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DI - Università degli Studi di Milano

E-mail: roberto.cordone@unimi.it

Web page: https://homes.di.unimi.it/cordone/courses/2023-haco/2023-haco.html

Lesson 2: Performance evalution Milano, A.A. 2022/23
1 / 60

https://homes.di.unimi.it/cordone/courses/2023-haco/2023-haco.html


Problems

Informally, a problem is a question on a system of mathematical objects

The same question can often be asked on many similar systems

• an instance I ∈ I is each specific system concerned by the question

• a solution S ∈ S is an answer corresponding to one of the instances

Example: “is n a prime number? ” is a problem with infinite instances
and two solutions (I = N+ \ {1} and S = { yes, no })
instance I = 7 corresponds to solution SI = yes

instance I ′ = 10 corresponds to solution SI ′ = no

. . .

Formally, a problem is the function which relates instances and solutions

P : I → S

Defining a function does not mean to know how to compute it
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Algorithms

An algorithm is a formal procedure, composed by elementary steps,
in finite sequence, each determined by an input and by the results of the
previous steps

An algorithm for a problem P is an algorithm which,
given in input I ∈ I, returns in output SI ∈ S

A : I → S

An algorithm defines a function plus the way to compute it; it is

• exact if its associated function coincides with the problem

• heuristic otherwise

A heuristic algorithm is useful if it is

1 efficient: it “costs” much less than an exact algorithm

2 effective: it “frequently” provides a solution “close” to the right one

Let us start from the efficiency
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Cost of a heuristic algorithm

The “cost” of an (exact or heuristic) algorithm denotes

• not the monetary cost to buy or implement it

• but the computational cost of running it
• time required to terminate the finite sequence of elementary steps
• space occupied in memory by the results of the previous steps

The time is much more discussed because

• the space is a renewable resource, the time is not

• using space requires to use at least as much time

• it is technically easier to distribute the use of space than of time

Space and time are partly interchangeable:
it is possible to reduce the use of one by increasing the use of the other
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A useful measure of time

The time required to solve a problem depends on several aspects

• the specific instance to solve

• the algorithm used

• the machine running the algorithm

• . . .

Our measure of the computational time should be

• unrelated to technology, that is the same for different machines

• concise, that is summarized in a simple symbolic expression

• ordinal, that is sufficient to compare different algorithms

The computational time in seconds for each instance violates all requisites
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Worst-case asymptotic time complexity

The worst-case asymptotic complexity of an algorithm (nearly) provides
such a measure through the following passages

1 define time as the number T of elementary operations performed
(that is a value independent from the specific computer)

2 define the size of an instance as a suitable value n (e.g., the number
of elements of the ground set, variables or formulae of the CNF,
rows or columns of the matrix, nodes or arcs of the graph)

3 find the worst-case, i. e. the maximum of T on all instances of size n

T (n) = max
I∈In

T (I ) n ∈ N

(now time complexity is only a function T : N→ N)

4 approximate T (n) from above and/or below with a simpler function
f (n), considering only their asymptotic behaviour (for n→ +∞)

(the algorithm should be efficient on instances of large size)

5 collect the functions in classes with the same approximating function
(the approximation relation is an equivalence relation)
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The Θ functional spaces

T (n) ∈ Θ (f (n))

formally means that

∃c1, c2 ∈ R+, n0 ∈ N : c1 f (n) ≤ T (n) ≤ c2 f (n) for all n ≥ n0

where c1, c2 and n0 are independent from n

T (n) is “enclosed” between c1 f (n) and c2 f (n)

• for some “small” value of c1

• for some “large” value of c2

• for some “large” value of n0

• for some definition of “small”
and “large”

Asymptotically, f (n) estimates T (n) up to a multiplying factor:

• for large instances, the computational time is at least and at most
proportional to the values of function f (n)
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The O functional spaces

T (n) ∈ O (f (n))

formally means that

∃c ∈ R+, n0 ∈ N : T (n) ≤ c f (n) for all n ≥ n0

where c , and n0 are independent from n

T (n) is “dominated” by c f (n)

• for some “large” value of c

• for some “large” value of n0

• for some definition of “small”
and “large”

Asymptotically, f (n) overestimates T (n) up to a multiplying factor:

