-
ative, and tries to maximise the surplus in the worst possible case. One proceeds
therefore in a similar, but complementary, way:

1. determine the worst alternative for each scenario x† (ω)

x† (ω) = arg max
x∈X

f (x, ω)

2. evaluate the surplus σ (x, ω) associated to each alternative x and scenario
ω, as the gain obtained choosing x with respect to the worst alternative in
scenario ω:

σ (x, ω) = f
(
x† (ω) , ω

)
− f (x, ω) = max

x∈X
f (x, ω)− f (x, ω)

3. assign to each solution the minimum surplus (worst case):

φsurplus (x) = min
ω∈Ω

σ (x, ω)

4. choose the solution with the largest minimum surplus:

max
x∈X

φsurplus (x) = max
x∈X

min
ω∈Ω

[
max
x∈X

f (x, ω)− f (x, ω)

]
With respect to the other criteria considered above, and in particular the regret

criterium, the main difference is that function σ does not measure a loss with respect
to the best choice, but a “gain” with respect to the worst one (in the example, this
gain is actually a smaller loss). Therefore, the worst scenario is that in which σ is
minimum, whereas the worst scenario for the regret criterium was the one which
maximised ρ. As the regret criterium, the surplus criterium does not use an absolute
scale of cost, but a scale relative to a reference situation: in this case, one tries to
keep as far as possible from the worst alternative.

Table 9.8 shows the worst alternative for each scenario and its cost.

Then, one computes how much the other alternatives save with respect to the
worst alternative. Table 9.9 reports these values for each alternative and scenario.
The last column of the table reports the surplus in the worst case for each alternat-
ive. All values are zero, which corresponds to the fact that each solution admits a
scenario in which it is the worst one. Now, we should maximise this surplus, which
implies that the four solutions are indifferent: x(1) ∼ x(2) ∼ x(3) ∼ x(4).
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f(x, ω) ω(1) ω(2) ω(3) ω(4)

x† (ω) x(3) x(2) x(1), x(3), x(4) x(3)

f(x† (ω) , ω) 4 3 4 6

Table 9.8: Application of the surplus criterium to a sample problem with four
alternatives and four scenarios (cost minimisation): determination of the worst
alternative for each scenario

σ(x, ω) ω(1) ω(2) ω(3) ω(4) φsurplus (x)

x(1) 2 1 0 3 0 (ω(3))
x(2) 1 0 1 3 0 (ω(2))
x(3) 0 3 0 0 0 (ω(1), ω(3), ω(4))
x(4) 1 2 0 2 0 (ω(3))

Table 9.9: Application of the surplus criterium to a sample problem with four
alternatives and four scenarios (cost minimisation): computation of the surplus for
each alternative and scenario and determination of the maximum surplus for each
alternative

9.7 Examples

**** DA TRADURRE ****

Consideriamo nel seguito una serie di esempi di applicazione dei sei criteri prima
descritti, allo scopo di illustrare piccole varianti, come l’uso di valori parametrici per
definire una strategia di decisione al variare di un dato incerto oppure il trattamento
dell’incertezza nel caso continuo.

9.7.1 Installazione di un dispositivo

Una casa automobilistica deve decidere se installare su un nuovo modello un dis-
positivo di sicurezza del costo di 2500e oppure non installarlo. Se il dispositivo
non viene installato e si verifica un incidente, la casa automobilistica dovrà pro-
cedere all’installazione e ripagare le spese dell’incidente. Se installa il dispositivo,
invece, dovrà pagare solo il costo dell’installazione, perché non sarà considerata
responsabile di eventuali incidenti.

Il modello del problema prevede quindi due alternative:

� x(1): installare il dispositivo di sicurezza;

� x(2): non installarlo.

e due scenari:

� ω(1): non si verifica alcun incidente;

� ω(2): si verifica almeno un incidente.

A rigore, lo scenario ω(2) si dovrebbe decomporre in un’intera gamma di sottoscen-
ari, corrispondenti a incidenti di diversa gravità e con diversi costi. Per semplicità,
però, fonderemo tutti questi sottoscenari in uno solo, introducendo un parametro
CI che misura il costo dell’incidente.

La Tabella 9.10 riporta la matrice di valutazione del problema: se la casa auto-
mobilistica installa il dispositivo, paga in entrambi gli scenari solo il costo fisso di
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installazione di 2500e; se non lo installa, nello scenario migliore non paga nulla,
mentre nello scenario peggiore paga il dispositivo più il costo CI dell’incidente.

f (x, ω) ω(1) ω(2)

x(1) 2 500 2 500
x(2) 0 2 500 + CI

Table 9.10: Matrice di valutazione per un problema di scelta riguardo l’installazione
di un dispositivo di sicurezza (minimizzazione di costi)

Ipotizziamo di essere in condizioni di completa ignoranza, cioè di non saper
assegnare alcuna probabilità a ω(1) e ω(2).

Criterio del pessimismo La Tabella 9.11 riporta la valutazione del problema
con il criterio del caso pessimo. Poiché 2 500 +CI > 2 500, per minimizzare il costo
nel caso pessimo conviene adottare l’alternativa x(1), cioè installare il dispositivo di
sicurezza.

f (x, ω) ω(1) ω(2) φworst (x)

x(1) 2 500 2 500 2 500
x(2) 0 2 500 + CI 2 500 + CI

Table 9.11: Applicazione del criterio del caso pessimo al problema di installazione

Criterio dell’ottimismo La Tabella 9.12 riporta la valutazione del problema con
il criterio del caso ottimo. Questo consiglia di adottare l’alternativa x(2), cioè di
non installare il dispositivo di sicurezza. Infatti, se non capitano incidenti, il costo
da sostenere è nullo.

f (x, ω) ω(1) ω(2) φbest (x)

x(1) 2 500 2 500 2 500
x(2) 0 2 500 + CI 0

Table 9.12: Applicazione del criterio del caso ottimo al problema di installazione

Criterio di Hurwicz La Tabella 9.13 riporta la valutazione del problema con il
criterio di Hurwicz: poiché il decisore non ha specificato alcun valore per il coeffi-
ciente di pessimismo α, esso compare come parametro nel criterio.

f (x, ω) ω(1) ω(2) φHurwicz (x)

x(1) 2 500 2 500 2 500
x(2) 0 2 500 + CI (2500 + CI)(1− α)

Table 9.13: Applicazione del criterio di Hurwicz con α parametrico al problema di
installazione

Il costo dell’incidente CI è un secondo parametro. La natura dei due parametri è
molto diversa: α è in mano al decisore, mentre CI è una variabile esogena generata
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dall’ambiente. Tuttavia, si possono trattare entrambe come variabili rispetto a cui
condurre uno studio di sensitività.

La Figura 9.2 riporta il grafico delle due funzioni φHurwicz

(
x(1)

)
e φHurwicz

(
x(2)

)
rispetto ad α e CI : il piano orizzontale blu rappresenta l’alternativa x(1), la super-
ficie curva rossa l’alternativa x(2).

Figure 9.2: Studio di sensitività rispetto ad α e CI per il problema di installazione:
il piano orizzontale blu corrisponde all’installazione, la superficie curva rossa alla
non installazione

Poiché x(1) � x(2) quando φHurwicz

(
x(1)

)
≤ φHurwicz

(
x(2)

)
, dalla figura si ricava

che

x(1) � x(2) ⇔ 2500 < (1− α)(2500 + CI)⇔ CI >
α

1− α
2500

La Figura 9.3 mostra la proiezione sul piano αCI del grafico in Figura 9.2: la
zona colorata in blu contiene le coppie (α, CI) in cui conviene adottare l’alternativa
x(1), quella in rossof le coppie in cui conviene l’alternativa x(2); le due aree sono
divise dalla curva CI = 2 500α/ (1− α), che tende all’infinito per α → 0 e poi va
calando fino a zero.

Figure 9.3: Studio di sensitività del problema di installazione rispetto ad α e CI :
supporto delle due alternative nello spazio dei parametri

In termini qualitativi:

� se il decisore ha un’alta propensione al rischio (valori bassi di α), gli conviene
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adottare la strategia x(1), cioè non installare il dispositivo, anche per valori
alti (al limite, per qualsiasi valore) del costo di un eventuale incidente;

� se il decisore ha una bassa propensione al rischio (alti valori di α) gli conviene
adottare la strategia x(2), cioè installare il dispositivo anche per stime basse
del costo di un eventuale incidenti;

� il valore di soglia del costo CI che divide le due soluzioni cresce più che lin-
earmente al crescere della propensione al rischio.

Criterio di Laplace Si assume che la probabilità che accada un incidente sia
uguale a quella che non accada alcun incidente. La Tabella 9.14 riporta i cor-
rispondenti valori del criterio di Laplace. Se ne deduce che x(1) � x(2) quando
2 500 ≤ 1 250 + CI/2, cioè CI ≥ 2 500.

f (x, ω) ω(1) ω(2) φLaplace (x)

x(1) 2 500 2 500 2 500
x(2) 0 2 500 + CI 1 250+CI/2

Table 9.14: Applicazione del criterio di Laplace al problema di installazione

Criterio del rammarico Il costo minimo e la corrispondente alternativa ottima
per ciascuno dei due scenari sono riportati nell’ultima riga della Tabella 9.15.

f(x, ω) ω(1) ω(2)

x(1) 2 500 2 500
x(2) 0 2 500 + CI
x∗ (ω) x(2) x(1)

f (x∗ (ω) , ω) 0 2 500

Table 9.15: Applicazione del criterio del rammarico al problema di installazione:
determinazione delle soluzioni ottime per ogni scenario

La funzione di rammarico ρ (x, ω) assume i valori riportati nella Tabella 9.16;
l’ultima colonna riporta il rammarico nel caso pessimo per ogni soluzione.

ρ(x, ω) ω(1) ω(2) φregret (x)

x(1) 2 500 0 2 500
x(2) 0 CI CI

Table 9.16: Applicazione del criterio del rammarico al problema di installazione:
calcolo della funzione rammarico e determinazione del caso pessimo

Anche in questo caso la soluzione non è univoca ma dipende dal costo dell’incidente.
Poiché vogliamo minimizzare il rammarico nel caso peggiore, diremo che x(1) � x(2)

quando CI ≥ 2 500.

Criterio delle eccedenze L’alternative pessima e il relativo costo per ciascuno
dei due scenari sono riportati nell’ultima riga della Tabella 9.17.

La funzione di eccedenza σ (x, ω) assume i valori riportati nella Tabella 9.18;
l’ultima colonna riporta l’eccedenza nel caso pessimo per ogni soluzione. Si dovrebbe
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f(x, ω) ω(1) ω(2)

x(1) 2 500 2 500
x(2) 0 2 500 + CI
x† (ω) x(1) x(2)

f
(
x† (ω) , ω

)
2 500 + CI 2 500

Table 9.17: Applicazione del criterio dell’eccedenza al problema di installazione:
determinazione delle soluzioni pessime per ogni scenario

scegliere la soluzione che massimizza l’eccedenza nel caso pessimo, ma in questo caso
le due soluzioni sono equivalenti da questo punto di vista: x(1) ∼ x(2).

σ(x, ω) ω(1) ω(2) φsurplus (x)

x(1) 0 CI 0
x(2) 2500 0 0

Table 9.18: Applicazione del criterio dell’eccedenza al problema di installazione:
calcolo della funzione eccedenza e determinazione del caso pessimo

9.7.2 Un investimento finanziario

Applichiamo ciascuna delle logiche su elencate all’esempio di investimento intro-
dotto al principio del capitolo. In questo esempio gli impatti sono rendimenti, e
vanno quindi massimizzati.

Criterio del caso pessimo Questo criterio dà luogo alla Tabella 9.19, secondo
la quale si dovrebbe investire in titoli di stato.

Crescita Crescita
f (x, ω) Recessione moderata forte φworst (x) ωworst (x))
Azioni -25% 0% 35% -25% Recessione
Obbligazioni -10% 5% 15% -10% Recessione
Titoli di stato 8% 8% 8% 8% Recessione

Table 9.19: Applicazione del criterio di Wald a un problema di investimento
(massimizzazione di rendimenti)

Criterio del caso ottimo Questo criterio dà luogo alla Tabella 9.20, secondo la
quale si dovrebbe investire in fondi azionari.

Criterio di Hurwicz Il criterio di Hurwicz con α = 0.6, cioè con una visione
bilanciata, ma leggermente più pessimista che ottimista, dà luogo alla Tabella 9.21,
secondo la quale si dovrebbe investire in titoli di stato6.

6Poiché l’impatto è un rendimento, il parametro di pessimismo α = 0.6 va applicato ai valori
peggiori, cioè ai più bassi.
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Crescita Crescita
f (x, ω) Recessione moderata forte φworst (x) ωworst (x))
Azioni -25% 0% 35% 35 Crescita forte
Obbligazioni -10% 5% 15% 15 Crescita forte
Titoli di stato 8% 8% 8% 8 Crescita forte

Table 9.20: Applicazione del criterio dell’ottimismo a un problema di investimento
(massimizzazione di rendimenti)

Crescita Crescita
f (x, ω) Recessione moderata forte φHurwicz (x)
Azioni -25% 0% 35% −25% · 0.6 + 35% · 0.4 = −1%
Obbligazioni -10% 5% 15% −10% · 0.6 + 15% · 0.4 = 0%
Titoli di stato 8% 8% 8% +8% · 0.6 + 8% · 0.4 = 8%

Table 9.21: Applicazione del criterio di Hurwicz con α = 0.6 a un problema di
investimento (massimizzazione di rendimenti)

Studio di sensitività rispetto al coefficiente di pessimismo Tornando sul
criterio di Hurwicz, si può approfondire il discorso conducendo anche l’analisi di
sensitività. Definiamo per ogni investimento possibile il rendimento, funzione del
parametro α:

φA(α) = −25α+ 35(1− α) = 35− 60α
φO(α) = −10α+ 15(1− α) = 15− 25α
φT (α) = 8α+ 8(1− α) = 8

Figure 9.4: Studio di sensitività rispetto al coefficiente di pessimismo per il problema
di investimento (massimizzazione di rendimenti)

La Figura 9.4 mostra i grafici delle tre funzioni. Per ogni α ∈ [0; 1], bisogna
scegliere la funzione con il valore massimo perché stiamo massimizzando un rendi-
mento. Anche senza fare calcoli, si nota che le obbligazioni non sono mai con-
venienti, poiché la relativa retta è sempre superata da almeno una delle altre due.
Questo non significa che esse siano una soluzione dominata: il fenomeno è ana-
logo a quello delle soluzioni paretiane non supportate (la combinazione lineare non
è sufficiente a far emergere soluzioni dominate dalle combinazioni convesse delle
altre. Il fenomeno è poi ulteriormente aggravato dal fatto che il criterio di Hur-
wicz combina solo due degli scenari, mentre il metodo dei pesi combinava tutti gli
indicatori. Per individuare l’investimento migliore in funzione di α, bisogna tro-
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vare il punto di intersezione A fra la retta delle azioni e quella dei titoli di stato:
φA(α) = φT (α) ⇒ 35 − 60α = 8 ⇒ α = 0.45. Quindi, lo studio di sensitività con-
ferma i risultati ottenuti con i metodi del pessimismo e dell’ottimismo: se si è ot-
timisti (0 ≤ α ≤ 0.45), conviene investire in azioni; se si è pessimisti (0.45 ≤ α ≤ 1),
conviene investire in titoli di stato.

Criterio di Laplace Il criterio di Laplace dà luogo alla Tabella 9.22, che sug-
gerisce, ancora una volta, di investire in titoli di stato.

Crescita Crescita
f (x, ω) Recessione moderata forte φLaplace(x)
Azioni -25% 0% 35% (−25% + 0% + 35%)/3 = 3.33%
Obbligazioni -10% 5% 15% (−10% + 5% + 15%)/3 = 3.33%
Titoli di stato 8% 8% 8% (8% + 8% + 8%)/3 = 8%

Table 9.22: Applicazione del criterio di Laplace a un problema di investimento
(massimizzazione dei rendimenti)

Criterio del rammarico Il criterio del rammarico richiede anzi tutto di calcolare
l’alternativa ottima per ogni scenario e il suo costo (vedi Tabella 9.23).

Crescita Crescita
f (x, ω) Recessione moderata forte
Azioni -25% 0% 35%
Obbligazioni -10% 5% 15%
Titoli di stato 8% 8% 8%
x∗ (ω) Titoli di stato Titoli di stato Azioni
f(x∗ (ω) , ω) 8% 8% 35%

Table 9.23: Applicazione del criterio di Savage a un problema di investimento
(massimizzazione dei rendimenti): calcolo dell’alternativa ottima per ogni scenario

Quindi, richiede di valutare la funzione rammarico per ciascuna alternativa e
scenario e trovarne il massimo per ciascuna alternativa (vedi Tabella 9.24). In-
vestendo in azioni, la cosa peggiore che possa succedere è di andare in recessione,
perdendo il 25% anziché guadagnare l’8%, con un rammarico del 33%. Investendo
in obbligazioni, lo scenario peggiore è la crescita forte, che fa guadagnare il 15%
anziché il 35%, con un rammarico del 20%; investendo in titoli di stato, lo scenario
peggiore è la crescita forte, che fa guadagnare l’8% anziché il 35%, con un rammarico
del 27%7.

Infine, si può procedere alla scelta dell’alternativa che produce il rammarico
minimo, cioè investire in obbligazioni.

Criterio delle eccedenze Il criterio delle eccedenze dà anzi tutto luogo alla
Tabella 9.25. che riporta l’alternativa pessima per ogni scenario e il suo costo.

Quindi, il criterio genera la Tabella 9.26, che riporta l’eccedenza per ciascuna
alternativa e scenario, e nell’ultima colonna l’eccedenza minima per ogni alternativa.
Investendo in azioni, la cosa peggiore che possa succedere è che vi sia recessione o
crescita moderata, nel qual caso l’eccedenza è nulla; investendo in obbligazioni, lo

7Tutte queste percentuali sono riferite all’ammontare dell’investimento iniziale.
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Crescita Crescita
ρ (x, ω) Recessione moderata forte φSavage (x)
Azioni 8%-(-25%) = 33% 8%-0% = 8% 35%-35% = 0% 33%
Obbligazioni 8%-(-10%) = 18% 8%-5% = 3% 35%-15% = 20% 20%
Titoli di stato 8%- 8% = 0% 8%-8% = 0% 35%- 8% = 27% 27%

Table 9.24: Applicazione del criterio di Savage a un problema di investimento (min-
imizzazione dei rendimenti): calcolo del rammarico per ogni alternativa e scenario

Crescita Crescita
f (x, ω) Recessione moderata forte
Azioni -25% 0% 35%
Obbligazioni -10% 5% 15%
Titoli di stato 8% 8% 8%
x† (ω) Azioni Azioni Titoli di stato
f(x† (ω) , ω) -25% 0% 8%

Table 9.25: Applicazione del criterio delle eccedenze a un problema di investimento
(massimizzazione dei rendimenti): calcolo dell’alternativa pessima per ogni scenario

scenario pessimo è la crescita moderata, che fa guadagnare il 5% anziché lo 0%, con
un’eccedenza del 5%; investendo in titoli di stato, lo scenario pessimo è la crescita
forte, che fa guadagnare l’8%, con un’eccedenza nulla.

Crescita Crescita
σ(x, ω) Recessione moderata forte φsurplus (x)
Azioni -25%-(-25%)= 0% 0%-0%= 0% 35%-8%= 27% 0%
Obbligazioni -10%-(-25%)= 15% 5%-0%= 5% 15%-8%= 7% 5%
Titoli di stato 8%-(-25%)= 33% 8%-0%= 8% 8%-8%= 0% 0%

Table 9.26: Applicazione del criterio delle eccedenze a un problema di investimento
(minimizzazione dei rendimenti): calcolo dell’eccedenza per ogni alternativa e scen-
ario

Infine, si può procedere alla scelta dell’alternativa che produce l’eccedenza massima:
investire in obbligazioni.

9.7.3 Un esempio continuo*

Consideriamo un problema nel quale la regione ammissibile X è un insieme continuo
(un intervallo), mentre l’insieme degli scenari Ω rimane finito:

X = [10−9, 3] Ω = {ω(1), ω(2), ω(3)}

Poichè X è continuo non si può descrivere la funzione impatto f(x, ω) con una
tabella. Si può però descriverla, come nella Tabella 9.27, specificando una funzione
f(x, ωi) per ogni ωi ∈ Ω. Supponiamo che gli impatti rappresentino dei costi da
minimizzare.

La Figura 9.5 mostra i grafici delle tre funzioni impatto. Poiché saranno utili in

*Questa è una sezione di approfondimento, che non fa parte del programma d’esame.
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ω(1) ω(2) ω(3)

f(x, ω)
1

2

1

x
−1

2
x2 + 2x

Table 9.27: Valori dell’impatto f (x, ω) in ciascuno scenario ωi ∈ Ω

Figure 9.5: Andamento dell’impatto f (x, ω) in ciascuno scenario ωi ∈ Ω

seguito, riportiamo anche le coordinate dei punti di intersezione delle tre curve:

A =

(
2−
√

3,
1

2

)
B = (0.79, 1.27) C =

(
2,

1

2

)

Criterio del caso pessimo Per ogni x ∈ X bisogna selezionare la funzione
con valore massimo; della curva ottenuta bisogna selezionare il punto minimo. La
Figura 9.6 mostra la soluzione suggerita dal criterio, che è x∗worst = xB = 0.79.

Figure 9.6: Applicazione del criterio del caso pessimo all’esempio continuo
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Criterio del caso ottimo Per ogni x ∈ X bisogna selezionare la funzione con
valore minimo; della curva ottenuta bisogna selezionare il punto minimo. La Figura 9.7
mostra la soluzione suggerita dal criterio, che è in x∗best = 10−9.

Figure 9.7: Applicazione del criterio del caso ottimo all’esempio continuo

Criterio di Hurwicz e studio di sensitività La funzione che esprime il criterio
di Hurwicz è:

φΩ (x) = αmin[f(x, ω(1)), f(x, ω(2)), f(x, ω(3))]+(1−α) max[f(x, ω(1)), f(x, ω(2)), f(x, ω(3))]s

La Figura 9.8 mostra l’applicazione del criterio di Hurwicz con diversi valori di α:
le curve estreme rappresentano il criterio dell’ottimismo (α = 1) e del pessimismo
(α = 0). Per ogni valore di α campionato viene segnata in neretto la soluzione del
criterio, cioè il punto di minimo della curva. Per alcuni valori di α si trova una
soluzione (x∗Hurwicz = 3) diversa da quelle trovate con i criteri del pessimismo e
dell’ottimismo.

Figure 9.8: Applicazione del criterio di Hurwicz all’esempio continuo

La Tabella 9.28 riporta le soluzioni per ogni valore campionato di α.
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α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x∗Hurwicz (α) xB xB xB xB xB xB 3 3 3 3 1

109

Table 9.28: Soluzioni ottime secondo il criterio di Hurwicz per ciascun valore cam-
pionato di α

Criterio di Laplace Il criterio consiste nel tracciare la curva media fra le tre
date:

φΩ (x) =
f(x, ω(1)) + f(x, ω(2)) + f(x, ω(3))

3

e calcolarne il minimo. La Figura 9.9 riporta l’andamento di tale curva in nero,
evidenziandone il minimo, cioè x∗Laplace = 3.

Figure 9.9: Applicazione del criterio di Laplace all’esempio continuo

Criterio del rammarico Per calcolare la funzione rammarico, occorre sottrarre
a ciascuna funzione f (x, ω) il valore ottimo per lo scenario ω:

ρ(x, ω) = f(x, ω)−min
x∈X

f(x, ω) per ogni ω ∈ Ω

Le tre componenti della funzione rammarico sono riportate nella Tabella 9.29. La
Figura 9.10 ne riporta i grafici.

ω(1) ω(2) ω(3)

f(x, ω)
1

2

1

x
−1

2
x2 + 2x

f(x∗ (ω) , ω)
1

2

1

3
10−18

ρ(x, ω) 0
1

x
− 1

3
2x− 1

2
x2

Table 9.29: Valori della funzione rammarico per l’esempio continuo

Per concludere, bisogna individuare la curva del caso peggiore, cioè l’inviluppo
superiore delle tre curve, ovvero i valori massimi per ogni x ∈ X. Nella figura,
questa curva è ricalcata in nero. Il suo punto di ottimo è x∗Savage = xD.
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Figure 9.10: Andamento delle componenti della funzione rammarico per l’esempio
continuo

Criterio delle eccedenze Per calcolare la funzione eccedenza, occorre sottrarre
al valore pessimo per ciascuno scenario ω l’impatto f (x, ω):

σ(x, ω) = max
x∈X

f(x, ω)− f(x, ω) per ogni ω ∈ Ω

Le tre componenti della funzione eccedenza sono riportate nella Tabella 9.30. La
Figura 9.11 ne riporta i grafici.

ω(1) ω(2) ω(3)

f(x† (ω) , ω)
1

2
109 2

f(x, ω)
1

2

1

x
−1

2
x2 + 2x

σ(x, ωi) 0 109 − 1

x

1

2
x2 − 2x+ 2

Table 9.30: Valori della funzione eccedenza per l’esempio continuo

Figure 9.11: Andamento delle componenti della funzione eccedenza per l’esempio
continuo

Per concludere, bisogna individuare la curva del caso peggiore, cioè l’inviluppo
inferiore delle tre curve, ovvero i valori minimi per ogni x ∈ X. Questo inviluppo
coincide con la componente σ(x, ω(1)) = 0. Tutte le soluzioni ammissibili x ∈ X
sono quindi indifferenti rispetto al criterio delle eccedenze.
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9.8 Formal defects of the choice criteria

A satisfactory criterium should enjoy the following properties:

1. weak ordering : it should always induce a weak ordering on the alternatives;

2. indipendence from the labelling : the induced ordering should not change when
the alternatives or the scenarios are permuted, or their names are changed8;

3. scale invariance: the ordering should not change if the impact undergoes a
linear transformation f ′ = αf + β, with α > 0 and any real value of β that is
measuring the impact with a different scale (unit of measure and offset);

4. strong dominance preservation: if x dominates x′, the criterium should prefer
x to x′:

x � x′ ⇒ φΩ (x) ≤ φΩ (x′)

5. indipendence from irrelevant alternatives: the ordering should not change if
new alternatives are added or some alternatives are removed (rank reversal);

6. indipendence from the duplication of scenarios: the ordering should not change
adding a new scenario identical to an given one;

7. indipendence from the uniform variation of the impacts in a scenario: the
ordering should not change when the impacts associated to a scenario improve
or worsen by the same amount for all alternatives.

Unfortunately, none of the choice criteria listed above respects all desirable prop-
erties. Even worse, no possible choice criterium can respect them. There is no
rational basic reason to prefer a criterium to another one.

In particular, the criteria listed above enjoy the first four properties, but not
all the other ones. For example, the first property automatically derives from the
fact that the impact f (x, ω) ia turned into a function φΩ (x) and the alternatives
are ordered on the basis of the numerical values of that function (which necessarily
implies a weak ordering). In the following, we consider in detail the last three prop-
erties, referring to the example with four alternatives and four scenarios discussed
above.

9.8.1 Dependence from irrelevant alternatives

The criteria of pessimism, optimism, Hurwicz and Laplace enjoy this property. If a
new alternative is added, in fact, it simply joins the ordering of the old alternatives,
in a position determined by its score. The order of the old solutions does not
change, because their score remains the same: the values of criterium φΩ (x̄) for
a specific alternative x̄, in fact, depend only on the values of impact f (x̄, ω) for
that alternative. Table 9.31 reports the computation of these four criteria for the
new problem. It is easy to realise that the values of the four original alternatives
are identical to those reported in Tables 9.2, 9.3, 9.4 and 9.5, given that they are
computed treating each row independently from the other ones.

The regret and the surplus criteria, on the contrary, violate this property, be-
cause the regret function ρ (x, ω) and the and the surplus function σ (x, ω) for each
x also depend on the best alternative x∗ (ω) and on the worst alternative x† (ω) in
each scenario ω. Since the new alternative can be the best or the worst one in some

8Trivial examples of criteria that would violate this condition are: “choose the first alternative”
and “choose the alternative that performs best in the first scenario”.
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ω(1) ω(2) ω(3) ω(4) φworst (x) φbest (x) φHurwicz (x) φLaplace (x)

x(1) 2 2 4 3 4 2 3.2 2.75
x(2) 3 3 3 3 3 3 3.0 3.00
x(3) 4 0 4 6 6 0 3.6 3.50
x(4) 3 1 4 4 4 1 2.8 3.00

x(5) 6 4 0 4 6 0 3.6 3.50

Table 9.31: Application of the pessimism, optimism, Hurwicz and Laplace criteria
to the sample problem after the introduction of a fifth alternative: the ordering of
the first four ones does not change

scenarios, and not in other, the regret and the surplus of other alternative increase
(they cannot decrease!) in these scenarios, whereas they remain the same in the
other scenarios. Since the criterium considers the worst scenario with respect to the
regret or the surplus, some values of the criteria φSavage and φsurplus change, while
others do not, yielding a potentially different ordering.

x ω(1) ω(2) ω(3) ω(4)

x(1) 2 2 4 3
x(2) 3 3 3 3
x(3) 4 0 4 6
x(4) 3 1 4 4

x(5) 6 4 0 4

Table 9.32: Application of Savage criterium to the sample problem after the addition
of a fifth alternative: the best alternative for scenario ω(3) changes

Table 9.32 reports the costs of the problem extended with solution x(5); the
best alternatives for each scenario are bolded. Comparing it with Table 9.6, we
notice that x(5) has become the best alternative for scenario ω(3), replacing x(2).
Conseguently, the regret function changes (only in column ω(3)) and its maximum
values row by row (that is the worst case for each alternative) change in an un-
predictable way: some of them remain the same, others increase by the whole
difference between the old and the new optimal value f

(
x∗
(
ω(3)

)
, ω(3)

)
, others

increase by intermediate values: Table 9.33 shows all this. The resulting order is
x(2) ≺ x(1) ∼ x(3) ∼ x(4) ∼ x(5). Before adding alternative x(5), the ordering of the
other four alternatives was x(4) ≺ x(1) ≺ x(2) ∼ x(3), that was different from the
current one. For example, x(1) was preferable to x(2), whereas now the opposite
occurs.

ρ (x, ω) ω(1) ω(2) ω(3) ω(4) φregret (x)

x(1) 0 2 4 0 4 (ω(3))
x(2) 1 3 3 0 3 (ω(2), ω(3))
x(3) 2 0 4 3 4 (ω(3))
x(4) 1 1 4 1 4 (ω(3))

x(5) 4 1 0 1 4 (ω(1))

Table 9.33: Evaluation of the regret for the sample problem after the addition of a
fifth alternative

As well, the surplus criterium violates this property. Table 9.34 reports the costs
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of the problem extended with solution x(5). The worst alternatives for each scenario
are bolded. Let us notice that x(5) has become the worst alternative for scenario
ω(1), replacing x(3), and for scenario ω(2), replacing x(2).

f (x, ω) ω(1) ω(2) ω(3) ω(4)

x(1) 2 2 4 3
x(2) 3 3 3 3
x(3) 4 0 4 6
x(4) 3 1 4 4

x(5) 6 4 0 4

Table 9.34: Application of the surplus criterium to the sample problem after the
addition of a fifth alternative

Table 9.35 reports the new values of the surplus for each alternative and scenario
and, in the last column, its value in the worst case for each alternative and the
corresponding scenario. The first and second column of the matrix are changed,
increasing by the difference between the new and the old worst value f

(
x† (ωi) , ωi

)
(i = 1, 2). At first, the four alternatives were all indifferent, now alternative x(2) is
better than the other ones.

σ (x, ω) ω(1) ω(2) ω(3) ω(4) φsurplus (x)

x(1) 4 2 0 3 0 (ω(3))
x(2) 3 1 1 3 1 (ω(2), ω(3))
x(3) 2 4 0 0 0 (ω(3), ω(4))
x(4) 3 3 0 2 0 (ω(3))

x(5) 0 0 4 2 0 (ω(1), ω(2))

Table 9.35: Evaluation of the surplus for the sample problem after the addition of
a fifth alternative

9.8.2 Dependence from the duplication of scenarios

Nearly all analysed criteria are immune to the duplication of scenarios, because
the best and the worst scenarios, even if duplicated, remain the same, that is, the
best and the worst values of the impact for each alternative do not change. If,
however, one uses the equiprobability criterium, duplicating a scenario corresponds
to (nearly) doubling its probability, and therefore its weight on the overall objective
function. This modifies the values of the criterium φΩ (x), and therefore can modify
the ordering of the alternatives.

Table 9.36 reports an extension of the example in which scenario ω(2) has been
duplicated adding a new scenario ω′2 with identical impacts for each alternative. The
ordering implied by Laplace criterium is now x(1) ∼ x(4) � x(3) � x(2), whereas it
was x(1) � x(2) ∼ x(4) � x(3) before the duplication: alternative x(3) has improved,
because its cost in scenario ω(2) is particularly low, and therefore increasing the
weight of such a scenario favours it with respect to the other solutions.

9.8.3 Dependence from uniform variations of a scenario

The pessimism and optimism criteria (and, consequently, the Hurwicz criterium)
are affected by the uniform modification of all impacts in a given scenario. In fact,
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ω(1) ω(2) ω(3) ω(4) ω′(2) φLaplace

x(1) 2 2 4 3 2 2.6
x(2) 3 3 3 3 3 3.0
x(3) 4 0 4 6 0 2.8
x(4) 3 1 4 4 1 2.6

Table 9.36: Application of Laplace criterium to a sample problem (cost minimisa-
tion) with four alternatives and five scenarios

such a modification can turn that scenario into the worst one, or the best one, for
one of the alternatives, or (on the contrary) imply that the scenario is no longer the
worst or the best one.

ω(1) ω(2) ω(3) ω(4) φworst φbest φHurwicz φLaplace

x(1) 2 �2 6 4 3 �4 6 2 ��3.2 4.4 ��2.75 3.75
x(2) 3 �3 7 3 3 �3 7 3 ��3.0 5.4 ��3.00 4.00
x(3) 4 �0 4 4 6 6 �0 4 ��3.6 5.2 ��3.50 4.50
x(4) 3 �1 5 4 4 �4 5 �1 3 ��2.8 4.6 ��3.00 4.00

Table 9.37: Application of the pessimism, optimism, Hurwicz and Laplace criteria
to a sample problem with four alternatives and four scenarios (cost minimisation),
in which all impacts associated to scenario ω(2) increase by the same amount

Let us increase by a uniform value δf = 4 all the impacts associated to scenario
ω(2) for the example that we are taking into account. Table 9.37 reports the new
value of the impact, as well as the values of the pessimis, optimism, Hurwicz (with
α = 0.6) and Laplace criteria. Some values are unchanged, others increase by
δf = 4, others increase by values intermediate between 0 and δf . The orderings of
the alternatives change as follows:

� according to the pessimism criterium, from x(2) � x(1) ∼ x(4) � x(3) to
x(4) � x(1) ∼ x(3) � x(2);

� according to the optimism criterium, from x(3) � x(4) � x(1) � x(2) to x(1) �
x(2) � x(3) ∼ x(4);

� according to Hurwicz criterium, from x(4) � x(2) � x(1) � x(3) to x(1) �
x(4) � x(3) � x(2).

The ordering according to Laplace criterium, by contrast, does not change, because
adding a constant δf to the impacts of a scenario corresponds to adding a uniform
value δf/|Ω| for each x ∈ X to the Laplace criterium φLaplace (x). In this case,
the criterium increases by δf/4 = 1 for all x ∈ X. Therefore, the ordering of the
alternatives does not change.

Also the regret and the surplus criteria respect this property. In fact, both the
regret function and the surplus function are defined as differences between impacts
of different alternatives (the given one and the best one, or the worst one and
the given one) in the same scenario. Since both impacts increase by the same
constant amoung, the values of the regret and of the surplus remain the same. Let
f̃ (x, ω) = f (x, ω̄) + δ be the new impact function. Then, the new regret function
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ρ̃ (x, ω) and the new surplus function σ̃ (x, ω) coincide exactly with the old ones:

ρ̃ (x, ω) = f̃ (x, ω)− f̃ (x∗ (ω) , ω) = (f(x, ω) + δ)− (f(x∗ (ω) , ω) + δ)

= f(x, ω)− f(x∗ (ω) , ω) = ρ (x, ω)

σ̃ (x, ω) = f̃
(
x† (ω) , ω

)
− f̃ (x, ω) =

(
f(x†, ω) + δ

)
− (f(x (ω) , ω) + δ)

= f(x†, ω)− f(x (ω) , ω) = ρ (x, ω)

9.9 Robust Programming*

**** DA TRADURRE ****

I concetti teorici presentati sinora nel caso finito si estendono quasi tutti banal-
mente ai casi in cui X e Ω sono infiniti (magari continui) oppure combinatorici, cioè
finiti, ma di cardinalità assai elevata. Tuttavia, la soluzione pratica di tali problemi
pone difficoltà molto serie: non è più possibile scorrere uno per uno gli scenari e
le alternative applicando le definizioni. Spesso anche solo conoscere il valore di un
criterio φΩ (·) in una prefissata alternativa x̄ richiede di risolvere un problema di
ottimizzazione, che può non essere banale. Ad esempio, il criterio del caso pessimo
richiede di calcolare min

ω∈Ω
f (x, ω). Il criterio del rammarico richiede addirittura tre

ottimizzazioni successive, di cui due parametriche:

1. calcolare la miglior soluzione per ogni scenario, max
x∈X

f (x, ω), che è un’ottimizzazione

parametrica in ω ∈ Ω;

2. calcolare lo scenario con il rammarico massimo per ogni alternativa, max
ω∈Ω

ρ (x, ω),

che è un’ottimizzazione parametrica in x ∈ X;

3. calcolare l’alternativa con il criterio minimo: min
x∈X

φSavage (x).

Recentemente, però, lo studio della Programmazione in Condizioni di Ignoranza
per problemi di Ottimizzazione Combinatoria ha visto un grosso fermento. Trattan-
dosi di un’altra comunità scientifica rispetto a quella dell’economia classica, il nome
assegnato al filone di studi è diverso: si parla infatti di Programmazione Robusta.

9.9.1 Criteri adottati in Ottimizzazione Combinatoria

Lo studio della robustezza in Ottimizzazione Combinatoria si fonda, come quello
della programmazione in condizioni di ignoranza, sul sostituire l’impatto f (x, ω)
con funzioni ausiliarie che eliminino la dipendenza dalle variabili esogene ω. A
causa del diverso ambito applicativo, le funzioni ausiliarie usate non sono esat-
tamente le stesse. Alcune vengono a mancare, perché non avrebbero molto senso
nello studio di problemi con applicazioni tecnologiche e con moltissime soluzioni.
Ad esempio, tutti i criteri ottimisti, che considerano lo scenario ottimo per ogni
alternativa o l’eccedenza rispetto all’alternativa pessima per ogni scenario, vengono
considerati poco utili, perché i sistemi tecnologici richiedono garanzie forti di buon
funzionamento, e quindi non ammettono l’affidarsi alla fortuna. Di conseguenza,
non si ritrovano in Programmazione Robusta il criterio del caso ottimo, quello di
Hurwicz e quello delle eccedenze. Il criterio di Laplace richiederebbe una media
aritmetica su un numero esponenziale o su un insieme infinito di scenari, e quindi
è computazionalmente impraticabile. I criteri residui si conservano, ma assumono

*This section provides advanced concepts, that are not part of the course’s syllabus.



9.9 Robust Programming 271

nomi diversi. Inoltre, sono stati proposti anche criteri del tutto nuovi. I più studiati
sono:

1. la robustezza assoluta, che è il criterio del caso pessimo

φRA (x) = max
ω∈Ω

f (x, ω)

2. la deviazione robusta, che è il criterio del rammarico

φDR (x) = max
ω∈Ω

ρ(x, ω) = max
ω∈Ω

[
f(x, ω)−min

x∈X
f(x, ω)

]

3. la robustezza relativa, che valuta il rapporto fra rammarico e valore ottimo:

φRR (x) = max
ω∈Ω

ρ(x, ω)

min
x∈X

f(x, ω)
= max

ω∈Ω

f(x, ω)−min
x∈X

f(x, ω)

min
x∈X

f(x, ω)

La robustezza assoluta esprime un atteggiamento molto conservativo: ottimiz-
zarla significa difendersi dalle situazioni peggiori. La deviazione robusta e la ro-
bustezza relativa, invece, vedono l’incertezza anche come un’opportunità da sfrut-
tare, con un approccio di tipo benchmark, che si confronta con il meglio che si
poteva fare: la deviazione robusta misura quanto migliorerebbero in valore assol-
uto le prestazioni se si potesse eliminare l’incertezza, la robustezza relativa valuta
tale miglioramento in rapporto al costo stesso, come se si trattasse di una perdita
percentuale.

Example 68 Per semplicità, confrontiamo le tre definizioni di robustezza su un
esempio finito di piccole dimensioni, anziché combinatorico: X = {x(1), x(2), x(3)}
e Ω = {ω(1), ω(2), ω(3)}. La seguente tabella riporta i costi per ogni alternativa e
scenario, nonché quelli delle alternative ottime per ogni scenario.

ω(1) ω(2) ω(3)

x(1) 8 10 9
x(2) 2 14 7
x(3) 12 12 1

f (x∗ (ω) , ω) 2 10 1

Se ne ricava la robustezza assoluta φΩ (x) (in grassetto è evidenziato il valore
della soluzione ottima).

x φRA (x)

x(1) 10
x(2) 14
x(3) 12

Di seguito viene riportata la tabella del rammarico e i valori della deviazione
robusta (in grassetto è evidenziata la soluzione ottima).

