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OUTLINE - Decomposition based matheur.

• Classification of decomposition based matheuristics (“natural” vs “artificial” 
decomposition)

• Decomposition based matheuristics for the VRP:
➢ Generalized Assignment heuristic
➢ Location heuristic
➢ Route-first, cluster-second heuristic

• Lagrangean decomposition matheuristic
➢ Application to hazmat transport

• Dantzig-Wolfe decomposition matheuristic
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Classification of decomposition matheur.

“Divide et impera” principle

Exploit the inherent 
subproblems in a main 
optimization problem

Use mathematical 
techniques to decompose 
an optimization problem 
in subproblems 



“Natural” decomposition matheuristics
• Some optimization problems are naturally structured as a sequence 

of optimization subproblems.

• In the airline crew and fleet planning: 

• In the Vehicle Routing Problem (VRP):

→

routing of each vehicle (TSP)

assignment of customers to the vehicles

airline fleet planning passenger schedule crew pairing problem→ →airline fleet planning →



Decomposition matheuristics for VRP



𝑖

𝑞𝑖𝑥𝑖𝑗 ≤ 𝑄

• Formulation for the VRP:

= cost of an optimal TSP over node set 𝑆𝑗 ∪ {0}

• Constraints (2)-(5) define a Generalized Assignment Problem (GAP)

• Since it is challenging evaluating                we replace it with a heuristic value 
(e.g., double tree algorithm)              ⇔ CLUSTER-FIRST ROUTE-SECOND



Generalized Assignment matheur. for VRP
• Introduced by Fisher and Jaikumar (1981):

1. Choose seed nodes sj for j=1,…,m

2. Solve the GA: min σ𝑖𝑗 𝑐𝑖𝑠𝑗 𝑥𝑖𝑗: 2 − 5

3. Solve (heuristically) a TSP over each cluster 𝑆𝑗 ∪ 0 defined in step 2

• Drawback of this approach: its dependency on the seed selection step

• For this reason in the next heuristic, steps 1 and 2 are combined



Location matheuristic for VRP
• Introduced by Bramel and Simchi-Levi (1995):

1. Choose a set of candidate seed nodes 
2. Solve a Concentrator Location Problem (CLP) to determine a seed node sj

and a cluster Sj for each vehicle j
3.     Solve (heuristically) a TSP over each cluster 𝑆𝑗 ∪ 0 defined in step 2

min

𝑖𝑗

𝑐𝑖𝑗𝑥𝑖𝑗 + 

𝑗

𝑣𝑗𝑦𝑗CLP:



𝑗

𝑥𝑖𝑗 = 1 for all customers i



𝑖

𝑞𝑖𝑥𝑖𝑗 ≤ 𝑄 for all vehicles 𝑗

𝑥𝑖𝑗 ≤ 𝑦𝑗 ∀𝑖, 𝑗

𝑥𝑖𝑗 , 𝑦𝑗 ∈ {0,1} ∀𝑖, 𝑗



Route-first cluster-second heuristic for VRP
1. Solve the TSP on the whole set of customers.

Let 𝑖1, 𝑖2, … , 𝑖𝑛 the customer sequence of TSP. 
2. Choose a set of m “cut points”: 𝑘1 < 𝑘2 < ⋯ < 𝑘𝑚 and a cluster Sj , ∀ vehicle j

3.     Let S1 = 0, 𝑖𝑘1 , … , 𝑖𝑘2−1, 0 , S2 = 0, 𝑖𝑘2 , … , 𝑖𝑘3−1, 0 ,…,𝑆𝑚 = 0, 𝑖𝑘𝑚 , … , 𝑖𝑘1−1, 0

• Step 2 can be solved optimally using a shortest
path model.

• An arc from node i to node j, with i < j represents
the VRP route starting at the depot, proceeding
to node i + 1 then following the TSP node order to 
node j and returning to the depot. 

• By varying the start node, the best partition over
all start nodes can be obtained.



Lagrangean decomposition
• Suppose that in the ILP of a COP the constraints can be partitioned in two groups 

(1) and (2) such that the optimization over each single group is easy (or easier):

min 𝑐𝑥

𝐴𝑥 ≤ 𝑏 (1)

𝐷𝑥 ≤ 𝑒 (2)

𝑥 ∈ 0,1 𝑛

The Lagrangean relaxation of (3) provides: 

Z 𝐷(𝑃, 𝜆) = min(𝛼𝑐 + 𝜆)𝑥 + (𝛽𝑐 − 𝜆)𝑦

𝐴𝑥 ≤ 𝑏 (1)

𝐷𝑦 ≤ 𝑒 (2)