• for large instances, the computational time is at most proportional
to the values of function f (n)
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The Ω functional spaces

T (n) ∈ Ω (f (n))

formally means that

∃c > 0, n0 ∈ N : T (n) ≥ c f (n) for all n ≥ n0

where c and n0 are independent from n

T (n) “dominates” c f (n)

• for some “small” value of c

• for some “large” value of n0

• for some definition of “small”
and “large”

Asymptotically, f (n) underestimates T (n) up to a multiplying factor:

• for large instances, the computational time is at least proportional to
the values of function f (n)
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The exhaustive algorithm

For Combinatorial Optimization problems the size of an instance
can be measured by the cardinality of the ground set

n = |B|

The exhaustive algorithm

• considers each subset x ⊆ B, that is each x ∈ 2|B|

• tests its feasibility (x ∈ X ) in time α (n)

• in the positive case, it evaluates the objective f (x) in time β (n)

• if necessary, it updates the best value found so far

The time complexity of the exhaustive algorithm is

T (n) ∈ Θ (2n (α (n) + β (n)))

that is at least exponential, even if α (n) and β (n) are small polynomials
(which is the most frequent case)

Most of the time, the exhaustive algorithm is impractical
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Beyond the worst-case complexity

The worst-case complexity

• cancels all information on the easier instances
(how are they made? how many are they?)

• gives a rough overestimate of the computational time,
in some (rare) cases useless

(see the simplex algorithm for Linear Programming)

What if the hard instances are rare in the practical applications?

To compensate, one can investigate

• the parameterized complexity, that is introduce some other relevant
parameter k (besides the size n) and express the time as T (n, k)

• the average-case complexity, that is assume a probability distribution
on I and express the time as the expected value

T (n) = E [T (I ) |I ∈ In]
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Parameterized complexity

Some algorithms are exponential in k and polynomial in n, and therefore

• efficient on instances with low k

• inefficient on instances with large k
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Nature of the additional parameter

If the additional parameter k is a part of the input, such as

• a numerical constant (e. g., the capacity in the KP)

• the maximum number of literals per formula in logic function
problems

• the number of nonzero elements in numerical matrix problems

• the maximum degree, the diameter, etc. . . in graph problems

one knows a priori whether the algorithm is efficient on a given instance

If the additional parameter k is a part of the solution, such as

• its cardinality (as in the VCP)

one will only find out a posteriori

(but an a priori estimate could be available)
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Average-case complexity

Some algorithms are inefficient only on very few instances
(see the simplex algorithm for Linear Programming)

Theoretical studies

• define a probabilistic model of the problem,
that is a probability distribution on In for each n ∈ N
typically quite simple (e.g., equiprobability, that is full ignorance)

• compute the expected value of T (I )

T (n) = E [T (I ) |I ∈ In]

Empirical studies

• build a simulation model of the problem,
that is a probability distribution on In for each n ∈ N
theoretical or empirical (drawn from real-world data)

• build a benchmark of random instances according to the distribution

• apply the algorithm and measure the time required
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Computational cost of heuristic algorithms

The time complexity of a heuristic algorithm is usually

• strictly polynomial (with low exponents)

• fairly robust with respect to secondary parameters

Therefore, the worst-case estimation is also good on average

Metaheuristics use random steps or memory

• the complexity is well defined for single components of the algorithm

• the overall complexity is not clearly defined
• in theory, it could extend indefinitely (but the pseudorandom number

generator or the memory configurations would yield an infinite loop)
• in practice, it is defined by a condition imposed by the user

(more about this later)
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Effectiveness of a heuristic algorithm

A heuristic algorithm is useful if it is

1 efficient: it “costs” much less than an exact algorithm

2 effective: it “frequently” returns a solution “close to” an exact one

Let us now discuss the effectiveness of heuristic algorithms:

• closeness of the solution obtained to an optimal one

• frequency of hitting optimal or nearly optimal solutions

These features can be combined into a

• frequency distribution of solutions more or less close to the optimum

The effectiveness of a heuristic algorithm can be investigated with a

• theoretical analysis (a priori), proving that the algorithm finds always
or with a given frequency solutions with a given guarantee of quality