ρ (x, ω) ω(1) ω(2) ω(3) φDR (x)

x(1) 6 0 8 8
x(2) 0 4 6 6
x(3) 10 2 0 10
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Per la robustezza relativa, il rammarico ρ (x, ω) viene rapportato al valore ottimo
di ogni scenario. La tabella seguente riporta il rammarico “relativo” e i valori della
robustezza relativa (la soluzione ottima è in grassetto).

ω(1) ω(2) ω(3) φRR (x)

x(1) 6/2 = 3 0/10 = 0.0 8/1 = 8 8
x(2) 0/2 = 0 4/10 = 0.4 6/1 = 6 6
x(3) 10/2 = 5 2/10 = 0.2 0/1 = 0 5

Logiche diverse indicano soluzioni diverse: la robustezza assoluta indica x(1), la
deviazione robusta x(2), la robustezza relativa x(3). Nel primo caso, importa il fatto
di spendere il meno possibile (10); nel secondo caso, importa il fatto di spendere il
meno possibile in più rispetto alla soluzione ottima (6 in più); nel terzo importa il
fatto di spendere il meno possibile in più e in rapporto alla soluzione ottima (“solo”
5 volte di più, cioè il sestuplo).

9.9.2 Risultati teorici di complessità

Come si è detto, nel caso combinatorico non è praticamente possibile applicare le
definizioni per valutare i criteri di scelta. Questo non vuol dire che non esistano
algoritmi più efficienti per ottimizzare tali criteri: vuol dire invece che occorre
studiare volta per volta la complessità del problema. Si verifica che, partendo dallo
stesso problema deterministico, a seconda del criterio scelto per trattare l’incertezza
(caso pessimo, ottimo, ecc. . . ) e della descrizione dell’incertezza scelta (a scenari
o a intervalli, si veda la Sezione 8.2) si possono ottenere problemi di complessità
molto diversa tra loro.

In linea generale, si osserva che:

1. la controparte robusta (ovvero incerta) di un problema è più complessa del
problema originale (spesso è NP-completa anziché polinomiale);

2. ottimizzare la deviazione robusta o la robustezza relativa è più complicato che
ottimizzare la robustezza assoluta, dato che richiede di conoscere la soluzione
ottima per ogni scenario;

3. la descrizione dell’incertezza a scenari dà luogo a problemi più complessi di
quella a intervalli, dato che:

� non tutte le combinazioni di valori ammissibili per le singole variabili
esogene corrispondono a scenari ammissibili;

� ogni soluzione può avere un diverso scenario pessimo, mentre nella descriz-
ione a intervalli, spesso tutte le soluzioni condividono lo stesso scenario
pessimo9.

Nel seguito, discutiamo a mo’ di esempio il problema del cammino minimo ro-
busto, distinguendo la complessità e gli algoritmi risolutivi per i due approcci nella
descrizione dell’incertezza (scenari e intervalli) e per le tre funzioni obiettivo (ro-
bustezza assoluta, deviazione robusta e robustezza relativa).

9Questo succede in particolare quando l’incertezza riguarda i coefficienti di una funzione di
costo lineare: il caso pessimo, allora, è quello in cui tutti i coefficienti hanno il valore massimo.
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Il problema del cammino minimo robusto: incertezza a scenari*

Consideriamo un grafo orientato G = (N,A) con due nodi s, t ∈ N e una funzione
di costo c : A × Ω → N definita sugli archi. Tale funzione di costo è incerta, cioè
dipende non solo dall’arco, ma anche dallo scenario che si verificherà. Supponiamo
di descrivere l’incertezza con scenari esplicitamente elencati. La versione determin-
istica del problema ammette notoriamente diversi algoritmi polinomiali.

Nel seguito mostreremo che la versione robusta del problema, con tutte e tre
le funzioni obiettivo, è NP-completa. La dimostrazione avviene riducendo un op-
portuno problema NP-completo al problema del cammino minimo robusto, cioè
mostrando che un algoritmo che risolvesse quest’ultimo risolverebbe necessaria-
mente anche il primo.

Definition 38 Dato un insieme N di oggetti e una funzione c : S → N che associa
un costo intero ad ogni oggetto, il Partition Problem richiede di determinare se sia
possibile dividere N in due sottoinsiemi C e S \C che abbiano lo stesso costo totale:

∃C ⊂ S :
∑
i∈C

ci =
∑
i∈S\C

ci ?

La Figura 9.12 riporta un insieme per cui non è possibile effettuare la partizione,
mentre la Figura 9.13 riporta un esempio per cui la partizione è possibile.

Figure 9.12: Insieme non partizionabile in due sottoinsiemi di ugual peso

Figure 9.13: Insieme partizionabile in due sottoinsiemi di ugual peso

La Tabella 9.38 riporta tutti i possibili partizionamenti in due dell’insieme della
Figura 9.13 e i costi dei due sottoinsiemi. La riga in grassetto mostra la partizione
che soddisfa la proprietà richiesta, costituita dai due sottoinsiemi {3, 8} e {2, 4, 5}.

Per ogni istanza del Partition Problem, si può costruire un’istanza del problema
del cammino minimo robusto ad essa equivalente. Si consideri infatti un grafo
G = (N,A), in cui l’insieme dei nodi N contiene un nodo di partenza s, un nodo di

*Questa è una sezione di approfondimento, che non fa parte del programma d’esame.
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Partizione Costi
∅ − {2, 3, 4, 5, 8} 0− 22
{2} − {3, 4, 5, 8} 2− 20
{3} − {2, 4, 5, 8} 3− 19
{4} − {2, 3, 5, 8} 4− 18
{5} − {2, 3, 4, 8} 5− 17
{8} − {2, 3, 4, 5} 8− 14
{2, 3} − {4, 5, 8} 5− 17
{2, 4} − {3, 5, 8} 6− 16
{2, 5} − {3, 4, 8} 7− 15
{2, 8} − {3, 4, 5} 10− 12
{3, 4} − {2, 5, 8} 7− 15
{3, 5} − {2, 4, 8} 8− 14
{3, 8} - {2, 4, 5} 11-11
{4, 5} − {2, 3, 8} 9− 13
{4, 8} − {2, 3, 5} 12− 10
{5, 8} − {2, 3, 4} 13− 9

Table 9.38: Elenco delle partizioni in due sottoinsiemi dell’insieme di Figura 9.13

arrivo vn+1 e n = |S| coppie di nodi vi e v′i con i = 1, . . . , n, associate agli elementi
dell’insieme S dato. Definiamo inoltre un insieme Ω con due scenari. Il nodo s
è collegato al nodo v1 da un arco il cui costo è 1 in entrambi gli scenari; ciascun
nodo vi (i = 1, . . . , n) è collegato al nodo vi+1 da un arco il cui costo è ci nel primo
scenario e 0 nel secondo e al nodo v′i da un arco di costo 0 nel primo scenario e ci
nel secondo. Ogni nodo v′i è collegato al nodo vi+1 da un arco di costo nullo. La
Figura 9.14 mostra il grafo equivalente al problema di partizione della Figura 9.13.

Figure 9.14: Grafo equivalente al problema partizione

Fissato uno scenario, il cammino minimo da s a vn+1 si ottiene in tempo O (n),
perché il grafo è aciclico e il numero di archi è proporzionale a quello dei nodi. È
anche facile vedere che ogni cammino da s a vn+1 ha nel primo scenario un costo pari
a 1 più la somma di alcuni ci (1+

∑
i∈C ci), mentre nel secondo ha un costo pari a 1

più la somma degli altri ci (1 +
∑
i∈N\C ci). Se si conoscesse lo scenario in anticipo,

si potrebbe seguire sempre l’arco di costo nullo, e quindi ottenere un cammino di
costo 1, ma il costo di tale cammino nell’altro scenario è pari a 1 +

∑
i∈S ci. Il

numero di possibili soluzioni è 2n; infatti ci sono n nodi vi in ciascuno dei quali si
può scegliere tra due strade.

Si può osservare che, in realtà, il numero di alternative interessanti è 2n−1,
dato che metà delle soluzioni sono speculari all’altra metà: ogni soluzione xj (j =
1, . . . , 2n−1) ha una soluzione complementare xj c in cui i valori per i due scenari
sono invertiti e in cui in ogni nodo vi (i = 1, . . . , n) viene selezionato l’arco uscente
che non è stato visitato in xj . Questo fatto si nota meglio nel Partition Problem
originale, in cui non avevamo fatto distinzione tra il sottoinsieme C e il sottoinsieme
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N \ C e, infatti, avevamo elencato 2(5−1) = 16 possibili partizioni.

La Tabella 9.39 riporta i 2(5−1) = 16 cammini interessanti, con i relativi costi
nei due scenari. In particolare:

� x(1) è l’alternativa ottima per lo scenario ω(1);

� x(2) è un’alternativa in cui il costo è lo stesso per i due scenari ω(1) e ω(2);

� altre quattordici alternative, x(3), . . . , x16.

All’alternativa x(1) ottima per lo scenario ω(1) corrisponde l’alternativa speculare
x′(1) = (s − v1 − v2 − v3 − v4 − v5 − v6), che costa 23 nel primo scenario e 1 nel
secondo, e quindi è ottima per lo scenario ω(2). All’alternativa x(2) corrisponde
l’alternativa speculare x′(1) = (s− v1 − v′1 − v2 − v′2 − v3 − v′3 − v4 − v5 − v6), che
ha anch’essa costo 12 in entrambi gli scenari.

X ω(1) ω(2) φRA (x)

x(1) = (s− v1 − v′1 − v2 − v′2 − v3 − v′3 − v4 − v′4 − v5 − v′5 − v6) 1 23 23
x(2) = (s− v1 − v2 − v3 − v4 − v′4 − v5 − v′5 − v6) 12 12 12
x(3) = (s− v1 − v2 − v′2 − v3 − v′3 − v4 − v′4 − v5 − v′5 − v6) 3 21 21
x(4) = (s− v1 − v′1 − v2 − v′2 − v3 − v′3 − v4 − v5 − v′5 − v6) 4 20 20
x(5) = (s− v1 − v′1 − v2 − v3 − v′3 − v4 − v′4 − v5 − v′5 − v6) 5 19 19
x6 = (s− v1 − v′1 − v2 − v′2 − v3 − v4 − v′4 − v5 − v′5 − v6) 6 18 18
x7 = (s− v1 − v′1 − v2 − v′2 − v3 − v′3 − v4 − v′4 − v5 − v6) 9 15 15
x8 = (s− v1 − v2 − v′2 − v3 − v′3 − v4 − v5 − v′5 − v6) 6 18 18
x9 = (s− v1 − v2 − v3 − v′3 − v4 − v′4 − v5 − v′5 − v6) 7 17 17
x10 = (s− v1 − v2 − v′2 − v3 − v4 − v′4 − v5 − v′5 − v6) 8 16 16
x11 = (s− v1 − v2 − v′2 − v3 − v′3 − v4 − v′4 − v5 − v6) 11 13 13
x12 = (s− v1 − v′1 − v2 − v3 − v′3 − v4 − v5 − v′5 − v6) 8 16 16
x13 = (s− v1 − v′1 − v2 − v′2 − v3 − v4 − v5 − v′5 − v6) 9 15 15
x14 = (s− v1 − v′1 − v2 − v3 − v4 − v′4 − v5 − v′5 − v6) 10 14 14
x15 = (s− v1 − v′1 − v2 − v3 − v′3 − v4 − v′4 − v5 − v6) 13 11 13
x16 = (s− v1 − v′1 − v2 − v′2 − v3 − v4 − v′4 − v5 − v6) 14 10 14

...
...

...

Table 9.39: Elenco delle soluzioni interessanti del problema di cammino minimo di
Figura 9.14

Vediamo in dettaglio che relazione c’è fra un cammino nel grafo e una partizione
dell’insieme: in ogni cammino i pesi diversi da zero che vengono selezionati nello
scenario ω(1) sono quelli che appartengono al primo sottoinsieme della partizione
associata; quelli che vengono selezionati con lo scenario ω(2), invece, sono quelli che
appartengono al secondo sottoinsieme. Ad esempio la partizione {5, 8} − {2, 3, 4}
corrisponde al cammino x16. Notiamo che ogni alternativa contiene in entrambi gli
scenari l’arco (s, v1), di peso 1, che non corrisponde ad alcun elemento nel problema
di partizione. Tale arco serve solo per fare in modo che l’alternativa ottima abbia
sempre costo maggiore di zero, cos̀ı da evitare problemi nel denominatore della ro-
bustezza relativa. Questo spiega perché il costo di ogni cammino supera di un’unità
il peso del sottoinsieme corrispondente nel problema della partizione.

Calcoliamo i tre criteri di robustezza per il problema di cammino minimo. Il
valore φRA (x) della robustezza assoluta per ogni alternativa è riportato nell’ultima
colonna della Tabella 9.39. L’alternativa migliore per la robustezza assoluta è x(2)
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f x(1) x(2) x(3) x(4) x(5) x6 x7 x8 x8 x10 x11 x12 x13 x14 x15 x16
ω(1) 0 11 2 3 4 5 8 5 6 7 10 7 8 9 12 13

ω(2) 22 11 20 19 18 17 14 17 16 15 12 15 14 13 10 9
φDR

φRR

22 11 20 19 18 17 14 17 16 15 12 15 14 13 12 13

Table 9.40: Valori della deviazione robusta e della robustezza relativa per le soluzioni
interessanti del problema di cammino minimo

(oppure l’alternativa complementare x′(2)). Per costruzione, in questo specifico es-
empio la deviazione robusta e la robustezza relativa di ciascun cammino coincidono,
poiché l’alternativa ottima costa 1 in ogni scenario, e quindi il denominatore presente
nella robustezza relativa vale sempre 1. Possiamo, quindi, usare la funzione ram-
marico per minimizzare entrambi i criteri (vedi Tabella 9.40).

L’ultima riga della tabella riporta i valori della deviazione robusta e della ro-
bustezza relativa. L’alternativa che minimizza tale valore è x(2) (oppure la com-
plementare x′(2)). Quindi le tre funzioni obiettivo hanno lo stesso ottimo, che cor-
risponde a un cammino che distribuisce nel modo più equo i costi ci. Un algoritmo
polinomiale che ottimizzasse questo obiettivo sarebbe in grado di dire in tempo poli-
nomiale se l’insieme dei ci è divisibile in due parti uguali. Se nella soluzione ottima i
due scenari non hanno ugual costo, allora l’insieme di partenza non è partizionabile
in sottoinsiemi di ugual peso.

Il fatto che il Partition Problem sia NP-completo, ma non fortemente NP-
completo lascia aperta la via a un algoritmo pseudopolinomiale. In effetti, esiste un
algoritmo di programmazione dinamica che risolve il problema considerando nello
spazio degli stati tutte le possibili durate dei cammini in ognuno dei due scenari.
Se il numero di scenari è illimitato, però, il problema è fortemente NP-completo,
per riduzione dal 3-Partition Problem.

Il problema del cammino minimo robusto: incertezza a intervalli10

Analizziamo ora il caso in cui l’incertezza sul costo di percorrenza di un arco (i, j)
viene descritta a intervalli, cioè cij ∈ [lij ;φij ]. La Figura 9.15 mostra un grafo di
esempio.

Figure 9.15: Problema del cammino minimo robusto, con incertezza descritta a
intervalli

Ottimizzare la robustezza assoluta è un problema polinomiale, perché lo scenario
pessimo è lo stesso per tutte le soluzioni ammissibili: si tratta dello scenario ω† in

10Questo è un argomento avanzato: non fa parte del programma d’esame. Vi si addentri chi è
interessato a un approfondimento.
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cui il costo di ciascun arco (i, j) è pari a φij . Quindi basta applicare un classico
algoritmo per il cammino minimo, assegnando a ogni arco il costo massimo φij .
La Tabella 9.41 riporta la robustezza assoluta di tutti i cammini semplici da s a t,
evidenziando in grassetto l’alternativa prescelta.

x φRA (x)
s− 1− t 16 + 14 = 30
s− 2− t 7 + 22 = 29
s− 1− 2− t 16 + 2 + 22 = 40
s− 2− 1− t 7 + 7 + 14 = 28

Table 9.41: Valori della robustezza assoluta per le soluzioni del problema di cam-
mino minimo della Figura 9.15

Minimizzare la deviazione robusta è invece NP-difficile, anche nel caso in cui
il grafo sia orientato e aciclico11. La deviazione robusta di un cammino x in uno
scenario ω è il rammarico, cioè la differenza tra il costo f (x, ω) di x in ω e il
costo f (x∗ (ω) , ω) del cammino minimo nello scenario ω. È stato dimostrato in
letteratura12 che la deviazione robusta è massima nello scenario in cui i costi degli
archi sono:

� cij = φij se (i, j) ∈ x,

� cij = lij se (i, j) /∈ x.

Questo vuol dire che, nonostante l’insieme dei possibili scenari sia infinito e continuo,
occorre valutare solo quelli in cui gli archi assumono valori estremi di costo, che sono
in numero finito, benché esponenziale. Anzi, gli scenari potenzialmente interessanti
sono solo quelli in cui gli archi di un cammino da s a t assumono il costo minimo e
tutti gli altri il costo massimo.

Una possibile formulazione del problema è:

min
∑

(i,j)∈A

φijxij − dt (9.1)

∑
(i,j)∈A

xij −
∑

(j,k)∈A

xjk =


−1 per j = s

1 per j = t

0 altrimenti

(9.2)

ds = 0 (9.3)

dj ≤ di + lij + (φij − lij)xij (i, j) ∈ A (9.4)

xij ∈ A (9.5)

di ≥ 0 (9.6)

xij ∈ {0, 1} (i, j) ∈ A (9.7)

dove le variabili binarie xij identificano gli archi del cammino robusto, mentre dt è
il costo del cammino descritto dalle xij nello scenario pessimo. Ai vincoli classici
imposti sulle variabili xij perché descrivano un cammino si aggiungono i nuovi
vincoli, che impongono al costo effettivo di ogni arco (i, j), cioè alla differenza
dj − di, di essere pari a lij se l’arco non fa parte del cammino descritto dalle x e
pari a φij se ne fa parte.

11Averbakh I, Lebedev V Interval data minmax regret network optimization problems. Discrete
Applied Mathematics 138: 289–301, 2004

12Karaşan OE, Pinar MÇ, Yaman H The robust shortest path problem with interval data.
Operations Research Letters 29: 31–40, 2001.
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Effettuiamo il calcolo sull’esempio precedente. Poiché ci sono quattro cammini,
dobbiamo valutare quattro scenari. Il

∑
(i,j)∈A φijxij ci viene fornito dalla tabella

della robustezza assoluta.

Per il cammino (s − 1 − t) lo scenario che dobbiamo considerare è ωs−1−t che
viene mostrato in Figura 9.16.

Figure 9.16: Scenario ωs−1−t

Il cammino minimo per lo scenario ωs−1−t è (s− 2− t) il cui costo è 6 + 2 = 8.
Quindi il valore della deviazione robusta per s − 1 − t è DR(s − 1 − t) = RA(s −
1 − t) − 8 = 30 − 8 = 22. Per il cammino (s − 2 − t) lo scenario che dobbiamo
considerare è ωs−2−t che viene mostrato in Figura 9.17.

Figure 9.17: Scenario ωs−2−t

Il cammino minimo per lo scenario ωs−2−t è (s− 1− t) il cui costo è 3 + 4 = 7.
Quindi DR(s−2−t) = RA(s−2−t)−7 = 29−7 = 22. Per il cammino (s−1−2−t)
lo scenario che dobbiamo considerare è ωs−1−2−t che viene mostrato in Figura 9.18.

Il cammino minimo per lo scenario ωs−1−2−t è (s−1−t) il cui costo è 16+4 = 20.
Quindi DR(s− 1− 2− t) = RA(s− 1− 2− t)− 20 = 40− 20 = 20. Per il cammino
(s− 2− 1− t) lo scenario che dobbiamo considerare è ωs−2−1−t che viene mostrato
in Figura 9.19.

Il cammino minimo per lo scenario ωs−2−1−t è (s − 1 − 2 − t) il cui costo è
3 + 1 + 2 = 6. Quindi DR(s − 2 − 1 − t) = RA(s − 2 − 1 − t) − 6 = 28 − 6 = 22.
La Tabella 9.42 riassume i risultati: il cammino con deviazione robusta minima è
x∗ = (s− 1− 2− t).
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Figure 9.18: Scenario ωs−1−2−t

Figure 9.19: Scenario ωs−2−1−t

x φDR (x)
(s− 1− t) 22
(s− 2− t) 22
(s− 1− 2− t) 20
(s− 2− 1− t) 22

Table 9.42: Valutazione della deviazione robusta per il problema del cammino min-
imo con incertezza descritta a intervalli
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Chapter 10

Programming in conditions
of risk

With respect to the programming in conditions of ignorance, this model includes
not only the possible scenario set Ω, but also a formalisation of their probability. For
each given solution x, the associated impact f (x, ω) is a random variable depending
on the scenario ω. We assume then to know:

� in the discrete case, a function πω assigning to each scenario a probability
value

π : Ω→ [0; 1] with
∑
ω∈Ω

πω = 1

� in the continuous case, a function π (ω) assigning to each scenario a probability
density value

π : Ω→ R+ with

∫
Ω

π (ω) dω = 1

For some brief recalls of probability theory, see Appendix C.

As in the programming in conditions of ignorance, the main approaches consist
in reducing the problem to the optimisation of an auxiliary function φ (x) (to be
minimised or maximised), which removes the dependency on the scenario ω. Thanks
to the stronger assumptions, however, it is possible to design decision criteria which
enjoy the properties expected from a rational approach.

10.1 Definitions of probability

All the numerical values and the functions that appear in decision problems are the
result of descriptive models: the values of the impacts, the weights of the indicators,
the coefficients used in the various choice criteria, and so on. Of course, this intro-
duces the problem of the reliability of such values, and therefore of the choice that
derives from them. This also holds for the probability functions, with the additional
complication that the concept itself of probability is extremely problematic, and in
fact can be defined in completely different ways. As in the decision problems all
definitions of probability are commonly applied, it is appropriate to be aware of
their nature and limits.

The classical definition indicates as probability the ratio between the number of
elementary cases that form a scenario and the total number of possible elementary

281
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cases. This definition assumes that there exists a finite number of elementary cases
with the same probability, and typically is applied to simple examples, such as
games.

The frequentist definition indicates as probability of a scenario the limit to which
its relative frequency tends as the number of observations, or experiments, increases.
This definition requires an archive of the scenarios that one wants to model, assumes
that such an archive be sufficiently large to provide a good approximation of the
limit frequencies of the scenarios, and that the frequencies of past scenarios be the
same that will occur in the future, after applying the decision. It is not very fit to
describe scenarios for which past examples are missing or not very significant.

The subjective definition indicates as probability of a scenario the price an indi-
vidual would consider fair to pay in order to receive 1 if the scenario occurs and 0 if
it does not. This definition is clearly related to decision problems, as it is based on
the idea of having a gain or not, and it is typically used in economics and finance.
It provides values that vary from individual to individual.

The axiomatic definition indicates as probability a function that associates val-
ues to scenarios respecting suitable axioms. The theory that derives from it is
perfectly consistent, but the definition does not indicate how to obtain the values
in practical applications.

10.2 Expected value criterium

The first investigations on the decision problems in conditions of risk were done in
the Seventeenth century by Pascal1, and were based on the compact representation
of the impact f (x, ω) of an alternative x in the various scenarios ω ∈ Ω with its
expected value, defined as:

φEV (x) = E [f (x, ω)] =


∑
ω∈Ω

πωf (x, ω) in the discrete case∫
Ω
π (ω) f (x, ω) dω in the continuous case

In the finite case, this corresponds to the product of the evaluation matrix times
the probability vector:

φEV = U · π

Example 69 Consider the following decision problem in conditions of risk: there
are four alternatives and four scenarios. Table 10.1 reports the evaluation matrix
with the impacts (that are costs) for each alternative and each scenario, but in
addition it also reports the probability that each scenario occurs, that is vector π.

The expected value criterium requires to compute the expected value for each
alternative x ∈ X:

φEV = U · π ⇒


φEV

(
x(1)

)
= 1 · 0.20 + 3 · 0.25 + 4 · 0.50 + 6 · 0.05 = 3.25

φEV
(
x(2)

)
= 2 · 0.20 + 2 · 0.25 + 2 · 0.50 + 4 · 0.05 = 2.10

φEV
(
x(3)

)
= 3 · 0.20 + 2 · 0.25 + 1 · 0.50 + 9 · 0.05 = 2.05

φEV
(
x(4)

)
= 6 · 0.20 + 6 · 0.25 + 1 · 0.50 + 3 · 0.05 = 3.35

This yields the ordering x(3) ≺ x(2) ≺ x(1) ≺ x(4), which leads to choose alternative
x(3).

1Blaise Pascal (1623-1662), French mathematician, physicist and philosopher.
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f (x, ω) ω(1) ω(2) ω(3) ω(4)

x(1) 1 3 4 6
x(2) 2 2 2 4
x(3) 3 2 1 9
x(4) 6 6 1 3

ω(1) ω(2) ω(3) ω(4)

πT (ω) 0.20 0.25 0.50 0.05

Table 10.1: Evaluation matrix and probability vector for a problem of programming
in conditions of risk with four alternatives and four scenarios

10.3 Sensitivity analysis in the probability space

The probabilities of the single scenarios are often obtained by sampling or estim-
ated based on models, and therefore are not known with absolute precision. It is
often useful, therefore, to evaluate the dependency of the solution suggested by a
criterium from the probabilities of the scenarios, in order to understand whether
a possible error can imply a wrong decision, and how large would the mistake be.
This corresponds to identifying in the probability space the regions in which each
alternative is optimal.

Definition 39 We denote as probability space the region

PΩ =

{
πω ∈ [0; 1]

r
:
∑
ω∈Ω

πω = 1, πω ≥ 0,∀ω ∈ Ω

}
where r = |Ω|.

Definition 40 We denote as probabilistic support of a solution x ∈ X for a given
choice criterium the subset Ωx of the probability space PΩ in which x is optimal
according to the choice criterium adopted.

If the alternative chosen based on the estimated probabilities π is optimal in a
wide region around point π, one can feel rather safe. In the opposite case, one should
take into account for further analysis the other solutions nearby, or the estimate
of the probabilities should be improved. Estimating the size of the probabilistic
support of each alternative can be particularly useful when the probabilities have
been estimated in a very rough way, that is in the decisions that tend to be close
the the programming in conditions of ignorance. Many financial decisions fall under
this case, as the probabilities are often defined subjectively in such applications.

Example 70 Consider the problem of Example 69: alternative x(3), suggested by
the expected value criterium, has a value much similar to that of x(2), so close that
one could doubt that approximations in the value of the impacts or of the probabil-
itiese might have determined this choice. It is therefore reasonable to evaluate the
sensitivity of the result. For the sake of simplicity, we do not perform the analysis
in the whole probability space, which would have three independent dimensions, but
we only analyse the sensitivity with respect to one of the probabilities. The other
ones cannot remain unchanged, because by definition the sum of all probabilities is
equal to 1, but their relative size can be fixed, by keeping unchanged the fraction
that each of them occupies of the complement of the investigated probability. This
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simplification could derive from a weaker trust of the decision-maker with respect to
the value estimated for a scenario as compared to the other ones.

Let us evaluate the sensitivity of the solution of a problem in conditions of risk
with respect to the probability of a scenario ω̄. Setting π (ω̄) = α, the complementary
probability 1−α will divide up among the other scenarios of Ω\{ω̄}, proportionally
to their original probabilities. Let π̃ω be the starting probabilities of the various scen-
arios: the new values of probability πω (α) with ω 6= ω̄ can be obtained multiplying
the starting ones π̃ω by a factor k (α) such that their sum is equal to 1− α:∑

ω 6=ω̄

πω =
∑
ω 6=ω̄

k (α) π̃ω = (1− α)⇒ k (α) =
1− α∑
ω 6=ω̄

π̃ω
=

1− α
1− π̃ω̄

Hence, the new probabilities are:

πω (α) =


α per ω = ω̄

1− α
1− π̃ω̄

π̃ω for ω 6= ω̄

In the considered example:

π
(
ω(1)

)
= 0.20

(1− α)

1− 0.50
=

4

10
(1− α)

π
(
ω(2)

)
= 0.25

(1− α)

1− 0.50
=

5

10
(1− α)

π
(
ω(3)

)
= α

π
(
ω(4)

)
= 0.05

(1− α)

1− 0.50
=

1

10
(1− α)

Now, we can apply the expected value criterium in a parametric way, and observe
the performance of the four alternatives as α varies:

φα
(
x(1)

)
= 1 · 4

10
(1− α) + 3 · 5

10
(1− α) + 4 · α+ 6 · 1

10
(1− α) =

25

10
+

15

10
α

φα
(
x(2)

)
= 2 · 4

10
(1− α) + 2 · 5

10
(1− α) + 2 · α+ 4 · 1

10
(1− α) =

22

10
− 2

10
α

φα
(
x(3)

)
= 3 · 4

10
(1− α) + 2 · 5

10
(1− α) + 1 · α+ 9 · 1

10
(1− α) =

31

10
− 21

10
α

φα
(
x(4)

)
= 6 · 4

10
(1− α) + 6 · 5

10
(1− α) + 1 · α+ 3 · 1

10
(1− α) =

57

10
− 47

10
α

In practice, in order to draw the profile of the choice criterium for the four altern-
atives, it is enough to notice that they are linear functions of α, and therefore it is
enough to determine its value in two points. For α = 1, it is enough to copy the
value of the impact in the considered scenario: f (x, ω̄) = [4 2 1 1]

T
. For α = 0, on

the contrary, it is necessary to compute the component of the choice criterium deriv-
ing from the other scenarios and to divide it by 1− π̄ω̄: [1.25 1.10 1.55 2.85]

T
/0.50,

that is [2.5 2.2 3.1 5.7]
T

.

Figure 10.1 shows the behaviour of the criterium in the four alternatives: for
low values of α, that is when scenario ω(3) is unlikely, alternative x(2) is the best,
whereas for large values of α, that is when scenario ω(3) is likely, alternative x(3) is
the best. The intersection between the two diagrams is identified by equation

uα

(
x(2)

)
= uα

(
x(3)

)
⇒ 22

10
− 2

10
α =

31

10
− 21

10
α⇒ α =

9

19
≈ 0.474
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This confirms that, if the probability estimate is uncertain, the choice of x(3) is not
necessarily the best one. Alternatives x(1) and x(4), on the contrary, lag behind x(2)

and x(3), respectively, for every value of probability. This could suggest that they are
strongly dominated, but this is not true: the two solutions are worse only as long as
the probabilities of the scenarios ω(1), ω(2) and ω(4) remain in the reciprocal ratios
fixed at the beginning. There is no dominance, therefore.

In fact, is is even possible for a nondominate alternative to have an empty prob-
abilistic support, that is to be considered by the expected value criterium as inferior
to other alternatives for any value of probability, exactly as a Paretian solution can
have an empty support. The reason is also the same: the linear combinations of the
impact values are not enough to determine all the nondominated solutions.

Figure 10.1: Sensitivity analysis of a cost minimisation problem with respect to
probability πω(3) = α

10.4 Formal defects of the expected value criterium

Since the Seventeenth century, the expected value criterium was criticised for the
unrealistic consequences (sometimes even paradoxical) it leads to. Let us survey
the main ones.

10.4.1 Inconsistency between expected value and actual pref-
erences

According to the expected value criterium, all the combinations of impacts and
probabilities producing the same result are reciprocally indifferent. In practice,
this is often observed to be false: if one proposes to a decision-maker different
combinations of impacts and probabilities with the same expected value, nearly
always the decision-maker shows a preference, even if this changes depending on
the decision-maker. In particular, this occurs for the so called certainty equivalent,
that is a certain impact with a value equal to the expected one in every scenario.

Example 71 Compare the following 4 alternatives:

1. throw a die and gain 100 Euros certainly;

2. throw a die and gain 200 Euros if the outcome is 4, 5 or 6, nothing otherwise;

3. throw a die and gain 600 Euros if the outcome is 6, nothing otherwise;
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4. throw a die and gain 200 Euros if the outcome is 2, 3, 4, 5 or 6, lose 400
Euros if the outcome is 1;

According to the expected value criterium, the four solutions are indifferent: the
expected value of the impact, in fact, is always 100 Euros. Yet, nearly no decision-
maker would consider them as indifferent. The first solution is in this case the
certainty equivalent.

The previous example shows that the expected value does not correctly model
the preference relation of the decision-maker from the descriptive point of view.
It can be objected that this is an empirical remark on human behaviour, which
concerns the descriptive models of human preference (how decision-makers act in
practice), and not necessarily the prescriptive models (how decision-makers should
act in order to be effective). Also from the prescriptive point of view, however, it
does not seem desirable to consider the four situations as indifferent.

10.4.2 Infinite expected values and infinitesimal probabilities

A couple of famous thought experiments show inconsistencies between practical
preferences and the expected value criterium when applied to situations in which
some impacts are unlimitedly large and some probabilities are unlimitedly small.

Pascal’s wager

A very famous application of the expected values criterium is Pascal’s wager, which
he considered as an argument to “prove” the existence of God, or better to support
the sensibleness of faith (not its logical rationality). The well-known argument states
as follows. Every individual must choose whether to believe or not: we can model
this situation with two alternatives, x(1) and x(2). Moreover, God either exists or
does not exist, that is, there are two scenarios, ω(1) e ω(2). Table 10.2 provides
the evaluation matrix of the problem. If the individual believes and God exists, he
gains paradise, which we can see as a very large benefit A (possibly, infinite). The
three impacts associated to believing in a nonexistent God (and therefore losing
time, pleasant occasions, but also living honestly and serenely, says Pascal), to
not believing in an existing God (and therefore, perhaps, being punished) and not
believing in a nonexistent God (probably no impact) are indicated, respectively,
with b, c and d, which are all values (positive or negative) much smaller than A (in
particular, somebody could affirm that c is a huge negative value, corresponding to
an infinite punishment). Notice that, since they are benefits, the expected value
criterium must be maximised, instead of minimised.

f (x, ω) ∃ God @ God
Believe A b

Not believe c d

Table 10.2: Evaluation matrix of the impacts (benefits) for Pascal’s wager problem:
A� |b|, A� c and A� |d|

If we denote by α the (unknown) probability that God exist, the expected cri-
terium generates the following utilities for the two alternatives:{

φ
(
x(1)

)
= Aα+ b (1− α)

φ
(
x(2)

)
= cα+ d (1− α)
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and the former exceeds the latter when Aα + b (1− α) > cα + d (1− α), that is
(A− b− c+ d)α > d − b. If the reward A is very large (infinite), it is sensible to
believe in God, even if the probability is very low; it is enough that:

α > αmin =
d− b

A− b− c+ d
=

1

1 +
A− c
d− b

Since lim
A→+∞

αmin = 0 for any fixed value of b, c and d, the possibility of an infinite

reward A suggests the sensibleness of faith even in the face of an extremely small
probability α.

The argument immediately received objections, besides from the ethical seri-
ousness point of view (that other authors have defended reformulating the wager
in a different way), also from the point of view of mathematical validity. The idea
of two alternatives was attacked (there are many ways to believe or not believe,
and many faiths in which to believe or not), as well as the idea of applying the
concept of probability to such a situation (it is not possible to make several random
experiments and verify in the end whether God exists or not), etc. . . The point we
are interested in, here, is however the use of the expected value criterium, that is
the assumption that human beings actually care about the average gain of their
actions.

Saint Petersburg’s paradox

In 1730, Bernouilli2 proposed the following gamble, in which the gambler always
wins: flip a coin until it comes up tails; if that occurs after ω heads (with ω ∈ N),
the gambler gains 2ω Euros. What sum c would be reasonable to pay in order to
take part to this game?

The problem includes two alternatives: to play or not play. The former offers
zero gain. The second offers a gain equal to −c + 2ω, where ω is the number
of heads preceding the first tails, which obviously depends on the scenario. The
possible scenarios are infinitely many, one for each possible number of consecutive
heads (Ω = N). The probability of the scenario in which ω heads are followed by a
tail is πω = 1/2ω+1. Hence, the expected value of the gain for the latter alternative
is:

E [v] = −c+

+∞∑
ω=0

1

2ω+1
2ω = −c+

+∞∑
ω=0

1

2
= +∞

Therefore, playing is profitable for any possible cost c, that is, one should be willing
to pay any sum of money in order to take part to the game. Everybody can see,
however, that nobody would spend large sums on this game, because the games
nearly always pays only a very small sum. A very powerful factor comes into play
here, that is known as risk propensity, which depends on the amount of money at
stake, on the wealth of the gambler, on his current mood, etc. . .

Bernouilli proposed a solution to the paradox, suggesting that the expected
value should be applied not to the gain, but to its logarithm, based on the idea
that every additional sum of money has for a human being a decreasing value as his
wealth increases. This does not solve completely the paradox, because it is possible
to design games whose rewards increase faster than in Saint Petersburg’s paradox.
Only a utility limited from above completely solves the issue.

2Daniel Bernouilli (1700-1782), Swiss mathematician and physicist, particularly interested in
mechanics and fluidodynamics.
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10.5 Stochastic utility theory

During the Thirties of the twentieth century, Von Neumann3 and Morgenstern4

introduced the stochastic utility theory, with the aim to overcome the limitations
of the expected value criterium through an axiomatic approach. The basic idea is
to assume that the decision-maker is able to establish a preference relation Π not
only between pairs of deterministic impacts, but also between pairs of uncertain
impacts, described as random variables. In the following, for the sake of simplicity,
we will focus on the case of finite scenario sets.

Definition 41 We denote as finite simple lottery `f,π a pair of functions (f (ω) , π (ω)),
where f (ω) : Ω → F is a random variable on a finite sample space Ω, while
π (ω) : Ω→ [0; 1] is a probability function on Ω.

The set of all finite simple lotteries on F and Ω is therefore F |Ω|×PΩ, as it con-
tains all pairs of vectors such that the former has |Ω| components in F and the latter
belongs to the probability space on Ω. In order to improve legibility5, in the follow-
ing we will rearrange the components of a lottery `f,π = ([f (ω1) . . . f (ωr)]

T
, [π (ω1) . . . π (ωr)]

T
)

to better underline the combination of probabilities and impacts, as follows:

`f,π = 〈f (ω1) , π (ω1)〉 ⊕ . . .⊕ 〈f (ωr) , π (ωr)〉

Lotteries with a small number of possible scenarios have special names and
notation.

Definition 42 We denote as degenerate lottery a lottery 〈f, 1〉 (in short, `f ), in
which a scenario has probability equal to 1 and the others have zero probability. We
denote as binary lottery a lottery 〈f, α〉⊕〈f ′, 1− α〉 (in short, `f,α,f ′) in which two
scenarios have probabilities summing to 1 and the others have zero probability.

A single deterministic impact in F is clearly equivalent to a degenerate lottery.

We also introduce the concept of a lottery with multiple phases, in which each
phase (except for the last one) is a lottery whose rewards are tickets to take part
to the lottery associated with the following phase; only the final phase provides de-
terministic gains and losses. The left side of Figure 10.2 shows a tree representation
of a compound lottery, where each leaf node corresponds to a deterministic impact,
each internal node to a lottery and each arc to a scenario, with probabilities sum-
ming to 1 for the arcs going out of each node. In detail, the first phase of lottery `
has two possible outcomes, that correspond to lotteries `1 and `2, respectively with
probabilities π1 and π2 (of course, π1 + π2 = 1). On its turn, lottery `1 has three
possible outcomes, corresponding to impacts f1 (with probability π11), f2 (with
probability π12) and f3 (with probability π13 = 1−π1−π2), whereas lottery `2 has
two possible outcomes, corresponding to impacts f1 (with probability π21) and f3

(with probability π23 = 1− π21).

Definition 43 We denote as compound lottery a lottery whose impacts are other
lotteries (possibly degenerate).

3John Von Neumann, or Jànos Neumann (1903-1957), Hungarian Jew, moved to the United
States from Germany before the Nazists came to power. He was one of the fathers of game theory
and of Computer Science.

4Oskar Morgenstern (1902-1977), antinazist Austrian economist emigrated to the United States
after the annexion of Austria to Germany, one of the founders of game theory.

5At least, I hope: this notation is nonstandard, but the standard ones (to the best of my
knowledge) are in my opinion either heavy or confuse.
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Definition 44 We denote as LF,Ω the set of all possible lotteries, simple or com-
pound, on F and Ω.

Given a finite decision problem in conditions of risk, for any generic alternative
x̄ ∈ X, the impact f (x̄, ω) and the probability π respect the definition of finite
lottery. Therefore, any x ∈ X corresponds to a lottery ` (x) ∈ LF,Ω and a method
allowing to compare lotteries also allows to compare alternatives.

10.5.1 Fundamental axioms of stochastic utility

The stochastic utility theory first defines the properties that a preference relation
between lotteries Π ⊂ 2LF,Ω×LF,Ω should respect in order to be rational. Then,
it proves that only a well determined family of preference relations satisfies such
properties, and that such relations can be represented by real-valued consistent
functions. In this way, the selection of an alternative (lottery) among the feasible
ones to the optimisation of the consistent function.

Definition 45 A preference relation between lotteries Π ⊂ 2LF,Ω×LF,Ω admits a
consistent stochastic utility function u : LF,Ω → R when, for every pair of lotteries
` and `′, the utility of the preferred one exceeds the utility of the other one:

` � `′ ⇔ u (`) ≥ u (`′)

Since every alternative x ∈ X of a decision problem in conditions of risk cor-
responds to a lottery ` (x), with stochastic utility u (` (x)), the decision problem
reduces to finding an alternative x◦ whose corresponding lottery ` (x◦) have max-
imum stochastic utility with respect to all x ∈ X. In the following, therefore, we
adopt the point of view of the economists, maximising benefits, instead of minim-
ising costs.

The properties required from a rational preference relation between lotteries, or
axioms of stochastic utility, are the following:

1. weak ordering : the preference relation between lotteries Π is reflexive, trans-
itive and complete;

2. monotony : lotteries (both simple and compound) that assign larger probab-
ilities to better impacts or lotteries are preferable:

α ≥ β ⇔ 〈`, α〉 ⊕ 〈`′, 1− α〉 � 〈`, β〉 ⊕ 〈`′, 1− β〉 for all ` � `′

3. continuity : given two lotteries ` and `′, for any intermediate impact between
lotteries ` and `′ there exists a suitable probability value which allows to
compose the two given lotteries into a lottery indifferent to the impact:

` � f � `′ ⇒ ∃α ∈ [0; 1] : f ∼ 〈`, α〉 ⊕ 〈`′, 1− α〉

This means that modifying in a continuous way the probabilities of the lot-
teries, the preference also varies continuously, leaving no impact “uncovered”.

4. independence (or substitution): the preference between two lotteries does not
changing adding or removing the same lottery with the same positive prob-
ability:

f � f ′ ⇔ 〈f, α〉 ⊕ 〈f ′′, 1− α〉 � 〈f ′, α〉 ⊕ 〈f ′′, 1− α〉 for all α ∈ (0; 1]
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5. reduction: any compound lottery is indifferent to the simple lottery obtained
listing the final impact of the compound lottery and assigning each of them
the probability given by the classical composition rules:

� the probability of each final impact is the product of the probabilities
met along the sequence of phases of the lottery that lead to it, since they
are conditional probabilities;

� if a final impact appears in several final scenarios, generated by different
branches of the compound lottery, the corresponding probabilities are
summed, since they are associated to mutually exclusive events.

Figure 10.2: Tree representation of a compound lottery, and its replacement with
an equivalent simple lottery

As already discussed, Figure 10.2 shows on the left the tree representation of a
compound lottery. On the right side, the figure reports the star representation of
the equivalent simple lottery, where every arc links the root directly to a leaf node.
The leaf nodes are only three, because different outcomes of the compound lottery
correspond to the same final impact. The probability on each arc is the sum, on
all paths that in the original tree linked the root to each leaf node with a given
impact, of the products of the probabilities on the arcs of each path. For example,
in the original tree two paths linked the root to impact f1: the first path went along
an arc of probability π1 and an arc of probability π11, while the second path went
along an arc of probability π2 and an arc of probability π21. Consequently, in the
final star the root is linked to impact f1 by an arc with probability π1π11 + π2π21.

10.5.2 Von Neumann-Morgenstern stochastic utility theorem

The following theorem proves that, under the axioms discussed above, it is al-
ways possible to build a consistent stochastic utility function to compare lotteries.
Moreover, it is possible to build infinitely many such functions, that coincide with
one another up to a linear scaling, so that there is one and only one normalised
stochastic utility function. Since the proof is constructive, it also shows how to
build such a function.

Theorem 22 Given a set of impacts F not all reciprocally indifferent, a sample
space Ω and a preference relation Π between lotteries on F and Ω that respects the
five axioms of Von Neumann and Morgenstern, there exists one and only one utility
function u (`) : LF,Ω → [0, 1] consistent with Π and normalised so as to have value 0
in the worst impact and 1 in the best impact.

Proof. The first axiom guarantees that the preference relation Π is a weak order on
the lotteries of LF,Ω, and therefore on the degenerate lotteries, that is on the impacts
of F . Notice that this axiom is absolutely necessary to obtain a consistent utility
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function, since associating lotteries to real numbers and the preference relation to
comparisons between real numbers automatically implies that the relation enjoys
the properties of a weak order. It is not however sufficient: building the utility
function requires a process that applies one by one also the other axioms.

The existence of a weak order on F guarantees that there exists at least one
worst impact f† and one best impact f◦ in F . In a decision problem, they are the
extreme impacts with respect to all variables, both x and ω. Let `† =

〈
f†, 1

〉
be

the degenerate lottery that certainly returns the worst impact and `◦ = 〈f◦, 1〉 the
degenerate lottery that certainly returns the best impact. If not all impacts are
reciprocally indifferent, these two lotteries are certainly not indifferent: f◦ ≺ f†,
that is `◦ ≺ `†. Now we can assign extreme conventional values to the utility of
these two lotteries: zero utility to the worst degenerate lottery (u(`†) = 0) and
unitary utility to the best degenerate lottery (u (`◦) = 1).

As a second step, we build the utility values for all degenerate lotteries, that
is for all impacts in F , exploiting the continuity axiom. For every impact f ∈ F ,
there exists certainly a probability αf ∈ [0; 1] that produces a lottery between
the two extreme impacts and is indifferent with respect to the degenerate lottery
corresponding to f :

∃αf ∈ [0; 1] : 〈l◦, αf 〉 ⊕
〈
l†, 1− αf

〉
∼ f

The value of αf is unique thanks to the monotony axiom: in fact, if two lotteries
〈l◦, αf 〉 ⊕

〈
l†, 1− αf

〉
and 〈l◦, βf 〉 ⊕

〈
l†, 1− βf

〉
were both equivalent to f , they

would be reciprocally indifferent, that is, each would be preferable to the other one,
and this would imply both αf ≤ βf and βf ≤ αf . In particular, αf = 1 only for
lotteries combining the best impacts and αf = 0 only for lotteries combining the
worst impacts.

As a third step, we build the utility values for general lotteries. In order to do
that, we exploit the substitution and reduction axioms. Every possible final impact
f ∈ F of a lottery can be seen as a degenerate lottery `f , which is equivalent to a
binary lottery 〈l◦, αf 〉⊕

〈
l†, 1− αf

〉
between the extreme impacts. Given a general

lottery `, each of its final impacts f can be replaced with the degenerate lottery or
with the equivalent binary lottery obtaining a compound two-phase lottery. The
first phase does no longer provide the single impacts, but tickets to take part to the
second phase, in which only the extreme impacts f† e f◦ are possible. The reduction
axiom allows to combine the two phases into a simple lottery with the same final
impacts (that is, the two extreme ones) and probabilities determined by the theorem
of total probability. In particular, the probability of the best impact is equal to the
sum over all scenarios ω ∈ Ω of the product of the scenario probability πω times
the probability αf of the best impact in the binary lottery replacing f . Now, the
given lottery ` corresponds to a simple lottery between the extreme impacts:

` ∼
〈
f◦,

∑
ω∈Ω

πωαf(ω)

〉
⊕
〈
f†, 1−

∑
ω∈Ω

πωαf(ω)

〉
We define the utility of lottery ` as the probability of the best impact f◦. Since
αf = u (`f ), the stochastic utility of a lottery coincides with the expected value of
the utility of the impact:

u (`) =
∑
ω∈Ω

πωu (f (ω)) = E [u (f)]

Getting back from lotteries to decision problems in conditions of risk, each al-
ternative x ∈ X corresponds to a lottery ` (x), formed by impact f (x, ω) and
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probability πω. Von Neumann-Morgenstern theorem allows to build a utility value
u (` (x)), which can be seen directly as a utility function u (x) defined on the altern-
atives:

u (x) =
∑
ω∈Ω

πωu (f (x, ω)) = E [u (f (x, ω))] x ∈ X

The expression of stochastic utility is very similar to that of the expected value cri-
terium (u (x) =

∑
ω∈Ω πωf (x, ω) = E [f (x, ω)]), but, instead of combining with the

probabilities the impacts, it combines the utilities of the corresponding degenerate
lotteries. In other words, this is an updated and revised version of the expected
value criterium, in which each impact is not used directly, but is first filtered through
the stochastic utility function.

Example 72 Consider a simple decision problem with four possible impacts (F =
{10, 20, 30, 50}), to be interpreted as benefits, and a given set of scenarios Ω. Let
us build, following the steps of Von Neumann-Morgenstern theorem, a stochastic
utility function that will allow to compare all possible finite lotteries ` = (f, π) on
F and Ω.

Since the impacts are benefits, the worst impact is the smallest one and the best
impact is the largest: f† = 10 and f◦ = 50. The degenerate lotteries `† = `f†
e `◦ = `f◦ have, respectively, utility u

(
`†
)

= 0 and u (`◦) = 1. The continuity

axiom guarantees that each intermediate impact f (2) = 20 and f (3) = 30 admits an
equivalent binary lottery between the extreme impacts,

〈
f◦, αf(2)

〉
⊕
〈
f†, 1− αf(2)

)
and

〈
f◦, αf(3)

〉
⊕
〈
f†, 1− αf(3)

)
. The decision-maker must indicate which probability

α guarantees the indifference between the intermediate impact and this lottery. Let
us assume that the decision-maker set αf(2) = 0.25 and αf(3) = 0.60. In other words,

he considers indifferent to gain f (2) = 20 certainly or having a probability equal to
0.25 to gain f◦ = 50 and a complementary probability equal to 0.75 to gain f† = 10.
As well, the decision-maker is indifferent between certainly gaining f (3) = 30 and
having a probability eual to 0.60 to gain f◦ = 50 and a complementary probability
equal to 0.40 to gain f† = 10. Then, u

(
f (2)

)
= 0.25 and u

(
f (3)

)
= 0.60.

Now, the utility of any lottery among the four impacts is automatically determ-
ined. For example, let us assume that scenarios ω(1), ω(2) and ω(3) have probabilities
πω(1) = 0.25, πω(2) = 0.50 and πω(3) = 0.25 and let us compare the alternatives x
and x′, which produce the following impacts: f

(
x, ω(1)

)
= 10, f

(
x, ω(2)

)
= 20,

f
(
x, ω(3)

)
= 50 and f

(
x′, ω(1)

)
= 50, f

(
x′, ω(2)

)
= 10, f

(
x′, ω(3)

)
= 30. Both

alternatives are lotteries. Their stochastic utilities can be computed as the expected
value of the utility, that is the convex combinations of the utilities associated to the
single impacts with the probabilities of the corresponding scenarios:

u (x) =
∑
ω∈Ω

πωu (f (x, ω)) = 0.25 · 0 + 0.50 · 0.25 + 0.25 · 1 = 0.375

u (x′) =
∑
ω∈Ω

πωu (f (x′, ω)) = 0.25 · 1 + 0.50 · 0 + 0.25 · 0.60 = 0.40

Since u (x′) > u (x), the second alternative is preferable to the first one: x′ ≺ x.

This constructive process has a strong analogy with the construction of the
multiple attribute utility function. We have, in fact, already remarked that there
is a similarity in the definition of dominance: the scenarios are treated as if they
were attributes. On the other hand, there are also strong differences. For example,
a preference relation between deterministic impacts admits infinite consistent value
functions, which are in general not additive with respect to the single attributes.
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Only under strong additional assumptions, and with a complex modelling effort, it
is possible to build a utility function that is a linear combination of terms referring
to the single attributes. In the case of preference relations between lotteries, the five
axioms guarantee that there is always a single normalised consistent utility function.
Even relaxing the requirement of a normalised function, there are infinite consistent
functions, but they are all connected by a simple rescaling u′ (`) = au (`) + b with
a > 0. In fact, Von Neumann-Morgenstern can be proved replacing the conventional
values 0 and 1 for the two extreme impacts with other two real values. Moreover,
the coefficients of the linear combination are not marginal rates of substitution,
to be estimated with interviews with the decision-maker, but probabilities, which
can often be estimated based on the observed frequencies of the scenarios. The
reason is that in this case we are combining homogeneous quantities (the impact is
a single indicator, measured in different situations) instead of heterogeneous ones
(the impact is a vector composed by different indicators).

10.6 Risk aversion and risk propensity

Every decision-maker has a characteristic stochastic utility function u : LF,Ω →
[0, 1], that reflects his attitude towards uncertainty. The profile of such a func-
tion also indicates how much the indications of stochastic utility differ from those
provided by the classical expected value criterium. In order to give a simple descrip-
tion of the stochastic utility function, we can focus on degenerate lotteries `f with
f ∈ F , that is consider the restriction of function u from the lottery set LF,Ω to the
impact set F . This simplifies the task because it allows to draw a diagram with a
single argument f , whereas, even considering only simple lotteries, there would be
2r − 1 arguments: the r impacts f (ω) and the r probabilities πω, constrained by
the sum equal to 1. On the other hand, as the theorem proves, the values of u in
F univocally determine those in the whole of LF,Ω.

Definition 46 We denote as risk profile the profile of the stochastic utility function
on the degenerate lotteries `f as impact f varies in F .

If we assume, as done so far, that impact f describes a benefit, the risk profile is a
strictly increasing monotone function of f , starting from u

(
`f†
)

= 0 and arriving at
u (`f◦) = 1. Consider two impacts f ′ and f ′′, with f ′′ > f ′ (therefore, f ′′ ≺ f ′). Any
intermediate impact f ∈ [f ′, f ′′] can be obtained with a suitable convex combination
of the two extreme impacts: fα = αf ′′ + (1− α) f ′, and it can also be seen as a
degenerate lottery `fα = 〈fα, 1〉 = 〈αf ′′ + (1− α) f ′, 1〉. Such an impact is also
intermediate with respect to preference: f ′′ � fα � f ′.

Consider the three following cases:

1. the risk profile u (f) is a concave function of f in [f ′, f ′′]:

u (`fα) = u (〈αf ′′ + (1− α) f ′, 1〉) ≥ αu (`f ′′)+(1− α)u (`f ′) for all α ∈ [0; 1]

2. the risk profile u (f) is a linear function of f in [f ′, f ′′]:

u (`fα) = u (〈αf ′′ + (1− α) f ′, 1〉) = αu (`f ′′)+(1− α)u (`f ′) for all α ∈ [0; 1]

3. the risk profile u (f) is a convex function of f in [f ′, f ′′]:

u (`fα) = u (〈αf ′′ + (1− α) f ′, 1〉) ≤ αu (`f ′′)+(1− α)u (`f ′) for all α ∈ [0; 1]
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Figure 10.3 represents the three cases. In each of them, the extreme points of the
risk profile are marked by points P1 = (f ′, u (`f ′)) and P2 = (f ′′, u (`f ′′)), whereas
the intermediate point P = (fα, u (`fα)) indicates impact f and its stochastic utility.
These three cases do not cover all possibilities, but they are model situations. Each
of the three diagrams also reports a point Q with abscissa equal to fα and ordinate
equal to αu (f ′′, 1) + (1− α)u (f ′, 1). This point lies on line segment P1P2. Let us
investigate the meaning of this point.

(a) (b) (c)

Figure 10.3: Risk profiles of three decision-makers: risk-averse (a), risk-neutral (b)
and risk-prone (c)

Instead of a deterministic impact intermediate between f ′ and f ′′, let us consider
a lottery `α = 〈f ′′, α〉⊕〈f ′, 1− α〉 between these two impacts, assigning probability
α to f ′′. The stochastic utility of lottery `α is:

u (`α) = αu (f ′′) + (1− α)u (f ′)

that is the ordinate of point Q, whereas the stochastic utility of fα, that is of the
degenerate lottery `fα , is u (`fα), that is the ordinate of point P . Therefore, in
general fα � `α.

Let us apply the classical expected value criterium to compare the two altern-
atives `fα and `α. Since `fα is degenerate, the value of the criterium is trivially
φEV (`fα) = 1 · fα = fα. On the other hand, the expected value criterium applied
to lottery `α yields φEV (`α) = αf ′′ + (1− α) f ′ = fα. Then, fα ∼ `α according to
the expected value criterium.

Now the three profiles acquire an intuitive meaning. Building with the same
coefficient α a deterministic impact fα intermediate between f ′ and f ′′ and a lottery
`α between the same extreme impacts, the expected value criterium considers them
as indifferent, whereas:

1. if the risk profile u (f) is a concave function, the decision-maker prefers the
deterministic impact, and is therefore risk-averse;

2. if the risk profile u (f) is a linear function, the decision-maker is indifferent,
therefore risk-neutral ;

3. if the risk profile u (f) is a convex function, the decision-maker prefers the
lottery, and is therefore risk-prone.

In general, a sufficiently regular risk profile will consist of intervals in each
of which the profile assumes one of the three typical behaviours. For example,
a decision-maker could consider pleasing to bet small sums, even if the expected
value of the reward is negative, that is worse than not playing. The same decision-
maker could refuse to bet large sums even when the expected value of the reward
is positive. Conversely, another decision-maker could love risk only for large sums,
and avoid it for small ones.
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10.6.1 Certainty equivalent and risk premium

An equivalent description of the risk profile of a decision-maker is given by the
inverse of the utility function, that is by the function that rebuilds an impact f (u)
for each possible value of the stochastic utility u. This inverse function certainly
exists, given that u (f) is strictly increasing, and its profile can be obtained by
simply exchanging abscissa and ordinate in the diagram of the risk profile.

Definition 47 Given a lottery `, we denote as certainty equivalent the determin-
istic impact f` that is equivalent to the lottery, and risk premium the difference
between the expected value of the lottery and its certainty equivalent.

The risk premium measures the additional utility that the decision-maker re-
quires in order to accept a lottery instead of its expected value. Therefore (see
Figure 10.4):

� for risk-averse decision-makers, the certainty equivalent of a lottery is smaller
than its expected value, and the risk premium is positive;

� for risk-neutral decision-makers, the certainty equivalent of a lottery is equal
to its expected value, and the risk premium is zero;

� for risk-prone decision-makers, the certainty equivalent of a lottery is larger
than its expected value, and the risk premium is negative.

Figure 10.4: Certainty equivalent and risk premium

Example 73 Consider a decision problem with interval [0; 1000] as the impact set,
and suppose that the risk profile of the decision-maker be u (`f ) =

√
f/1000. If the

decision-maker should choose between a certain gain equal to f̄ = 250 Euros and a
lottery ` = (f, π) with a gain of 810 Euros with probability 0.1, a gain of 360 Euros
with probability 0.5 and a gain of 160 Euros with probability 0.4, which alternative
should be chosen? What is the certainty equivalent of the lottery?

The utility of the certain gain is u
(
f̄
)

=

√
250

1000
= 0.5; the utility of the lottery

is:

u (`) =
∑
ω∈Ω

πωu (f (ω)) =

= 0.1 · u (810) + 0.5 · u (360) + 0.4 · u (160) =

= 0.1 · 0.9 + 0.5 · 0.6 + 0.4 · 0.4 = 0.55
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and therefore the lottery is preferable to the certain gain.

The certainty equivalent of the lottery is the impact f` that yields the same
utility:

u (f`) =

√
f`

1000
= 0.55⇒ f` = 302.5

In order to compute the risk premium, it is necessary to evaluate the expected value
of the gain from the lottery:

E [f ] =
∑
ω∈Ω

πωf (ω) = 0.1 · 810 + 0.5 · 360 + 0.4 · 160 = 81 + 180 + 64 = 325

Therefore, the risk premium is E [f ]−f` = 325−302.5 = 23.5, positive. In fact, the
decision-maker has a concave risk profile, and is therefore risk-averse: with respect
to the lottery, the decision-maker prefers a certain gain lower than the expected
value of the lottery.

10.7 Critiche alla teoria dell’utilità stocastica*

Una critica abbastanza immediata alla teoria dell’utilità stocastica è che essa, come
la teoria dell’utilità a molti attributi, richiede un decisore estremamente attento,
preciso e capace di soppesare le alternative propostegli, che non sono semplici im-
patti, ma lotterie ipotetiche. Crieri più semplici, come il bistrattato criterio del
valore atteso, sono direttamente applicabili senza dover aggiungere ulteriori inform-
azioni opinabili.

Un filone di critiche più fondamentale si indirizza invece contro gli stessi assiomi,
e in particolare l’assioma di indipendenza. Questo richiede che la preferenza fra due
lotterie non cambi se si aumenta o riduce in ugual misura la probabilità di impatti
identici nelle due lotterie. Sembra un’ipotesi ragionevole, ma diversi esperimenti
psicologici mostrano che non accade in pratica.

10.7.1 Paradosso di Allais

Questo paradosso, formulato da M. Allais6 nel 1953, propone la scelta tra:

1. una lotteria con premi f = [2 500 2 400 0]
T

e probabilità π = [0.33 0.66 0.01]
T

2. una lotteria degenere con premio certo pari a f2 = 2 400.

I decisori più avversi al rischio preferiscono la seconda lotteria, cioè il premio certo.

Supponiamo ora di modificare entrambe le lotterie allo stesso modo, sostitu-
endo in un sottoinsieme di scenari di probabilità 0.66 l’impatto f2 con l’impatto
f3. Questo equivale a eliminare tale sottoinsieme di scenari e aggiungere un altro
sottoinsieme di uguale probabilità con un impatto diverso. Secondo l’assioma di
sostituzione, la preferenza fra le due lotterie non dovrebbe cambiare. Nella prima
lotteria, l’impatto f2 viene sostituito da f3 in tutti gli scenari dove compariva,
mentre nella seconda viene sostituito in una parte. Il risultato sono le due lotterie
seguenti:

1. una lotteria con premi f = [2 500 0]
T

e probabilità π = [0.33 0.67]
T

2. una lotteria con premi f = [2 400 0]
T

e probabilità π = [0.34 0.66]
T

*Questa è una sezione di approfondimento, che non fa parte del programma d’esame.
6Maurice Allais (1911-2010), fisico ed economista, premio Nobel per l’Economia nel 1988.
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Sperimentalmente, gli stessi decisori che preferivano la secondo lotteria ora scelgono
in maggioranza la prima: la preferenza si è invertita.

Il fatto è che nella prima scelta l’impatto nullo, benché molto improbabile, im-
pressiona i decisori e li spinge a cercare una certezza, mentre nel secondo test la
probabilità di non vincere nulla è talmente alta da indurre i decisori a rischiare per
guadagnare di più nel caso fortunato. In altre parole, 0.01 e 0 sembrano probabilità
molto diverse, mentre 0.33 e 0.34 sembrano molto simili.

Il paradosso di Allais e altre considerazioni simili portarono D. Kahneman7 e A.
Tversky8 a proporre la teoria del prospetto, nella quale

1. l’utilità degli impatti ha un andamento a forma di S asimmetrica, per cui il
decisore soffre le perdite più di quanto goda dei guadagni di uguale entità;

2. la funzione valore combina linearmente i valori delle utilità non con le prob-
abilità, ma con funzioni non lineari che sovrastimano le probabilità piccole e
sottostimano quelle grandi.

Queste complicazioni consentono di descrivere meglio il comportamento dei decisori
reali, ma riaprono il problema di quale ruolo abbia il modello decisionale: se debba
solo descrivere lo stato di fatto, o anche prescrivere un approccio efficace alla de-
cisione.

10.7.2 Il paradosso di Ellsberg

Questo paradosso, proposto da D. Ellsberg9 nel 1961, riguarda invece un aspetto
più fondamentale, cioè la definizione di probabilità usata nel modello. Il paradosso
ipotizza che un’urna contenga tre biglie colorate, di cui una rossa, mentre le altre
due possono essere nere o gialle, ma non si sa esattamente di quale colore siano. In
un primo test si può scegliere tra due lotterie, relative all’estrazione di una biglia
dall’urna:

1. nella prima lotteria, si vince 1 euro quando si estrae una biglia rossa;

2. nella seconda lotteria, si vince 1 euro quando si estrae una biglia nera.

La probabilità di vittoria per la prima lotteria è 1/3, mentre quella per la seconda è
α/3, dove α ∈ {0, 1, 2} è il numero sconosciuto di biglie nere nell’urna. La maggior
parte dei decisori sottoposti a questo test preferisce la prima lotteria. Secondo la
teoria di Von Neumann e Morgenstern, questo significa che

u (`1) > u (`2)⇒ 1

3
u (1) +

2

3
u (0) >

α

3
u (1) +

(
1− α

3

)
u (0)

In un secondo test, gli stessi decisori, posti di fronte alla stessa urna, possono
scegliere tra altre due lotterie:

1. nella prima lotteria, si vince 1 euro quando si estrae una biglia rossa o gialla;

2. nella seconda lotteria, si vince 1 euro quando si estrae una biglia nera o gialla.

7Daniel Kahneman (1934-), psicologo e premio Nobel per l’Economia nel 2002.
8Amos Tversky (1937-1996), psicologo.
9Daniel Ellsberg (1931-), economista e attivista per la libertà di stampa (dal Vietnam negli

anni ’70 a Wikileaks oggi).
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La probabilità di vittoria è 1 − α/3 per la prima lotteria e 2/3 per la seconda. La
maggior parte dei decisori sottoposti al test preferisce la seconda lotteria. Secondo
la teoria di Von Neumann e Morgenstern, questo significa che

u (`′2) > u (`′1)⇒ 2

3
u (1) +

1

3
u (0) >

(
1− α

3

)
u (1) +

α

3
u (0)

Se sommiamo membro a membro le due disugualianze, però, otteniamo che

u (1) + u (0) > u (1) + u (0)⇒ 0 > 0

che è ovviamente un assurdo.

La differenza sostanziale sta nella costruzione della probabilità. Le lotterie vin-
centi in entrambi i test sono più semplici. In esse, il valore della probabilità è dato:
in qualsiasi estrazione si vince con una biglia su tre, oppure con due biglie su tre.
Le lotterie perdenti, invece, sono quelle in cui la probabilità di vincere non è sempre
uguale, ma cambia probabilisticamente ad ogni estrazione, pur avendo un valore at-
teso identico a quello delle lotterie vincenti. In certe estrazioni, in effetti, il decisore
può essere certo di perdere o certo di vincere. Questo rende il problema intermedio
fra la programmazione in condizioni di rischio e quella in condizioni di ignoranza, e
gli esseri umani tendono a preferire il rischio all’ignoranza, ma in questa situazione
gli assiomi di Von Neumann e Morgenstern sono troppo stretti per essere verificati.



Chapter 11

Decision theory

Decision theory is not a distinct topic with respect to the ones discussed above,
but an extension of the concepts previously exposed to more complex problems
and models, both for the decisions in conditions of ignorance and for the decisions
in conditions of risk. In particular, decision theory takes into account the fact
that decisions in an uncertain environment can be distributed along the time in
various phases, and that, therefore, some decision variables could be fixed after the
time in which the value of some exogenous variables is revealed. This modifies the
assumption made so far that first all decision variables should be fixed and only
later the values of all exogenous variables become known.

11.1 Decision tree

The decision tree is a tool to solve finite decision problems: it is equivalent to the
evaluation matrix, but more flexible. It introduces a hierarchical structure on the
decision variables and on the exogenous variables.

The fundamental idea is that the decision process takes place in tmax subsequent
phases, represented by a time index t increasing from 0 to tmax−1. In each phase t:

� first, the decision-maker fixes a subvector of decision variables x(t);

� then, the external world fixes a subvector of exogenous variables ω(t).

The problem can be compared to a game, in which alternatively the decision-maker
chooses a move x(t) and nature replies with a countermove ω(t). When the decision-
maker must choose x(t), he known not only the problem data, but also his own moves
and those of nature in all previous phases, from 0 to t− 1. Then, the problem does

no longer consist in searching for a solution, that is a vector of real numbers x
(t)
i , but

for a strategy, that is a vector of functions x
(t)
i

(
ω(0), . . . , ω(t−1)

)
, whose components

depend in general from the values of the exogeneous variables known at the time of
the decision.

The decision tree is composed by levels in strict chronological order, from level 0,
which includes only the root of the tree, to level 2tmax, which includes only leaves.
The levels are organised in pairs associated to the phases of the decision:

� the even-indexed levels (2t), excluding the last one, correspond to the first
half of phase t, in which the decision-maker makes choices, that is fixes the

value of the decision variables x
(t)
i ; the arcs going out of each node represent

all possible values of such decision variables;
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� the odd-indexed levels (2t + 1) correspond to the second half of phase t, in
which part of the state of nature is revealed, that is, the value of the exogenous

variables ω
(t)
j is fixed; the arcs going out of each node represent all possible

values of such exogenous variables, that is mutually exclusive random events;

� the leaves of the tree (level 2tmax) describe situations in which decisions and
states of nature are entirely fixed, that is the system configurations (x, ω).

The chronological order of the levels corresponds to the unravelling of decisions and
external events, along a branch of the decision tree from the root to one of the
leaves. The data of the problem are associated with the various nodes and arcs of
the tree:

� each leaf (x, ω) is labelled with the corresponding impact f (x, ω);

� the arcs going out of the nodes in the odd levels can be labelled with the
probabilities π (ω) of the random events they represent (if they are known);
the sum of the probabilities for the arcs going out of each node is 1.

In the problems studied so far, the decision process underwent a single phase
(tmax = 1), so that the corresponding tree has three levels: a starting decision
level, that is the root, a scenario disclosure level, that is the intermediate nodes,
and a finale impact evaluation level, that is the leaves (see Figure 11.1). For these
problems, the decision tree is perfectly equivalent to the evaluation matrix, plus the
probability vector (if this is known).

Figure 11.1: Two-level decision tree for a problem with a single decision phase,
three alternatives and three scenarios

In order to solve the problem, one applies the backward induction method: make
a backward visit of the tree, from the leaves to the root, climbing up the tree level
by level and labelling each father node based on the labels of its children nodes
according to the a predefined solution approach:
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� if the father node corresponds to a decision, label it with the best among the
labels of the children nodes, to indicate that the decision-maker always selects
the alternative that produces the best result; this corresponds to fixing the

values of the decision variables x
(t)
i that represent the decision;

� if the father node corresponds to an external event, label it according to
the criterium chosen to face uncertainty: worst-case, regret, equiprobability,
expected value, stochastic utility, etc. . .

For example, if it has been decided to adopt the expected utility criterium, the label
of the father node derives from the convex combination of the labels of the children
nodes associated to all possible alternative events, combined with the corresponding
probabilities. Adopting other choice criteria, the method builds different labels on
the same tree, thus obtaining different solutions.

Example 74 A company wants to introduce in the market a new product, choosing
among three possible models (A, B, C). Three possible levels of demand have been
forecast (Low, Medium and High) and the corresponding probabilities have been
estimated. The models represent the feasible solutions x ∈ X, while the demand
levels represent the possible scenarios ω ∈ Ω. Table 11.1 shows the estimated profits
f (x, ω) for each configuration model/demand and the probabilities estimated for the
possible scenarios. The company wants to maximise the total profit, applying the
worst-case, Laplace and expected value criteria.

f (x, ω) Demand level ω
Model x Low Medium High

A 200 000 350 000 600 000
B 250 000 350 000 540 000
C 300 000 375 000 490 000

Low Medium High
Probability π 0.1 0.5 0.4

Table 11.1: Evaluation matrix and probability vector for the launch of a new product
onto the market

The decision tree representing the problem is reported in Figure 11.2. Level
0 corresponds to the decision x and the arcs going out of the root are associated
with the models. Level 1 corresponds to the state of nature and the arcs going out of
each node are associated with the demand levels, with the corresponding probabilities
π (ω). Notice that they repeat identically in each of the three subtrees associated
to the possible solutions. In fact, the probabilities do not depend on the chosen
alternative. The leaves are associated with the values of the impact f (x, ω).

Worst-case criterium Starting from the leaves, we label each father node asso-
ciated to a solution xi computing the worst value minω∈Ω f (xi, ω) among the labels
of the children nodes, that is among the possible scenarios in the father node. This
is equivalent to computing the minimum of each row in the evaluation matrix, as
already seen in Section 9.19.1. The result is reported on the nodes of level 1 in
Figure 11.3. At level 0, on the contrary, since it represents a decision, we choose
the best alternative, that maximises the labels of the children nodes, that is model
C. Figure 11.3 summarises the process.
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Figure 11.2: Decision tree for the launch of a new product onto the market

Figure 11.3: Decision tree for the launch of a new product onto the market and
solution with the worst-case criterium
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Laplace criterium Laplace criterium requires the same backward induction pro-
cess, but this time in the nodes at level 1 we apply a different labelling criterium: in
each node we report the arithmetic mean of the labels of the children nodes. At level
0, on the contrary, since it represents a decision, we choose again the alternative
that maximises the labels of the children nodes, that is once again model C, even if
the labels are different. Figure 11.4 summarises the process.

Figure 11.4: Decision tree for the launch of a new product onto the market and
solution with the Laplace criterium

Expected value criterium Starting from the leaves, we label each father node as-
sociated to a solution xi computing the expected value E [f (xi, ω)] =

∑
ω∈Ω πωf (xi, ω).

This is equivalent to computing the product of each row of the evaluation matrix by
the probability vector. This time, therefore, we use the information provided by vec-
tor π. The result is reported on the nodes of level 1 in Figure 11.5. Now, we can
go back from level 1 to the root, using the deterministic strategy, because the root
corresponds to a decision: we choose the alternative that maximises the labels of the
children nodes, that is model A. The associated label is copied into the root node,
and provides the solution of the problem.

Figure 11.5: Decision tree for the launch of a new product onto the market and
solution with the expected value criterium

Decision tree and evaluation matrix are two equivalent ways to represent the
data of a decision problem in an uncertain environment. The solution process is the
same: working on the rows of the matrix or the arcs of the tree, in fact, the same
operations are performed. What is the advantage of the decision tree, then?
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In the following, we present three situations in which the decision tree proves a
better modelling tool, as it is more flexible than the matrix.

11.2 Scenarios conditioned by the decision

When the state of nature is influenced by the decision variables, the probabilities
of the scenarios do no longer form a vector π (ω) of absolute values, but a matrix
π (ω|x) of conditional values, depending on the chosen alternative. This modifies the
process only slightly: in the decision tree, each node obtained with a decision has
outgoing arcs associated to the scenarios opened by such a decision. It is necessary
to associate with those arcs not the absolute probabilities of the scenarios, but the
conditional probabilities related to the decision taken in the node.

Example 75 Let us modify the previous example, concerning the launch of a new
product onto the market. We assume that the three scenarios about the level of
demand depend on the model launched, In other words, we assume that, since the
possible models appeal to different targets (unknown, but estimated), the three scen-
arios denoted as low, medium and high demand have different probabilities to occur
according to the chosen model: a more appealing model increases the probability of
a high level of deman. Table 11.2 reports the conditional probabilities π (ωk|xi).

π (ωk|xi)
xi Low Medium High
A 0.3 0.5 0.2
B 0.1 0.5 0.4
C 0.1 0.6 0.3

Table 11.2: Probability matrix of the states of nature, conditioned by the alternat-
ives for the launch of a new product onto the market

Figure 11.6 reports the decision trees corresponding, respectively, to the original
evaluation matrix and to the new conditional probabilities, and the resolution pro-
cess with the expected value criterium. Compare the labels of the arcs with that
in Figure 11.2: the arcs associated with the same scenario in different nodes no
longer have the same probabilities: they are different. This time, in fact, model B
wins, because it tends to be more appealing or the market, and in particular it has
a stronger probability to stimulate a high demand.

11.3 Decisions distributed along multiple phases

When the decisions are distributed along time and some variables are fixed after that
the state of nature is partially revealed, the decision tree has more than two levels.
This problem cannot be represented in an elementary way on a two-dimension mat-
rix. We shall see in Section , in the context of game theory, that it is possible to
translate a tree representation into a matrix representation, by introducing remark-
able complications.

Example 76 Assume that, once a product has been launched, it is possible to decide
whether to run also an advertising campaign to support the sales or not. In this
problem, the decisions to be taken are two: which product to launch and whether to
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Figure 11.6: Decision tree for the launch of a new product onto the market in the
case of conditional probabilities

run the campaign or not1. The second decision must be taken after the launch of the
product, when it has become known whether the demand is low, medium or high. On
its turn, the campaign can have an uncertain outcome, so that we should introduce
a further exogenous variable, and a further level in the decision tree. In order to
limit the size of the example, and in order to show how deterministic phenomena
can be modelled in this context, we assume the effect of the campaign to be certain,
as reported in Table 11.3. The profit values reported keep into account on the one
hand the increase in sales provoked by the campaign, on the other hand the cost of
the campaign itself. The result, therefore, is sometimes better and sometimes worse
than in Table 11.1.

Demand level ω
Model x Low Medium High

A 220 000 340 000 560 000
B 300 000 380 000 530 000
C 360 000 415 000 480 000

Table 11.3: Evaluation matrix for the launch of a new product onto the market
after running an advertising campaign (to be compared with Table 11.1)

The assumption that the effect of the campaign be known a priori reduces level
3 of the decision tree (scenarios implied by the campaign) to a set of single arcs,
each going out of a node of level 2 and with associated probability equal to 1. If
the campaign had different potential outcomes, each node would emit different arcs,
with probabilities summing to 1 and potentially conditioned both by the decisions
and the scenarios met along the path from the root to the father node.

Figure 11.7 reports the data and the solving process for this extended problem.
One proceeds, as usual, climbing the tree backward from the leaves to the root.
Level 3 is trivial, and only consists in copying the labels of the leaves in the corres-
ponding father nodes. If some father nodes have several outgoing arcs, we should
choose and apply a choice criterium in order to determine the label (for example,
the expected value criterium). The labels at level 2 are obtained choosing the max-
imum value among the labels of the children nodes, given that the level represents
a decision (whether to run or not the advertising campaign). The labels at level 1

1Alternatively, it is possible to decide among different campaigns, more or less strong, and
therefore more or less effective, but also more or less expensive.



306 11 Decision theory

is computed with the expected value criterium, and the label of the root is computed
maximising. The result, marked in red in the figure, is not a simple solution, but a
two-phase strategy: the former phase is determined univocally, whereas the second
depends on the partial scenario decided by nature:

1. launch model C;

2. measure the demand:

� if it is low, run the advertising campaign;

� if it is medium, run the advertising campaign;

� if it is high, do not run the advertising campaign.

The optimal strategy includes not only the choice of the model, but also the indication
of how to react to the market demand, once it is revealed: in case of a high demand,
do not run the campaign, because its cost is not compensated by the expected increase
of the sales. The gain expected from applying this strategy is 439 500 Euros.

Figure 11.7: Decision tree for the launch of a new product onto the market in the
case of a two-phase decision

11.4 Random experiments

Sometimes, the estimate of the probabilities of the possible scenarios can be refined
through the execution of an “experiment”. A typical example concerns meteorolo-
gical phenomena. We can estimate the probability of rain in a given period based
on historical data. However, if we check an instrument, such as a barometer, ther-
mometer or hygrometer (or even several instruments at a time), we obtain measures
that on their turn are correlated somehow with the probability of rain. The value
of such measures is the outcome of a random experiment, and in general do not al-
low to know precisely the state of nature, that is to predict with certainty whether
it will rain or not. However, knowing the precision of the instrument, that is the
correlation between the outcomes of its measures and the possible scenarios, one
can derive a better estimate of the probabilities of the scenarios.
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The decision tree allows to represent this situation with an additional level
representing uncertain scenarios, this time upstream of the basic decision. Since
the decision-maker must also decide whether to perform the experiment or not,
another level must be also added, referring to this decision, upstream of the level
associated to the outcomes of the experiment. It must, in fact, be considered that
any experiment has a cost, and therefore it is not at all obvious that it would be
adviceable to perform it: this depends on the advantage gained from it in terms of
the quality of the solution chosen. Figure 11.8 gives a compact representation of
the decision tree, which only shows the levels of the tree, collapsing all the nodes of
a level in a single one. The tree has the following structure:

� level 0 refers to the decision whether to perform the experiment or not, before
considering the given problem: the decision variable x′ ∈ X ′ can assume only
two values;

� level 1 refers to the random experiment: the exogenous variables ω′ ∈ Ω′

indicate the outcome of the experiment, also called signal ;

� level 2 refers to the solution x ∈ X chosen for the given problem;

� level 3 refers to the scenarios ω ∈ Ω of the given problem.

Figure 11.8: Decision tree when a random experiment is available: for the sake of
simplicity, all nodes of the same level are collapsed in a single one

If one wants to apply the expected value criterium, or the expected utility cri-
terium, one has to report on the arcs associated with the outcomes of the experi-
ment, that is those going out of the nodes of level 1, the probabilities π (ω′) of such
outcomes. On the arcs associated with the scenarios, that is those going out of
the nodes of level 3, one must report the conditional probabilities π (ω|ω′) of such
scenarios with respect to the outcomes of the experiment. In general, the probab-
ility reported on each arc is conditioned by every event occuring on the previous
arcs along the path starting at the root. In particular, the probabilities could be
conditioned by the previous decisions, as in Section 11.2, that is on x′ for the arcs
going out of the nodes of level 1 and on x′ and x for the arcs going out of the nodes
of level 3. In this example, however, the decision have no influence on the scenarios.
We also notice that the relation is not causal, but simply a statistical correlation:
the probabilities π (ω|ω′) of the meteorological scenarios are conditioned by the out-
comes of the instrument check. This does not mean that measuring the barometric
pressure modifies the probability of rain. It means that such a measure provides
further information with respect to the historical frequency, and such information
modify our estimate of the probability of rain. More in general, the random experi-
ment does not modify the state of nature, but deepens our knowledge changing the
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probabilities of the scenarios. On the other hand, the experiment does not give any
absolute guarantee on the scenario; if it did, it would trivially reduce the scenarios
to a single one, completely removing uncertainty, and reducing the whole problem
to a Mathematical Programming model.