• experimental analysis (a posteriori), measuring the performance of
the algorithm on sampled benchmark instances to show that a
guarantee of quality is respected in practice
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Indices of effectiveness

The effectiveness of a heuristic optimization algorithm A is measured by
the difference between the heuristic value fA (I ) and the optimum f ∗ (I )

• absolute difference:

δ̃A (I ) = |fA (I )− f ∗ (I )| ≥ 0

rarely used, and only when the objective is a pure number

• relative difference:

δA (I ) =
|fA (I )− f ∗ (I )|

f ∗ (I )
≥ 0

frequent in experimental analysis (usually as a percent ratio)

• approximation ratio:

ρA (I ) = max

[
fA (I )

f ∗ (I )
,
f ∗ (I )

fA (I )

]
≥ 1

frequent in theoretical analysis: the first form is used for
minimization problems, the second one for maximization problems
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Theoretical analysis (in the worst case)

To obtain a compact measure, independent from I , find the worst case
(as for efficiency, that is complexity)

The difference between fA (I ) and f ∗ (I ) is in general unlimited,
but for some algorithms it is limited:

• absolute approximation:

∃α̃A ∈ N : δ̃A (I ) ≤ α̃A for each I ∈ I

A (rare) example is Vizing’s algorithm for Edge Coloring (α̃A = 1)

• relative approximation:

∃αA ∈ R+ : ρA (I ) ≤ αA for each I ∈ I

Factor αA (α̃A) is the relative (absolute) approximation guarantee

For other algorithms, the guarantee depends on the instance size

ρA (I ) ≤ αA (n) for each I ∈ In, n ∈ N

Effectiveness can be independent from size (contrary to efficiency)
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How to achieve an approximation guarantee?
For a minimization problem, the aim is to prove that

∃αA ∈ R : fA (I ) ≤ αAf
∗ (I ) for each I ∈ I

1 find a way to build an underestimate LB (I )

LB (I ) ≤ f ∗ (I ) I ∈ I

2 find a way to build an overestimate UB (I ),
related to LB (I ) by a coefficient αA

UB (I ) = αA LB (I ) I ∈ I

3 find an algorithm A whose solution is not worse than UB (I )

fA (I ) ≤ UB (I ) I ∈ I

Then fA (I ) ≤ UB (I ) = αALB (I ) ≤ αAf
∗ (I ), for each I ∈ I

fA (I ) ≤ αAf
∗ (I ) for each I ∈ I
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The TSP under the triangle inequality

Consider the TSP with the additional (rather common) assumptions that

• graph G = (N,A) is complete

• function c is symmetric and satisfies the triangle inequality

cij = cji ∀i , j ∈ N and cij + cjk ≥ cik ∀i , j , k ∈ N

Double-tree algorithm

1 Consider the complete undirected graph corresponding to G

2 Build a minimum cost spanning tree T ∗ = (N,X ∗)

3 Make a pre-order visit of T ∗ and build two lists of arcs:

a x ′ lists the arcs used both by the visit and the backtracking:
this is a circuit visiting each node, possibly several times

b x lists the arcs linking the nodes in pre-order ending with the first:
this is a circuit visiting each node exactly once

20 / 60



Example

1) Complete graph G (arcs omitted) 2. Minimum spanning tree T ∗

3.a) x ′ = (A,C ,F ,H,F , I ,F ,C ,D,G , 3.b) x ′ = (A,C ,F ,H, I ,D,G , L,E ,B,A)

L,G ,E ,G ,D,B,D,C ,A)
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Proof

The double-tree algorithm is 2-approximated

1 the cost of the minimum spanning tree is an underestimate LB (I )
• deleting an arc from a hamiltonian circuit yields a hamiltonian path

that is cheaper
• a hamiltonian path is a spanning tree (usually not of minimum cost)

2 the cost of circuit x ′ is
• an overestimate UB (I ) (it is a hamiltonian circuit, but not minimum)
• equal to 2LB (I ) (two arcs correspond to each edge)

3 the cost of circuit x is fA (I ) ≤ UB (I )
(a single direct arc replacing a sequence decreases the cost)

This implies that fA (I ) ≤ 2f ∗ (I ) for each I ∈ I, that is αA = 2

Notice: x ′ is used in the approximation proof, but needs not be computed
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Beyond the worst case

As usual, the worst-case approach is rough:
some algorithms often have a good performance, though sometimes bad

The alternative approaches are similar to the ones used for complexity

• parametrization: prove an approximation guarantee that depends on
other parameters of the instances besides the size n

• average-case: assume a probability distribution on the instances and
evaluate the expected value of the approximation factor
(the algorithm could have a bad performance only on rare instances)

but there is at least another approach

• randomization: the operations of the algorithm depend not only on
the instance, but also on pseudorandom numbers, so that
the solution becomes a random variable which can be investigated

(the time complexity could also be random, but usually is not)

23 / 60



Randomized approximation algorithms

For a randomized algorithm A, fA (I ) and ρA (I ) are random variables

A randomized approximation algorithm has an approximation ratio whose
expected value is limited by a constant

E [ρA (I )] ≤ αA for each I ∈ I

Max-SAT problem: given a CNF, find a truth assignment to the logical
variables that satisfy a maximum weight subset of formulae

Purely random algorithm:

Assign to each variable xj (j = 1, . . . , n)

• value False with probability 1/2

• value True with probability 1/2

What is the expected value of the solution?
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Randomized approximation for the MAX-SAT
Let Cx ⊆ {1, . . . ,m} be the subset of formulae satisfied by solution x

The objective value f (x) = fA (I ) is the total weight of the formulae in Cx
and its expected value is

E [fA (I )] = E

[∑
i∈Cx

wi

]
=
∑
i∈C

(wi · Pr [i ∈ Cx ])

Let ki be the number of literals of formula i ∈ C and kmin = min
i∈C

ki

Pr [i ∈ Cx ] = 1−
(

1

2

)ki

≥ 1−
(

1

2

)kmin

for each i ∈ C

⇒ E [fA (I )] ≥
∑
i∈C

wi ·

[
1−

(
1

2

)kmin
]

=

[
1−

(
1

2

)kmin
]∑

i∈C

wi

and since
∑
i∈C

wi ≥ f ∗ (I ) for each I ∈ I one obtains

E [fA (I )]

f ∗ (I )
≥

[
1−

(
1

2

)kmin
]
≥ 1

2
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Evaluation of a heuristic algorithm

The performance of a heuristic algorithm can be investigated by

• theoretical analysis (a priori): proving a theoretical guarantee on the
computational cost or the quality, always or with a given frequency

• experimental analysis (a posteriori): measuring the empirical
performance of the algorithm on a sample of benchmark instances

The theoretical analysis is complicated by the fact that

• the steps of the algorithm have a complex effect on the solution
though usually not on the computational cost

• average case and randomization require a statistical treatment

The theoretical analysis can be unsatisfactory in practice
when its conclusions are based on unrepresentative assumptions

• an infrequent worst case (very hard and very rare instances)

• an unrealistic probability distribution of the instances

This material is partly based on slides provided with the book “Stochastic Local Search” by H. H.

Hoos und T. Stützle, (Morgan Kaufmann, 2004) - see www.sls-book.net for further information.
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Experimental analysis

The experimental approach is very common in science

• mathematics is an exception, based on the formal approach

• algorithmics is an exception within the exception

Therefore, it is easy to forget the basics of the experimental approach

1 start from observation

2 formulate a model (work hypothesis)

3 repeat the following steps

a design computational experiments to validate the model
b perform the experiments and collect their results
c analyse the results with quantitative methods
d revise the model based on the results

until a satisfactory model is obtained

What is a “model” in the study of algorithms?
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Purposes of the analysis

The experimental analysis investigates

• in physics the laws that rule the behaviour of phenomena

• in algorithmics the laws that rule the behaviour of algorithms

The experimental analysis of algorithms aims to

1 obtain compact indices of efficiency and effectiveness of an algorithm

2 compare the indices of different algorithms to sort them

3 describe the relation between the performance indices
and parametric values of the instances (size n, etc. . . )

4 suggest improvements to the algorithms
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Benchmark
As not all instances can be tested, a benchmark sample must be defined

A meaningful sample must represent different

• sizes, in particular for the analysis of the computational cost

• structural features (for graphs: density, degree, diameter, . . . )
• types

• of application: logistics, telecommunications, production, . . .
• of generation: realistic, artificial, transformations of other problems
• of probabilistic distribution: uniform, normal, exponential, . . .