The subtree associated to the decision not to perform the experiment should skip
the stochastic level associated to the outcomes of the experiment, directly linking
level 0 (decision about the experiment) to level 2 (decision about the given problem).
In order to keep the structure with alternate levels, we introduce also in this subtree
a fictitious level 1, composed by a node that represents a degenerate experiment,
with a single outgoing arc that represents a fictitious outcome of probability 1. The
probabilities of the arcs on level 3 of this subtree, that is the probabilities of the
states of nature, are not conditioned by the outcome of the experiment, which is
not performed: they are the probabilities estimated a priori based on the historical
data.

Finally, the leaves of the tree are, as usual, associated with the impacts of each
final system configuration. The configurations are not the classical pairs (x, ω),
but also include the decision variables and the exogenous variables concerning the
experiment: they are therefore quadruplets (y, ω′, x, ω). In fact, the impact includes
also the cost of the experiments in the configurations that require to pay such a
cost. The outcome of the experiment, in this example, has no influence on the final
cost, but in general it could have.

Definition 48 We denote as information value V the difference between the utility
gained performing the experiment and the utility gained not performing it.

The information value measures the improvement allowed by the experiment itself,
and therefore the maximum cost that the decision-maker should be willing to pay in
order to perform it. An experiment whose cost is larger than its information value
should not be performed. Of course, this can be generalised to the situations in
which there are several kinds of experiment: each of them has its own subtree, and
its information value can be computed by comparison with the subtree associated
to not performing any experiment.

11.4.1 Probability computation for the decision tree

In order to solve the problem with the usual backward induction method, it is
required to associate the arcs of the stochastic levels with the corresponding prob-
abilities. Each of them is the conditional probability with respect to the decisions
and the outcomes associated to the arcs of the path leading from the root to the
father node of the arc considered. In the case we are analysing, one must report on
the tree:

1. at level 1 the total probabilities π (ω′) of the outcomes of the experiment;

2. at level 3 the probabilities π (ω|ω′) of the states of nature conditioned by the
outcomes of the experiment.

In order to provide an example, let us consider weather forecasts, in which the exo-
genous variables ω describe the future weather and exogeneous variables ω′ describe
the measure of an instrument. Since the measure precedes the disclosure of weather,
the level of variables ω′ precedes the level of variables ω. The decision tree requires
on level 1 the probability π (ω′) of each measure, and on level 3 the conditional
probability π (ω|ω′) of each possible weather for each possible measure. Both these
pieces of information are not available. However, they can be reconstructed from
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the available information. Now, let us consider the available information and how
to reconstruct the missing one.

Besides the total probabilities of the scenarios (π (ω)), we can assume to have
information on the reliability of the instrument, that is on the conditional probab-
ility π (ω′|ω) that the experiment have a given outcome ω′ in a determined scenario
ω. These probabilities derive from historical experience. In the case of weather fore-
casts, the conditional probabilities provide the frequency with which (for example)
a barometer has indicated high pressure, given that the situation was destined to
evolve towards nice weather, or towards bad weather. This is a historical inform-
ation: we do not know whether the high pressure indicated by the barometer will
truly guarantee a nice weather, but we know that in the past it has done it with
a certain frequency. Figure 11.9 represents the situation: events Ai correspond to
the possible weather conditions; event B to the observed fact that the barometer
indicates high pressure: this reduces the possible cases, thus modifying the probab-
ility that the scenario will fall in each possible event; in other words, it modifies the
probabilities of different weather conditions. The fundamental point is that we have
to report on the tree π (ω′) and π (ω|ω′), whereas we know π (ω) and π (ω′|ω). In
order to obtain them from the available data, it is enough to apply Bayes’ theorem.

Figure 11.9: The conditional probabilities of the disjoint possible events Ai with
respect to event B are different from the absolute probabilities: therefore, knowing
that B has occurred gives a more precise probabilistic information on the occurrence
of all events Ai

Theorem 23 Bayes’ theorem: Given a family of mutually exclusive events Ai and
an event B:

P (Ai|B) =
P (B|Ai)P (Ai)∑
j P (B|Aj)P (Aj)

=
P (B ∩Ai)
P (B)

In our case, the events Ai are the states of nature ω ∈ Ω, whereas event B is each
of the outcomes ω′ of the random experiment (the theorem is applied separately on
each outcome). Therefore:

π (ω|ω′) =
π (ω′|ω)π (ω)∑

ω∈Ω

π (ω′|ω)π (ω)

Finally, the total probabilities of the outcomes of the experiment can be obtained
starting from the conditional probabilities π (ω′|ω) and from the probabilities of the
scenarios π (ω), by summing their products:

π (ω′) =
∑
ω∈Ω

π (ω′, ω) =
∑
ω∈Ω

π (ω′|ω)π (ω)
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Example 77 A tourist is informed that, when the weather is bad, the rain starts
falling in the morning and goes on for the whole day. The tourist office recommends
to check the barometer before leaving for a trip, in order to decide what to wear.
The barometer indicates nice weather, changeable variable or bad weather, while
the weather can be nice and dry or bad and rainy. Moreover, the tourist can choose
among three types of clothing: light, light with an umbrella, or warm, with umbrella,
raincoat, hat and boots.

Summarising, there are two possible scenarios (|Ω| = 2):

� ω1 = nice weather

� ω2 = bad weather

The available alternatives are three (|X| = 3):

� x1 = light clothing

� x2 = light clothing with umbrella

� x3 = warm clothing

Checking the barometer is a random experiments with three possible outcomes: (|Ω′| =
3):

� ω′1 = fair

� ω′2 = change

� ω′3 = rain

Table 11.4 reports the values of the “cost” f (x, ω) for every combination of decision
(clothing) and scenario (weather). It is therefore a minimisation problem.

f (x, ω) ω1 ω2

x1 0 5
x2 1 3
x3 3 2

Table 11.4: Cost function for the tourist problem

The historical data provide the a priori probability π (ω) of each scenario (see
Table 11.5) and the reliability of the barometer, that is the conditional probab-

ω ω1 ω2

π (ω) 0.40 0.60

Table 11.5: Probability associated with the scenarios of the tourist problem

ility π (ω′|ω) of getting each measure from the barometer for each scenario (see
Table 11.6).

An “ideal” barometer would have a conditional probability equal to 1 for (ω1, ω
′
1)

and (ω2, ω
′
3) and equal to 0 otherwise, but the barometer is far from being ideal.

However, using it can improve the expected cost of the decision.

Figure 11.8 reports the structure of the decision tree for this problem:

1. the arcs going out of the root (first level) represent the decision x′ ∈ {0, 1}
whether to perform the experiment or not;
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π (ω′|ω) ω1 ω2

ω′1 0.60 0.20
ω′2 0.25 0.30
ω′3 0.15 0.50

Table 11.6: Probability of the outcomes of the random experiment, conditioned by
the scenarios for the tourist problem

2. the arcs of the second level represent the result ω′ of the experiment and are
labelled with their total probabilities;

3. the arcs of the third level represent the decision x (ω′), made by the decision-
maker based on the outcome of the experiment;

4. the arcs of the fourth level represent the states of nature ω, and are labelled
with their conditional probabilities with respect to the outcomes of the experi-
ment, and thefore determine the final cost, which is reported on the leaves.

Applying Bayes’ theorem, we proceed as follows:

1. compute the conjoint probabilities p (ω, ω′) (Table 11.7), multiplying the con-
ditional probabilities of the outcomes by the a priori probabilities of the states
of nature;

π (ω′ ∩ ω) ω1 ω2

ω′1 0.24 0.12
ω′2 0.10 0.18
ω′3 0.06 0.30

Table 11.7: Conjoint probabilities between the states of nature and the outcomes
of the random experiment for the tourist problem

2. derive the a priori probabilities of the outcomes of the experiment π (ω′) (Table 11.8),8
summing over the state of nature, that is row by row;

ω′ π (ω′)
ω′1 0.36
ω′2 0.28
ω′3 0.36

Table 11.8: Probabilities of the outcomes of the experiment for the tourist problem

3. derive from these the conditional probabilities of the states of nature with
respect to the outcomes π (ω|ω′) (Table 11.9), dividing each conjoint probability
by the a priori probability of the result.

π (ω|ω′) ω1 ω2

ω′1 0.67 0.33
ω′2 0.36 0.64
ω′3 0.17 0.83

Table 11.9: Conditional probability of the states of nature with respect to the
outcomes of the random experiment for the tourist problem
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The last two families of values are used to label the arcs of the decision tree.

Now, we can climb up the tree solving the problem with the expected value cri-
teriu: in the stochastic levels, we label the father node with the expected value of the
labels of the children nodes; in the deterministic levels, we label the father node with
the best (i. e., minimum) value of the labels of the children nodes. Figure 11.10
reports the decision tree, with the labels obtained from the leaves up to the root,
under the assumption that the cost of the experiment be zero.

Figure 11.10: Decision tree for the tourist problem

The bolded branches indicated the choices of the decision-maker, which provide
a strategy. There are actually two optimal strategies, reciprocally equivalent, which
consist in setting:

x′ = 1 (perform the experiment) x =

 x1 se ω′ = ω′1
x2 se ω′ = ω′2
x3 se ω′ = ω′3

or

x′ = 1 (perform the experiment) x =

{
x2 se ω′ ∈ {ω′1, ω′2}
x3 se ω′ = ω′3

If the experiment were not performed, the best solution would be x = x2. This
implies that the information value is:

V = 2.2− 2.02 = 0.18

If the experiment has a cost C > 0, the process must take it into account: the
labels of the leaves of the subtree which derives from the choice of performing the
experiment must be increased by C, so that the last three nodes of the third level have
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a label increased by C, and the same occurs for the second node of the second level.
The two nodes at level 1 have labels 2.2 (without the experiment) and 2.02+C (with
the experiment). The label of the root should be the minimum of the two values.
Therefore, if the experiment has a cost C > 0.18, it is not advantageous to perform
it: in that case, the optimal strategy is not to perform the experiment, and to directly
choose x2.
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11.5 Exercises* � �

Exercise 1

A decision problem admits three alternatives and two states of nature. The following
table reports the benefits associate to each possible configuration.

u ω1 ω2

x1 60 20
x2 160 -70
x3 36 46

Indicate the alternative chosen applying the worst-case criterium, Hurwicz cri-
terium (with a pessimism coefficient α = 0.4), Savage criterium and Laplace cri-
terium.

Suppose that the state of nature have probabilities given by vector π = [ 0.4 0.6 ]
and indicate the alternative chosen with the expected value criterium.

Finally, assume to have the opportunity of performing a random experiment,
with two possible outcomes (y1 e y2), which provides information on the state of
nature based on the conditional probabilities reported in the following table.

p (y|ω) ω1 ω2

y1 0.90 0.20
y2 0.10 0.80

Indicate the best strategy according to the expected value criterium and the
value of the information provided by the random experiment.

Solution

Next table report the values of the various criteria for the three alternatives.

X uWald (x) uHurwicz (x) uSavage (x) uLaplace (x)
x1 20 44 100 40
x2 -70 68 116 45
x3 46 42 124 41

which implies that the best alternative is x3 according to the worst-case criterium,
x2 according to Hurwicz criterium, x1 according to the regret criterium and x2

according to Laplace criterium.

Introducing the given probabilities, the expected value criterium provides: E [f (x)] =
[ 36 22 42 ]

′
, so that the best alternative is x3.

Performing the experiment, there are 32 = 9 possible strategies, with the fol-
lowing performances.

*The solutions of these exercises have not yet been revised: error reports are welcome.
�I owe several of these exercises to exam texts of professor Alberto Colorni.
�All the exercises on decision theory with random experiments can be solved also as exercises

of programming in conditions of risk (just neglect the experiment) or exercises of programming in
conditions of ignorance (just neglect the probabilities of the scenarios)
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f (x (y) , ω) ω1 ω2 umedia

(x1, x1) 60 20 36
(x1, x2) 70 -52 -3.2
(x1, x3) 57.6 40.8 47.5
(x2, x1) 150 2 61.2
(x2, x2) 160 -70 22
(x2, x3) 147.6 22.8 72.7
(x3, x1) 38.4 25.2 30.5
(x3, x2) 48.4 -46.8 -8.7
(x3, x3) 36 46 42

Therefore, the best strategy is the sixth one ((x2, x3)), with an expected value
equal to 72.7. The value of the information provided by the random experiment is
V = 72.7− 42 = 30.7.

Exercise 2

Consider the following problem of decision theory. Given 10 boxes, let 8 of them
contain 4 red tokens and 6 black tokens, while the other 2 boxes contain 9 red
tokens and 1 black token. One of the boxes is chosen at random and given to the
decision-maker, giving rise to two scenarios ω1 and ω2. The decision-maker can
either guess which of the two kinds the box belongs to (alternative x1, or x2), or
fold, that is abstain from guessing (alternative x3). The following table reports the
benefits u (x, ω).

u ω1 ω2

x1 40 -20
x2 -5 100
x3 0 0

Before deciding, the decision-maker can perform one of the following random
experiments:

1. experiment e1: pick up a token from the box, paying 8;

2. experiment e2: pick up two tokens from the box, paying 12.

Of course, the decision-maker can also decide to make no experiment (e0).

Formulate and solve with the decision tree the problem of maximising the ex-
pected value of the gain, given the following tables which provide the conjoint
probabilities of the experiment outcomes and the states of nature for each of the
two experiments.

e1 ω1 ω2 e2 ω1 ω2

R 0.32 0.18 RR 0.128 0.162
N 0.48 0.02 RN 0.384 0.036

NN 0.288 0.002

Solution

The decision tree has the following structure:
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e y x ω1 u
- e0 - x1 ω1 40

29.5 28 28 28 ω2 -20
- x2 ω1 5
- 16 ω2 100
- x3 ω1 0
- 0 ω2 0

e1 R x1 ω1 40
35.2-8=27.2 32.8 18.4 ω2 -20

- x2 ω1 5
- 32.8 ω2 100
- x3 ω1 0
- 0 ω2 0
N x1 ω1 40

37.6 37.6 ω2 -20
- x2 ω1 5
- -0.8 ω2 100
- x3 ω1 0
- 0 ω2 0

e2 RR x1 ω1 40
41.5-12=29.5 53.8 6.4 ω2 -20

- x2 ω1 5
- 53.8 ω2 100
- x3 ω1 0
- 0 ω2 0

RN x1 ω1 40
34.0 34.0 ω2 -20

- x2 ω1 5
- 5.5 ω2 100
- x3 ω1 0
- 0 ω2 0

NR x1 ω1 40
40.0 40 ω2 -20

- x2 ω1 5
- -5 ω2 100
- x3 ω1 0
- 0 ω2 0

from which it can be deduced that it is more profitable to perform experiment e2

and then:

� if RR is picked up, choose x2;

� otherwise, choose x1.

The value of the information for e1 is V1 = 7.2, which is smaller than its cost,
8. By contrast, the value for e2 is V2 = 13.5, while its cost is 12.

Exercise 4

Consider the following problem with two possible alternatives (x1 and x2), three
possible states of nature (ω1, ω2 and ω3), a random experiment with four pos-
sible outcomes (y1, y2, y3 and y4) and the following benefits u (x, ω) and conjoint
probabilities π (y, ω).
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f (x, ω) ω1 ω2 ω3 π (y, ω) ω1 ω2 ω3

x1 10 20 4 y1 0.1 0.0 0.3
x2 12 3 16 y2 0.1 0.1 0.0

y3 0.1 0.0 0.1
y4 0.1 0.1 0.0

How many strategies are possible?

Solve the problem with the decision tree.

What is the value of the information provided by the experiment?

Solution

There are 24 = 16 possible strategies.

In order to build the decision tree, it is necessary to compute the conditional
probabilities π (ω|y), reported in the following table.

π (ω|y) ω1 ω2 ω3

y1 0.25 0.00 0.75
y2 0.50 0.50 0.00
y3 0.50 0.00 0.50
y4 0.50 0.50 0.00

The decision tree has the following structure:
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e y x ω1 u
- e0 - x1 ω1 10

14.8 11.8 11.8 9.6 ω2 20
- - ω3 4
- x2 ω1 12
- 11.8 ω2 3
- - ω3 16

e1 y1 x1 ω1 10
14.8 15.0 5.5 ω2 20

- - ω3 4
- x2 ω1 12
- 15.0 ω2 3
- - ω3 16
y2 x1 ω1 10

15.0 15.0 ω2 20
- - ω3 4
- x2 ω1 12
- 7.5 ω2 3
- - ω3 16
y3 x1 ω1 10

14.0 7.0 ω2 20
- - ω3 4
- x2 ω1 12
- 14.0 ω2 3
- - ω3 16
y4 x1 ω1 10

15.0 15.0 ω2 20
- - ω3 4
- x2 ω1 12
- 7.5 ω2 3
- - ω3 16

which suggests to perform the experiment and then apply strategy s11 = (x2, x1, x2, x1),
that is choosing x2 if the outcome of the experiment is y1 or y3 and choosing x1 in
the opposite case. The expected value of the benefit is 14.8.

Since the expected value when the experiment is not performed is 11.8, the value
of the experiment is V = 14.8− 11.8 = 3.0.

Exercise 5

A discrete decision problem in conditions of risk is given. There are two possible
alternatives and two states of nature. Moreover, it is possible to perform either
experiment e1, with two possible outcomes, or experiment e2, with three possible
outcomes, besides not performing any experiment (e0). The following tables rep-
resent, respectively, the benefits, the conjoint probabilities for the first experiment
and for the second experiment.

f (x, ω) ω1 ω2 π (y, ω) ω1 ω2 π (t, ω) ω1 ω2

x1 500 300 y1 0.2 0.3 t1 0.1 0.3
x2 0 600 y2 0.1 0.4 t2 0.1 0.3

t3 0.1 0.1

Solve the problem with the decision tree.
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State how many strategies are possible, based on experiment e1 or e2, and list
them.

Solution

The possible strategies are 22 = 4 for e1 and 23 = 8 for e2.

In order to build the decision tree, it is necessary to compute the conditional
probabilities π (ω|y), reported in the following tables.

π (ω|y) ω1 ω2 π (ω|t) ω1 ω2

y1 0.4 0.6 t1 0.25 0.75
y2 0.2 0.8 t2 0.25 0.75

t3 0.50 0.50

The decision tree has the following structure2:

e y x ω1 u
- e0 - x1 ω1 500

440 420 420 ? ω2 300
- x2 ω1 0
- 420 ω2 600

e1 y1 x1 ω1 500
430 380 380 ω2 300

- x2 ω1 0
- ? ω2 600
y2 x1 ω1 500

480 ? ω2 300
- x2 ω1 0
- 480 ω2 600

e2 t1 x1 ω1 500
440 450 ? ω2 300

- x2 ω1 0
- 450 ω2 600
t2 x1 ω1 500

450 ? ω2 300
- x2 ω1 0
- 450 ω2 600
t3 x1 ω1 500

400 400 ω2 300
- x2 ω1 0
- ? ω2 600

It is profitable to perform experiment e2, ammesso che il suo costo sia ≤ 10
e adottare la strategia s7 = (x2, x2, x1), che opera la scelta x2 se il risultato
dell’esperimento è t1 o t2 e la scelta x1 altrimenti.

Exercise 6

Consider the decision theory problem characterised by the benefits f (x, ω), the
absolute probabilities π (ω) and the conditional probabilities π (y|ω) reported in
the following tables.

2Some intermediate result is missing.
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f (x, ω) ω1 ω2 ω1 ω2 π (y|ω) ω1 ω2

x1 100 10 π (ω) 0.5 0.5 y1 0.8 0.4
x2 50 30 y2 0.2 0.6
x2 25 90

Solve the problem using the expected value criterium, assuming to perform the
random experiment with outcomes y1 and y2.

Solve the problem without performing the random experiment, once again with
the expected value criterium.

Compute the value V of the information associated to the experiment, motivat-
ing the answer.

Solution

There are 32 = 9 possible strategies. The best one, according to the expected value
criterium, is s3 = (x1, x3), with an expected value of the benefit equal to 71.5.

Not performing the experiment, there are only three possible solutions, respect-
ively with expected value of the benefit equal to E [f (x1)] = 55, E [f (x2)] = 40
and E [f (x3)] = 57.5, so that the best one is x3.

The value of the information provided by the experiment is V = 71.5−57.5 = 14,
given that performing the experiment allows to increase the expected value of the
benefit exactly by that amount.

Exercise 7

A decision problem in conditions of uncertainty has the following impact function,
which represents benefits

f (x, ω) ω1 ω2

x1 100 0
x2 300 -200

and the following absolute probabilities for the scenarios: π (ω) = [ 0.4 0.6 ]
′
.

The decision-maker can either directly make a choice, or make one of two ex-
periments. The relation between the outcomes of the first experiment e1 and the
states of nature is given by the conjoint probabilities π (y, ω), the relation between
the outcomes of the second experiment e2 and the states of nature is given by the
conjoint probabilities π (t, ω).

π (y, ω) ω1 ω2 π (t, ω) ω1 ω2

y1 0.30 0.20 t1 0.25 0.25
y2 0.10 0.40 t2 0.15 0.35

Solve the problem with the decision tree, deciding which experiment to perform
and which strategy to adopt.

Compute the value of the information for both experiments.

Solution

The decision tree has the following structure:
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e y x ω1 u
- e0 - x1 ω1 100

60 40 40 40 ω2 0
- x2 ω1 300
- 0 ω2 -200

e1 y1 x1 ω1 100
60 100 60 ω2 0

- x2 ω1 300
- 100 ω2 -200
y2 x1 ω1 100
20 20 ω2 0
- x2 ω1 300
- -100 ω2 -200

e2 t1 x1 ω1 100
40 50 50 ω2 0

- x2 ω1 300
- 50 ω2 -200
t2 x1 ω1 100
30 30 ω2 0
- x2 ω1 300
- -50 ω2 -200

The optimal solution consists in performing experiment e1 and adopting the
following strategy: select x2 if the outcome of the experiment is y1, select x1 if the
outcome is x1.

The value of the information for the two experiments is V1 = 60− 40 = 20 and
V2 = 40− 40 = 0, respectively.

Exercise 8

A decision problem in conditions of uncertainty has an impact function f (x, ω)
whose values correspond to benefits. It is possible to perform a random experiment
with conjoint probabilities π (x, ω). The two functions are described by the following
tables.

f (x, ω) ω1 ω2 ω3 π (y, ω) ω1 ω2 ω3

x1 -5 40 10 y1 0.30 0.05 0.15
x2 50 0 -10 y2 0.06 0.40 0.04

Solve the problem with a decision tree, using the expected value criterium.

Compute the value of the information provided by the experiment.

Solution

The absolute probabilities of the scenarios are π (ω) = [ 0.36 0.45 0.19 ]
′
. The con-

ditional probabilities with respect to the outcomes of the experiment are π (ω|y1) =
[ 0.60 0.10 0.30 ]

′
and π (ω|y2) = [ 0.12 0.80 0.08 ]

′
.

The decision tree has the following structure:
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e y x ω1 u
- e0 - x1 ω1 -5

29.6 18.1 18.1 18.1 ω2 40
ω3 10

- x2 ω1 50
- 16.1 ω2 0

ω3 -10
e1 y1 x1 ω1 -5

29.6 27.0 4.0 ω2 40
ω3 10

- x2 ω1 50
- 27.0 ω2 0

ω3 -10
y2 x1 ω1 -5

32.2 32.2 ω2 40
ω3 10

- x2 ω1 50
- 5.2 ω2 0

ω3 -10

The optimal strategy consists in performing experiment e1 and adopting the
following strategy: select x2 if the outcome of the experiment is y1, select x1 if the
outcome is x1.

The value of the information is V = 29.6− 18.1 = 11.5.
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Chapter 12

Game theory

The decision problems involving more than one decision-maker include two main
extreme cases:

1. game theory studies the situations in which each decision-maker has his/her
own decision variables, which are set independently from the other decision-
makers;

2. group decision-making studies the situations in which the decision-makers
share the same decision variables and must coordinate in order to set their
value together.

Of course, there can be intermediate cases, in which some variables derive from com-
promises among decision-makers, while other variables are fixed autonomously, but
the two extreme cases show the characteristic features that are worth investigating.

Game theory is modelled defining:

� a finite set of decision-makers D = {1, . . . , |D|};

� a feasible region given by the Cartesian product of feasible regions Xd associ-
ated with the decision-makers:

X = X(1) × . . .×X(|D|) ⇔ x =
[
x(1) . . . x(|D|) ]T

and, consequently, a decision variable vector x composed by |D| subvectors
x(d) associated with the single decision-makers and subject to constraints that
involve a single subvector at a time;

� a perfectly deterministic environment, that is a single scenario:

Ω = {ω} ⇔ |Ω| = 1

so that it is not necessary to explicitly mention the scenario ω in the model;

� a vectorial impact function composed by d one-dimensional functions associ-
ated with the decision-makers:

f =
[
f (1) . . . f (|D|) ]T con f (d) : X(d) → F (d) ⊆ R d ∈ D

325
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� a function Π defining for each decision-maker a preference relation Πd, which
trivially consists in preferring larger impacts:

Πd =
{(
f (d), f ′(d)

)
∈ F (d) × F (d) : fd ≥ f ′(d)

}
that is the impact components f (d) represent benefits, to be maximised (if it
is convenient, they can become costs, to be minimised).

A game theory problem, therefore, can be summarised in the following notation:

max f (d) = f (d)
(
x(1), . . . , x(|D|)) d ∈ D

x(d) ∈ X(d) d ∈ D

The basic point in this formalisation, that distinguishes game theory from the simple
combination of |D| Mathematical Programming problems on independent variables
and differen objective functions, is that the objective function f (d) of each decision-
maker d ∈ D not only depends on the variables x(d) controlled by the corresponding
decision-maker, but also on those controlled by the other ones. This remarkably
complicates the solution of the problem, so much so that it becomes dubious, in
some cases, whether it makes sense to talk of a solution.

Game theory adopts a terminology partially different from the one used so far
for decision problems:

� the decision-makers can also be called players;

� the impacts can also be called payoffs;

� the subvectors describing the part of solution set by each decision-maker can
also be called pure strategies: a reason for this is that games can take place
in several phases, and therefore some variables can depend on the values of
other decision variables (of the same, or other, decision-makers); we will also
discuss, however, another reason for this name, which is used also in single-
phase games;

� the whole vector describing a solution, that is the combination of strategies
adopted by all decision-makers can also be called a strategy profile;

� when a game takes place in several phases, each single value assigned to the
variables fixed in a phase is called move.

Game theory has been extended to the case of multiple criteria and uncertain
environment. We will neglect such extensions for the sake of simplicity, and also
because they often consist in combinations of the concepts already introduced to
face separately each of the three main complications of decision problems: the
multiplicity of criteria, of scenarios and of decision-makers.

It is possible to classify game theory problems based on different points of view.
The resulting classifications intersect one another, in general producing many cases
and subcases. In particular, it is possible to distinguish:

1. noncooperative games, in which the decision-makers act in a completely inde-
pendent way, based only on the data of the model;

2. cooperative games, which admit coalitions among decision-makers, constrain-
ing agreements, utility transfers among decision-makers or other similar com-
plications which introduce new elements in the model, such as decision vari-
ables specifying whether to propose or not agreements, to accept them or not,
how much utility to transfer among decision-makers in each situation, etc. . . ).
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From another point of view, it is possible to distinguish:

1. complete information games, in which each decision-maker knows the feasible
solutions and the payoffs of all decision-makers;

2. incomplete information games, in which some decision-makers do not possess
the whole information (for example, the players knows their payoffs, but not
those of the other players).

The games in which the decision process takes place in several phases along time
admit the distinction between perfect information games, in which each decision-
maker knows the moves made in the past by all players, and those in which this
does not occur. Complete and perfect information are two different situations: the
former concerns the data, the latter the moves of the players. Notice that, even when
the information is perfect, only past moves are known: those that are performed
simultaneously by the other players, in the same phase, are still unknown.

In the following, we will only consider noncooperative, complete information
games, with perfect information if the game involves several phases.

Game representations

There are two main representations of games:

1. the extended form, in which the game is represented as a tree;

2. the strategic form, in which the game is represented as a table.

This distinction closely resembles the two representations of decision problems in
conditions of uncertainty: the decision tree and the evaluation matrix. In fact, as in
that case, the distinction between the two representations is simply a matter of con-
venience: every game can be represented in both ways. However, much more than
in the problems in conditions of uncertainty, each game tends to have a natural rep-
resentation, whereas the alternative one appears to be forced and unconvenient. In
the following, we discuss in more detail the two representations, providing examples
of games in which one representation is more natural than the other.

12.1 Games in extended form

The game is described as a tree, whose structure reflects the structure of the game
itself. Every level corresponds to the choice of a player, and the arcs going out
of a node describe the possible moves in the configuration described by the node.
The sequence of levels corresponds to the time sequence of the players’ choices,
and therefore depends on the rules of the game. The single nodes of the tree are
denoted as game positions and each leaf describes one of the possible conclusions

of the game, and is associated to the vector f =
[
f (1) . . . f (|D|)]T of the impacts

determined for each player by the choices x(d) performed by all players along the
path that links the root to the leaf itself.

The extended form games with sequential moves can be analysed with the same
approach used for the decision trees. The only difference is that all levels are
controlled by players (unless the game is stochastic), and therefore it is not necessary
to model the behaviour of nature with some more or less debatable criterium (worst-
case, expected value, etc. . . ). At each level, the father node is deterministically
labelled with the best among the labels of the children nodes, where “best” must
be referred to the objective function f (d) of the player taking the choice.
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Example: the tic-tac-toe game in extended form

A simple example of extended form game is tic-tac-toe. On a board with 3 rows and
3 columns, two players put, by turns, a cross or a nought. The winner is the player
who first completes a sequence of three equal symbols, along a vertical, horizontal
or diagonal line. If the board is full and contains no winning sequence, the game
ends with a draw. Figure 12.1 shows part of the game tree for tic-tac-toe.

Figure 12.1: Game tree for tic-tac-toe

It is possible to analyse the game tree with the backward induction method,
already presented in Section 11.1 and proposed by Von Neumann and Morgenstern.
Climbing up the tree from the final game positions with the associated impacts
(cross win, nought win or draw), one labels each node with the best label from the
children nodes, where “best” refers to the impact for the player associated to the
level of the father node. So, if in a level associated to the nought player the father
node has at least one children node labelled with a nought win, it will be labelled
in the same way; otherwise, it at least one children node is labelled with a draw,
it will be labelled with a draw; finally, if all children nodes lead to a cross win, it
will be labelled with a cross win. For the levels associated to the cross player, the
complementary rules apply. In the case of tic-tac-toe, the result is that the root will
be labelled with a draw, which means that tic-tac-toe, if played rationally, always
ends up with a draw.

Example: the Marienbad game in extended form

Several rows of matches are given, each composed of ni matches. At each turn,
a player picks up any number of matches from a single row. The player picking
up the last match loses the game. Figure 12.2 shows the game tree in the very
simple case in which two rows are composed of n1 = 2 and n2 = 2 matches. The
tree has been simplified considering that, if two nodes on the same level correspond
to “symmetric” situations (that is situations in which the cardinalities of the rows
are exchanged), the following of the game, and in particular the final result, is
necessarily also the same, besides exchanging the moves:
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� the root, besides arcs (A,B) and (A,C) should also emit other two arcs going
to nodes “symmetric” with respect to the first two, in which one or two
matches are picked up from the second row;

� node 5, besides arc (E,L) would also emit another arc, going to a node in
which a single match is picked up from the second row.

Under this simplification, the game tree is not actually a tree, but a directed acyclic
graph organised into levels. On the other hand, this is just a compact representation
of a tree, that reduces the number of nodes, and consequently the time required to
study and solve the game. The reduction is similar to that obtained by dynamic
programming methods for optimisation, even if the situation is quite different.

Figure 12.2: Game tree of the Marienbad game (compacted merging equivalent
game positions) and solution with the backward induction method: every node has
an alphabetic identifier and is labelled with the current game position (n1, n2); the
arcs represent the possible moves; the arcs marked in red represent the optimal
strategies for the two players (in the root node A, player P1 has two “optimal”
strategies). If both players play rationally, P2 wins.

Figure 12.2 applies the backward induction method, showing that, if the players
are rational, the second one wins. Player P1 has two optimal strategies. Both lead
to lose, but they are the best possible one (they allow to win if P2 makes a mistake).
Indicating the single moves with the arc names:

Position
Strategy A D E F

x(1) (A,B) (D,H) (E,L) (F,M)
x′(1) (A,C) (D,H) (E,L) (F,M)

Player P2 has an optimal strategy, that allows to win the game:

Posizione
Strategy B C H L

x(2) (B,F ) (C,F ) (H,N) (L,O)

Example: the rock-paper-scissors game in extended form

Another example of extended form game is the rock-paper-scissors game, in which
the players simultaneously choose a symbol among rock, paper and scissors. Fig-
ure 12.3 shows the game tree of this game. The basic difference with respect to the
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previous game is that the moves are simultaneous, so that the order between the
two levels is arbitrary and the second player has an imperfect information, that is
he/she does not know in which branch of the tree the current node is. In the figure,
this is represented by the subset including nodes B, C and D. This complications
forbids to solve the game with backward induction, because the strategy suggested
by this method provides the move to perform as a function of the exact position
in which the player is, indicating three different moves for the three nodes of set
{B,C,D}. In order to solve the game in extended form, it is necessary to represent
the incompleteness of information. This is done partitioning the game tree into sub-
sets of nodes belonging to the same level. The player associated to that level known
that he/she is in the subset, but not in which node. Consequently, the strategies
must be expressed not as functions indicating a move for each given node, but as
functions indicating a move for each given subset.

Definition 49 We denote as information set each subset of nodes in a level of a
game tree among which the player associated to that level is unable to discriminate.

Figure 12.3: Game tree for rock-paper-scissors game: player P2 seems to be the
winner, but in practice the player is unable to apply the winning strategy, because
he/she does not know whether the current node is B, C or D; for the same reason, if
the game level are exchanged, player P1 would deceivingly appear to be the winner.

12.2 Games in strategic form

Games in strategic form are represented by a |D|-dimension matrix reporting in
each cell the payoffs gained by each decision-maker in the strategy profile (that is,
the combination of strategies played by the single decision-makers) identified by the
cell. If the player are two, they are usually denoted as row player and column player :
the strategies of the former correspond to the rows of the matrix, the strategies of
the latter to the columns.

Example: the rock-paper-scissors game in strategic form

Table 12.1 reports the rock-paper-scissors game in strategic form. There are two
player, and each of them has three available pure strategies: rock, paper and scissors.
Paper prevails on rock, rock on scissors and scissors on paper. The payoff is 1 in
case of win, 0 in case of draw and −1 in case of loss. For example, if the first player
chooses “paper” and the second “rock”, the payoff of the first player is 1 and that
of the second is −1.

This representation makes it evident that there is no winning strategy, since no
row or column contains only winning impacts for one of the two players.
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Paper Scissors Rock
Paper (0, 0) (−1, 1) (1,−1)

Scissors (1,−1) (0, 0) (−1, 1)
Rock (−1, 1) (1,−1) (0, 0)

Table 12.1: Payoff table for the rock-paper-scissors game

Example: the Marienbad game in strategic form

In order to build the payoff table, it is necessary to clarify the meaning of the rows
and columns of the matrix: they represent strategies, that is not single choices, but
functions suggesting to the decision-maker which move to perform in every situation
in which a decision is required, that is functions providing for each node associated
to a decision-maker the arc going out of that node which must be selected. A
strategy, therefore, can be defined in terms of subsets of arcs in the game tree.

Definition 50 A strategy for player d ∈ D corresponds to a consistent maximal
subset of arcs in the game tree going out of nodes associated to the player, where:

� consistent means it includes no more than one arc going out of each node;

� maximal means that it includes at least one arc going out of each node (provided
that the node has outgoing arcs).

A strategy for a player, in fact, describes moves of the player, prescribes a
single move to perform and provides an indication for each possible situation. For
example, referring to the game tree of Marienbad game represented in Figure 12.2,
arc (B,F ) cannot belong to any strategy of player P1, because it describes a move
of player P2. As well, arcs (A,B) and (A,C) are inconsistent, because they denote
alternative moves starting from position A. Finally, subset {(A,B) , (E,L)} is not
a complete strategy, because it does not specify what to do in node D.

Notice that this definition of strategy can be redundant, because the subsets
also contain:

� forced choices (for example, arc (E,L) is the only outgoing arc for node E, so
that it appears redundant to specify it explicitly in any strategy);

� impossible choices (for example, strategy {(A,C) , (D, I) , (E,L) , (F,M)} con-
tains arcs (D, I) and (E,L), that it will never be possible to choose once move
(A,C) is performed.

Now, we list the strategies for the restricted Marienbad game. Player P1 has 5
nodes associated to decisions: {A,D,E, F,G}. Nodes N and O, in fact, belong to a
level associated to player P1, but has no outgoing arc: it is a final configuration, not
associated to any decision. The possible strategies for player P1 are the maximal
consistent subsets of arcs associated with P1, that is:

S1 {(A,B) , (D,H) , (E,L) , (F,M)},

S2 {(A,B) , (D, I) , (E,L) , (F,M)},

S3 {(A,C) , (D,H) , (E,L) , (F,M)},

S4 {(A,C) , (D, I) , (E,L) , (F,M)}.
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Remark that three arcs appear everywhere, since they describe forced choices. In
the following, we will neglect them, for the sake of simplicity. On the other hand,
the strategies {(A,C) , (D,H)} and {(A,C) , (D, I)} differ for an arc that represents
an impossible choice. Therefore, the two strategies are in fact identical. We will
merge them into a single strategy, denoted for the sake of simplicity as {(A,C)}.
Player P2 takes decisions in nodes {B,C,H,L}, since nodes I and M represent
final configurations. This implies the following strategies:

S1 {(B,D) , (C,F ) , (H,N) , (L,O)},

S2 {(B,D) , (C,G) , (H,N) , (L,O)},

S3 {(B,E) , (C,F ) , (H,N) , (L,O)},

S4 {(B,E) , (C,G) , (H,N) , (L,O)},

S5 {(B,F ) , (C,F ) , (H,N) , (L,O)},

S6 {(B,F ) , (C,G) , (H,N) , (L,O)}.

For the sake of simplicity, in the following we will neglect arcs (H,L) and (L,O),
which describe forced choices and appear in all strategies. The payoff matrix is
reported in Table 12.2. It is evident that the column player (P2) can always win
with the strategy {(B,F ) , (C,F )}, whatever strategy is adopted by the row player
(P1fs). The row player, on the contrary, has not this possibility: all strategies lead
to win or lose based on the choices of the adversary.

{(B,D) , {(B,D) , {(B,E) , {(B,E) , {(B,F ) , {(B,F ) ,
(C,F )} (C,G)} (C,F )} (C,G)} (C,F )} (C,G)}

{(A,B) , (D,H)} (1,-1) (1,-1) (1,-1) (1,-1) (-1,1) (-1,1)
{(A,B) , (D, I)} (-1,1) (-1,1) (1,-1) (1,-1) (-1,1) (-1,1)

{(A,C)} (-1,1) (1,-1) (-1,1) (1,-1) (-1,1) (1,-1)

Table 12.2: Payoff matrix for the Marienbad game in strategic form

12.2.1 Dominance between strategies

Definition 51 Given two strategies x(d) e x′(d) for player d, we say that x(d) dom-
inates x′(d) when

f (d)(x(1), . . . , x(d), . . . , x(|D|)) ≥ f (d)(x(1), . . . , x′(d), . . . , x(|D|))

for all x(j) ∈ X(j), j ∈ D \ {d}.

This means that, for any possible behaviour of the other players j 6= d, strategy
x(d) yields a better impact than strategy x′(d) for player d. Since the all players are
assumed to be rational, that is to have a preference relation that maximises their
own payoff, the dominated strategy will never be chosen.

Example 78 Consider the following payoff matrix for a game with |D| = 2 players.

1 2 3
1 (4,5) (5,0) (5,2)
2 (2,6) (9,1) (3,2)
3 (3,2) (2,8) (6,0)
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With respect to the column player, the third column is evidently a strategy dom-
inated by the first one. In fact, it offers payoffs equal to 2, 2 and 0, according to
the strategy chosen by the row player and each of these payoffs is worse than those
offered by the first column (5, 6 and 2). Both players know this, and therefore can
remove the dominated column.

1 2
1 (4,5) (5,0)
2 (2,6) (9,1)
3 (3,2) (2,8)

As well, with respect to the row player, the third row is dominated by the first
one (payoffs equal to 3 and 2, versus 4 and 5), per cui si può togliere. Notice that
this dominance did not exist at the beginning, because the third column contained
a gain equal to 6 versus 5. But the strategy must be removed anyway, because it is
winning only under the assumption that the adversary play a dominated strategy,
which we can exclude a priori. One could talk of a “hidden dominance”.

1 2
1 (4,5) (5,0)
2 (2,6) (9,1)

Now, the second column is dominated by the first one (this dominance was pre-
viously hidden, too), and therefore can be removed: the column player can only
rationally apply the first strategy.

1
1 (4,5)
2 (2,6)

This means that the row player will apply the first strategy:

1
1 (4,5)

The subsequent removal of dominated strategies is a method to simplify the
game: it does not always yield a single strategy for both players.

Example: dominance in continuous games

Let us consider an example of game with continuous feasible regions: even if it is
no longer possible to apply the matrix representation, the basic concepts still apply.
Let us suppose that two individuals have different preferences on the temperature of
a room: player 1 would prefer a temperature of 22 degrees, player 2 a temperature
of 20 degrees. Assume that player 1 can tune the room’s thermostat, setting it on
a value between 16 and 26 degrees, while player 2 can operate a window, modifying
its opening degree in a continuous way between the extreme states “closed window”
and “wide open window”. Of course, the physical model of the way in which the two
control variables interact is complex, and involves many other data and quantities,
among which some unknown values. Let us simplify the model, assuming that

T (x1, x2) = (x1 − 5x2)

where x1 is the temperature set on the thermostat by player 1 and x2 is the fraction
of opening of the window set by player 2. Moreover, let us assume that for both
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players the discomfort be measured by the difference between the actual temperat-
ure and the desired one. The problem becomes:

min
x1

f (1) = (T (x1, x2)− 22)
2

min
x2

f (2) = (T (x1, x2)− 20)
2

x1 ∈ [16; 26]

x2 ∈ [0; 1]

Let us compare two strategies for player 1: x1 = 22 and x1 = x̄1 < 22. In
other words, we are wondering whether it would make sense for player 1 to set a
temperature lower than 22 degrees. The intuitive answer is that, since the adversary
can only decrease the temperature, it makes no sense for player 1 to set values lower
than his/her optimum. In fact:

T (x̄1, x2) < T (22, x2) ≤ 22⇒ f (1) (x̄1, x2) > f (1) (22, x2)

for every x2 ∈ X(2) = [0; 1]. Notice that the components of the impact here are
costs, so that the definition of dominated strategy is exactly complementary the
one given in Definition 51. Thus, strategy x̄1 is dominated for any value x̄1 < 22.
This means that player 1 will never set the thermostat to values < 22 degreesm and
that it is possible to reduce X(1) to [22; 26].

Correspondingly, player 2 can use this information to exclude dominated strategies.
We can compare strategy x2 = 0.4 and strategy x2 = x̄2 < 0.4. Since player 1 will
always set the thermostat to values ≥ 22 degrees, player 2 has an advantage in
always opening the window enough to let the temperature decrease by at least 2
degrees. In fact:

T (x1, x̄2) > T (x1, 0.4) ≥ 20⇒ f (2) (x1, x̄2) > f (2) (x1, 0.4)

for every x1 ∈ X(1) = [22; 26]. Thus, the strategy x̄2 is dominated for any value
x̄2 < 0.4. This means that player 2 will never open the window less than 0.4, and
that it is possible to reduce X(2) to [0.4; 1].

Now, we can go back to analyse the strategies of player 1, who knows that the
window will never be kept close. Therefore, it is adviceable to set a temperature
larger than the one which would be optimal in the case of closed window. With a
derivation similar to the one made above, it can be proved that it does not make
sense to set a temperature lower than 24 degrees. Going back to the second player,
this implies that it is adviceable for him/her to open the window at least by a
factor of 0.8. Consequently, player 1 should set the thermostat to the maximum
temperature, that is 26 degrees. Now, the only possibility for player 2 is to open the
window completely. Both players, therefore, have a single nondominated strategy:

x∗1 = 26 x∗2 = 1.0

This pair of strategies leads to a temperature equal to T = 21 gradi, which corres-
ponds to a cost equal to f (1) = f (2) = 1 for both players. An interesting remark is
that the same result could be obtained by setting the thermostat to 21 degrees and
keeping the window close (x∗1 = 21 e x∗2 = 0.0). On the other hand, this solution
would induce each of the two players to operate on his/her variable in order to
improve the payoff, since the temperature is too low for the former and too high for
the latter. The solution found above has the same defect but does not induce the
players to change the decision, because each of them has already pushed his/her
own variable to the extreme.
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12.2.2 Equilibrium

Definition 52 We denote a strategy profile
(
x∗(1), . . . , x∗|D|

)
∈ X as an equilib-

rium point, or Nash equilibrium, when

f (d)(x∗(1), . . . , x∗(d), . . . , x∗(|D|)) ≥ f (d)(x∗(1), . . . , x(d), . . . , x∗(|D|))

for any d ∈ D,x(d) ∈ X(d).

The concept of equilibrium has been investigated by Nash1. The intuitive mean-
ing of the definition is that every player moving away from an equilibrium point
ends up by damaging himself/herself, if all other players choose to keep their current
strategies.

Notice the differences and the similiarities with the definition of dominant strategy:
here a strategy of player d is compared with all the other ones (instead of a single
one), but the combination of strategies of all other players is fixed (instead of con-
sidering all possible combinations of strategies). On the one hand, the definition is
tighter, on the other hand it is looser. Since an equilibrium cannot be dominated,
in the (rare) case in which dominance allows to remove all strategies but one, this
is necessarily an equilibrium strategy. In general, however, the removal of domin-
ated strategies will leave several residual strategies, and their combinations will not
always be an equilibrium point.

Methods to determine Nash equilibria

A Nash equilibrium in a finite game in strategic form corresponds to a cell of the
payoff matrix. In order to find the Nash equilibria, it is possible to use the best
response method, which consists in:

� marking in each column the best payoff for the row player;

� marking in each row the best payoff for the column player

A cell whose payoffs are all marked is a Nash equilibrium.

Table 12.3 provides an example in which the only Nash equilibrium is cell (3, 1).
Notice that this game has no dominated strategy. If each player assumes that the
other one will not change strategy, the strategy profile (3, 1) is preserved, because
it is the best in the whole row for the column payoff, and the best in the whole
column for the row payoffs.

1 2 3

1 (4, 3̄) (5, 1) (6̄, 2)

2 (2, 1) (8, 4̄) (3, 3)

3 (5̄, 9̄) (9̄, 6) (2, 8)

Table 12.3: A payoff matrix with a Nash equilibrium in position (3, 1)

An equivalent method to find Nash equilibria is the arrow method, in which one
draws from each cell an arrow to the best cell in the column with respect to the row
payoffs and an arrow to the best cell in the row with respect to the column payoffs.
The Nash equilibria are the cells with only ingoing arrows.

A game can admit no Nash equilibrium, or several Nash equilibria.

1John Forbes Nash (1928-2015), American mathematician, winner of the Nobel Prize for Eco-
nomy in 1994.
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Example 79 The rock-paper-scissors game represented in Table 12.4 with the cor-
responding markings has no equilibria.

Paper Scissors Rock

Paper (0, 0) (−1, 1̄) (1̄,−1)

Scissors (1̄,−1) (0, 0) (−1, 1̄)

Rock (−1, 1̄) (1̄,−1) (0, 0)

Table 12.4: Payoff matrix for the rock-paper-scissors game with the markings: there
is no equilibrium point, that is no cell completely marked

Table 12.5 reports an example of game with multiple equilibria: both cell (1, 1)
and cell (3, 2) are Nash equilibria.

1 2 3

1
(
15, 11

)
(4, 1)

(
6, 5
)

2
(
10, 4

)
(7, 2) (3, 1)

3 (3, 6)
(
12, 8

)
(5, 3)

Table 12.5: Payoff table with markings for a game with multiple Nash equilibria in
positions (1, 1) e (3, 2)

12.3 The worst-case strategy

How can a player choose the correct strategy when the backward induction method
does not provide a single solution? The problem is similar to what happened in the
programming in conditions of ignorance. The main difference is that each player
does not face nature, but another rational player. In spite of that, it is not at all
obvious which choice should be expected from the adversary, because the latter,
on its turn, will analyse the situation and adapt his/her own decision to the one
expected from the first player, who will think in the same way, and so on.

A simplifying approach drawn from the programming in conditions of ignorance
is the worst-case criterium: each player determines, for each possible strategy, the
strategy of the adversary that would generate the worst result for himself/herself.
Then, the player chooses the strategy that, under this assumption, guarantees the
best payoff. This approach in general does not provide the best performance, but
only the safest performance: in general the outcome of the game will be better
than the predicted one, given that perhaps the adversary will not choose exactly
the most damaging strategy.

Definition 53 We denote as value of the game for player d the maximum payoff
that can be obtained by player d in the worst case, that is the best possible guarantee
on the performance of d:

u(d) = max
x(d)∈X(d)

min
x(j)∈X(j),∀j 6=d

f (d)
(
x(1), . . . , x(|D|))

In detail, the definition evaluates for each strategy x(d) the worst possible result
for player d with respect to the strategies adopted by the other players, that is the
minimum payoff f (d) with respect to the strategies x(j) of all players j 6= d.
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We will in particular discuss the case of the games with |D| = 2 players: player
d = 1 is denoted as row player and player d = 2 is denoted as column player: we
will use indices (r) and (c), instead of (1) and (2). The value of the game for the
two players is defined as:

u(r) = max
x(r)∈X(r)

min
x(c)∈X(c)

f (r)
(
x(r), x(c)

)
u(c) = max

x(c)∈X(c)
min

x(r)∈X(r)
f (c)

(
x(r), x(c)

)
In general, these two values are completely unrelated, because they derive from
different and independent functions. We shall see, however, that for some special
games, they are strictly related.

Example 80 Let us apply the worst-case strategy to the example of Table 12.3.
The results are reported in Table 12.6: for every row, we evaluate the minimum of
payoff f (r) for each row, and the minimum of payoff f (c) for each column.

(f (r), f (c)) 1 2 3 min f (r)

1 (4,3) (5,1) (6,2) 4
2 (2,1) (8,4) (3,3) 2
3 (5,9) (9,6) (2,8) 2

min f (c) 1 1 2

Table 12.6: Application of the worst-case criterium

Hence, u(r) = 4 and u(c) = 2: applying the worst-case criterium, the row player
wins at least 4, whatever strategy the column player adopts; applying the worst-case
criterium, the column player wins at least 2, whatever strategy the row player adopts.
In particular, if both follow this criterium, the former gains 6 and the latter gains
2. In general, the gains could coincide with the values of the game or be larger. In
the present case, one of the two players gains the minimum guaranteed payoff, the
other one a value strictly higher.

The profile xworst = (1, 3) generated by the worst-case criterium is not an equlib-
rium point: if the game were repeated, each of the two players would have an in-
centive to choose a different strategy. Of course, following that incentive, the player
would lose the guarantee about the worst possible performance. If the profile had
been an equilibrium point, the two players would have no incentive to modify their
choices.
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Chapter 13

Zero-sum games

A fundamental aspect in games is the overall utility distributed to the players (i. e.,
the sum of the payoffs on the players) and the way in which it is distributed in
the different strategy profiles. A particularly important case is provided by the
zero-sum games.

Definition 54 We denote as zero-sum game a game in which the overall utility of
the game is zero for every strategy profile:∑

d∈D

f (d)
(
x(1), . . . , x(|D|)) = 0 for all (x(1), . . . , x(|D|)) ∈ X

Notice that changing the scale of the game payoffs (unit of measure and offset),
that is applying a linear transformation f ′ = af + b with a > 0 and any b, modifies
neither the dominances nor the equilibria of the game. All games with a uniform
sum

∑
d∈D f

′ (x) = b|D| must therefore be considered as zero-sum games.

In the zero-sum games with two players, the win of one equals the loss of the
other. Consequently, the payoff matrix of the column player is opposite to that of
the row player, and it is redundant to specify it. Table 13.1 considers the case of
a two-player zero-sum game in which both players have two strategies: on the left
side, the complete representation with the payoffs of both players; on the right side,
the compact one, with the payoffs only of the row player. The game has only 4
indipendent impacts, instead of 8.

1 2 1 2
1 (a,-a) (c,-c) 1 a c
2 (b,-b) (d,-d) 2 b d

Table 13.1: A two-player zero-sum game, represented in a complete way on the left,
in a compact way on the right

Let us briefly review how the fundamental concepts exposed in the previous
chapter change, with respect to the strategic form, if one considers two-player zero-
sum games.

13.1 Dominated strategies

Dominance is defined as usual for the row player: a row strategy dominates another
one when the corresponding row has higher values, element by element. For the

339
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column player, on the contrary, the values reported in the table represent costs, so
that a column strategy dominates another one when the corresponding column has
lower values, element by element.

Example 81 Figure 13.1 reports three sample games. The one with matrix F1

has no dominated row strategies, whereas the first column dominates the second
(therefore, one can remove the second column, and, a posteriori, conclude that the
row player will certainly choose the second strategy). In matrix F2, the third strategy
of the row player dominates the other two, as it is characterised by larger gains; for
the column player, the third strategy dominates the other two, as it is characterised
by smaller losses. Finally, in matrix F3 the first row is dominated, whereas there are
no dominated columns; once the first row is removed, the third column is dominated
by the second one; once also the third column is removed, the resulting matrix has
no dominances.

F1 =

[
−2 3
−1 1

]
F2 =

 2 1 1
−1 0 −1

3 1 1

 F3 =

 −1 0 −1
1 2 3
2 −1 −1


Figure 13.1: Three sample two-player zero-sum games

13.2 Equilibria

Definition 55 In a two-person zero-sum game, the strategy profile (x∗(r), x∗(c)) is
an equilibrium point if and only if cell (r, c) is a saddle point of the payoff matrix:
a point of maximum for column c and of minimum for row r:{

frc ≥ fic for all i ∈ X(r)

frc ≤ frj for all j ∈ X(c)

Example 82 Considering again the three examples of Figure 13.1, matrix F1 ad-
mits the saddle point (2, 1) with f21 = −1. Matrix F2 has four saddle points, that
are all the elements of value 1. Finally, matrix F3 has no saddle point.

13.3 Value of the game

In two-player zero-sum games, the worst-case assumption is more reasonable than
in other games, because the impact on the two players are always exactly opposite,
and therefore the worst-case for a player coincides with the best one for the other.
It is natural to assume that the adversary will play so as to provoke the maximum
damage, and that the worst-case criterium will be a useful guide.

The concept of value of the game for each of the two players, that is of best
possible guarantee on the result, is defined as usual for the row player:

u(r) = max
i∈X(r)

min
j∈X(c)

fij

whereas the definition for the column player is:

max
j∈X(c)

min
i∈X(r)

(−fij) = max
j∈X(c)

(
− max
i∈X(r)

fij
)

= − min
j∈X(c)

max
i∈X(r)

fij
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By convention, in the two-player zero-sum games, the sign in the definition of the
value of the game is reversed for the column player:

u(c) = min
j∈X(c)

max
i∈X(r)

fij

With this convention, the value of the game does no longer describe a minimum
guaranteed gain, but a maximum guaranteed loss: the column player does not
maximise the gain, but minimises the loss.

While in general the value of the game for a player has no relation with the
value of the game for the other players, in the two-player zero-sum games the two
values are strictly related by the following theorem, which admits a generalisation
even more interesting, as we shall see.

Theorem 24 Given a two-player zero-sum game, if u(r) is the value of the game
for the row player and u(c) is the value of the game for the colum player:

1. u(r) ≤ u(c);

2. u(r) = u(c) if and only if the game has at least a Nash equilibrium, that is the
payoff matrix F has a saddle point.

The theorem states that the minimum guaranteed gain for the row player cannot
exceed the maximum guaranteed loss for the column player. The reason is rather
intuitive, given that they are two limits, a lower and an upper bound, on the same
(unknown) quantity that is transferred from one player to the other. In general,
the two bounds do not coincide, because each player could have a result better than
the guaranteed one: a larger gain, or a smaller loss. If F has no saddle point, the
game does not admit equilibria: in any situation, at least one of the players has
an incentive to change strategy, in order to improve the result (assuming that the
adversary will keep the same strategy). On the other hand, if and only if F has
a saddle point, the choice produced by the worst-case criterium are consistent and
lead to the equilibrium that corresponds to the saddle point. In that case, the value
of the game is the same for the two players, and this is denoted as value of the
game without any further specification. It is the maximum utility obtainable by
both players. This also means that, if there is more than one equilibrium, or saddle
point, all of them have the same value.

F1 =

[
−2 3
−1 1

]
F2 =

[
−2 −3

0 3

]
F3 =

 2 −3
0 2
−5 10


Figure 13.2: Three sample two-person zero-sum games

Example 83 Figure 13.2 reports other three samples of two-person zero-sum games.
In the first game, the worst-case for the row player corresponds to the minimum pay-
off on each row, that is −2 and −1, and the best strategy is the second one, which
implies u(r)(F1) = −1. For the column player, the worst-case corresponds to the
maximum loss on each column, that is −1 and 3, and the best strategy is the first
one, which implies u(c)(F1) = −1.

In the second game, the worst-case for the row player corresponds to the min-
imum payoff on each row, that is −3 and 0, and the best strategy is the second,
which implies u(r)(F2) = 0. For the column player, the worst-case corresponds to
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the maximum loss on each column, that is 0 and 3, and the best strategy is the first,
which implies u(c)(F2) = 0.

Finally, in the third game, the worst-case for the row player corresponds to
the minimum payoff on each row, that is −3, 0 and −5, and the best strategy is
the second, which implies u(r)(F3) = 0. For the column player, the worst-case
corresponds to the maximum loss on each column, that is 2 and 10, and the best
strategy is the first, which implies u(c)(F3) = 2.

In the first two games, the strategy profiles suggested by the worst-case criterium
are equilibria, whereas in the third one there is no equilibrium, and any given strategy
profile gives to at least one player an incentive to change strategy.

13.4 Mixed strategies

If the game is played several times in sequence, it is licit for the players to change
the strategy adopted in each round. In this situation, the decision variable for each
player has no longer a finite feasible region, but a continuous set, corresponding to
the frequency with which the player should choose each basic alternative. These
combinations of frequencies are denoted as mixed strategies, which explains why the
basic alternatives of the game are denoted as pure strategies.

This model also describes the situation in which the same game is played in
parallel by two teams of players, and the players of each team can adopt different
strategies. As well, the same model describes the situation in which two players
play a single round, and each selects an alternative with a random extraction, after
deciding the probabilities of the single alternatives available. In all these cases, the
utility of the players becomes a random variable, and the purpose of the game for
the row player is to maximise the expected value of the gain, while the purpose for
the column player is to minimise the expected value of the loss.

Definition 56 We denote as mixed strategy for a player a probability vector

ξ = [ξ, . . . , ξn]
′ ∈ Ξ =

{
ξ ∈ Rn :

n∑
i=1

ξi = 1 and ξi ≥ 0 for all i = 1, . . . , n

}
where n is the number or pure strategies available for the player.

In a two-player game, the row player has a setX(r) of n(r) =
∣∣X(r)

∣∣ possibles pure

strategies, the column player a set X(c) of n(c) =
∣∣X(c)

∣∣ possibles pure strategies.
Combining them with suitable probabilities, they can obtain the mixed strategies
ξ(r) ∈ Ξ(r) e ξ(c) ∈ Ξ(c). Determining the expected impact for the two players is
easy: the expected gain for the former is equal to the expected loss for the latter and
can be obtained by summing on each combination of outcomes (i, j) ∈ Ξ(r) × Ξ(c)

the product of the gain fij times the probability ξ
(r)
i ξ

(c)
j associated to the specific

combination.

Definition 57 Given a two-person zero-sum game F and two strategies ξ(r) and
ξ(c), we denote as expected value of the game the expected value of the gain for the
row player and of the loss for the column player.

v (F ) = E
[
f
(
ξ(r), ξ(c)

)]
=

n(r)∑
i=1

n(c)∑
j=1

ξ
(r)
i ξ

(c)
j fij
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If the two players adopt the worst-case criterium, the row player aims to max-
imise the minimum of the expected value with respect to the strategies of the
adversary, whereas the column player aims to minimise the maximum of the ex-
pected value with respect to the strategies of the adversary. Both operate on the
respective probability vectors ξ(r) and ξ(c), instead of simply choosing one of the
pure strategies.

Definition 58 We denote as expected value of the game for the row player the
optimal expected value of the gain in the worst case:

v(r) (F ) = max
ξ(r)∈Ξ(r)

min
ξ(c)∈Ξ(c)

E
[
f
(
ξ(r), ξ(c)

)]
and as expected value of the game for the column player the optimal expected value
of the loss in the worst case:

v(c) (F ) = min
ξ(c)∈Ξ(c)

max
ξ(r)∈Ξ(r)

E
[
f
(
ξ(r), ξ(c)

)]
Notice that these values do not coincide with the values u(r) e u(c) introduced in

Definition 53 of Section 12.3, as they refer to pure strategies, whereas these refer to
mixed strategies. Technically speaking, the problems which define these expected
values are nothing else than continuous relaxations of the corresponding problems
which define the value of the game with respect to pure strategies. In fact, a pure
strategy is a special case of mixed strategy in which a probability is equal to 1 and
the others are equal to zero. The objective function is the same, the constraints
imposing nonnegative values and a sum equal to 1 are the same, but a pure strategy
also respects an integrality constraints. The relation between u and v is not obvious,
because in the second case both players have more choices: on the one hand, each
player has more chances to improve his/her own result, on the other hand, also the
chances to be damaged by the adversary are much larger.

13.5 Von Neumann’s minimax theorem

For both players, however, the advantage of using mixed strategies prevails on the
disadvantage of facing a mixed strategy. This depends on the following important
remark, that allowed Von Neumann to prove a fundamental theorem on zero-sum
games.

Proposition 2 Whatever mixed strategy a player adopts, the worst-case corres-
ponds to the application of a pure strategy by the adversary. Consequently, the
expected value of the game for the row player can be expressed as:

v(r) (F ) = max
ξ(r)∈Ξ(r)

min
j∈X(c)

E
[
f·j
(
ξ(r)
)]

with E
[
f·j
(
ξ(r)
)]

=

n(r)∑
i=1

ξ
(r)
i fij

and the expected value of the game for the column player as:

v(c) (F ) = min
ξ(c)∈Ξ(c)

max
i∈X(r)

E
[
fi·
(
ξ(c)
)]

with E
[
fi·
(
ξ(c)
)]

=

n(c)∑
j=1

ξ
(c)
j fij

Proof. Consider the case of the row player. For a fixed strategy ξ(r), the payoff in
the worst case will be:

φ
(
ξ(r)
)

= min
ξ(c)∈Ξ(c)

n(r)∑
i=1

n(c)∑
j=1

ξ
(r)
i ξ

(c)
j fij = min

ξ(c)∈Ξ(c)

n(c)∑
j=1

n(r)∑
i=1

ξ
(r)
i fij

 ξ
(c)
j
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where the term in round parenthesis is a vector of constant coefficients with index

j, given that the probabilities ξ
(r)
i that define the mixed strategy adopted by the

row player are fixed. Also notice that each of those coefficients is the expected value
of the corresponding column in the payoff matrix:

n(r)∑
i=1

ξ
(r)
i fij = E

[
f·j
(
ξ(r)
)]

that is the expected value of the payoff obtained by the row player against each of
the pure strategies of the column player.

Now let us determine the worst case with respect to the strategy ξ(r) that we
have fixed. In order to do that, one must solve the optimisation problem:

φ
(
ξ(r)
)

= min
ξ(c)∈Ξ(c)

n(c)∑
j=1

E
[
f·j
(
ξ(r)
)]
ξ

(c)
j

n(c)∑
j=1

ξ
(c)
j = 1

ξ
(c)
j ≥ 0

This problem consists in minimising a convex combination of n(c) numbers. Ths
optimal solution of this problem is trivially the minimum of those numbers:

ξ
◦(c)
j

(
ξ(r)
)

=

1 for j = arg min
j∈X(c)

E
[
f·j
(
ξ(r)
)]

0 otherwise

which consists in determining the worst impact and fixing to 1 the probability of
the adversary strategy that produces it. The corresponding value is:

φ
(
ξ(r)
)

= min
j∈X(c)

E
[
f·j
(
ξ(r)
)]

Now, the value of the game for the row player is obtained fixing the mixed strategy
that maximises φ

(
ξ(r)
)
, which implies the thesis. With the same process, one

obtains the value of the game for the column player.

This proposition shows that, assuming the prudential point of view of the worst-
case criterium, one should give for granted that the adversary will behave in a
deterministic way, selecting the pure strategy that is most damaging for the chosen
mixed strategy, instead of a stochastic way, selecting a combination of strategies. In
fact, if a pure strategy is more damaging than the other ones, even if the adversary
could soften it combining it with the latter, in a worst-case perspective it would not
make sense to do that.

The minimax theorem

Theorem 25 For any two-person zero-sum finite game, the expected values of the
game for the row and the column player are equal. Moreover, there exists a pair of
mixed strategies

(
ξ∗(r), ξ∗(c)

)
∈ Ξ(r) × Ξ(c) such that

v(r) = v(c) = E
[
f
(
ξ∗(r), ξ∗(c)

)]



13.5 Von Neumann’s minimax theorem 345

These two strategies are optimal for the players, that is

v(r) = min
ξ(c)∈Ξ(c)

E
[
f
(
ξ∗(r), ξ(c)

)]
v(c) = max

ξ(r)∈Ξ(r)
E
[
f
(
ξ(r), ξ∗(c)

)]

Proof. We will prove this theorem exploiting the relation that links the theory of
zero-sum games and the theory of duality in Linear Programming. First consider
the point of view of the row player. This player defines the probability vector ξ(r)

which defines his/her mixed strategy so as to maximise the expected utility in the
worst-case. From a mathematical point of view, this problem can be represented as

a maximisation problem in the decision variables ξ
(r)
i (i = 1, . . . , n(r)):

maxφ
(
ξ(r)
)

n(r)∑
i=1

ξ
(r)
i = 1

ξ
(r)
i ≥ 0 i = 1, . . . , n(c)

with φ
(
ξ(r)
)

= min
j∈X(c)

n(r)∑
i=1

fijξ
(r)
i .

This problem has linear constraints on variables ξ
(r)
i , but the objective function

is nonlinear, because it includes the minimisation operator (min). However, it is
possible to linearise the problem with a simple trick. First, add a new variable v
that describes the utility in the worst case. Then, impose that v does not exceed

none of the terms
∑n(r)

i=1 fijξ
(r)
i . In this way, v could be smaller than all those terms,

but since the objective function tends to maximise v, in any optimal solution at least
one of the inequalities will be an equality, that is, v will be equal to the minimum
term.

In this way, one obtains an equivalent Linear Programming problem (both the
constraints and the objective function are linear):

max
v,ξ(r)

φ
(
v, ξ(r)

)
= v

n(r)∑
i=1

ξ
(r)
i = 1

v −
n(r)∑
i=1

fijξ
(r)
i ≤ 0 j = 1, . . . , n(c)

ξ
(r)
i ≥ 0 i = 1, . . . , n(r)

The problem for the column player is similar, except that we must minimise a
loss. Applying a similar trick to linearise the objective function, in order to remove
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a maximisation operator (max):

min
w,ξ(c)

ψ
(
w, ξ(c)

)
= w

n(c)∑
j=1

ξ
(c)
j = 1

w −
n(c)∑
j=1

fijξ
(c)
j ≥ 0 i = 1, . . . , n(r)

ξ
(c)
j ≥ 0 j = 1, . . . , n(c)

The two problems are reciprocally dual, as:

1. one is a maximisation problem and the other is a minimisation problem;

2. the objective coefficient vector of each problem of one problem is the right-
hand-side vector of the other: both consist of a 1 accompanied by a series
of 0;

3. the coefficient matrix of each problem is equal to the transpose of the matrix of
the other problem: the first row consists of a 0 and a series of 1, the following
ones by a 1 and the coefficients fij with a reversed sign; since one of the sums
is performed on index i and the other on index j, the constraints in one of the
two problems scan a column of matrix F and those in the other a row.

The theory of duality in Linear Programming guarantees that both problems have
an optimal solution, and that the values of the two optima are the same, that is the
maximum the row player can gain is equal to the minimum that column player can
lose. This is exactly the statement of the thesis.

Von Neumann’s minimax theorem has three main consequences:

1. the mixed strategies offer to both players better guarantees with respect to
the pure strategies1. Trivially, since the pure strategies are special cases of
mixed strategies in which one has probability 1 and the other probability 0,
the mixed strategies cannot perform worse.

2. the optimal mixed strategies have the same value for the two players, and give
rise to a (mixed) equilibrium, that is better than the values of the game for
the pure strategies:

u(r) ≤ v(r) = E
[
f
(
ξ◦(r), ξ◦(c)

)]
= v(c) ≤ u(c)

3. if the game has a saddle point frc, then an optimal mixed strategy profile
coincides with the pure strategy profile in which the players choose the row
and the column associated to the saddle2:

∃ saddle point x◦ =
(
x◦(r), y◦(r)

)
⇒


ξ
◦(r)
i ∈ {0, 1} for i ∈ X(r)

ξ
◦(c)
j ∈ {0, 1} for j ∈ X(c)

u(r) = v(r) = v(c) = u(c)

1It is true that the guarantee provided by the pure strategies is deterministic, whereas that
provided by the mixed strategies concerns the expected values.

2The optimal solution can be nonunique, as in general is nonunique the optimal solution of a
Linear Programming problem. It can also happen that several equilibria in pure strategies exist.
In that case, we have seeen that they all provide to the players the same payoff, that is equal to
that gained from the mixed strategies obtained combining the pure strategies with probabilities
summing to 1.
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13.5.1 Computation of the equilibrium mixed strategy

If the game is particularly simple, that is each of the two players has only two
strategies, the search for the equilibrium mixed strategies requires to solve optim-

isation problems with only two variables (the probabilities ξ
(r)
1 and ξ

(r)
2 for the row

player and the probabilities ξ
(c)
1 and ξ

(c)
2 for the column player). Since the sum of

such probabilities is 1, they are actually simple one-dimension problems, which can
be solved graphically. In the following, we shall see some examples.

Example 84 The “Odds and evens” game is a two-player zero-sum game in which
each player has two strategies. The payoff matrix, reported in Table 13.2, does not
contain equilibria.

O E
O 1 -1
E -1 1

Table 13.2: Payoff matrix for the “Odds and evens” game

We know that the worst case for any strategy is determined by a pure strategy
of the adversary. Let us assign to the row player a generic mixed strategy ξ(r) =
[α (1− α)]

T
, and let use evaluate the results of the two possible pure strategies of

the adversary:

� E
[
f
(
ξ(r), O

)]
= α · 1 + (1− α) · (−1) = 2α− 1;

� E
[
f
(
ξ(r), E

)]
= α · (−1) + (1− α) 1 = 1− 2α.

The problem for the row player is to maximise the worst of two results:

v(r) = max
α∈[0;1]

min (2α− 1, 1− 2α)

The left side of Figure 13.3 shows the graphic resolution of the problem for the row
player: for each mixed strategy, that is for each value of α, we consider the two
pure strategies of the column player, represented by two straight lines. The mixed
strategies for the column players would fall inside the area delimited by the two
lines, while function φ(r)

(
ξ(r)
)
, which represents the worst case, corresponds to the

lower envelope of this area, depicted with a continuous line. Now, the row player
must decide his/her optimal mixed strategy ξ◦(r), that is given by the maximum of
the piecewise linear function φ(r)

(
ξ(r)
)
. Therefore, the optimal strategy is ξ◦(r) =

[1/2 1/2]
T

, and the value of the game is zero. In fact, the best strategy for the
game is to play odds half the time and even the other half; choosing one of the
two strategies more often than the other exposes to the risk of being predicted and
anticipated. The expected gain of the optimal strategy is zero.

The problem of the column player can be solved considering the generic mixed
strategy ξ(c) = [β (1− β)]

T
and evaluating its worst case. Once again, one can

consider only the two pure strategies of the adversary:

� E
[
f
(
O, ξ(c)

)]
= β · 1 + (1− β) · (−1) = 2β − 1;

� E
[
f
(
E, ξ(c)

)]
= β · (−1) + (1− β) · 1 = 1− 2β;

given that the mixed ones have intermediate results. Therefore, the column player
must minimise the worst of the two results:

v(c) = min
β∈[0;1]

max (2β − 1, 1− 2β)
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The right side of Figure 13.3 shows the graphical resolution of the problem: the
objective function is represented by the upper envelope of the region delimited by the
two straight lines. The point of maximum is identified by the intersection of the two
lines, which corresponds to the optimal strategy ξ∗(c) = [1/2 1/2]

T
, for which the

value of the game is zero.

Table 13.3: Graphical resolution of the “Odds and evens” game for the row player
(on the left) and the column player (on the right)

Example 85 Consider the payoff matrix reported in Table 13.4.

1 2
1 2 -3
2 -1 1

Table 13.4: Payoff matrix for a zero-sum game

The mixed strategies for the row player can be represented as ξ(r) = [α 1− α]
T

con α ∈ [0, 1]. For every value of alpha, the worst case corresponds to the worst of
the two pure strategies available for the column player represented on the left side
of Figure 13.3 by the two lines:

� E
[
f
(
ξ(r), 1

)]
= α · 2 + (1− α) · (−1) = 3α− 1;

� E
[
f
(
ξ(r), 2

)]
= α · (−3) + (1− α) 1 = 1− 4α.

Now, for every mixed strategy ξ(r), that is for every α, the worst case is represented
by the lower envelope of the region delimited by the two lines, depicted in continuous
lines. The row player must decide the mixed strategy that maximises this result:

v(r) = max
α∈[0,1]

min (3α− 1, 1− 4α)

Such a strategy is identified by the intersection of the two lines, for which ξ◦(r) =
[2/7 5/7]

T
and the value of the game is v(r) = −1/7. With the same process, on the

right side of Figure 13.3 we compute that ξ◦(c) = [4/7 3/7]
T

and v(c) = −1/7.

13.5.2 Metodo del pivot*

C’è un altro modo per trasformare il problema in un programma lineare che rende
più semplice i calcoli nel caso in cui il valore del gioco sia positivo. D’altra parte,

*Questa è una sezione di approfondimento, che non fa parte del programma d’esame.
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Figure 13.3: Graphical resolution of the game of Table 13.4 for the row player (on
the left) and the column player (on the right)

se si aggiunge una costante a tutti i payoff della matrice, il gioco sostanzialmente
non cambia, e si può certamente rendere positivo il suo valore. Ipotizziamo quindi
che sia v > 0 e riformuliamo il problema del giocatore di riga:

max
v,ξ(r)

φ
(
v, ξ(r)

)
= v

n(r)∑
i=1

ξ
(r)
i = 1

v −
n(r)∑
i=1

fijξ
(r)
i ≤ 0 j = 1, . . . , n(c)

ξ
(r)
i ≥ 0 i = 1, . . . , n(r)

Introduciamo le variabili ausiliarie zi = ξ
(r)
i /v, da cui ξ

(r)
i = vzi.

max
v,z

φ
(
v, z
)

= v

n(r)∑
i=1

vzi = 1

v −
n(r)∑
i=1

fijvzi ≤ 0 j = 1, . . . , n(c)

zi ≥ 0 i = 1, . . . , n(r)

Il vincolo
∑n(r)

i=1 zi = 1/v non è lineare, ma possiamo sfruttare il fatto che massimiz-
zare v equivale a minimizzare 1/v, per rimuovere completamente v dal problema

minimizzando al suo posto
∑n(r)

i=1 zi. Negli altri vincoli, infatti, v compare come
fattore moltiplicativo a entrambi i membri, e quindi si può semplificare:

max
z
φ
(
v, z
)

=

n(r)∑
i=1

zi

n(r)∑
i=1

fijzi ≥ 1 j = 1, . . . , n(c)

zi ≥ 0 i = 1, . . . , n(r)
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Risolto questo problema, la soluzione del gioco originale può essere facilmente

trovata tenendo conto che v = 1/
∑n(r)

i=1 z
◦
i e ξ

(r)
i = vz◦i . Per il giocatore di colonna,

si può applicare un procedimento del tutto analogo.

Per risolvere il problema, si può applicare un metodo equivalente all’algoritmo
del simplesso3

Step 1 Se necessario, aggiungere una costante a tutti gli elementi della matrice di
utilità affinchè il valore del gioco sia positivo (a questo punto, il valore del gioco
originale è uguale a quello del nuovo gioco meno la costatnte aggiunta).

0 −1 −1 · · · −1

1 a11 a12 · · · a1n x1

1 a21 a22 · · · a2n x2

...
...

...
...

...
...

1 am1 am2 · · · amn xm
y1 y2 · · · yn

Step 2 Creare un tableau aumentando la matrice delle utilità (coefficienti delle
variabili x nei vincoli) con una riga di -1 in alto (coefficienti della funzione obiettivo
cambiati di segno) e una colonna di 1 all’estrema sinistra (termini noti dei vincoli).
Nell’angolo in alto a sinistra porre 0 (termine noto della funzione obiettivo). Aggi-
ungere una colonna a destra con le etichette da x1a xm (variabili fuori base) e una
riga in basso con le etichette da y1a yn (variabili basiche). Sia A = [aij ] la nuova
tabella.

Step 3 Selezionare un elemento apq, detto pivot , tale che

1. q ∈ {j : a0,j < 0, 1 ≤ j ≤ n}

2. p = arg min1≤i≤m,ai,q>0

{
ai,0
ai,q

}
.

Nota: il pivot esiste sempre perchè il problema è limitato sotto le condizioni es-
presse dal teorema minmax.

Step 4 Fare pivot nel seguente modo:

1. aij := aij − apj · aiq/apq i = 1, ...,m j = 1, ..., n i 6= p j 6= q

2. nella riga del pivot, ad eccezione del pivot, apj :=
apj
apq

j = 1, ..., n j 6= q

3. nella colonna del pivot, ad eccezione del pivot, aiq := − aiq
apq

i = 1, ...,m i 6= p

4. apq := 1
apq

.

Step 5 Scambiare l’etichetta a destra nella riga del pivot (la variabile esce di
base) con l’etichetta in basso nella colonna del pivot (la variabile entra in base),
swap Ap,n+1 Am+1,q.

3La parte seguente non è stata ancora rivista.
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Step 6 Se rimane qualche elemento negativo nella riga zero, tornare allo step 3 .

Step 7 Altrimenti, ricavare la soluzione nel seguente modo:

1. il valore del gioco v è il reciproco del numero nell’angolo in alto a sinistra
(valore della funzione obiettivo all’ottimo)

2. la strategia ottima del giocatore riga è cos̀ı costruita: le variabili xi che si
trovano nella colonna a destra ricevono probabilità 0 (variabili fuori base),
mentre quelle sulla riga in basso una probabilità pari a v·a0,i (variabili basiche)

3. la strategia ottima del giocatore colonna è cos̀ı costruita (soluzioni duali del
problema appena risolto): le variabili yjche si trovano nella riga in basso
ricevono probabilità 0, mentre quelle sulla colonna a destra una probabilità
pari a v · aj,0.

Example 86 Consideriamo il gioco descritto dalla matrice

B =

 2 −1 6
0 1 −1
−2 2 1


Come si può notare non esiste un punto di sella e quindi nessuna strategia pura

ottimale. Il valore del gioco è positivo? Forse. In ogni caso è più semplice sommare
2 ad ogni elemento e ottenere la matrice.

B′ =

 4 1 8
2 3 1
0 4 3


Il valore di questo gioco è almeno 1 dal momento che il giocatore riga si può

garantire questa vincita scegliendo la riga 1 o 2. Questo completa lo step 1.

Nello step 2, prepariamo un tableau per B′ come il seguente:

0 −1 −1 −1

1 4 1 8 x1

1 2 3 1 x2

1 0 4 3 x3

y1 y2 y3

Nello step 3, dobbiamo scegliere il pivot. Poichè tutte e tre le colonne hanno
nella prima riga un valore negativo, possiamo sceglierne una qualunque come colonna
del pivot. Prendiamo la prima. La riga del pivot deve avere un numero positivo su
questa colonna, cos̀ı deve essere una delle prime due righe. Per decidere quale è,
calcoliamo il rapporto tra il numero nella prima colonna e il candidato pivot. Per
la prima riga è 1/4, per la seconda 1/2. Il più piccolo è il primo quindi scegliamo
4 come pivot.

0 −1 −1 −1

1 4 1 8 x1

1 2 3 1 x2

1 0 4 3 x3

y1 y2 y3



352 13 Zero-sum games

Nello step 4, dopo aver combinato linearmente le righe del tableau, otteniamo

1
4

1
4 − 3

4 1
1
4

1
4

1
4 2 x1

1
2 − 1

2
5
2 −3 x2

1 0 4 3 x3

y1 y2 y3

Nello step 5, scambiamo le etichette della riga e della colonna del pivot, cioè
x1e y1.

1
4

1
4 − 3

4 1
1
4

1
4

1
4 2 y1

1
2 − 1

2
5
2 −3 x2

1 0 4 3 x3

x1 y2 y3

Nello step 6, controlliamo che ci siano valori negativi nella prima riga. Poichè
ci sono torniamo allo step 3.

Rifacendo tutti i passaggi precedenti otteniamo

0.4 0.1 0.3 0.1

0.2 0.3 −0.1 2.3 y1

0.2 −0.2 0.4 −1.2 y2

0.2 0.8 −1.6 7.8 x3

x1 x2 y3

Nello step 7, possiamo leggere la soluzione del gioco con la matrice B’:

� il valore del gioco è 2.5.

� la strategia ottima per il giocatore riga è p = (0.25, 0.75, 0)

� la strategia ottima per il giocatore colonna è q = (0.5, 0.5, 0)

Il gioco con matrice B ha le stesse strategie ottime, ma valore 2.5− 2 = 0.5.



Chapter 14

Symmetric games

Another special case of particular importance in the distribution of utility among
players is the case in which the players are perfectly interchangeable, that is, have
the same available strategies and, if they exchange their strategies, they correspond-
ingly exchange the same payoffs.

Definition 59 We denote as symmetric game a game in which all players have
the same number of pure strategies n =

∣∣X(d)
∣∣ (for all d ∈ D) and, for every

permutation p =
(
p1, . . . , p|D|

)
of the players, if the strategies adopted are permuted

according to p, also the resulting payoffs are permuted according to p:

f (d)
(
x(1), . . . , x(|D|)) = f (pd)

(
x(p1), . . . , x(p|D|)

)
for all d ∈ D

Intuitively, this means that the results of the strategies do not depend on the play-
ers who apply them: exchanging the strategies among the players, the results are
exchanged in the same way. In practice, this typically corresponds to the fat that
each player has strategies somehow corresponding one-by-one to those of any other
player, and that it is therefore reasonable to give them the same names and order.
Therefore, the first strategy of each player corresponds in some sense to the first
strategy of each other player, the second to the second, and so on. They do not ne-
cessarily represent the same physical operations, but they are operations producing
the same results.