Looking for an “equiprobable” benchmark sample is meaningless because

• the instance sets are infinite

• infinite sets do not admit equiprobability (it’s a big statistic question)

On the contrary, we can
• define finite classes of instances that are

• sufficiently hard to be instructive
• sufficiently frequent in applications to be of interest
• quick enough to solve to provide sufficient data for inferences

• extract benchmark samples from these classes
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Reproducibility

The scientific method requires reproducible and controllable results

• concerning the instances, one must use
• publicly available instances
• new instances made available to the community

• concerning the algorithm, one must specify
• all implementation details
• the programming language
• the compiler

• concerning the environment, one must specify
• the machine used
• the operating system
• the available memory
• . . .

Reproducing results obtained by others is anyway extremely difficult
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Comparing heuristic algorithms

A heuristic algorithm is better than another one when it simultaneously

1 obtains better results

2 requires a smaller time

Slow algorithms with good results and fast algorithms with bad results
cannot be compared in a meaningful way

It can be justified to neglect the computational time when

• considering a single algorithm with no comparison

• comparing algorithms that perform the same operations
(e. g., variants obtained modifying a numerical parameter)

• comparing algorithms that mostly perform the same operations
with few different ones that take a negligible fraction of the time
(e. g., different initializations or perturbations)
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A statistical model of algorithm performance

If we model the execution of algorithm A as a random experiment

• the sample of instances Ī ⊂ I is the sample space

• the computational time TA (I ) is a random variable

• the relative difference δA (I ) is a random variable

and the statistical properties of the random variables TA (I ) and δA (I )
describe the performance of A
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Estimates of δA (I )
The computation of δA (I ) requires to know the optimum f ∗ (I )

δA (I ) =
|fA (I )− f ∗ (I )|

f ∗ (I )

What if the optimum is unknown?

Replace it with an underestimate LB (I ) and/or an overestimate UB (I )

LB (I ) ≤ f ∗ (I ) ≤ UB (I )⇒ 1

LB (I )
≥ 1

f ∗ (I )
≥ 1

UB (I )
⇒

⇒ fA (I )

LB (I )
− 1 ≥ fA (I )

f ∗ (I )
− 1 ≥ fA (I )

UB (I )
− 1

fA (I )

f ∗ (I )
−1 =


δA (I ) (minimization) ⇒ fA (I )− UB (I )

UB (I )
≤ δA (I ) ≤ fA (I )− LB (I )

LB (I )

−δA (I ) (maximization) ⇒ UB (I )− fA (I )

UB (I )
≤ δA (I ) ≤ LB (I )− fA (I )

LB (I )

and therefore

|fA (I )− UB (I )|
UB (I )

≤ δA (I ) ≤ |fA (I )− LB (I )|
LB (I )

This range yields a region estimate for the SQD diagram
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Analysis of the computational time (RTD diagram)
The Run Time Distribution (RTD) diagram is the plot of the
distribution function of TA (I ) on Ī

FTA
(t) = Pr [TA (I ) ≤ t] for each t ∈ R

Since TA (I ) strongly depends on the size n (I ),
meaningful RTD diagrams usually refer to benchmarks Īn with fixed n
(and possibly other fixed parameters suggested by the worst-case analysis)

If all influential parameters are identified and fixed, the RTD diagram
degenerates into a step function (all instances require the same time)
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The Run Time Distribution (RTD) diagram

The Run Time Distribution (RTD) diagram is

• monotone nondecreasing: more instances are solved in longer times

• stepwise and right-continuous: the graph steps up at each T (I )

• equal to zero for t < 0: no instance is solved in negative time

• equal to 1 for t ≥ max
I∈Ī

T (I ): all are solved within the longest time

For large benchmark samples, the plot looks continuous, but it is not!
(as in the previous page)
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Building the RTD diagram

In order to build the diagram

1 run the algorithm on each instance I ∈ Ī
2 build the set TA

(
Ī
)

=
{
TA (I ) : I ∈ Ī

}
3 sort TA

(
Ī
)

by nondecreasing values: t1 ≤ . . . ≤ t|Ī|

4 plot the points

(
tj ,

j

|Ī|

)
for j = 1, . . . , |Ī| (for equal tj , the highest)

and the horizontal segments (close on the left, open on the right)
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Analysis of the computational time (scaling diagram)
The scaling diagram describes the dependence of T (I ) on the size n (I )
• generate a sequence of values of n and a sample Īn for each value
• apply the algorithm to each I ∈ Īn for all n

• sketch all points (n (I ) ,T (I )) or the mean points

n,

∑
I∈Īn

T (I )∣∣Īn∣∣


• assume an interpolating function (as discussed later)
• estimate the numerical parameters of the interpolating function

This analysis provides an empirical average-case complexity
• with well-determined multiplying factors (instead of c1 and c2)
• not larger than the worst-case one (it includes also easy instances)
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Interpolation of the scaling diagram

The correct family of interpolating functions can be suggested

• by a theoretical analysis

• by graphical manipulations

Linear interpolation is usually the right tool

The scaling diagram turns into a straight line when

• an exponential algorithm is represented on a semilogarithmic scale
(the logarithm is applied only to the time axis)

log2 T (n) = αn + β ⇔ T (n) = 2β (2α)n

• a polynomial algorithm is represented on a logarithmic scale
(the logarithm is applied to both axes)

log2 T (n) = α log2 n + β ⇔ T (n) = 2βnα
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Analysis of the quality of the solution (SQD) diagram
The Solution Quality Distribution (SQD) diagram is the plot of the
distribution function of δA (I ) on Ī

FδA (α) = Pr [δA (I ) ≤ α] for each α ∈ R
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Solution Quality Distribution (SQD) diagram
For any algorithm, the distribution function of δA (I )
• monotone nondecreasing: more instances are solved with worst gaps
• stepwise and right-continuous: the graph steps up at each δ (I )
• equal to zero for α < 0: no instance is solved with negative gap
• equal to 1 for α ≥ max

I∈Ī
δ (I ): all are solved within the largest gap

If A is an
• exact algorithm, it is a stepwise function, equal to 1 for all α ≥ 0
• ᾱ-approximated algorithm, it is a function equal to 1 for all α ≥ ᾱ
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Building the SQD diagram
In order to build the diagram

1 run the algorithm on each instance I ∈ Ī
2 build the set ∆A

(
Ī
)

=
{
δA (I ) : I ∈ Ī

}
3 sort ∆A

(
Ī
)

by nondecreasing values: δ1 ≤ . . . ≤ δ|Ī|

4 plot the points

(
δj ,

j

|Ī|

)
for j = 1, . . . , |Ī| (for equal δj , the highest)

and the horizontal segments (close on the left, open on the right)
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Parametric SQD diagrams

Given the theoretical and practical problems to build a meaningful sample
often the diagram is parameterized with respect to

• a descriptive parameter of the instances (size, density, . . . )

• a parameter of the probability distribution assumed for the instances
(expected value or variance of the costs, . . . )

The conclusions are more limited, but the sample is more significant
General trends can be highlighted (what happens as size increases?)
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Comparison between algorithms with the SQDs
How to determine whether an algorithm is better than another?
• strict dominance: it obtains better results on all instances

δA2 (I ) ≤ δA1 (I ) for each I ∈ I
This usually happens only in trivial cases (e.g., A2 “includes” A1)

• probabilistic dominance: the distribution function has higher values
for every value of α

FδA2
(α) ≥ FδA1

(α) for all α ∈ R

The following plot shows no dominance, but A1 is less “robust” than A2:
A1 has results more dispersed than A2 (both better and worse)
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Compact statistical descriptions
The distribution function FδA can be replaced or accompanied by
more compact characterizations of the effectiveness of an algorithm

This typically involves classical statistical indices of

• position, such as the sample mean

δ̄A =

∑
I∈Ī

δA (I )∣∣Ī∣∣
• dispersion, such as the sample variance

σ̄2
A =

∑
I∈Ī

(
δA (I )− δ̄A

)2

∣∣Ī∣∣
These indices “suffer” from the influence of outliers

Other statistical indices are “stabler” and more detailed

• the sample median

• suitable sample quantiles
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Boxplots