In the following, we consider the case of the two-person symmetric games. In
this case, there exist only two possible permutations of the players, so that the
definition is strongly simplified:

f
(r)
ij = f

(c)
ji for all i, j = 1, . . . , n

If the row player obtains the gain f
(r)
ij applying strategy i while the column player

applies strategy j, when the two players exchange their strategies and the row player
applies j while the column the column player applies i, the column player will obtain
exactly the same gain in the new situation.

Remark 8 In a two-person symmetric game, the payoff matrix of the second player
is the transpose of the payoff matrix of the first player.

Contrary to the case of the zero-sum games, even if the information associated
to the second player is redundant, usually one adopts the complete representation.
This is because the missing information is not simply the opposite of the reported
one, but should be retrieved in the symmetric cell of the matrix, with a nontrivial
process. Table 14.1 reports a sample two-person symmetric game.

353
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1 2 3
1 (2,2) (3,0) (5,2)
2 (0,3) (4,4) (-1,8)
3 (2,5) (8,-1) (6,6)

Table 14.1: Sample two-person symmetric game: the payoff matrices of the two
players are the transpose of each other

14.1 A taxonomy of two-person two-strategy sym-
metric games

An extremely simplified case, and yet a very interesting one in practice, is that
of two-person games in which each player has only two available strategies. It is
possible to classify such games based on two different methodologies, one of which
leads to 4 classes, whereas the othe leads to 12 classes. The two methodologies are
largely consistent, meaning that the latter adds a further specification to the former,
splitting some of its 4 classes into subclasses. In the following, we will present the
two classifications in abstract terms, and then we will discuss some games to which
the literature has given appealing symbolic names, explaining their fundamental
characteristics in terms of the two classifications.

14.1.1 Classification based on Nash equilibria

1 2
1 (f11, f11) (f12, f21)
2 (f21, f12) (f22, f22)

Table 14.2: General two-person two-strategy symmetric game: the payoff matrices
of the two players are the transpose of each other

Given the general payoff matrix in Table 14.2, and excluding the limit cases in
which some payoff coincide, there are only four possible situations. For each, we
evaluate whether it admits dominated strategies and we determine the equilibria, if
any exist:

1. f11 > f21 and f12 > f22: the first strategy strictly dominates the second for
both players; there is a single Nash equilibrium in point (1, 1);

2. f11 > f21 and f12 < f22: there is no dominated strategy, and there are two
Nash equilibria lying on the main diagonal in points (1, 1) and (2, 2);

3. f11 < f21 and f12 > f22: there is no dominated strategy, and there are two
Nash equilibria lying on the secondary diagonal in point (1, 2) and (2, 1);

4. f11 < f21 and f12 < f22: the second strategy strictly dominates the first for
both players; there is a single Nash equilibrium in point (2, 2).

As it can be noticed, two-person and two-strategy symmetric games have always
at least one equilibrium. This is a remarkable characteristic, given that in general
this is not true for asymmetric games, nor for symmetric games with more than two
strategies (for instance, the rock-scissors-paper game). We will see in the following,
considering some relevant examples, what practical meaning these equilibria assume.
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Class Subclass Order Examples
a f11 > f12 > f21 > f22

b f11 > f12 > f22 > f21

1 c f11 > f21 > f12 > f22 Ideal marriage
d f12 > f11 > f21 > f22

e f12 > f11 > f22 > f21

a f11 > f21 > f22 > f12 Stag hunt
2 b f11 > f22 > f12 > f21 Coordination (1)

c f11 > f22 > f21 > f12 Coordination (2)
a f21 > f11 > f12 > f22 Chicken’s game

3 b f12 > f21 > f11 > f22 Battle of the sexes (1)
c f21 > f12 > f11 > f22 Battle of the sexes (2)

4 a f21 > f11 > f22 > f12 Prisoner’s dilemma

Table 14.3: List of the 12 possible two-player two-strategy symmetric games accord-
ing to the classification based on the order of the payoffs and their relation with the
classification based on the Nash equilibria

14.1.2 Classification based on the order of the payoffs

A more detailed way to classify two-person two-strategy symmetric games is based
on the relative order of the four independent payoffs, f11, f12, f21 and f22. In this
classification, there are as many games as permutations of the four values, that
is 4! = 24. In practice, however, it is possible to reduce these classes to 12 by
remarking that the names of strategies 1 and 2 are completely conventional, so that
there is no loss of generality in the additional assumption that f11 > f22. If the
given game does not satisfy this condition, it is enough to exchange the names of
the two strategies in order to introduce it.

Table 14.1.2 lists the 12 possible classes according to this taxonomy, specifying
the order of the payoffs and the class of the first taxonomy to which each of them
belongs, as well as some famous names of games described in the literature which
fall inside each subclass.

The following sections present six important games, chosen among the 12 cat-
egories. In order to make the description more concrete, instead of using symbolic
payoffs, we will attribute to the impacts the conventional values 0, 1, 2 and 3. For
the same reason, we will attribute to the two strategies the conventional names of
cooperation (C) for the former and noncooperation (NC) for the latter. This is
consistent with the assumption that two cooperating strategies have a payoff f11

larger than the payoff f22 of two noncooperating strategies.

14.2 The ideal marriage

This game corresponds to the order

f11 > f21 > f12 > f22

and is represented in Table 14.4.

This game describes the situation in which cooperation increases the gain of
the two players, as in an ideal marriage. Going into details, the order among the
possible situations is:

1. if both spouses/players cooperate (C,C), both gain the best possible result;
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C NC

C (3̄, 3̄) (1̄, 2)

NC (2, 1̄) (0, 0)

Table 14.4: Payoff matrix for the ideal marriage: the markings on the best payoffs
for each row and column indicate that point (C,C) is the only Nash equilibrium

2. if the first player does not cooperate, while the other one cooperates (NC,C),
he/she gains the second best possible result;

3. if the first player cooperates, while the othe one does not cooperate (C,NC),
he/she gains the third result;

4. if both players do not cooperate (NC,NC), both gain the worst result.

The strategy of not cooperating (NC) is dominated by the strategy of cooper-
ating (C) for both players. This means that it is reasonable for both to cooperate,
and in fact the game has a single Nash equilibrium, that corresponds to the mutual
cooperation (in Table 14.4, both payoffs are marked).

Other four games belong to class 1 (games with a single cooperative equilib-
rium); they are rather similar to each other, but have not inspired fancy names
to the literature, probably because the correspond to situations in which cooperat-
ing with a noncooperating adversary is more profitable than non cooperating with
a cooperating adversary (f12 > f21). It seems unlikely that such situations arise
spontaneously, without an external intervention.

14.3 The stag hunt

This game corresponds to the order

f11 > f21 > f22 > f12

and is represented in Table 14.5.

C NC

C (3̄, 3̄) (0, 2)

NC (2, 0) (1̄, 1̄)

Table 14.5: Payoff matrix for the stag hunt: the markings on the best payoffs for
each row and column indicate that points (C,C) and (NC,NC) are both Nash
equilibria

This game derives from a passage of the Discourse on the Origin and Basis of
Inequality Among Men (1755) by Rousseau1, according to which human societies
derive from the temporary alliances among human beings for hunts to large animals,
which a single individual could not catch. Assuming that two players take part to
the hunt, the order of the possible situations is:

1. if both cooperate (C,C), it is quite likely that they succeed in catching a stag,
which is the best possible result for both;

1Jean-Jacques Rousseau (1712-1778), Swiss philosopher, writer and musician.
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2. if one of them does not cooperate, while the other cooperates, the noncooper-
ating player can dedicate time to catch a minor prey (a hare) and keep a small
hope to catch also the stag with the residual effort, thus obtaining the second
best result;

3. if both players do not cooperate (NC,NC), both can catch a hare, but the
probability that they also catch a stag becomes approximately zero, so that
this is the third best possible result for both;

4. finally, if one of the two players cooperates, while the other does not, the
cooperating player has only a very small probability to catch the stag, which
is the worst possible result.

As Table 14.5 shows, neither strategy is dominated, and the game has two Nash
equilibria, which correspond to mutual cooperation and mutual noncooperation. In
fact, if one can be sure that the other player will cooperate, it is more profitable
not to abandon the cooperative equilibrium, because it leads to catch the stag. On
the contrary, if one can be sure that the other player will not cooperate, it is more
profitable not to abandon the noncooperative equilibrium, in order to keep at least
the capture of a hare. There are therefore two symmetric possibilities. Mutual
cooperation is a desirable equilibrium, because it corresponds to higher gains for
both players. Mutual noncooperation, however, is also an equilibrium, though less
desirable for both, and it is conservative, meaning that it obeys the worst-case
criterium. Therefore, both strategies are rational, and the choice between the will
be taken based on other factors not modelled in the basic form of the game, such
as the amount of trust in the other player.

14.4 Pure coordination games

These games correspond to the two orders:

f11 > f22 > f12 > f21 and f11 > f22 > f21 > f12

and are represented in Table 14.6. Of course, the intermediate case in which
f12 = f21 falls in the same category, and is actually the most common repres-
entation of this class of games. These games describe the situations in which the
best results are obtained when both players choose the same strategy, whereas the
asymmetric strategies are damaging for both. In this sense, the labels cooperation
and noncooperation are inadequate labels, and in fact are not used in the table.

1 2 1 2

1 (3̄, 3̄) (0, 1) 1 (3̄, 3̄) (1, 0)

2 (1, 0) (2̄, 2̄) 2 (0, 1) (2̄, 2̄)

Table 14.6: Payoff matrix for the pure coordination games: the markings on the
best responses for each row and column show that points (1, 1) and (2, 2) are both
Nash equilibria

A classical example is that of two drivers who meet each other, coming from
opposite directions, along a narrow road, with no centreline dividing the two lanes.
If both keep on the right side, or on the left side, they cross each other without
problems. One of the two strategy profiles is slightly better (for example, if both
drivers are used to drive on the right side, it will be more natural for both to keep
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on the right). By contrast, if one of the drivers keeps on his/her own right and the
other on the left, the result is a head-on collision, that is a bad outcome for both.
Also in this case, one could consider one of the two situations are slightly better
than the other, but anyway worse than in the case of coordinated strategies.

The pure coordination games have no dominated strategies and have the same
two Nash equilibria as the stag hunt. The difference is that the contrast between
the more desirable equilibrium and the less desirable one is less pronounced: they
are indeed less interesting situations.

14.5 The chicken race

This game corresponds to the order:

f21 > f11 > f12 > f22

and is represented in Table 14.7.

C NC

C (2, 2) (1̄, 3̄)

NC (3̄, 1̄) (0, 0)

Table 14.7: Payoff matrix for the chicken race: the markings on the best response
for each row and column indicated that the points (NC,C) and (C,NC) are both
Nash equilibria

This game derives from the movie Rebel Without a Cause (1955): two youngsters
challenge each other driving stolen cars towards a cliff; the first one jumping out
of his car will prove a “chicken”, that is a coward, and will lose the challenge. An
alternative name for the same game is hawks-and-doves, a phrase coined by Russell2

in his book Common sense and nuclear warfare (1959), to describe the situation of
political tension between USA and URSS. In these challenges (military, political,
economical, etc. . . ), one of the two competitors decides to go the end hoping that
the adversary will give up, risking a disaster for both.

The order of the possible situations is:

� if a player does not cooperate and the other does (NC,C), that is the former
persists and the latter gives up, the noncooperating player wins the challenge,
and obtains the best possible result;

� if both players cooperate (C,C), that is both give up, both get the second
best possible result, that is an honourable tie;

� if a player cooperates, that is gives up, whereas the other does not, the cooper-
ating one obtains the third possible result, that is to be publicly disgraced,
but save one’s life;

� if both players do not cooperate (NC,NC), that is they persist, both lose
their lives, which is the worst possible result for both.

As Table 14.7 shows, neither strategy is dominated, and the game has two
Nash equilibria, that correspond to complementary strategies, with one cooperating
player and one noncooperating player. In fact, if one of the two player can be sure

2Bertrand Arthur William Russell (1872-1970), Welsh philosopher and mathematician.
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that the other will cooperate, it is profitable not to cooperate. Conversely, if one
can be sure that the other player will not cooperate, it is profitable to cooperate.
The worst-case criterium suggests to both players to cooperate, but the resulting
solution is not an equilibrium, and therefore tends not to preserve if the game is
repeated along time. In spite of having two Nash equilibria, the game admits no
rational strategy.

14.6 Battle of the sexes

This game corresponds to the orders:

f12 > f21 > f11 > f22 and f21 > f12 > f11 > f22

and is represented in Table 14.8.

1 2 1 2

1 (1, 1) (3̄, 2̄) 1 (1, 1) (2̄, 3̄)

2 (2̄, 3̄) (0, 0) 2 (3̄, 2̄) (0, 0)

Table 14.8: Payoff matrix for the battle of the sexes: the markings of the best
response for each row and column indicate that points (1, 2) and (2, 1) are both
Nash equilibria

As in the pure coordination games, the labels “cooperation” and “noncooper-
ation” are inadequate, and in fact are not used. The game can be exemplified as
follows. Two lovers have decided to spend the day together. They animatedly dis-
cuss whether to go to a soccer match (as preferred by him) or a ballet (as preferred
by her). The call is cut off before an agreement with no possibility to establish it
again, so that each one must decide what to do independently. Both prefer to spend
time together rather than staying alone, even enjoying the favourite entertainment.
The order of the possible situations is the following:

� the best result is obtained attending the favourite entertainment together with
the partner, that is in case (1, 2) for the first player and in case (2, 1) for the
second;

� the second best result is obtained attending the less favourite entertainment
together with the partner, that is in case (2, 1) for the first player and in case
(1, 2) for the second;

� the third possible result is obtained attending separately one’s favourite en-
tertainment;

� the worst possible result, finally, is obtained attending separately one’s less
favourite entertainment.

This game has no dominated strategy, and has two Nash equilibria, correspond-
ing to the asymmetric strategies, as in the chicken race. The difference is that the
two equilibria are fundamentally positive for both players, instead of being very
positive for one and very negative for the other.
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14.7 The prisoner’s dilemma

This game corresponds to the order:

f21 > f11 > f22 > f21

and is represented in Table 14.9.

C NC

C (2, 2) (0, 3̄)

NC (3̄, 0) (1̄, 1̄)

Table 14.9: Payoff matrix for the prisoner’s dilemma: the markings on the best
response for each row and column indicate that point (NC,NC) is the only Nash
equilibrium

This game derives from a 1950 paper by Flood3 and Dresher4 supported by the
Rand Corporation (Applications to a global nuclear strategy). The name of the game
was invented by Tucker5, together with the following tale to explain it: two thieves
are arrested and imprisoned in two separate cells on suspicion of a heinous crime,
besides of a theft. The judge has sufficient evidence to prove that they are guilty of
the minor crime, but would need a confession in order to sentence them to a severe
punishment for the major crime. The judge, therefore, proposes to each of the two
thieves, who are kept strictly isolated, a reduced sentence in exchange for testimony
against the accomplice. The one who accepts will receive a light sentence, whereas
the other one will receive the maximum sentence. If both confess, they will only
receive a small reduction. If both deny the claim, they will be cleared of the major
charge, and will be imprisoned only for the minor one.

The order of the possible situations is:

� if a player does not cooperate and the other one does (NC,C), that is if the
former confesses and the second does not, the noncooperating one obtains the
best possible result, that is the reduced sentence;

� if both players cooperate (C,C), that is they both deny the claim (the co-
operation is between the two players, not with the judge, who is an external
subject), both receive a light sentence, that is the second best possible result;

� if both players do not cooperate (NC,NC), that is both confess, they both
receive a small reduction, that is the third best possible result for both;

� if a player cooperates and the other does not (C,NC), the one who cooperates,
that is denies the claim, receives the maximum sentence, that is the worst
possible result.

The cooperation strategy (C) is dominated by the noncooperation strategy (NC)
for both players. This means that it is reasonable for both players to confess, and in
fact the game has a single Nash equilibrium, that corresponds to mutual noncooper-
ation (in the table, both payoffs are marked). Even though the solution is logically
derived, it also raises a dilemma. In fact, noncooperation is the only nondominated

3Merrill Meeks Flood (1908-1991), American mathematician.
4Melvin Dresher (1911-1992), Polish-born American mathematician.
5Albert William Tucker (1905-1995), Canadian mathematician who also proposed the KKT-

conditions.
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strategy, therefore the only reasonable one. However, mutual cooperation would be
more desirable for both players, since f11 > f22).

The dilemma formalises a conflict between rationality and generlal interest,
which looks typical of many practical situations. The prisoner’s dilemma is probably
the most investigated of all games.

14.8 Other games

We will say very little about general games (nonsymmetric and non zero-sum). We
will only describe a rather curious asymmetric game which gives rise to paradoxical
consequences. Such consequences are however supported not only by mathematical
theory, but also by the empirical investigation of situations that respect the model
assumption.

14.8.1 The pigsty game

This game, also known as pigeon coop game is not symmetric and not zero-sum.
Table 14.10 reports its payoffs.

Weak pig

Lever Wait

Strong Lever (4, 2) (3̄, 3̄)

pig Wait (5̄, 0) (1, 1̄)

Table 14.10: Payoff matrix for the pigsty game: the markings on the best response
for each row and column indicate that point (NC,NC) is the only Nash equillibrium

The game involves a stronger player (1) and a weaker one (2). A lever allows
to obtain a prize (for instance, food). The prize, however, is accessible only from
a position far away from the lever (the opposite side of the sty). Each of the two
players can decide whether to operate the lever or to wait:

� if both operate on the lever, the stronger one reaches first the food, and gets
most of it;

� if the stronger player operates the lever and the weaker one waits near the
position where the food appears, both get a good portion (the weaker one gets
it at the beginning, the stronger one in the end, shooing the weaker);

� if the weaker player operates the lever and the stronger one waits near the
position where the food appears, the stronger players gets nearly all the food,
using both the advantages of position and strength;

� if both players wait near the position where the food appears, the food does
not appear and both have the worst result.

The stronger player (row player in Table 14.10) has no dominated strategies,
whereas for the weaker player (column player) the strategy of operating the lever
is dominated by that of waiting. Therefore, the weaker player waits. Then, it is
reasonable for the stronger player to operate the lever. The paradoxical conclusion
is that it is adviceable for the stronger player to service the weaker one, since it will
anyway get the scraps, whereas the other player has no hope to get anything unless
by waiting.
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14.9 Finite games and mixed strategies

Nash extended the theory of Von Neumann and Morgenstern on mixed strategies
from zero-sum games to any game with finite sets of players and strategies. Briefly,
he obtained two remarkable results:

1. every finite game admits at least an equilibrium in mixed strategies;

2. it is not possible to use Linear Programming to find such equilibria: there
are algorithms to find a single Nash equilibrium by solving a sequence of
linear problems whose solution converges to an equilibrium, but the number
of equilibria can be exponential with respect to the number of players and
strategies, and the different equilibria can have different values (in zero-sum
games all equilibria have the same value, and usually only one exists); at
present, enumerating all Nash equilibria requires exponential-time implicit
enumeration algorithms.
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14.10 Exercises* � �

Exercise 1

The following table reports the payoff matrix of a two-person zero-sum game, in
which the row player A aims to maximise the benefit and the column player B to
minimise the cost.

f b1 b2
a1 50 -20
a2 -10 20
a3 -50 10

Formulate and solve the problem of determining the best strategy (mixed, if
necessary) for the row player A and the corresponding expected win.

Then, determine the best strategy (mixed, if necessary) for the column player
B and the corresponding expected loss.

Assuming that player B follow a mixed strategy which selects at random b1 with
probability 0.75 and b2 with probability 0.25 and that player A knows that, what
is the minimum guaranteed win for player A?

Solution

Strategy a3 is dominated by a2, so that it will never be used. In order to build
an optimal mixed strategy combining a1 and a2, it is necessary to determine the
probability to select a1 so as to maximise the expected result in the worst case:

max [50α− 10 (1− α) ,−20α+ 20 (1− α)] = max [60α− 10,−40α+ 20] con α ∈ [0; 1]

The graphical resolution suggests to set α∗ = 0.3, which implies f∗ = 8.

Correspondingly, the column player minimises the expected result in the worst
case:

min [50β − 20 (1− β) ,−10β + 20 (1− β)] = min [70β − 20,−30β + 20] con β ∈ [0; 1]

which implies β∗ = 0.4, confirming that f∗ = 8.

If player B behaves mechanically, it is licit to consider him/her as a state of
nature and to apply the expected value criterium. As the given probabilities imply
that E [f (a1)] = 32.5, E [f (a2)] = −2.5 and E [f (a3)] = −35, the best strategy is
a1.

Exercise 2

Given the finite two-person zero-sum game represented by the following payoff mat-
rix (where the payoffs are the benefits of the row player), determine the best mixed
strategy for the row player.

*The solutions of these exercises have not yet been revised: error reports are welcome.
�I owe several of these exercises to exam texts of professor Alberto Colorni.
�Several exercises are much more complex than those required for the exam, or concern more

general topics than those discussed in the notes. I have decided to keep them for the sake of
completeness, marking them.
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f b1 b2 b3 b4
a1 50 10 90 30
a2 70 120 40 80

Then, determine the best mixed strategy for the column player6.

Solution

The best strategy for the row player is ξ∗a1
= 0.6 and ξ∗a2

= 0.4, with f∗ = 60. The
best strategy for the column player is ξ∗b1 = ξ∗b2 = 0, and ξ∗b3 = ξ∗b4 = 0.5, also with
f∗ = 60.

Exercise 3

Consider the two-player zero-sum game defined by the following rules7:

� at the beginning, set s = 0;

� player A moves first, summing either 1 or 2 to s;

� player B moves second, summing either 1 or 2 to s;

� the players move iteratively, first A then B, until one of the two players sets
s ≥ 5: that player wins the game;

� if A wins, receives 100 (and B loses 100); if B wins, receives 300 (and A loses
300).

List the possible strategies for each of the two players.

Describe the game in extended form (as a tree) and in strategic form (as a
matrix), computing the labels for each node of the tree and each cell of the matrix
(strategy profile).

Based on the description in strategic form, state whether there exist dominated
strategies and Nash equilibria.

Solution

Since at every round s increases at least by 1 and the game ends when s ≥ 5, there
are at most five moves (three rounds). The strategy of each player, therefore, is
described by a pair of choices (all moves in the third round have the same impact).
The payoff matrix is reported in the following table, which reports on the rows the
strategies of player A, on the columns the strategies of player B and in the cells the
gains of A (the losses of B are exactly opposite, given that it is a zero-sum game).

(1, 1) (1, 2) (2, 1) (2, 2)
(1, 1) 100 -300 -300 -300
(1, 2) -300 -300 100 100
(2, 1) -300 -300 100 100
(2, 2) 100 100 100 100

Strategy (2, 2) for player A dominates the other ones and guarantees to win 100.
Strategy (1, 2) for player B dominates the other ones. There is therefore a Nash
equilibrium in ((2, 2), (1, 2)).

6This requires a reasoning on the duality between the two problems, that exceed the syllabus
of the course.

7This exercise is more sophisticated than those proposed in the exam.
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Exercise 4

Given the two-person finite game with the following payoff matrix, determine all
dominated strategies and all Nash equilibria (if any exists).

f C D E
A (3,2) (5,4) (7,8)
B (5,9) (1,11) (4,3)

Solution

Strategy C is dominated by strategy D. After removing it, strategy B becomes
dominated on its turn. Then, strategy D becomes dominated and the only remain-
ing strategy profile is (A,E), which is also necessarily a Nash equilibrium.

Exercise 5

Determine the possible dominated strategies and Nash equilibria in the finite two-
person game with the following payoff matrix.

f B1 B2 B3

A1 (0,1) (-1,3) (1,3)
A2 (0,2) (1,1) (2,0)
A3 (1,0) (1,-1) (3,0)

Solution

Strategy A3 dominates the other two strategies for the row player. The column
player at first has no dominated strategies, but after the removal of A1 and A2,
strategy B2 becomes dominated by the other ones. The two remaining strategy
profiles, (A3, B1) and (A3, B3), are also Nash equilibria.

Exercise 6

Two opposed parties are standing for election: the Good and the Bad. Each party
puts up one candidate per constituency. There are three constituencies: North,
Centre and South. Both parties have a leader, who can run in at most two of the
three constituencies. The following table provides an estimate, based on polls, of
the millions of votes that the candidates (either the leader or another one) would
get if they should run for each of the three constituencies.

Good Bad
f Leader Other Leader Other

North 16 14 19 13
Centre 18 14 15 13
South 17 14 18 14

In each constituency, the candidate who gets more votes wins for his/her party
10 seats for each million votes more with respect to the adversary. The strategists
of the two parties must decide where their leader should run, respecting the limit
of at most two constituencies.

Describe the problem as a finite two-person zero-sum game, providing the payoff
matrix for the Good.

State whether there exist dominated strategies and equilibrium points.
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Solution

First of all, it is clear that it is profitable to put up the leader in two constitu-
encies, because the leader always gets more votes than the alternative candidate.
Therefore, both players have exactly three strategies, each one characterised by the
constituency in which the leader does not run. This yields the following payoff
matrix.

f North Centre South
North 30 -10 10
Centre 10 -30 -10
South 20 -20 0

The strategy profile (Nord,Centro), with the leader of the Goods running at the
Centre and South and the leader of the Bads running at the North and the South,
is an equilibrium, with a gain equal to 10 for the Bads. The other rows and columns
are all dominated.

Exercise 7

The OX game is played by tho players as follows: player A selects Even (E) or Odd
(O), and announces this choice; then, player B chooses an integer number from 2
to 5, and announces the chosen number. If A selects E, he/she pays to B as many
units as the number chosen by B; if A selects O, he/she gains the ssame amount
from B. The game must be played in “sets” of four rounds, during which each
player must select the available alternatives in a balanced way: A must select twice
E and twice O; B must choose once each integer value from 2 to 5.

Describe the game tree for a single round.

List the strategies of both players for a single round.

Show an example of path on the tree of the whole “set” of four rounds, associ-
ating to the leaf the corresponding final impact.

Indicate the number of levels and leaves for a whole “set” of four rounds, spe-
cifying how many leaves are feasible8.

Estimate whether the game offers to both players the same chances of victory
on a set of four rounds9.

Solution

The game tree has the following structure.

- E 5 (−5, 5)
4 (−4, 4)
3 (−3, 3)
2 (−2, 2)

O 5 (5,−5)
4 (4,−4)
3 (3,−3)
2 (2,−2)

8This question is more complex.
9This question is more complex.
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In the single round, the first player has two strategies (E and O), the second one
has four strategies for each move of the first one, that is 8. An example of strategy
for the second player is to choose 5 against E and 2 against O.

An example of path along the whole game tree is (P, 5, P, 4, D, 3, D, 2) which
yields the payoffs (−4, 4).

On a whole set, the tree has 8 levels: those associated to the first player have
two outgoing arcs per node, those associated to the second player have a number of
outgoing arcs per node progressively decreasing from 4 to 1. Therefore, the leaves
are 2 · 4 · 2 · 3 · 2 · 2 · 2 · 1 = 24 · 4! = 384. However, the balancing rule reduces the
choices of the first player from 24 to

(
4
2

)
, so that the feasible leaves are only 144.

The game is unfair, because B can always win the single round, and consequently
the whole set, by choosing the maximum remaining integer value when A has se-
lected E and the minimum one when A has selected O.

Exercise 810

Determine the Nash equilibria (if any exist) for the following continuous two-person
zero-sum game:f1 (x1, x2) =

1

3
x3

1 + x1x
2
2 − 2x1 −

2

3
x3

2

f2 (x1, x2) = −f1 (x1, x2)
con x1 ∈ X(1) = R e x2 ∈ X(2) = R

Solution

An equilibrium point, if any exists, is a maximum point for the row player and a
minimum point for the column player. In a continuous game, maxima and minima
can be determined with the usual first-order conditions (in an unconstrained, one-
dimension problem, these conditions reduce to setting the first derivative to zero):

∂f1

∂x1
= x2

1 + x2
2 − 2 = 0

∂f1

∂x2
= 2x1x2 − 2x2

2 = 0

plus checking the sign of the second-order derivatives:
∂2f1

∂x2
1

= 2x1 < 0

∂2f1

∂x2
2

= 2x1 − 4x2 > 0

The solutions with x2 = 0 are unfeasible (2x1 < 0 e 2x1 > 0). Those with x2 6= 0
have x2 = x1, and therefore x1 = x2 = ±1. Since x1−2x2 > 0, the only equilibrium
point is (−1,−1).

Exercise 9

Consider the continuous two-person zero-sum game with benefit function f (a, b) =
−2a2 +b2 +3ab−a−2b for player A who decides the value of variable a. Determine
whether H = (1/4, 3/4) is a Nash equilibrium. If it is not, determine the equilibrium
points, if any exists.

10This exercise is about continuous games. The notes have only hinted at such games. The
basic property of Nash equilibria, of being maximum points for the row player and minimum points
for the column player, is trivially extended.
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Solution

Point H is not a Nash equilibrium, because it is not a maximum point for the row
player and a minimum point for the column player. Point K = (4/17, 11/17) is a
Nash equilibrium.

Exercise 1011

A nation has three political parties, more or less of the same strength: the Left
(L), the Centre (C) and the Right (R). Each party can decide between two possible
political platforms: a conservative one (Cons.) and a reformist one (Ref.). The
platforms are published simultaneously. The pair or triplet of parties which propose
the same platform win the elections and form a majority for the government. Each
of the three parties receives a benefit in terms of parliament seats if it joins the
majority, whereas it pays a cost if is remains isolated at the opposition. The benefit
for the parties with the winning platform is +30 for the reformist platform, +10 for
the conservative one. The loss for the party at the opposition (if any) is −50 if its
platform is reformist, −10 if it is conservative.

Model this problem as a game in strategic form. Since there are three play-
ers, instead of two, it is not possible to report the payoffs in the classical matrix,
but it is possible to list on the rows the strategy profiles and on the columns the
corresponding payoffs.

Determine whether there are equilibrium points, and list them.

Determine the strategy suggested by the worst-case criterium.

Solution

The payoff matrix is the following one.

xS xC xD fS(xS , xC , xD) fC(xS , xC , xD) fD(xS , xC , xD)
Cons. Cons. Cons. 10 10 10
Cons. Cons. Ref. 10 10 -50
Cons. Ref. Cons. 10 -50 10
Cons. Ref. Ref. -10 30 30
Ref. Cons. Cons. -50 10 10
Ref. Cons. Ref. 30 -10 30
Ref. Ref. Cons. 30 30 -10
Ref. Ref. Ref. 30 30 30

The equilibrium points are the homogeneous triplets of strategies (Cons.,Cons.,Cons.)
and (Ref.,Ref.,Ref.). In fact, in these situations every player avoids changing
strategy because it would end up at the opposition, and it would be penalised. On
the other hand, in the mixed situations, the player at the opposition is encouraged
to join the majority, but also the ones in a conservative majority are encouraged to
change platform and join forces with the opposition.

The worst-case criterium suggests to adopt the conservative platform, because
the worst case consists in ending up at the opposition, and in that case the conser-
vative platform implies a smaller loss.

11This exercise considers a three-person game. Except for this, the concepts of equilibrium
point and worst-case strategy are the same.
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Exercise 1112

Waiting for the sheriff, the deputy sheriffs A and B play a simplified version of
poker with a deck of three cards: J, Q and K. At the beginning of the game, each
player puts one dollar in the pot. Then, they pick one card each, leaving the third
card on the table. Each player only known his/her own card. A chooses whether to
“raise”, that is add another dollar to the pot, or “fold”, that is to leave the game. B
chooses whether to fold, to raise (adding a new dollar to the pot, only if A has not
raised), or to “call” (only if A has raised). Finally, A can fold or call. In summary,
the game can unfold according to the following scheme:

1. A folds:

(a) B folds: the pot is divided between the two players;

(b) B raises, that is adds a third dollar to the pot:

i. A folds: B wins the pot, getting back his/her money, plus one dollar
from A;

ii. A calls: the player with the higher card wins the pot, getting back
his/her money, plus one dollar from the other player;

2. A raises, that is adds a third dollar to the pot:

(a) B folds: A wins the pot, getting back his/her money, plus one dollar
from B;

(b) B calls: the player with the higher card wins the pot, getting back his/her
money, plus one dollar from the other player.

List the possible strategies of the two players.

Determine the evaluation matrix of the first player for any possible card deal.

Determine matrix of the expected values of the payoffs.

List the possible strategies for the first player, that is the possible moves de-
pending on the card picked up (for example, the triplet [P − P, P − V,A] means
fold if the picked card is J or Q, raise if it is K).

Solution

The possible strategies for the first player are P − P , P − V and A, those for the
second player are P , A and V .

According to the cards picked up by the two players, the payoff matrix for the
first one is the following (label ’-’ marks the unfeasible strategy profiles):

� if the card is J and for any card of the second player, or if the card is Q e and
the card of the second player is K:

f P A V
P − P 0 -1 -
P − V 0 -2 -
A 1 - -2

12This exercise also covers advanced material, not required by the exam, as it includes condi-
tions of uncertainty. The extension to this kind of games is based on concepts discussed in the
corresponding chapters.
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� if the card is Q and that of the second player is J:

f P A V
P − P 0 -1 -
P − V 0 2 -
A 1 - 2

� if the card is K and for any card of the second player:

f P A V
P − P 0 -1 -
P − V 0 2 -
A 1 - 0

The matrix of the expected values of the payoffs is:

f P A V
P − P 0 -1 -
P − V 0 0 -
A 1 - 0

The first player has 33 = 27 possible strategies, given that there are 3 possible
moves for each of the 3 possible initial cards.

Exercise 1213

The “truth game” employs a box containing two tokens (a red one, R, and a black
one, N). Player A extracts from the box a token without showing it to the adversary,
and announces its colour, possibly lying. If he/she states that the token in black, B
gains 1 and A loses 1. If he/she states that it is red, player B can either accept the
announcement or reject it. If he/she accepts it, A wins 1 and B loses 1. Finally, if
he/she rejects it, the token colour is checked: if it is red, A wins 2 and B loses 2;
if it is black, B wins 2 and A loses 2. The probabilities to extract each token are
balanced (50% each).

Model the game in strategic form, through a payoff matrix.

Compute graphically the best strategies for both players.

Discuss how the game and the best strategies change if the box contains a red
token and two black ones.

Solution

The main complication of the exercise is in distinguishing what falls under the
scenario and what falls under the strategy. The colour of the extracted token is the
scenario. The strategies for player A are:

1. announce the true colour of the token;

13Also this exercise concerns a game in conditions of uncertainty. If someone feels that the
exercise or the solution is unclear, it could be comforting to read the following anecdote: this
exercise, in a more ambiguous form, was part of a mid-term exam I had to pass when I was a
student. I misunderstood it completely, losing 6 points out of 30. The feeling of having been
defrauded was so strong that I decided to reject the grade; in the following exam, my grade was
30 cum laude.
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2. announce that the token is red, whatever is its colour.

It would be more natural to distinguish between making a true or a false announce-
ment, but lying is forbidden in the case of a red ball, whereas a correct description
of the game requires the strategies to be feasible in every scenario.

The strategies for player B are:

1. accept the announcement;

2. reject the announcement.

If the token is red, the payoff matrix is:

f Accept Reject
True 1 2
Red 1 2

If the token is black, the payoff matrix is:

f Accept Reject
True -1 -1
Red 1 -2

The matrix of the expected values of the payoffs is therefore:

f Accept Reject
True 0 1/2
Red 1 0

The best strategy for player A is (2/3, 1/3), the best strategy for player B is
(1/3, 2/3). The expected result is a gain of 1/3 for A.

The modified case produces the following table:

f Accept Reject
True -1/3 0
Red 0 -2/3

with optimal strategies (5/6, 1/6) for A and (1/3, 2/3) for B. The expected result
is a gain of −1/9 for A.
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Chapter 15

Group decision-making

As in game theory, also in group decision-making the decision-maker set D is finite,
but not reduced to a single element (|D| > 1). The fundamental difference is that the
single decision-makers do not fix independently the values of the decision variables.
The must agree on the alternative to choose coordinating somehow. Another typical
situation is that in which a main decision-maker indicates the alternative, but in
such a way to satisfy as much as possible the preferences of the other ones, besides
his/her own.

A classical approach to the modelling of these problems is the construction,
starting from the preference relations Πd of the decision-makers d ∈ D, of a single
preference relation ΠD ⊆ F × F , denoted as group preference, which formulates
the criteria based on which the common decision should be taken. Once the group
preference relation has been constructed, the problem becomes equivalent to that of
a single decision-maker, and all the techniques described in the previous chapters can
be applied to it. The fundamental passage of the resolution process is therefore how
to build a preference relation starting from |D| given relations. The investigations
on this problem mainly refer to political and social sciences, so that it can be
expected that the notation, once again, changes. In fact, the decision-maker are
often denoted as individuals, citizens, agents, voters or judges.

In the following, we will assume that:

� there is a single possible scenario (|Ω| = 1), a condition introduced for the
sake of simplicity, but also because in group decision-making each individual
often has a rather precise opinion (be that right or wrong) about the impact
expected from each alternative;

� the feasible region X is finite;

� the impact function f (x) is invertible, that is each solution has a different
impact, so that the preference relations can be thought as relations on X,
instead of on F (it is enough to define x � x′ if and only if f (x) � f (x′));

� the preference relations of the single decision-makers are weak order relations,
that is reflexive, transitive and complete.

The last condition is the most important one. As we known, it means that each
decision-maker is required to respect rather strict conditions of rationality.

Definition 60 Given a set of solutions X, we denote as D (X) the set of all weak
orders on the elements of X.

373
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Since every preference relation on solutions is a set of pairs of solutions (Πd ⊆
X×X, or Πd ∈ 2X×X), set D (X) is the collection of all sets that enjoy the reflexive,

transitive and complete property, and therefore D (X) ⊂ 22X×X .

Example 87 Consider a set of three solutions, X = {a, b, c}. The set of all weak
orders on X includes 13 different relations:

� the 6 total orders, that is the permutations of the three solutions:

a ≺ b ≺ c a ≺ c ≺ b b ≺ c ≺ a

b ≺ a ≺ c c ≺ a ≺ b c ≺ b ≺ a

� the 3 weak orders in which two solutions are reciprocally indifferent and prefer-
able with respect to the third one:

a ∼ b ≺ c a ∼ c ≺ b b ∼ c ≺ a

� the 3 weak orders in which one solution is preferable with respect to the other
two, which are reciprocally indifferent:

a ≺ b ∼ c b ≺ a ∼ c c ≺ a ∼ b

� the weak order in which the three solutions are indifferent with respect to each
other:

a ∼ b ∼ c

Each of these weak orders can be expressed (in a rather lengthy way) listing the pairs
of solutions such that the former is weakly preferable with respect to the latter. For
example, order a ≺ b ≺ c can be formulated as {(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)},
whereas order a ∼ b ∼ c can be formulated as {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c),
(c, a), (c, b), (c, c)}.

15.1 Social welfare function

The problem we face is how to derive a group preference relation from a finite set
of weak orders, one for each individual.

Definition 61 Given a set of solutions X, we denote as social welfare function a
function that associates to each |D|-uple of weak orders on X a “group” weak order
on X:

g : D (X)
|D| → D (X)

It is possible to build a huge number of completely arbitrary functions that
reduce several weak orders to a single one. The interesting aspect is to search for
a function that respect as much as possible the individual weak orders. In order
to do that, such a function must enjoy suitable properties. In the following, we
will survey some proposals that have been put forth in time, and we investigate
their limitations. Then, we will list the properties that appear to be necessary to
characterise an acceptable social welfare function, and we will prove the fundamental
result according to which there exists no function which satisfies all the necessary
properties. Finally, we will discuss the criticisms that have been made to that result
and some subsequent developments of the research on the topic.
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15.2 Condorcet method

The Condorcet method1, also known as simple majority method is based on the
following definition:

x �D x′ ⇔ |{d ∈ D : x �d x′}| ≥ |{d ∈ D : x′ �d x}|

that is, a solution is preferable to another one according to the group when the
number of individuals who prefer the former to the latter exceeds the number of
individuals who prefer the latter to the former.

Notice that the individuals according to whom the two solutions are indifferent
appear on both sides of the inequality and therefore cancel each other: only the ones
having a strict preference matter. Consequently, two solutions are indifferent when
the same number of individuals prefer each of them to the other one (in particular
when all individuals consider them as indifferent).

The Condorcet method provides a simple algorithm to compute a social wel-
fare function. However, this function has a strong drawback, which is known in
the literature as Condorcet paradox. The drawback is represented in Table 15.1:
there are three individuals D = {1, 2, 3} and three solutions X = {a, b, c}. Each
column is associated to an individual and describes his/her preference relation on
the solutions: row 1 reports the best solution, row 2 the second best one and row 3
the worst one. The three individual preference relations are therefore total orders,
without any tie.

Individuals
Order 1 2 3

1 a b c
2 b c a
3 c a b

Table 15.1: Example of Condorcet paradox: based on Condorcet method, each of
the three solutions is better than another one; the resulting preference relation is
not transitive, and therefore is not a weak order.

Applying Condorcet method to the table, one obtains that:

� a ≺D b because a is preferable to b for two individuals (1 and 3), whereas the
opposite holds only for one (2);

� b ≺D c because b is preferable to c for two individuals (1 and 2), whereas the
opposite holds only for one (3);

� c ≺D a because c is preferable to a for two individuals (2 and 3), whereas the
opposite holds only for one (1).