A graphic representation is the boxplot (or box and whiskers diagram)

• sample median (q0.5)

• lower and upper sample quartiles (q0.25 and q0.75)

• the extreme sample values (often excluding the “outliers”)
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Comparison between algorithms with boxplot diagrams

A more compact comparison can be performed with boxplot diagrams

Necessary conditions

Strict dominance⇒ Probabilistic dominance⇒ qi ≤ q′i (i = 1, . . . , 5)

Strict dominance holds only if probabilistic dominance holds

Probabilistic dominance holds only if each of the five quartiles is not
above the corresponding one of the other algorithm (e. g., A2 − A3)
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Comparison between algorithms with boxplot diagrams
Sufficient conditions

q5 ≤ q′1 ⇒ Strict dominance

If a boxplot is fully below the other one, strict dominance holds
(e. g., A7 − A8)

qi ≤ q′i−1(i = 2, . . . , 5)⇒ Probabilistic dominance

If each of the five quartiles is below the preceding one of the other
algorithm, probabilistic dominance holds (e. g., A2 − A3)

Necessary condition Sufficient condition
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Relation between quality and computational time

Many heuristic algorithms find several solutions during their execution,
instead of a single one, and consequently can be terminated prematurely

In particular, metaheuristics (random steps or memory mechanisms)
have a computational time t fixed by the user and potentially unlimited

Let δA (t, I ) be

• the relative difference achieved by A at time t on instance I

• +∞ if A has not yet found a feasible solution at time t

As a function of time t, δA (t, I ) is

• stepwise monotone nonincreasing

• constant after the regular termination (t ≥ T (I ))
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Randomized algorithms

For randomized algorithms the relative difference δA (t, I , ω) depends on

1 the execution time t

2 the instance I ∈ I
3 the outcome ω ∈ Ω of the random experiment guiding the algorithm

(that is the random seed)

These algorithms therefore can be tested (for a fixed time)

1 on a sample of instances Ī with constant seed ω

2 on a single instance I with a batch of seeds Ω̄

or both (several instances and several runs on each instance)

The results of tests on ω are usually summarized providing both:

• the minimum relative difference δ∗A (t, I ) and the total time
∣∣Ω̄∣∣ t

• the average relative difference δ̄A (t, I ) and the single-run time t
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Classification

The relation between solution quality and computational time
allows to classify the algorithms into:

• complete: for each instance I ∈ I, find the optimum in finite time

∃t̄I ∈ R+ : δA (I , t) = 0 for each t ≥ t̄I , I ∈ I

(It is another name for exact algorithms)

• probabilistically approximately complete: for each instance I ∈ I,
find the optimum with probability converging to 1 as t → +∞

lim
t→+∞

Pr [δA (I , t) = 0] = 1 for each I ∈ I

(many randomized metaheuristics)

• essentially incomplete: for some instances I ∈ I, find the optimum
with probability strictly < 1 as t → +∞

∃I ∈ I : lim
t→+∞

Pr [δA (I , t) = 0] < 1

(most greedy algorithms, local search algorithms, . . . )
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A generalization

An obvious generalization replaces the search for the optimum with that
of a given level of approximation

δA (I , t) = 0 → δA (I , t) ≤ α

• α-complete algorithms: for each instance I ∈ I, find an
α-approximated solution in finite time (α-approximated algorithms)

• probabilistically approximately α-complete algorithms: for each
instance I ∈ I, find an α-approximated solution with probability
converging to 1 as t → +∞

• essentially α-incomplete algorithms: for some instances I ∈ I, find
an α-approximated solution with probability strictly < 1 as t → +∞

In conclusion, every algorithm provides compromises between

• a quality measure, described by the threshold α

• a time measure, described by the threshold t
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The probability of success

Let the success probability πA,n (α, t) be the probability that algorithm A
find in time ≤ t a solution with a gap ≤ α on an instance of size n

πA,n (α, t) = Pr [δA (I , t) ≤ α|I ∈ In, ω ∈ Ω]

This yields different secondary diagrams
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Qualified Run Time Distribution (QRTD) diagrams