Moreover, each solution is trivially preferable to itself because this holds for all
individuals. The resulting relation exhibits a circular strict preference:

a ≺ b ≺ c ≺ a

and is nontransitive, since a ≺ b and b ≺, but a ⊀ c. Therefore, the Condorcet
method does not always allow to build a weak order. This does not mean that it

1Marie Jean Antoine Nicolas de Caritat, Marquis of Condorcet (1743-1794), French math-
ematician, economist, philosopher and politician activist of the Gironde party during the French
revolution, died as a suicide in prison during the Terror.



376 15 Group decision-making

never works; it means that it can fail. And, in particular, it can be unable to provide
a solution preferable to all other ones, that is the minimum requirement for a choice
criterium.

History proposes several examples of parliamentary votes in which three versions
of a law had the support of voter groups structured as in the Condorcet paradox.
In some cases, the impasse was solved setting an arbitrary order of business, that
is discussing first the conflict between solutions a and b (which led to the victory
of solution b), and then the conflict between the winning solution b and the third
solution c (which led to the victory of solution c). A different order of business
would have led to a different choice. The experts in politics know that setting the
agenda often grants a strong position in parliamentary proceedings.

15.3 Borda method

The Borda method2 is based on the auxiliary definition of Borda count, that we
have introduced in Section 4.3:

Bd (x) = |{x′ ∈ X : x �d x′}|

that is, in a finite problem the value of a solution x for individual d can be measured
by the number of solutions to which the individual prefers x. Once a value function
is defined for each individual, aggregating them with a simple sum appear like a
natural development, from an egalitarian and democratic point of view:

BD (x) =
∑
d∈D

Bd (x)

and it appears equally natural to base the group preference on the aggregated
function, that is on the overall Borda count:

x �D x′ ⇔ BD (x) ≥ BD (x′)

that is, a solution is preferable to another one according to the group when the
overall Borda count on all individuals of the former exceeds that of the latter.

This definition introduces a consistent value function for the group and bases
on it the preference. The resulting relation is necessarily a weak order. Therefore,
contrary to the Condorcet method, the Borda method always allows to build a social
welfare function.

Also the Borda method, however, has a drawback, that we have already met in
another context, that is the dependence on irrelevent alternatives. In other words,
the weak order that is created between two solutions does not depend only on the
preferences of the individuals between the two solutions, but in general also by
the preferences they have with respect to other solutions. This is bad, because
in general the feasible region built during the modelling phase is at least partly
arbitrary (this has been discussed in Section 2.1.2, outlining the iterative process to
build the model, and in particular the feasible region; for instance, the mitigation
measures for large public works are typically defined in subsequent phases of the
study, after identifying and discussing the direct impacts of the project). If the
final result of the decision depends on the alternatives taken into account, there is
a margin for manipulating the process which is not desirable.

Example 88 Consider the decision problem represented in Table 15.2, character-
ized by seven individuals (D = {1, 2, 3, 4, 5, 6, 7}) and four solutions (X = {a, b, c, d}.

2Jean-Charles de Borda (1733-1799), French mathematician, physicist and admiral operating
during the French revolution.
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Individuals
Order 1 2 3 4 5 6 7

1 a b c a b c a
2 b c d b c d b
3 c d a c d a c
4 d a b d a b d

Table 15.2: A group decision problem with 7 individuals and 4 solutions; every
column is associated to an individual and reports from row 1 to row 4 the solutions
in (total) preference order.

Once again, the preference relations of all individuals are total orders: the pre-
ferred solution is associated to a Borda count equal to Bd (x) = 4, the second best
solution to a value equal to 3, the third one to 2 and the worst one to 1. The over-
all count is reported in Table 15.3, from which one derives the group total order
c ≺ b ≺ a ≺ d.

X BD (x)
a 4 + 1 + 2 + 4 + 1 + 2 + 4 = 18
b 3 + 4 + 1 + 3 + 4 + 1 + 3 = 19
c 2 + 3 + 4 + 2 + 3 + 4 + 2 = 20
d 1 + 2 + 3 + 1 + 2 + 3 + 1 = 13

Table 15.3: Overall Borda count for the alternatives of the problem reported in
Table 15.2.

If however solution d were removed, that is a rather uninteresting solution, given
that no individual prefers it and overall its result is clearly inferior to that of the
other ones, one would obtain the problem and the overall count reported, respectively
in Tables 15.4 and 15.5.

Individuals
Order 1 2 3 4 5 6 7

1 a b c a b c a
2 b c a b c a b
3 c a b c a b c

Table 15.4: The problem of Table 15.2 reduced by removing solution d.

X BD (x)
a 3 + 1 + 2 + 3 + 1 + 2 + 3 = 15
b 2 + 3 + 1 + 2 + 3 + 1 + 2 = 14
c 1 + 2 + 3 + 1 + 2 + 3 + 1 = 13

Table 15.5: Overall Borda count for the alternatives of the problem reported in
Table 15.4.

The overall count yields the total order a ≺ b ≺ c, which obviously does not
include the removed alternative, but also reverts completely the order relation among
the other three alternatives. The reason for this change is that the Borda count
of each alternative, and therefore the preference relation between two alternatives,
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depends on the position of all the other ones. In particular, in this case alternative
d was always worse than c, often worse than b, but only sometimes worse than a;
removing it reduces the count of d strongly, that of b significantly and that of a only
weakly, reverting the preference relations among these three alternatives.

The previous examples leads to conclude that also the Borda method can be
unsatisfactory, given that is it open to manipulations in the phase of the generation
of the alternatives.

15.4 Plurality system

The plurality system is the method traditionally used in elections: each individual
summarises his/her own preference in the choice of a solution. The solution with
the larger number of votes wins. Strictly speaking, given that we assume the indi-
vidual preference relations to be weak orders, we summarise the preference of an
individual in the choice of a subset of solutions (reciprocally indifferent) that are
strictly preferable to all the other ones. In formal terms, we define:

V (x) = |{d ∈ D : x �d y for all y ∈ X}|

and
x �D x′ ⇔ V (x) ≥ V (x′)

This system is based on a consistent value function, as the Borda method, and
therefore gives rise to a weak order. However, it also has the drawback to depend on
irrelevant alternatives, even if slightly less than the Borda method, since the value
function does not consider all the positions of every solution, but only the winning
positions. In order to change the number of winning positions, it is necessary to
choose with some care the alternatives to introduce or remove.

Example 89 Consider the group decision problem with 7 individuals and 4 solu-
tions represented in Table 15.6.

Individuals
Order 1 2 3 4 5 6 7

1 a a b b d d d
2 b b a a a b c
3 c c c c b c a
4 d d d d c a b

Table 15.6: A decision problem with 7 individuals and 4 solutions.

Once again, the individual preference relations are all total orders. The plurality
system leads to choose solution d, because it is the best one for three individuals,
whereas a and b are the best for two individuals and c for none. Therefore, d ≺ a ∼
b ≺ c.

However, if solution b should be rejected, reducing the problem to the one rep-
resented in Table 15.7, the method would suggest solution a, as it is preferred by
four individuals, whereas solution d is preferred by three and solution c by none.
Therefore, a ≺ d ≺ c.

Actually, the method has another, rather strong, drawback: a solution that is
strongly supported by a minority prevails upon a solution that is not preferred by
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Individuals
Order 1 2 3 4 5 6 7

1 a a a a d d d
2 c c c c a c c
3 d d d d c a a

Table 15.7: The problem of Table 15.2 reduced removing solution b.

anyone, but that is agreeable for everybody. This derives from the fact that function
V (x) only considers the first position in the individual weak orders, completely
neglecting the subsequent positions.

Example 90 Considering the problem with 4 solutions and 7 individuals represen-
ted in Table 15.8, one can notice that the winning solution d is very disagreeable for
the individuals not supporting it, whereas solution a, which nobody supports as the
best one, is the second best for everybody, and would therefore be probably a good
compromise. Any method ignoring the solutions in positions following the first one
cannot detect the occurrence of such situations.

Individuals
Order 1 2 3 4 5 6 7

1 b b c c d d d
2 a a a a a a a
3 c c b b b c c
4 d d d d c b b

Table 15.8: Another group decision problem with 7 individuals and 4 solutions.

15.5 Lexicographic method

The lexicographic method loses a fundamental feature of the previous two methods,
that is the symmetry with respect to the individuals. In fact, the method consists in
selecting a permutation of the individuals, p =

(
d1, d2, . . . , d|D|

)
and in defining the

preference between two solutions as the preference of the first individual according
to the permutation who is not indifferent between them. Two alternatives are
therefore indifferenti if and only if all individuals consider them as indifferent.

x ≺D x′ ⇔


x ≺d1 x

′ or

x ∼d1 x
′ and x ≺d2 x

′ or

. . .

x ∼d1
x′, x ∼d2

x′, . . . and x ≺d|D| x′

x ∼D x′ ⇔ x ∼d1 x
′, x ∼d2 x

′, . . . and x ∼d|D| x
′

This method describes an extreme version of an absolute monarchy, in which the
will of the monarch d1 is the law (at least for the choices in set X: for other choices,
the order could change) and, if the monarch is indifferent, the choice is delegated
to another individual, who in case of indifference delegates it to a third one, and
so on down to the last citizen of the kingdom, who can express a preference if and
only if only all the other ones are indifferent.
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15.6 The axiomatic approach

Now, after surveying a number of rather reasonable and natural method, all of them
afflicted by some disadvantage, one could wonder whether there exists a method to
aggregate individual preferences in a group preference while respecting some desir-
able basic properties. And one can assume that listing such properties be the first
step towards the design of such a method. This is the axiomatic approach proposed
for group decision-making by Arrow3 in 1951, with an unexpected outcome, that
is the proof that it is impossible to formulate a method enjoying all the proper-
ties considered as necessary to aggregate preferences in a democratically acceptable
way. In order to describe Arrow’s result in a compact way, it is useful to give a
name to each possible set of preferences that a social welfare function is expected
to aggregate.

Definition 62 Given a finite set of alternatives X and a finite set D of individuals,
we denote as profile P (X) any |D|-uple of weak orders on the alternatives associated
to the individuals.

The problem consists therefore in the identification of a social welfare function

g that aggregate every possible profile P (X) ∈ D (X)
|D|

into a group preference
relation ΠD (X) that is a weak order:

ΠD (X) = g (P (X)) ∈ D (X) for all P ∈ D (X)
|D|

Given two profiles and two alternatives, it is interesting to remark whether one of
them is more unbalanced than the other in favour of one of the two alternatives. A
possible way to visualise the situation is to think of two different polls: an earlier
one registers the initial preference profile of the inividuals with respect to the two
alternatives; a later one, after an event convinces some supporters of the second
alternative to change their minds, becoming indifferent or even supporting the first,
registers the new profile, which is more favourable to the first alternative.

Definition 63 Given two due alternatives x, y ∈ X and two profiles P (X) e
P ′ (X), we denote as ≺d and ≺′d the strict preferences of individual d ∈ D in
profiles P (X) and P ′ (X). Similarly, we denote as ∼d and ∼′d the indifference re-
lation and with �d and �′d the weak preference in the two profiles. We say that
P ′ (X) promotes x over y more than P (X) when

� every individual who strictly prefers x in P (X) also strictly prefers x in
P ′ (X):

x ≺d y ⇒ x ≺′d y

� every individual who is indifferent between x and y in P (X) weakly prefers x
in P ′ (X):

x ∼d y ⇒ x �′d y

Finally, we define the concept of dictatorship, in order to exclude it. A dictator
is an individual whose strict preferences imply strict preferences for the whole group.
In the lexicographics method, for example, individual d1 is a dictator. The other
methods considered, on the contrary, do not admit dictators, because there always
exists a profile in which at least one of the strict preferences of each individual is
violated by the group.

3Kenneth Joseph Arrow (1921 - 2017), American economist, won the Nobel Prize for Economy
in 1972.
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Definition 64 Given a social welfare function g, a dictator according to such a
function is an individual d ∈ D such that for every profile in which x ≺d y, the
social welfare function imposes that x ≺D y.

There is also a limited concept of dictatorship: instead of a single individual
whose strict preferences determine those of the group, it is possible to have a subset
of individuals whose strict preference on a specific pair of alternatives, if unanimous,
determines that of the group.

Definition 65 Given a social welfare function g, a subset of individuals V ⊆ D
is decisive for a pair of alternatives (x, y) when, for every profile P (X) such that
x ≺d y for all d ∈ V , the social welfare function imposes x ≺D y.

A dictator is of course a special case of a decisive set, consisting of a single individual,
which is decisive for all pairs of alternatives.

Arrow’s approach first introduces some axioms which define the properties re-

quired from a social welfare function g : D (X)
|D| → D (X) in order to be considered

democratic. Then, it proves that, if all axioms but the last one are true, necessarily
the last one is false. The original proof by Arrow considers seven axiom.

Theorem 26 (Arrow’s theorem) Let X be a finite set of alternatives, D a finite
set of individuals and Π (X) : D → D (X) a preference relation that associates to
each individual a weak order on the set of the alternatives. The following seven
statements are mutually incompatible:

1. nontriviality axiom: there are at least three alternatives and at least two indi-
viduals:

|X| ≥ 3 |D| ≥ 2

2. universality axiom: there exists a social welfare function g defined on all pos-
sible profiles, that is, g describes how to aggregate any set of weak orders
associated to the individuals;

3. weak order axiom: the social welfare function g returns a weak order (that is
a reflexive, transitive and complete preference relation) on X;

4. independence from irrelevant alternatives axiom: given a problem with a re-
duced set of alternatives X ′ ⊂ X, but the same individuals and preference re-
lations restricted to X ′, the resulting weak order is the one obtained restricting
ΠD (X) to X ′;

5. monotony axiom: if a profile P ′ (X) promotes x over y more than P (X), if
for all pairs of solutions which do not include x the two profiles are identical
and if x ≺D y (that is, the group prefers x in profile P (X)), then x ≺′D y
(that is, the group prefers x also in P ′ (X));

6. popular sovereignty: every group preference can be obtained by suitable fixing
the preferences of the individuals (the social welfare function is surjective);

7. non-dictatorship axiom: the social welfare function g does not admit any dic-
tator.

Proof. The proof goes through the following phases:

1. prove the existence of a decisive subset for a pair of solutions;
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2. prove that such a subset can be reduced to a single individual;

3. prove that such an individual is decisive for every pair of solutions, and is
therefore a dictator.

First, notice that the nontriviality axiom guarantees the existence of at least
three alternatives. Then, we remark that the monotony and popular sovereignty
axioms imply the following property of unanimity (or Pareto efficiency): if x ≺d y
for all d ∈ D, then x ≺D y, that is, the social welfare function imposes that
unanimous strict preferences turn into group strict preferences. In fact, if there
exists a profile for which the group prefers x to y and all the other profiles which
promote x over y more than it also imply that the group prefers x to y, then the
profile in which all individuals are unanimous in preferring x will force the group
to prefer x. The opposite is not necessarily true.

Thanks to the unanimity axiom, according to every social welfare function each
pair of alternatives (x, y) admits a decisive subset. In fact, if all individuals of D,
unanimous, strictly prefer x to y, the whole group strictly prefers x to y. This
implies that D is a decisive subset for any pair (x, y).

The following point is the most delicate of the proof: the search for a minimal
decisive subset, that is a subset that cannot lose any member without losing the
status of being a decisive subset. Let us assume that V ⊆ D is a minimal decisive
subset. This means that it is decisive for one or more pairs of solutions, and that
removing any of its members it is no longer decisive for any pair of solutions. How
many elements has V ?

Let d be an individual of V and W = V \ {d}. Finally, let D \ V be the set of
individuals not belonging to V ; this set could be empty. Let (x, y) be one of the
pairs for which V is decisive. The property of being decisive holds for any prefer-
ence profile: for any opinion of the individuals, if the members of V unanimously
prefer x to y, then the group prefers x to y, even if all the other individuals have
exactly the opposite preference. Then, let us consider the situation described in the
following table, where each column reports the order of the preferences of a subset
of individuals with respect to three alternatives, denoted as x, y and z (the nontri-
viality axiom is applied once again here). They are total orders, and therefore weak
orders. Therefore, the social welfare function g can be applied to this preference
profile, yielding a group preference (thanks to the universality axiom). What is the
preference of the group?

{d} V \ {d} D \ V
x z y
y x z
z y x

The individuals of V are unanimous in strictly preferring x to y. Since V is a
decisive subset for (x, y), this implies that the group has the same preference:

x ≺V y ⇒ x ≺D y

Now there are two possible cases: either V includes more than an individual, or
it includes exactly one. By contradiction, assume the former case: V \ {d} is not
empty. Moreover, it is not decisive for any pair of solutions (otherwise, it would
contradict the initial assumption that V is a minimal decisive set). In particular,
it is not decisive for (z, y). Now, let us observe the preferences of the individuals
for pair (z, y): all members of V \ {d} are unanimous in strictly preferring z to y,
all other individuals are unanimous in the opposite preference. What is the group
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preference between z and y? First of all, a preference exists because the weak order
axiom guarantees that the group preference relation is complete. On the other hand,
the preference cannot be strictly in favour of z, because it would agree with that of
the members of V \ {d}, and this would still hold for any other profile promoting
z over y; consequently, V \ {d} would be decisive. Rejecting the strict preference
implies that y �D z. However, since x ≺D y and the group preference is transitive
(once again the weak order axiom):

x ≺D y and y �D z ⇒ x ≺D z

But the only individual who strictly prefers x to z is d, which means that d is
decisive for pair (x, z). This remarks contradict the assumption that V is a minimal
decisive subset. The conclusion is that the only possible case is the latter, that is,
that V includes a single individual. Consequently, there exists an individual d who
is specifically a “dictator” for the pair of alternatives (x, y).

The second step of the proof shows that d is a dictator for all pairs of alternatives.
Let us start from the pairs (x,w) with w ∈ X \ {x, y}. The following table shows a
possible preference profile (notice that w could be the same as z: we use a different
name to stress that it is any solution different from x and y).

{d} D \ {d}
x y
y w
w x

The table shows that the individuals are unanimous in strictly preferring y to
w, and therefore y ≺D w. On the other hand, since d is a specific dictator for pair
(x, y), his/her strict preference for x turns into the preference of the whole group,
even if nobody else shares it. Now, transitivity strikes again, implying that:

x ≺D y and y ≺D w ⇒ x ≺D w

By monotony any other profile that promotes x over w more than the considered
one would yield the same result. But the only individual who strictly prefers x to w
is d, who is therefore a dictator also for the new pair. Since w is absolutely general,
d is a dictator for all pairs whose first member is alternative x.

Now, we prove that d is also a dictator for the pairs (z, w) with z, w ∈ X \ {x}.
In order to do that, consider the following preference profile:

{d} D \ {d}
z w
x z
w x

The individuals are unanimous in strictly preferring z to x, and therefore z ≺D x.
On the other hand, since d is a specific dictator for all pairs (x,w), his/her strict
preference for x turns into the group preference, even if nobody else shares it. Now,
transitivity strikes again, implying that:

z ≺D x and x ≺D w ⇒ z ≺D w

not only in the considered profile, but also (by monotony) in those where other
individuals strictly prefer z to w. Hence, d is a dictator for pair (z, w), which is
completely general, except for excluding alternative x from both members.

Finally, we can prove that d is also a dictator for the pairs (z, x) with z ∈ X\{x}.
In order to do that, consider the following preference profile:
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{d} D \ {d}
z w
w x
x z

The individuals are unanimous in strictly preferring w to x, and therefore w ≺D
x. On the other hand, since d is a specific dictator for all pairs (z, w), his/her strict
preference for z turns into the group preference, even if nobody else shares it. Now,
transitivity strikes again, implying that:

z ≺D w and w ≺D x⇒ z ≺D x

but the only individual who strictly prefers z to x is d, who therefore (extending
the conclusion by monotony to the profiles in which other individuals prefer z to
x) is a dictator for pair (z, x), where z is completely general, except for excluding
alternative x. Of course, the pairs (x, x) are indifferent for all individuals and for
the group, due to the reflexivity of the preferences.

The conclusion is that d is a dictator, which violates the last statement of the
theorem.

More recently, a proof of Arrow’s theorem has been proposed, which is based
on six axioms, weaker than the original ones and easier to state. The modern
formulation includes:

� instead of the indipendence from the irrelevant alternatives, a binary relevance
axiom: for any pair of alternatives (x, y), the group preference depends only
on the preferences of the single individuals between x and y.

It can be proved that this axiom is equivalent to the independence from ir-
relevant alternatives, that is, that adding or removing alternatives does not
modify the preference between x and y; therefore, the substitution does not
change anything;

� instead of the monotony and popular sovereignty axioms, the unanimity ax-
iom, that is weaker.

Even if the modern formulation of the theorem considers a wider set of social
welfare functions, it also fails finding a satisfactory one.

15.7 Criticisms to Arrow’s axioms

Arrow’s proof raised a lively debate for many years. In particular, the reviewers
tried to undermine the proof suggesting that the axioms are not as natural and
obvious as they look. The criticisms are partially justified in stating that Arrow’s
model does not correspond exactly to the real world, but cannot anyway destroy
the fundamental core of the theorem, that is the fact that no preference aggregation
rule is able to satisfy the requirements that it would be desirable to enjoy. Let us
survey in further detail some criticisms.

15.7.1 Criticisms to the nontriviality axiom

The nontriviality axiom is rather difficult to criticise: in practice, a group always
includes more than one individual and the alternatives are often more than two.
However, the supporters of two-party political systems have often stressed the fact
that such systems exactly correspond to the case left open by Arrow’s proof. In fact,
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according to Black’s theorem4, if the feasible region includes only two alternatives x
and y, all of the other axioms proposed by Arrow can be satisfied by a social welfare
function that counts the individuals who strictly prefer each of the alternatives to
the other one and assigns the group preference to the alternative with the largest
number of supporters. The theorem is also known as the median voter theorem
because it also proves that, if the strength of the preference of each individual for the
two alternative is known, and the individuals are distributed along a continuous line
according to such preference strength, the winning alternative is the one preferred
by the median individual, that is by the individual who has half of the individuals
on the left and half on the right.

This has led the supporters of two-party systems to consider it as the only
implementable form of democracy, and to support the voting systems that favour
the aggregation on two alternative fronts. This position has some strong points,
but it can be objected that the reduction to two alternatives in problems in which
the feasible solutions are more numerous requires on its turn decision processes for
which theory does not offer any guarantee of reaching democratic results.

15.7.2 Criticisms to the universality axiom

More theoretical criticisms have been made to the universality axiom, which re-
quires a social welfare function to be able to aggregate the preferences for any
possible opinion of the individuals. Black’s theorem come once again into play. In
fact, it proves that, if the individual preferences respect some additional restrictive
assumptions, plurality voting respects all the other axioms introduced by Arrow.
This means that, if the individuals distribute their preferences in a suitable way
instead of having any imaginable profile, it is possible to guarantee a democratic
aggregation rule.

The special restriction assumed by Black requires that the alternative could be
ordered in a sequence X = (x1, . . . , xn) according to any arbitrary criterium (it is
not required to follow any rule) and that (this is the fundamental assumption) the
preference relation of each individual should be consistent with a value function
that is unimodal with respect to such a sequence. In simple words, each individual
must have a preferred alternative (or a set of consecutive preferred alternatives) and
must consider the alternatives that follow the preferred one as progressively worse
as one proceeds forward along the sequence; as well, the alternatives that precede
the preferred one should be considered as progressively worse as one proceeds back-
ward along the sequence. Figure 15.7.2 shows the result: the single individuals
correspond to the unimodal lines (first increasing, then decreasing), that describe
the strength of their preference for the alteratives (distributed along the horizontal
axis). Arrow’s axioms are all respected, except for the universality axiom, by the
Condorcet method, which leads to the victory of the alternative preferred by the
median individual, that is the individual whose maximum has half of the maxima
of the other individuals on the left and half on the right.

This situation clearly recalls the periods in which the political life of a country is
polarised along a linear sequence of positions between two extreme wings, classically
denoted as “left” and “right”. If the individuals have a favourite political position
and consider the other ones progressively worse as they get farther away in one or in
the other direction (even in an asymmetric way, provided that it is in a monotonous
way), Condorcet’s method allows to aggregate the preferences satisfying Arrow’s
axioms. If, on the contrary, some individuals do not respect this attitude (for
instance, they prefer extreme positions, be them right-wing or left-wing, to moderate

4Duncan Black (1908-1991), Scottish economist.
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Figure 15.1: Five individuals express their preferences, which are all unimodal, for
the alternatives distributed from left to right along the horizontal axis; Condorcet’s
method leads to select the alternative pointed by the arrow, which is the favourite
one for the median individual, that is the individual who has two individuals on the
left and two on the right.

ones), the process fails and Arrow’s theorem is once again valid.

15.7.3 Criticisms to the axiom of binary relevance

Other criticisms have been raised against the binary relevance axiom, according to
which the group preference between two alternatives must depend on the individual
preferences only between those two alternatives, and not the other ones. It has
already been remarked that this is equivalent to the independence from irrelevant
alternatives, and it aims to avoid that the group preference could be manipulated
removing or introducing alternatives. However, this assumption looks unnecessarily
strong. Let us explain why with an example.

Example 91 Two individuals meet at a coffee shop and decide to buy two identical
drinks. In order to decide which, they express their preference by sorting the avail-
able drinks. The result is reported in next table.

d1 d2

Coffee Tea
Water Coffee

Lemonade Water
Cola Lemonade
Tea Cola

As in the other examples, for the sake of simplicity we have assumed that the
preferences of the individuals form total orders. From the table, it is reasonable
to deduce that coffee would be a good candidate for a common choice, given that
it is the favourite drink for the first individual and the second favourite drink for
the second individual. However, the binary relevance axiom requires to consider the
group preference between the two drinks as perfectly identical to the one obtained
removing the other drinks, as reported in the following table.

d1 d2

Coffee Tea
Tea Coffee

This situation, however, looks quite different: the two drinks contrast in an
exactly balanced way, as a matter of fact forbidding a choice (each choice appears
arbitrarily favourable to one of the two individuals).

The fundamental point is that the presence of the other drinks allows not only
to describe the order of the individual preferences, but also to somehow measure
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their strength. This can be a deceptive effect: possibly, the first individual considers
all drinks approximately equivalent, even if ordered in the given way, whereas the
second individual likes only tea, detesting all the other ones. In fact, in order to
take a decision, one should know the strength of the preference of each individual
with respect to each alternative. This closely recalls the composition of the values
of multiple attributes in a single utility function, where the individuals correspond
to the attributes. Remembering the complications required by this process, it can be
easily understood how little it can be applied to the aggregation of the preferences
of many individuals (potentially, hundreds of millions, for political choices in very
populated nations) in a single national preference. Therefore, the criticism is valid,
but the countermeasure is hard to apply in practice.

15.7.4 Criticisms to the unanimity axiom

Even the unanimity axiom is open to criticism. It would seem obvious that, if all
the individuals share the same preference, the group should replicate it faithfully.
Yet, this contradicts some basic principles supported by several currents of political
thought. When the catholic mention “unnegotiable values” and the liberals “fun-
damental human rights” they mean exactly that some preferences (in favour of life
versus choice, or in favour of freedom of speech versus state censorship) cannot be
modified even if all individuals believe that they should.

On the other hand, it is also clear that, if the foundation of these principles is
not the preference of the individuals, the problem of establishing its ultimate source
remains open. The answers that have been given to this problem is not taken into
account in Arrow’s model.

15.8 Impossibility theorem for voting systems*

There is a theorem that closely resembles Arrow’s theorem, but concerns the voting
systems, and specifically the allotment of seats to parties in a voting competition.
It is well known that there are many different voting systems, from the purely
proportional ones to the majoritarian ones. A voting system can be interpreted as
an aggregation and simplification rule for the individual preferences on the existing
parties. There preferences are simplified a priori, assuming that each individual
chooses a single party. Starting from this simplified representation, we aim to obtain
an aggregated description of such preferences assigning to each party a suitable
number of seats in a parliament.

Definition 66 Let D be a finite set of individuals and X a finite set of n = |X|
parties. The set of the vote vectors V =

{
v ∈ Nn :

∑
x∈X vx = |D|

}
includes all

vectors of n integer numbers summing to |D|.

The vote vectors count the number of individuals who prefer each party.

Definition 67 Given a set S of seats to assign in a parliament, we denote as voting
system any function s : V → Nn that turns any vote vector v ∈ V in the number of
seats assigned to each party, so that

∑
x∈X sx (v) = |S|.

This definition includes all possible voting systems: those with a single party
which, for any vote vector, assign all seats to party x1; those which assign all seats
to the party getting the relative majority of the votes; those which assign each to

*This section provides advanced concepts, that are not part of the course’s syllabus.
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each party a number of seats proportional to the number of votes, with some more
or less complex rounding mechanism (which is far from being a trivial task).

Given this definition, it makes sense to investigate which systems enjoy the prop-
erties that a theoretically ideal system should guarantee to ensure a good operation
of a nation. Unfortunately, also this problem exhibits an impossibility result similar
to that of Arrow.

Theorem 27 If the set of parties has at least three elements, no voting system
enjoys all of the following properties:

1. remuneration: the parties with no votes should get no seat

sx (v) = 0 per ogni v ∈ V tale che vx = 0

2. monotony: the parties with more votes should get at least the same number
of seats (as the votes are many more than the seats, the seat distribution is
necessarily more coarse-grained than the vote distribution)

sx (v) ≥ sy (v) for all v ∈ V such that vx > vy

3. absolute majority: a party with the absolute majority of the votes should get
the absolute majority of the seats, and vice versa

vx >
|D|
2
⇔ sx (v) >

|S|
2

per ogni v ∈ V

4. superadditivity: the merger of two parties should have at least as many seats
as the two individual parties

v =



v1

. . .
vx
. . .
vy
. . .
vn


, v′ =



v1

. . .
vx + vy
. . .
0
. . .
vn


⇒ sx (v) + sy (v) ≤ sx (v′)

The fourth property deserves some explanation: vector v′ aggregates the votes
of the two parties x and y in a single one (indicato come x per semplice comodità),
mentre y rimane come semplice segnaposto nel vettore, senza voti. La proprietà di
superadditività richiede che il nuovo partito abbia un numero di seggi non inferiore
alla somma dei due partiti originari. Il partito fittizio non ha seggi, grazie alla
proprietà di remunerazione. Questa proprietà ha lo scopo di evitare che un partito si
frammenti in due per sfruttare l’incentivo offerto dal sistema elettorale, che consente
di ottenere complessivamente più seggi scindendosi che aggregandosi.



Part VI

Descriptive models*

*This part provides advanced concepts, that are not part of the course syllabus.
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Chapter 11

Modelli per i sistemi di
trasporto

Ci occupiamo dei sistemi per il trasporto di persone, sia pubblici sia privati. Con-
sideriamo modelli descrittivi, nei quali cioè si vuole determinare il valore di alcune
grandezze incognite a partire da quello di altre grandezze note. Non consideriamo
invece modelli decisionali, cioè non imponiamo noi il valore di alcuna grandezza
in gioco. Il modello descrittivo verrà poi usato in supporto a modelli decisionali
(aprire o chiudere strade, cambiare sensi unici, modificare l’ampiezza, istituire cor-
sie riservate, modificare i cicli semaforici, introdurre rotonde, ecc. . . ). Il modello

Figure 11.1: Sistemi di trasporto, modello a quattro stadi

che presentiamo è il più classico modello per i sistemi di trasporto. Viene detto
modello a quattro stadi in quanto si compone di una catena di quattro sottomodelli,
ognuno dei quali riceve come dati i risultati del precedente e fornisce come dati al
successivo i propri risultati (Fig. 11.1). Questo ha due conseguenze immediate:

391
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1. gli errori di modellazione compiuti in uno stadio si ripercuotono sui successivi,
accumulandosi

2. ciascun sottomodello può essere realizzato in vari modi, dando origine a parec-
chi diversi modelli complessivi

In particolare, alcuni dati possono essere ricavati da misurazioni anziché dai modelli
precedenti. Questo è possibile se il modello di trasporto viene usato per descrivere
situazioni identiche o simili a quella attuale, per cui i valori misurati sono signific-
ativi, oltre ad essere esenti da errori di modellazione. D’altra parte, se il modello va
usato per descrivere situazioni molto diverse dall’attuale, oppure se i dati misurati
sono incompleti, se sono campionari e poco significativi o se sono affetti da errori
di misurazione, l’uso di modelli offre una possibilità di sostituirli o correggerli.

Ogni sottomodello del modello a quattro stadi ha parametri che devono essere
determinati attraverso una fase di calibrazione, nella quale si individuano i valori
che avvicinano il più possibile i valori previsti dal modello a quelli registrati. La
fase di calibrazione comporta l’uso di modelli decisionali (si tratta di decidere il
valore dei parametri) in supporto a un modello descrittivo, che poi verrà usato in
supporto a modelli decisionali, come si è detto. Tali modelli possono essere modelli
di stima ai minimi quadrati, modelli di massima verosimiglianza, ecc. . .

Il modello a quattro stadi parte dalla descrizione di

� domanda di trasporto: popolazione e sue caratteristiche socio-economiche;
distribuzione spaziale e temporale, abitudini, servizi e attrattori di traffico
presenti sul territorio

� offerta di trasporto: rete stradale (distanze, caratteristiche di ampiezza e
forma, cicli semaforici, caratteristiche degli incroci, ecc. . . ), reti di trasporto
pubblico (linee, fermate, distanze, orari, frequenze).

Figure 11.2: Sistemi di trasporto, modellazione di domanda ed offerta

Questi due elementi fondamentali sono spesso schematizzati come riportato in Fig. 11.2:
per la domanda si utilizza un insieme di aree di origine πi con una serie di aree
periferiche πej che esercitano un’influenza marginale sulla popolazione; per l’offerta
si utilizza un grafo a più livelli dove ognuno rappresenta un differente mezzo di tras-
porto. In questa rappresentazione devono essere tenuti in considerazione sia i punti
di giunzione fra diversi livelli (ad es. se è possibile scendere dal treno per prendere
l’autobus), sia i vincoli derivanti dalla circolazione (semafori, sensi unici, ecc. . . ).
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In generale, l’offerta di trasporto deve rappresentare l’intera struttura viaria a dis-
posizione nell’area considerata. É inoltre importante che la modellazione avvenga
con un adeguato livello di dettaglio: questa rappresentazione verrà utilizzata in più
livelli del modello.

Gli stadi componenti il modello sono i seguenti:

1. generazione o emissione della domanda (chi fa il viaggio?): definita una seg-
mentazione della popolazione in fasce orarie, ed eventualmente in motivazioni
di viaggio, categorie di viaggiatori, ecc. . . e una suddivisione spaziale della
popolazione in aree dette origini (abbastanza grandi da essere gestibili, ab-
bastanza piccole da rendere trascurabili gli spostamenti nella singola area), si
procede a valutare il numero di spostamenti generati da ogni area

λ+
o = φg (πo, . . .)

2. distribuzione (da dove a dove si viaggia?): per ogni origine, si valuta la dis-
tribuzione dei viaggi fra le aree di arrivo (destinazioni). La segmentazione
della popolazione serve a tener conto del fatto che per fasce orarie, motivazioni
e categorie diverse di popolazione la distribuzione sarà anche diversa.

λod = φd
(
λ+
o , . . .

)
3. scelta modale (con che mezzo si viaggia?): per ogni coppia origine-destinazione

(O/D), si determina la distribuzione dei viaggiatori tra i diversi mezzi dispon-
ibili (privati e pubblici)

λmod = φm (λod, . . .)

4. assegnamento (lungo quale percorso si viaggia?): per ogni coppia O/D e per
ogni mezzo, si determina il percorso effettivamente seguito sulla rete di tras-
porto

λmpod = φp (λmod, . . .)

L’idea di fondo è esprimere il numero di spostamenti dalla zona o alla zona d
con il mezzo m e lungo il percorso p (nella fascia oraria, per la motivazione e la
categoria di persone scelte) come prodotto della popolazione presente nella zona o
per la probabilità che ciascun individuo si sposti in d col mezzo m lungo il percorso
p. Tale probabilità verrà espressa come prodotto di probabilità condizionate

λmpod = πoP (N = n)P (D = d|O = o)P (M = m|O = o,D = d)P (P = p|O = o,D = d,M = m)

Tramite questa catena di probabilità condizionate si tenta di modellare in modo
trattabile il processo decisionale del singolo individuo. E’ da notare come questa
descrizione sia approssimata in quanto ipotizza che la catena sia orientata: la scelta
della destinazione influenza la scelta del mezzo di trasporto, ma non viceversa. La
stessa considerazione vale per tutte le altre scelte: ognuna influenza quelle a valle
ma non è vero il contrario. Questa approssimazione rende quindi ogni livello di
scelta indipendente dai successivi. L’ipotesi di fondo non descrive perfettamente la
realtà ma, fra i possibili ordinamenti, la teoria ha scelto quello che riflette meglio le
reali dinamiche di trasporto.

11.1 Modello di generazione

Si tratta di un modello molto semplice. Fissata la fascia oraria, ed eventualmente
la motivazione e la categoria di viaggiatori di interesse, il modello stima il numero
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di spostamenti generati da una certa zona come prodotto della popolazione per la
probabilità che un individuo della zona (e della categoria specificata) compia uno
spostamento all’interno della fascia oraria data. Più precisamente, ammettendo
che un individuo possa compiere più spostamenti, si impiegano le probabilità che
l’individuo compia un dato numero n di spostamenti, moltiplicato per il numero
stesso:

λ+
o = πo

nmax∑
n=1

nP (N = n)

Si noti che la popolazione non va intesa come popolazione residente, ma come
popolazione presente nell’area durante la fascia oraria di interesse (magari a causa
di spostamenti precedenti). Quindi, le zone che generano traffico nelle fasce orarie
mattutine, diventano zone di destinazione di traffico generato dalle zone lavorative
nelle fasce orarie serali, quelle in cui la popolazione rientra da una giornata di lavoro.
Nel corso della giornata le zone possono quindi assumere sia il ruolo di origini di
traffico, sia di destinazioni.

Si possono stimare direttamente le probabilità P (N = n), oppure esprimerle

come funzioni (in genere lineari) di variabili x
(l)
g che descrivano le caratteristiche

socio-economiche della zona di origine, dalla categoria di viaggiatori, dalle fascia
oraria e dalla motivazione di viaggio.

P (N = n) =
∑
l

β(l)
g x(l)

dove gli attributi x(l) sono grandezze socio-economiche come note come il tipo di

zona, il reddito, la diffusione dell’automobile, ecc. . . mentre i coefficienti β
(l)
g dov-

ranno essere calibrati rispetto ad un campione di dati significativo.

11.2 Modello di distribuzione

A questo punto, si tratta di stimare quanta parte dei viaggi generati si diriga verso
ciascuna area di destinazione. L’idea alla base del modello di distribuzione è che ogni
individuo sceglierà la propria destinazione come la più conveniente per soddisfare il
bisogno all’origine del viaggio. Se i criteri che costituiscono l’utilità associata a un
viaggio fossero perfettamente uniformi per tutti i viaggiatori di una certa zona di
origine, essi si dirigerebbero alla zona che meglio li soddisfa. Se tali criteri fossero
perfettamente noti, il loro comportamento sarebbe perfettamente prevedibile. Ad
esempio, se l’unico criterio fosse la distanza (da minimizzare), tutti i λ+

o viaggi
generati dalla zona o sarebbero diretti alla più vicina zona in grado di soddisfare la
motivazione del viaggio.

Poiché cos̀ı non è, senza abbandonare del tutto l’idea di un comportamento
razionale e ottimizzante, si adottano modelli di utilità aleatoria, nei quali l’utilità del
singolo individuo viene descritta come parzialmente nota e parzialmente aleatoria.
Cercheremo quindi la probabilità che ogni individuo scelga una certa destinazione
e valuteremo il flusso diretto a quella destinazione come prodotto del numero di
individui in viaggio per tale probabilità.

λod = λ+
o P (D = d|O = o)

Le ipotesi di fondo sono:

1. il generico utente ha un insieme finito A di alternative disponibili; l’insieme è
lo stesso per tutti (da qui l’esigenza di segmentare categorie di utenti diversi,
per esempio dotati o no di patente di guida);
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2. ogni decisore associa a ciascuna alternativa a ∈ A un’utilità percepita Ua e
sceglie l’alternativa che massimizza Ua

3. l’utilità Ua dipende da una serie di caratteristiche misurabili (attributi) x(i)a

propri dell’alternativa e del decisore; quindi, il decisore sceglie un’alternativa
confrontando gli attributi di quell’alternativa con quelli delle altre;

4. l’utilità Ua non è nota con certezza all’osservatore esterno, e pertanto deve
essere rappresentata con una variabile aleatoria, pari alla somma di una com-
ponente nota (costituita da quegli attributi che l’osservatore può misurare)
e di una componente aleatoria o residuo (costituita da quegli attributi che
l’osservatore non può misurare):

Ua = Va + εa a ∈ A

5. la dipendenza della componente deterministica Va dagli attributi viene in
genere modellata come lineare, con coefficienti uniformi per tutti gli indi-
vidui. Gli errori compiuti con tale ipotesi vengono anch’essi attribuiti alla
componente aleatoria.

Va =
∑
i

β
(i)
d x(i)

a a ∈ A

dove x
(i)
a sono gli attributi dell’alternativa a e i coefficienti β

(i)
d esprimono il

peso dell’attributo i sull’utilità dell’individuo.