The QRTD diagrams describe the profile of the time required to reach a
specified level of quality

They are useful when the computational time is not a tight resource

If the algorithm is

• complete, all diagrams reach 1 in finite time

• ᾱ-complete, all diagrams with α ≥ ᾱ reach 1 in finite time

• ᾱ-incomplete, all diagrams with α ≤ ᾱ do not reach 1
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Timed Solution Quality Distribution (TSQD) diagrams
The TSQD diagrams describe the profile of the level of quality reached in
a given computational time

They are useful when the computational time is a tight resource

If the algorithm is

• complete, all diagrams with a sufficient t are step functions in α = 0

• ᾱ-complete, all diagrams with a sufficient t reach 1 in α = ᾱ

• probab. approx. ᾱ-complete, the diagrams converge to 1 in α = ᾱ

• ᾱ-incomplete, all diagrams keep < 1 in α = ᾱ
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Solution Quality statistics over Time (SQT) diagrams

Finally, one can draw the level lines associated to different quantiles

They describe the compromise between quality and computational time

For a robust algorithm the level lines are very close to each other
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Statistical tests

Diagrams and boxplots are qualitative: how to evaluate quantitatively
if the empirical difference between algorithms A1 and A2 is significant?

Wilcoxon’s test focuses on effectiveness (neglecting robustness)

• fA1 (I )− fA2 (I ) is a random variable defined on the sample space I
• formulate a null hypothesis H0 according to which

the theoretical median of fA1 (I )− fA2 (I ) is zero

• extract a sample of instances Ī and run the two algorithms on it,
obtaining a sample of pairs of values (fA1 , fA2 )

• compute the probability p of obtaining the observed result or a more
“extreme” one, assuming that H0 is true

• set a significance level p̄, i. e. the maximum acceptable probability
• to reject H0 assuming that it is true
• that is, to consider two identical medians as different
• that is, to consider two equivalent algorithms as differently effective

(referring to the median of the gap)

and reject H0 when p < p̄

Typical values for the significance level are p̄ = 5% or p̄ = 1%
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Wilcoxon’s test (assumptions)

It is a nonparametric test, that is it does not make assumptions on the
probability distribution of the tested values

It is useful to evaluate the performance of heuristic algorithms,
because the distribution of the result fA (I ) is unknown

It is based on the following assumptions:

• all data are measured at least on an ordinal scale
(the specific values do not matter, only their relative size)

• the two data sets are matched and derive from the same population
(we apply A1 and A2 to the same instances, extracted from I)

• each pair of values is extracted independently from the others
(the instances are generated indipendently from one another)
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Wilcoxon’s test (application)

1 compute the absolute differences |fA1 (Ii )− fA2 (Ii )| for all Ii ∈ Ī
2 sort them by increasing values and assign a rank Ri to each one

3 separately sum the ranks of the pairs with a positive difference and
those of the pairs with a negative difference

W+ =
∑

i :fA1
(Ii )>fA2

(Ii )

Ri

W− =
∑

i :fA1
(Ii )<fA2

(Ii )

Ri

If the null hypothesis H0 were true, the two sums should be equal

4 the difference W+ −W− allows to compute the value of p:
each of the |Ī| differences can be positive or negative: 2|Ī| outcomes;

p is the fraction with
∣∣W+ −W−

∣∣ equal or larger than the observed value

5 if p < p̄, the difference is significant and
• if W+ <W−, A1 is better than A2

• if W+ >W−, A1 is worse than A2
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Computation of the p-value

The value of p is usually

• computed explicitly by enumeration when |Ī| < 20

• approximated with a normal distribution when |Ī| ≥ 20

Of course, precomputed tables also exist
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Possible conclusions

Wilcoxon’s test can suggest

• that one of the two algorithms is significantly better than the other

• that the two algorithms are statistically equivalent

(but take it as a stochastic response, and keep an eye on p)

If the sample includes instances of different kinds, two algorithms could
be overall equivalent, but nonequivalent on the single classes of instances

Dividing the sample could reveal

• classes of instances for which A1 is better

• classes of instances for which A2 is better

• classes of instances for which the two algorithms are equivalent

What about testing δA (I ) instead of fA (I )?
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