A questo punto, la probabilità di scegliere l’alternativa ā è

P (A = ā) = P (Uā ≥ Ua,∀a ∈ A) = P (εā ≥ εa + Va − Vā,∀a ∈ A)

Per valutare questa probabilità, occorre un’ipotesi sulla distribuzione stocastica
dei residui. Il modello più diffuso in letteratura è il modello Logit multinomiale. Esso
assume che i residui seguano identicamente e indipendentemente una distribuzione
di Gumbel a media nulla e varianza θ2.

F (x) = e−e
− x
θ
−Φ

dove Φ è la costante di Eulero.

Questa distribuzione è abbastanza simile alla distribuzione normale (quella tipica
dei valori casuali), ma ha in più la proprietà di poter esprimere in forma chiusa la
probabilità precedente.

P (A = ā) =
eUā∑

a∈A
eUa

che ha un andamento sigmoidale piuttosto verosimile (Fig. 11.3). Qualora tutte le
alternative avessero la stessa utilità deterministica (Ua = Ū , ∀a ∈ A), il modello
suggerisce che gli individui si disperdano uniformemente fra le diverse destinazioni
(P (A = a) = 1/ | A |).

Altre proprietà interessanti sono il fatto che le probabilità dipendono dalle dif-
ferenze tra i valori delle utilità sistematiche, e non dal loro valore assoluto e quindi
risultano indipendenti alla scelta dello zero per ciascun attributo. Inoltre, il modello
risulta indipendente dalle alternative irrilevanti, cioè aggiungere o togliere alternat-
ive non altera l’ordinamento relativo fra quelle presenti: cambia il denominatore ma
allo stesso modo per tutti i coefficienti, come se fossero moltiplicati per un identico
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Figure 11.3: Distribuzione di Gumbel F (x) e relativa funzione di densità di prob-
abilità f(x).

fattore. Infine, esiste l’influenza della varianza dei residui: al crescere di θ, le prob-
abilità tendono ad avvicinarsi, cioè meno sono significativi i termini noti, meno si
differenziano fra loro le scelte.

Il modello richiede una fase di calibrazione per valutare il parametro θ e i coef-

ficienti β
(i)
d dei diversi attributi.

Il modello Logit è ampiamente utilizzato anche nell’ambito del marketing, per
descrivere il comportamento del consumatore posto di fronte ad un insieme di pos-
sibili prodotti o servizi da acquistare.

11.3 Modello di scelta modale

Stima quanta parte dei viaggi dall’origine o alla destinazione d utilizza il mezzo m.
I modelli Logit multinomiali sono stati applicati per la prima volta a questa fase,
estendendosi poi a quella di distribuzione, nella quale in precedenza si adottavano
modelli diversi (ad esempio, il modello gravitazionale o quello a massima entropia).

Gli attributi tipici usati nel modello Logit per la scelta modale sono:

� tempo di viaggio

� costo monetario

� comodità

� tempo di avvicinamento al mezzo e di allontanamento dal mezzo

� tempo di attesa (nullo per il mezzo privato)

Trattandosi di criteri eterogenei, i coefficienti β(i) devono correlare fra loro le unità
di misura, traducendo tutti gli attributi in termini di utilità adimensionale. Nel
caso di costi (cioè escludendo solo la comodità), i coefficienti sono negativi.

Ricavare il peso β
(i)
m assegnato ad ogni attributo x

(i)
a dell’alternativa a richiede

uno studio dedicato che può essere svolto secondo differenti modalità. Nel caso in
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cui si contatti un campione dell’utenza per rilevarne direttamente utilità e bisogni
si parla di metodi delle preferenze dichiarate o stated preferences. Sotto questa
dicitura viene raccolto un insieme di metodi di pesatura (o pricing) dove il ba-
cino d’utenza viene interpellato direttamente tramite opportuni questionari. Le
domande sono strutturate in modo tale da ricavare, per ognuna delle alternative
presenti, un valore monetario: si può chiedere all’intervistato quanto sarebbe dis-
posto a pagare per evitare un peggioramento del servizio o, in alternativa, quanto
sconto esigerebbe sul prezzo del servizio per sentirsi in un certo modo “risarcito” del
calo di qualità subito. Un’ulteriore possibilità prevede di chiedere all’intervistato di
determinare un tradeoff accettabile fra alternative differenti, dal quale poi è possibile
stimare il valore assegnato ad ognuna. La seconda categoria di metodi, definita delle
preferenze rilevate (revealed preferences), richiede l’osservazione del comportamento
dell’utenza a fronte di modifiche della qualità o del prezzo delle alternative. I met-
odi appartenenti a questa categoria sono considerati i più affidabili dalle discipline
econometriche in quanto si osservano i comportamenti reali dell’utenza, evitando le
potenziali imprecisioni dovute alla incongruenze di valutazione che possono sorgere
nel decisore messo di fronte ad un questionario. Nonostante questo difetto, i metodi
delle preferenze dichiarate sono, per ovvi motivi, decisamente meno costosi ed im-
pegnativi e permettono inoltre di assegnare un valore di utilità anche ad alternative
che non sono ancora state implementate.

11.4 Modello di scelta del percorso

Questo modello parte dalle matrici O/D associate a ciascun mezzo e arriva a determ-
inare il numero di individui che seguono ogni percorso. Nel caso dei mezzi pubblici,
il modello è generalmente banale, dato che il percorso disponibile è uno solo, oppure
si riduce ad un’ulteriore applicazione del modello Logit, oppure a un’applicazione di
modelli statistici basati sulla frequenza delle corse (l’ipotesi è che l’individuo prenda
il mezzo che passa per primo fra quelli che possono servire la sua richiesta).

Nel caso del trasporto privato invece, a partire dalle matrici O/D il modello
assegna il valore del flusso di veicoli su ogni arco della rete stradale. In questo caso,
la scelta del percorso è tutt’altro che banale perché molti percorsi sono disponibili
e soprattutto perché il tempo di viaggio su ogni percorso dipende pesantemente dal
numero di veicoli che lo seguono. I due aspetti sono quindi profondamente correlati,
influendo l’uno sull’altro: un percorso più breve attira più traffico e diventa quindi
automaticamente più lungo.

Quando un insieme di veicoli percorre una strada, il tempo che impiega è inver-
samente proporzionale alla sua velocità. La velocità di un veicolo è una variabile
aleatoria, che il veicolo tipicamente tende a conservare costante. Se sulla strada
ci sono però altri veicoli, la cosa comporta sorpassi, e questo è possibile solo se
l’intervallo fra il veicolo precedente e quello prima ancora lo consente. Quindi, il
tempo di viaggio medio tende a crescere al crescere del flusso. Sulle autostrade, si
considera approssimativamente lineare la relazione fra tempo e flusso.

ta = αa + βa
xa
Ka

(11.1)

dove αa, βa e Ka sono parametri dell’arco di strada a. Ovviamente esiste un limite
superiore al flusso sopportabile dal tratto prima dell’imbottigliamento dei viaggia-
tori come mostrato in Fig. 11.4. Per comprendere il significato del parametro Ka, si
consideri la dinamica del flusso di veicoli in viaggio su di un tratto autostradale. Se
un conducente che sta percorrendo la corsia di destra incontra un veicolo che viaggia
ad una velocità inferiore, cercherà di spostarsi sulla corsia a sinistra per superarlo.
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Figure 11.4: Tempo di percorrenza su arco autostradale

Allo stesso modo, se un conducente che sta percorrendo la corsia di sorpasso in-
contra un veicolo più lento, tenterà di indurlo a spostarsi sulla corsia di destra per
mantenere la propria velocità. La capacità di spostarsi da una corsia all’altra è
quindi una proprietà fondamentale per mantenere una velocità di crociera. Questa
possibilità però non è sempre garantita. All’aumentare del traffico infatti, la fa-
coltà di cambiare corsia diminuisce, poiché diventano più rari gli intervalli di spazio
fra due veicoli entro i quali è possibile inserirsi con sicurezza, con conseguente di-
minuzione della velocità media del flusso veicolare. Quando il traffico è molto denso,
i veicoli che si spostano sulla corsia di sorpasso si inseriscono in intervalli abbastanza
stretti, costringendo chi li precede a decelerare, spesso bruscamente. Queste decel-
erate si propagano anche ai veicoli successivi, dando luogo a forti oscillazioni di
velocità. In queste condizioni il flusso diventa instabile: si verificano rapide ed
improvvise cadute di velocità, con possibile arresto della circolazione. Si definisce
capacità fisica di una carreggiata autostradale quel valore del flusso veicolare al di
là del quale il rischio della instabilità è considerato inaccettabile. Imponendo quindi
che

xa ≤ Ka

la funzione lineare (11.1) diventa verosimile. Come si nota dalla Figura 11.4,
l’andamento oltre Ka non è rappresentato in quanto non sarebbe significativo: oltre
quel valore il flusso veicolare è in condizione di instabilità. Il valore di capacità fis-
ica dipende dalla geometria della carreggiata, dalla composizione del traffico, dalle
condizioni atmosferiche e dal comportamento dei conducenti.

Nelle strade urbane invece, anche quando non ci sono carreggiate separate, il
sorpasso rimane difficoltoso o vietato. Questo vincolo imposto sulla circolazione
urbana rende le strade di questo tipo simili ad una coda fifo in quanto tutti i veicoli
che intraprendono il percorso devono necessariamente assestarsi alla velocità del
più lento. Il tempo di percorrenza è descritto in modo semplificato dalla seguente
relazione (vedi Fig. 11.5).

ta = ta

[
1 + αa

(
xa
Ka

)βa]
(11.2)

dove ta rappresenta il tempo richiesto per la percorrenza del tratto quando sgom-
bro (detto tempo a vuoto), Ka la capacità fisica della strada espressa in numero di
veicoli, αa e βa sono parametri dipendenti dalle caratteristiche del tratto. Come si
nota dal grafico in Figura 11.5, l’andamento del tempo di percorrenza ta aumenta
polinomialmente in funzione del flusso a differenza di quanto si aveva nel caso auto-
stradale dove incrementava linearmente il tempo di percorrenza del tratto fino al
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Figure 11.5: Tempo di percorrenza su arco stradale urbano

raggiungimento del limite Ka. Anche in questo caso, la validità della (11.2) è
garantita solo dove xa ≤ Ka.

Principi di Wardrop Per descrivere il comportamento del traffico privato si
utilizzano i Principi di Wardrop. Essi tengono conto delle cosiderazioni fatte fino
a questo punto e tentano di modellare il processo decisionale del singolo una volta
messo di fronte al problema della scelta del percorso da seguire.

Siano Pod l’insieme dei percorsi da o a d, λod il flusso complessivo dall’origine
o alla destinazione d ed il coefficiente binario δpa l’indicatore di appartenenza del
tratto stradale a ad uno dei percorsi p utilizzati (δpa = 1 in caso positivo, δpa = 0
altrimenti). Sia inoltre la variabile xa il flusso sul tratto stradale a e λp il flusso
presente sul singolo percorso p. I vincoli di conservazione diventano:∑

p∈Pod

λp = λod ∀o, ∀d (11.3)

xa =
∑
p

λpδpa con δpa =

{
1 se a ∈ p
0 se a /∈ p (11.4)

λp ≥ 0 ∀p (11.5)

Primo principio di Wardrop Il tempo di viaggio su ogni percorso usato è minore
o uguale al tempo di viaggio che un singolo veicolo sperimenterebbe se usasse uno
qualsiasi dei percorsi rimasti inutilizzati. Ciò equivale a dire che ogni singolo utente
cerca di minimizzare, in modo non cooperativo, il proprio tempo di viaggio. I
flussi di traffico che soddisfano questo principio sono detti di equilibrio. Il punto di
equilibrio è raggiunto quando nessun utente, tramite una decisione personale, può
diminuire il proprio tempo di viaggio. Il primo principio di Wardrop afferma che:

T ∗od ≤ T p ∀p ∈ Pod (11.6)

λp (T p − T ∗od) = 0 ∀p ∈ Pod (11.7)

In particolare, la (11.7) è detta vincolo di complementarità ed impone che, se il
percorso p non è ottimo, il flusso su di esso è nullo e non passa alcun veicolo
(T p > T ∗od ⇒ λp = 0).

Secondo principio di Wardrop Si consideri ora il tempo totale T p del percorso
p dato dalla somma di tutti i tempi degli archi stradali a che lo compongono;

T p =
∑
a∈p

ta(xa)
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Si consideri anche la seguente

T ∗od = min
p∈Pod

T p

che rappresenta il tempo ottimo di percorrenza dall’origine o alla destinazione
d. L’equazione (11.7) è la condizione necessaria di equilibrio ed assume lo stesso
ruolo che le condizioni di Karush-Kuhn-Tucker ricoprono nell’ambito della Pro-
grammazione Matematica (vedere capitolo dedicato). Infatti, il secondo principio
di Wardrop afferma che all’equilibrio il tempo medio di viaggio è minimo:

ϕx =
∑
a∈A

∫ xa

0

ta(x)dx è minimo

Per dimostrare la relazione (11.7), si consideri la funzione ϕ si cerchi di min-
imizzarla nel rispetto dei vincoli (11.3), (11.4) e (11.5). Le condizioni di Karush-
Kuhn-Tucker diventano:

l =
∑
a∈A

∫ xa

0

ta(x)dx+
∑
od

µod

 ∑
p∈Pod

λp − λod

+
∑
a∈A

µa

(
xa −

∑
p

λpδpa

)
+
∑
p

µpλ
p

dl

dxa
= ta(xa) + µa = 0 =⇒ µa = −ta(xa)

dl

dλp
= µod −

∑
a∈A

µaδpa + µp = 0 =⇒
∑
a∈A

δpata(xa) + µodp + µp = 0

µp = µodp −
∑
a∈A

ta(xa)δpa ≥ 0 =⇒ T p − T ∗ ≥ 0

xa =
∑
p

λpδpa

λod =
∑
p∈P

λp

µpλ
p = 0

µp ≥ 0

dalle quali si ottiene la (11.7). Quindi si minimizza il tempo medio di viaggio
nell’intervallo (0;xa) ma sulla rete tutti subiscono il tempo associato al flusso
massimo xa che è maggiore. Come si può notare quindi, la situazione di equi-
librio che si configura non è ottimale per alcun viaggiatore.

Il paradosso di Braess Un esempio significativo delle conseguenze dei principi
di Wardrop è costituito dalla seguente situazione. Si consideri una rete stradale,
modellata nel grafo di Fig. 11.6, dove l’andamento del tempo di percorrenza dei
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Figure 11.6: Paradosso di Braess, situazione di equilibrio iniziale

singoli tratti è descritto dalle seguenti equazioni

t12 = 10x12

t13 = x13 + 50

t24 = 10x24

t34 = x34 + 50

e la rete soggetta ad una domanda di trasporto pari a λ14 = 6. Seguendo il primo
principio di Wardrop, la situazione di ottimalità si raggiunge suddividendo equa-
mente il flusso in uscita dal nodo 1, ottenendo cos̀ı tempi di percorrenza equivalenti
su entrambi i percorsi possibili:

p1 = {1, 2, 4} t1 = 83

p2 = {1, 3, 4} t2 = 83

Il decisore si pone però il problema di diminuire il tempo di percorrenza, migli-
orando cos̀ı la rete stradale sotto il suo controllo. Per raggiungere in modo semplice
questo obiettivo egli decide di aggiungere un nuovo tratto molto veloce che collega
i nodi 2 e 3: il tempo di percorrenza del nuovo passaggio è descritto dalla seguente

t23 = x23 + 10

e la situazione che si viene a creare è quella rappresentata in Fig. 11.7. Considerando
i percorsi possibili nella situazione finale, si ha:

p1 = {1, 2, 4} t1 = 92

p2 = {1, 3, 4} t2 = 92

p3 = {1, 2, 3, 4} t3 = 92

Il primo principio di Wardrop può essere interpretato anche dal punto di vista sin-
golare: ognuno tenta di minimizzare il tempo di percorrenza del proprio percorso
in modo assolutamente egoistico, senza nessun tipo di coordinazione, portando ad
una situazione finale che può essere peggiore per tutti. Il paradosso consiste proprio
nell’aspetto di peggioramento per ognuno: se anche uno solo traesse beneficio dalla
situazione finale, si tratterebbe di prepotenza di chi trova giovamento nei confronti
di chi invece sarebbe costretto ad allungare il proprio viaggio. Si nota come nella
situazione finale con la nuova strada ci sia una parte di viaggiatori (pari ad una
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Figure 11.7: Paradosso di Braess, situazione di equilibrio finale

sola unità di flusso) che sceglie di cambiare percorso, passando dal nodo 2 per poter
usufruire del nuovo tratto che si sa essere molto rapido. Questa decisione porta ad
una perdita di flusso da parte delle strade più lente, che diventano leggermente più
veloci, in favore di quelle più scorrevoli che diventano decisamente più lente. In
questo caso, la situazione finale vede un deciso aumento del tempo di percorrenza
di tutti i viaggiatori che da 83 passa a 92. La nuova situazione di equilibrio porta
quindi a percorsi più lenti: aprire una nuova strada ha portato ad un netto peg-
gioramento. Questi sono fenomeni che si osservano nella realtà e questo paradosso
risulta significativo anche nell’ambito della Teoria dei Giochi: in questo caso tutti
i giocatori (i viaggiatori) defezionano, tentati da una strada veloce, portando ad
un’inevitabile punizione collettiva. L’aspetto di non-collaborazione del primo prin-
cipio di Wardrop è cos̀ı verificato; nel caso in cui tutti collaborassero, l’apertura
di una nuova strada non modificherebbe i flussi in quanto tutti i viaggiatori la ig-
norerebbero (scegliendo di non defezionare ma di collaborare): basta che anche uno
solo decida di farsi tentare per portare inevitabilmente alla defezione di massa.
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Appendix A

Richiami di Analisi
Matematica

Queste note riassumono alcuni concetti di Analisi Matematica necessari per af-
frontare i fondamenti della Programmazione Matematica (Cap. 1).

A.1 Richiami sulle funzioni di una sola variabile

Una funzione di una sola variabile u = f (x) è una legge che fa corrispondere a ogni
valore x di un opportuno insieme S in R uno o più valori reali u ∈ R.

u = f (x) oppure

In generale, si intende che f (x) assuma uno e un solo valore per ogni x in S.

Al variare di P in S, il punto (P, f (P )) descrive un luogo geometrico che si
chiama grafico della funzione, ed è in generale una linea sul piano x, f . La Pro-
grammazione Matematica si occupa di determinare massimi e minimi di tale linea,
con i relativi punti di massimo e minimo.

Teorema di Lagrange (teorema del valor medio) Se f (x) è continua in un
intervallo [a; b] e derivabile in (a; b), esiste un punto ξ ∈ (a, b) tale che f (b)−f (a) =
(b− a) f ′ (ξ).

Questo teorema consente di esprimere il valore di una funzione nell’intorno di
un punto x∗. Infatti, per ogni coppia di punti x∗ e x in [a; b] risulta

f (x) = f (x∗) + (x− x∗) f ′ (ξ)

dove ξ è un opportuno punto compreso fra x∗ e x.

Formula di Taylor e formula di MacLaurin Se f (x) è continua in un inter-
vallo [a; b] con le sue derivate sino all’ordine n− 1 ed esiste la sua derivata n-esima
in (a; b), per ogni coppia di punti x∗ e x in [a; b] risulta

f (x) =

n−1∑
k=0

f (k) (x∗)

k!
(x− x∗)k +

f (n) (ξ)

n!
(x− x∗)n =

= f (x∗) +
f ′ (x∗)

1!
(x− x∗) + . . .+

f (n−1) (x∗)

(n− 1)!
(x− x∗)n−1

+
f (n) (ξ)

n!
(x− x∗)n

409
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dove
f (n) (ξ)

n!
(x− x∗)n si chiama resto nella forma di Lagrange.

Se in x∗ esiste anche la derivata n-esima, si può scrivere

f (x) =

n−1∑
k=0

f (k) (x∗)

k!
(x− x∗)k +

(x− x∗)n

n!

(
f (n) (x∗) + αn (x)

)
=

dove lim
x→x∗

αn (x) = 0, oppure

f (x) =

n∑
k=0

f (k) (x∗)

k!
(x− x∗)k + on (x)

dove on (x) =
αn (x)

n!
(x− x∗)n si chiama resto nella forma di Peano ed è infinites-

imo di ordine superiore a n rispetto a (x− x∗), cioè lim
x→x∗

on (x)

(x− x∗)n
= 0.

Il vantaggio della forma di Peano consiste nel far dipendere tutti i coefficienti
dalle derivate di f in x∗, lasciando un termine infinitesimo che si può spesso elim-
inare attraverso un passaggio al limite.

Per x∗ = 0, la formula di Taylor dà luogo alla formula di MacLaurin.

f (x) =

n∑
k=0

f (k) (0)

k!
xk + on (x) con lim

x→0

on (x)

xn
= 0

A.2 Funzioni di più variabili

Una funzione di più variabili u = f (P ) è una legge che fa corrispondere a ogni
punto P di un opportuno insieme S in Rn uno o più valori reali u ∈ R.

u = f (P ) oppure u = f (x1, x2, . . . , xn)

In generale, si intende che f (P ) assuma uno e un solo valore per ogni P in S.

Al variare di P in S, il punto (P, f (P )) descrive un luogo geometrico che si
chiama grafico della funzione, ed è in generale una (iper)superficie a n dimensioni
in uno spazio a n + 1 dimensioni. La Programmazione Non Lineare si occupa di
determinare massimi e minimi di tale superficie, con i relativi punti di massimo e
minimo.

Limiti di funzioni a più variabili Il concetto di limite si estende banalmente
da funzioni di una a funzioni di più variabili.

lim
P→P∗

f (P ) = l

significa che per ogni ε > 0 esiste un valore δε > 0 tale che |f (P )− l| < ε per ogni
P ∈ UP∗,δε , cioè per ogni P tale che ‖P − P ∗‖ < δε.

Geometricamente, ciò significa che per ogni intervallo di semiampiezza ε intorno
a l si riesce a trovare una sfera di raggio δε centrata in x∗ tale che il valore di f in
tutti i punti della sfera cade nell’intervallo.
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La distanza ‖P − P ∗‖ va definita opportunamente, ed è in genere quella euclidea.

‖P − P ∗‖ =

√
(x1 − x∗1)

2
+ (x2 − x∗2)

2
+ . . .

Una funzione f (P ) è continua in P ∗ quando

lim
P→P∗

f (P ) = f (P ∗)

Composizione di funzioni Supponiamo che z = f (P ) = f (x1, . . . , xn) sia
definita in un sottoinsieme S del piano Rn e che le variabili xi siano a loro volta
funzioni xi = φi (Q) = φi (ξ1, . . . , ξm) in un sottoinsieme Σ di Rm. Allora z risulta
essere funzione composta delle variabili ξj in Σ.

Si dimostra che, se ciascuna funzione φi ammette limite finito li per Q→ Q0 e
se f è continua in P ∗ = (l1, . . . , ln), allora la funzione composta è continua in Q0 e
il limite è f (φ (Q0) , ψ (Q0)). Ad esempio, per n = 2:

z = f (x1, x2)

x1 = φ1 (Q)

x2 = φ2 (Q)

lim
Q→Q0

φ1 (Q) = l1

lim
Q→Q0

φ2 (Q) = l2

f (P ) continua in P ∗ = (l1, l2)

⇒

{
z = f (φ1 (Q) , φ2 (Q)) è continua in Q0

lim
Q→Q0

f (φ1 (Q) , φ2 (Q)) = f (φ1 (Q0) , φ2 (Q0))

Derivate parziali Data una funzione di due variabili x e y, definita in un campo
(insieme aperto e non vuoto), si attribuisca alla sola x un incremento h 6= 0, manten-
endo invariata la y. Con h piccolo, il nuovo punto è ancora valido per la funzione.
Si può definire il rapporto incrementale parziale e il suo limite, che è la derivata
parziale rispetto a x. Analoghe sono le definizioni per la variabile y.

fx =
∂f

∂x
= lim
h→0

f (x+ h, y)− f (x, y)

h

Esempio: z = ex/y ha derivate parziali zx =
1

y
ex/y e zy = − x

y2
ex/y

Le derivate parziali ammettono un’interpretazione geometrica: sono le tangenti
trigonometriche degli angoli che le rette tangenti alla superficie (P, f (P )) in P e
parallele ai piani xz e yx formano con gli assi x e y.

Esempio: z = x2 + 2y2 è un paraboloide con vertice nell’origine. Si vede che le
tangenti vanno via via crescendo quando ci si allontana dall’origine e che crescono
più in fretta rispetto alla y che rispetto alla x.

Una funzione può essere discontinua, ma derivabile parzialmente, al contrario di
quanto avviene per le funzioni di una sola variabile. Basta infatti che siano contine
le sue restrizioni agli assi.

Esempio:

f (x, y) =


xy

x2 + y2
per (x, y) 6= (0, 0)

0 per (x, y) = (0, 0)

in (0, 0) ammette entrambe le derivate parziali, perché lungo gli assi è identicamente
nulla. D’altra parte, non esiste il limite per (x, y)→ (0, 0); infatti, se ci si avvicina
lungo la bisettrice y = x, f ha limite 1/2; se ci si avvicina lungo l’altra bisettrice
y = −x ha limite −1/2; se ci si avvicina lungo gli assi, ha limite 0.
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Derivazione delle funzioni composte di una e più variabili Sia f (x, y)
definita in un campo A, con x e y entrambe funzioni di t in un intervallo (a; b)
e supponiamo che (x, y) resti in A mentre t varia in (a; b). Allora, f è funzione
composta di t nell’intervallo (a; b).

Se f ∈ C1 (A) e φ e ψ sono in C1 (a, b), allora la funzione composta è C1 (a, b)
e la sua derivata è

f ′ (t) = fx (φ (t) , ψ (t))φ′ (t) + fy (φ (t) , ψ (t))ψ′ (t)

Dimostrazione: La dimostrazione si basa sul teorema di Lagrange: per piccoli
incrementi di t, x e y cambiano poco e i punti (x+ δx, y) e (x+ δx, y + δy) cadono
in A. Quindi la variazione δz è la somma dell’incremento dovuto alla variazione di
x e di quello dovuto alla variazione di y.

f (t+ h)− f (t) = f (φ (t+ h) , ψ (t+ h))− f (φ (t) , ψ (t)) =

= f (φ (t+ h) , ψ (t+ h))− f (φ (t+ h) , ψ (t)) + f (φ (t+ h) , ψ (t))− f (φ (t) , ψ (t))

= fy (φ (t+ h) , η) (ψ (t+ h)− ψ (t)) + fx (ξ, ψ (t)) (φ (t+ h)− φ (t))

dove η ∈ (t, t+ h) e ξ ∈ (t, t+ h). Quindi, tendendo al limite per h→ 0:

f ′ (t) = lim
h→0

f (t+ h)− f (t)

h
=

= lim
h→0

[
fy (φ (t+ h) , η)

ψ (t+ h)− ψ (t)

h
+ fx (ξ, ψ (t))

φ (t+ h)− φ (t)

h

]
per la continuità di fx e fy e per la definizione di derivata, segue la tesi.

Analogamente, se le n variabili xi sono funzioni di m variabili ξj

fξj =
∂f

∂ξj
=

n∑
i=1

∂f

∂xi

∂xi
∂ξj

Basta ripetere il ragionamento, tenendo ogni volta fisse m− 1 variabili.

Derivata direzionale Consideriamo una funzione f definita in un campo A, un
punto P ∗ ∈ A e un asse r, con coordinate misurate a partire da P ∗. Se consideriamo
i valori di f solo in corrispondenza ai punti dell’asse r, si possono definire un rap-
porto incrementale e una derivata rispetto a r. Questa è la tangente trigonometrica
dell’angolo che la retta tangente alla superficie in P e parallela al piano rz forma
con l’asse r.

Abbiamo quindi infinite possibili derivate: le derivate parziali sono quelle per
cui r coincide con uno degli assi. Fortunatamente, per conoscere le infinite derivate
direzionali, è sufficiente conoscere le n derivate parziali. Scrivendo x e y come
funzioni di r con le coordinate polari:

x = x∗ + r cos θ e y = y∗ + r sin θ

la funzione f ristretta ai punti dell’asse r si può valutare come funzione composta,
e la derivata direzionale si può ottenere come sopra descritto, ottenendo

fr = fx
dx

dr
+ fy

dy

dr
= fx cos θ + fy sin θ
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Gradient The vector whose components are the partial derivatives of a function
with respect to the variables is denoted as gradient of the surface. It identifies a
vectorial field, that is a function of several variables with vectorial values.

∇f =


d f

d x1
. . .
d f

d xn


L’asse r è univocamente individuato dal suo versore ur (vettore di norma unitaria)

ur =

 cos θ1

. . .
cos θn


dove θi è l’angolo che r forma con l’asse xi e i coseni si chiamano coseni direttori.

Quindi, la derivata direzionale lungo l’asse r è pari al prodotto scalare del vettore
gradiente con il versore di r.

fr = fx cos θ + fy sin θ = (∇f)
T · ur

e questo implica che la derivata direzionale è massima quando viene calcolata nella
direzione del gradiente e nulla in direzione ortogonale.

Il gradiente indica la direzione di più rapido incremento della funzione. Dette
linee di livello i luoghi dei punti in cui f (P ) = k, cioè la funzione ha valore uniforme,
il gradiente è in ogni punto normale alle linee di livello.

Piano tangente La relazione fra le derivate direzionali si traduce in una relazione
geometrica fra le rette tangenti al grafico di f . Infatti, i punti della tangente lungo
l’asse r in (x∗, y∗, f (x∗, y∗)) si possono scrivere come

z − f (x∗, y∗) = fr (0) r = [fx (x∗, y∗) cos θ + fy (x∗, y∗) sin θ] r

ma poiché r cos θ = x− x∗ e r sin θ = y − y∗:

z − f (x∗, y∗) = fx (x∗, y∗) (x− x∗) + fy (x∗, y∗) (y − y∗)

che rappresenta un piano: tutte le rette tangenti a una superficie regolare in un
punto giacciono su un piano. Questo piano si dice piano tangente.

Formula di Taylor per funzioni di più variabili Ora possiamo tirare le
somme: dato un punto P ∗, approssimiamo il valore di f in qualsiasi punto P
nell’intorno di P ∗ semplicemente tracciando un asse da P ∗ a P , considerando la
restrizione di f a tale asse ed approssimandola con la formula di Taylor. In essa
compare la derivata direzionale, che però si può esprimere in funzione delle derivate
parziali.

Se f (x, y) ∈ Cn (A), si consideri un punto P ∗ = (x∗, y∗) e un punto P = (x, y)
tale che il segmento P ∗P cada interamente in A. I punti del segmento hanno
coordinate (x∗ + t (x− x∗) , y∗ + t (y − y∗)) con t ∈ [0; 1]. Lungo il segmento, f è
funzione composta di t. La formula di MacLaurin fornisce il valore di f lungo il
segmento (in particolare in t = 1):

f (1) =

n−1∑
k=0

f (k) (0)

k!
1k +

f (n) (ξ)

n!
1n
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con un opportuno ξ ∈ (0; 1). Arrestandosi al primo termine (n = 1), considerando
t = 1 e riscrivendo nelle variabili x e y, si ottiene

f (x, y) = f (x∗, y∗) + [fx (P (ξ)) (x− x∗) + fy (P (ξ)) (y − y∗)]

dove P (ξ) = (x∗ + ξ (x− x∗) , y∗ + ξ (y − y∗)).
Se le derivate prime sono continue, al resto in forma di Lagrange si può sostituire

il resto in forma di Peano

f (x, y) = f (x∗, y∗) + [fx (x∗, y∗) (x− x∗) + fy (x∗, y∗) (y − y∗)] + o1 (x, y)

con lim
P→P∗

o1 (P )

‖P − P ∗‖
= 0.

A.3 Linee in forma parametrica

Consideriamo due funzioni reali di variabile reale t definite e continue in un insieme
base S. Se le interpretiamo come coordinate cartesiane di un punto, il loro insieme
definisce una linea in forma parametrica. Il parametro t stabilisce un orientamento
sulla linea.

Se un punto P (t) = (x (t) , y (t)) di una linea in forma parametrica deriva da
diversi valori di t, cioè se la linea si ripiega su sé stessa, si parla di punto multiplo.

Esempio: {
x (t) = t2

y (t) = t3 − t
con t ∈ [−2, 2]

Esempio: {
x (t) = t2

y (t) = t2
con t ∈ [−1, 1]

Una linea semplice è priva di punti multipli. Essa crea una corrispondenza
biunivoca fra punti e valori di t.

Vettore tangente Si può estendere al vettore P (t) il concetto di derivata, sempre
basandolo sul rapporto incrementale: il risultato è un vettore (detto vettore tangente
alla linea) le cui componenti sono le derivate delle singole componenti.

P ′ (t) =

[
x′ (t)
y′ (t)

]
Il piano normale al vettore tangente si dice piano normale alla linea.

Linee regolari Il concetto di linea in forma parametrica include un insieme di
oggetti più ampio di quello suggerito dall’intuizione. Ad esempio, x (t) = 1 e y (t) =
2 è una linea in forma parametrica, pur riducendosi geometricamente a un solo
punto. Ancora, la curva di Peano è una linea in forma parametrica, anche se
geometricamente ricopre un intero quadrato.

Per evitare queste patologie, ci concentriamo sulle linee regolari :

1. semplici
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2. aventi come insieme base un intervallo (a, b)

3. dotate di vettore tangente continuo e non nullo (cioè le singole derivate sono
continue e non contemporaneamente nulle)

Esempio:{
x (t) = sin t

y (t) = cos t
con t ∈ [−π/2, π/2] è una linea regolare

Esempio: {
x (t) = sin t

y (t) = cos t
con t ∈ [−π, π]

è un caso limite (ciclo) perché il punto P (−π) = P (π) = (0,−1) è doppio.

Esempio: {
x (t) = t2

y (t) = t3
con t ∈ [−1, 1]

è semplice, ma non regolare: perché il vettore tangente P ′ (t) =
[
2t 3t2

]T
si annulla

in (0, 0).

Rappresentazioni Una linea orientata ha infinite rappresentazioni parametriche:
basta sostituire t con t = φ (τ), dove φ è una funzione strettamente monotona in un
intervallo. Per mantenere la regolarità, occorre e basta che φ sia continua e abbia
derivata continua e mai nulla.

In particolare, la rappresentazione cartesiana impiega come parametro una delle
coordinate. Una linea regolare ammette sempre una rappresentazione cartesiana
locale, cioè valida nell’intorno di un punto P ∗ = P (t0): basta invertire una delle
funzioni componenti, dato che non possono avere tutte derivata nulla. Però la
rappresentazione cartesiana in generale copre solo un intorno di P ∗.

Esempio (elica cilindrica):
x (t) = R cos t

y (t) = R sin t

z (t) =
p

2π
t

con t ∈ R

invertendo la terza relazione z (t) =
p

2π
t⇔ t (z) =

2π

p
z, si traduce in


x (t) = R cos

2πz

p

y (t) = R sin
2πz

p

con z ∈ R

Altre rappresentazioni cartesiane si ottengono invertendo una delle prime due relazioni,
ma esse valgono solo per un semigiro dell’elica, cioè in un intorno del punto scelto.
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Appendix B

Linear algebra

B.1 Vector combinations

Definition 68 Given a set of m vectors gj in space Rn, we denote as linear com-
bination of such vectors any vector obtained multiplying them by real coefficients
and summing the results:

f =

m∑
j=1

µjgj

A linear combination is (see Figure B.1):

� a conic combination when the coefficients µj are all nonnegative:

µj ≥ 0 for j = 1, . . . ,m

� an affine combination when the coefficients µj sum to 1:

m∑
j=1

µj = 1

� a convex combination when it is both conic and affine:

µj ≥ 0 for j = 1, . . . ,m and

m∑
j=1

µj = 1
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Figure B.1: Combinations of two vectors: conic, affine, convex



Appendix C

Richiami di calcolo delle
probabilità

Seguiremo un approccio assiomatico, cioè definiremo le proprietà matematiche degli
oggetti che ci occorrono, senza entrare nei (grossi) problemi filosofici di come dare
loro un significato pratico. Vi sono approcci molto diversi alla soluzione di tali
problemi.

1. È dato uno spazio degli eventi Ω, che contiene tutti i possibili esiti ω di un
esperimento casuale; è anche data una collezione A di sottoinsiemi dello spazio
Ω detti eventi. Altrove nel corso gli esiti sono definiti scenari.

2. Ad ogni evento A ∈ A è associato un numero reale non negativo P (A), detto
probabilità di A

P : A → R+

3. L’intero spazio è un evento (evento certo) di probabilità pari a 1

P (Ω) = 1

4. Se due eventi A e B contengono esiti distinti, la probabilità della loro unione
coincide con la somma delle loro probabilità

A ∩B = ∅ ⇒ P (A ∪B) = P (A) + P (B)

5. SeAn è una successione di eventi contenuti ciascuno nel precedente e al tendere
di n all’infinito la loro intersezione tende all’insieme vuoto, allora P (An) tende
a zero:

An → ∅ ⇒ lim
n→∞

P (An) = 0

Dagli assiomi derivano le seguenti conseguenze o teoremi.

Teorema della probabilità totale La probabilità dell’unione di due o più eventi,
cioè la probabilità che se ne verifichi almeno uno, è la somma delle probabilità dei
singoli eventi meno la somma delle probabilità delle intersezioni due a due, più la
somma delle probabilità delle intersezioni a tre a tre e cos̀ı via. Ad esempio:

P (A∪B∪C) = P (A)+P (B)+P (C)−P (A∩B)−P (A∩C)−P (B∩C)+P (A∩B∩C)

Se gli eventi sono a due a due incompabitibili, è la semplice somma delle probabilità.
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Probabilità condizionata La probabilità condizionata di A dato B, indicata con
P (A|B) è la probabilità che l’evento A ha di verificarsi quando si sappia che B si è
verificato:

P (A|B) =
P (A ∩B)

P (B)

Teorema della probabilità composta La probabilità dell’intersezione di due
o più eventi, ovvero la probabilità che essi si verifichino tutti è P (A ∩ B) =
P (A|B)P (B).

Se la probabilità di A dato B, P (A|B), è uguale a P (A), i due eventi ven-
gono definiti indipendenti stocasticamente (o probabilisticamente) e P (A ∩ B) =
P (A)P (B).

Teorema di Bayes Dato un insieme finito o numerabile di eventi Ai, a due a due
incompatibili, quando si sappia che si è verificato un evento E e che se E si verifica,
allora si verifica necessariamente uno degli eventi di tale insieme (ed uno solo, dato
che sono incompatibili), la probabilità a posteriori di Ai si può calcolare da quelle
a priori degli eventi Ai e da quelle condizionate P (E|Ai):

P (Ai|E) =
P (E|Ai)P (Ai)∑
j

P (E|Aj)P (Aj)

In altre parole, se si conoscono sia le probabilità a priori delle diverse possibili
“cause” di E (ma non si sa per effetto di quale di loro E si è verificato), sia le
probabilità condizionate di E data ciascuna delle cause, è possibile calcolare la
probabilità che E si sia verificato per effetto di una particolare causa.

Probabilità e densità di probabilità Se Ω è un insieme discreto, la funzione
P definita su eventi induce una funzione probabilità πω : Ω → [0; 1] definita sugli
esiti, che è semplicemente la P sugli eventi costituiti da un singolo esito.

Se Ω è un insieme continuo, si definisce per ogni esito ω una densità di probabilità
π (ω), come limite del rapporto fra la probabilità P e la misura ∆ degli eventi che
contengono ω

π (ω) = lim
‖∆(A)‖→0

P (A)

‖∆ (A)‖

dove A ⊆ Ω è un evento che va via via restringendosi, ma contiene sempre ω e
‖∆ (A)‖ è la sua misura.

Variabili aleatorie Una variabile aleatoria è una funzione che associa ad ogni
esito ω un valore numerico. Per esempio, fissata una soluzione x̄, l’impatto f (x̄, ω)
è una variabile aleatoria.

Funzione di distribuzione La probabilità che una variabile aleatoria abbia
valore ≤ x è detta funzione di distribuzione F (x): è una funzione monotona non
decrescente di x.

F (x) = P (X ≤ x)

Di conseguenza F (x) ≥ 0 per ogni x e valgono i limiti

lim
x→+∞

F (x) = 1 lim
x→−∞

F (x) = 0
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Inoltre
P (a < X ≤ b) = F (b)− F (a)

Se X è una variabile casuale discreta, ossia ammette una collezione numerabile
di possibili valori x1, . . . , xn, . . ., la distribuzione F (x) è discontinua e presenta
crescite brusche in corrispondenza ai valori possibili; l’entità di ogni salto coincide
con la probabilità totale degli eventi in cui X ha quel valore.

F (x) =
∑
xi≤x

f (xi)

dove f (x) = P (X = x) è detta funzione di densità discreta di X ed è, per ogni
valore reale, la probabilità che la variabile X assuma esattamente quel valore.

Nel caso continuo, la funzione di densità f (x) è il limite del rapporto fra la
probabilità che X assuma valori in un intervallo contenente x e l’ampiezza di tale
intervallo, e quindi indica su quali valori X tende a concentrarsi.

Di conseguenza, f (x) è la derivata di F (x) e, se X è una variabile casuale
assolutamente continua

F (x) =

∫ x

−∞
f(u)du

Valore atteso Il valore atteso E[X] di una variabile aleatoria X è definito

� per variabili discrete come

E[X] =

+∞∑
i=1

xif(xi)

� per variabili assolutamente continue come

E[X] =

∫ +∞

−∞
xf(x)dx
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