𝑥 ∈ 0,1 𝑛, 𝑦 ∈ 0,1 𝑛

⇔

min𝛼𝑐𝑥 + 𝛽𝑐𝑦

𝐴𝑥 ≤ 𝑏 (1)

𝐷𝑦 ≤ 𝑒 (2)

𝑥 ∈ 0,1 𝑛, 𝑦 ∈ 0,1 𝑛

𝑥 = 𝑦 (3)

with 𝛼 + 𝛽 = 1



Lagrangean decomposition
Z 𝐷(𝑃, 𝜆) = min(𝛼𝑐 + 𝜆)𝑥 + (𝛽𝑐 − 𝜆)𝑦

𝐴𝑥 ≤ 𝑏 (1)

𝐷𝑦 ≤ 𝑒 (2)

𝑥 ∈ 0,1 𝑛, 𝑦 ∈ 0,1 𝑛

Z 𝐷1(𝑃, 𝜆) = min(𝛼𝑐 + 𝜆)𝑥

𝐴𝑥 ≤ 𝑏 (1)

𝑥 ∈ 0,1 𝑛

𝐷𝑦 ≤ 𝑒 (2)

Z 𝐷2(𝑃, 𝜆) = min(𝛽𝑐 − 𝜆)𝑦

𝑦 ∈ 0,1 𝑛

• Z 𝐷(𝑃, 𝜆) can be decomposed in:

• Z 𝐷(𝑃, 𝜆) = Z 𝐷1(𝑃, 𝜆) + Z 𝐷2(𝑃, 𝜆)



Lagrangean decomposition dual problem

• Z 𝐷 𝑃, 𝜆∗ = max𝜆 Z 𝐷(𝑃, 𝜆)

• Z 𝐷(𝑃, 𝜆∗) ≥ max{ Z 𝐿1 𝑃, 𝜇∗ , Z 𝐿2(𝑃, 𝜋
∗) }

where Z 𝐿1 𝑃, 𝜇∗ is the optimal value of the lagrangean dual by relaxing (1)

and Z 𝐿2(𝑃, 𝜋
∗) is the optimal value of the lagrangean dual by relaxing (2)

• With this kind of bound it is possible to develop effective matheuristics



Odysseus 2012 

Problem definition

• Two stakeholders: the government (Gov) and the carriers (Crs)

• Gov is interested in minimizing the overall risk of shipments

while each Cr is interested in minimizing the route cost



Odysseus 2012 

Bilevel optimization problem

- Gov decision is the leader problem

• Due to the hierarchy between the decision makers (Gov and Crs)

the Hazmat Network Design Problem (HNDP) 

is a bilevel optimization problem:

- Crs decisions are the follower problem



cost, risk

4 commodities:

(o1,d1)=(1,7)

(o2,d2)=(2,5)

(o3,d3)=(8,5)

(o4,d4)=(3,5)
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cost, risk

4 commodities:

(o1,d1)=(1,7)

(o2,d2)=(2,5)

(o3,d3)=(8,5)

(o4,d4)=(3,5)
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Literature

• Kara, Verter “Designing a road network for hazardous materials transportation”, 
Transp.Science 04:

first bilevel formulation (just with T = A) and a single level one obtainend 
linearizing the KKT conditions of the follower

• Erkut, Alp “Designing a road network for dangerous goods shipments”, 

C.O.R. 09:

restrict the network to a tree

• Erkut, Gzara “Solving the hazmat transport network design problem”, 

C.O.R. 08:

heuristics to find stable solutions (that consider the worst case risk when 

the follower has multiple optimal solutions)



Literature

• E.Amaldi, M.Bruglieri, B.Fortz, On the hazmat transport network design 
problem, INOC ’11:

- HNDP extension where a subset T of roads can be interdicted
- proof of NP-hardness even for a single o-d pair
- bilevel MILP formulation that guarantees stability
- single-level MILP reformulation that can be solved more efficiently
than Kara-Verter’s one (|T | binary variables rather than s|A|+|T |)



Current work
TIPHT problem differs from the HNDP of INOC’11 for the tunnel 

interdiction hierarchical conditions (required by ADR 2007)

We need to solve large scale instances

Lombardia case study:

1560 o-d pairs

34899 road links

333 tunnels

MILP requires

s |A| ≈ 108

continuous var. !



Instance of Lombardia

Lombardia region: a large and interesting case (many tunnels and o-d pairs)

P.Gandini, MS Thesis (in Italian), PoliMI, 2009

• o-d pairs: 40x40 (partitioning each province in subareas)

• Hazmat shipment estimation: 

Conto Nazionale Trasporto 

(ISTAT 2004) 

+ Gross Domestic Product

• Risk assessment in tunnels

and in the open-topped

roads for each hazmat category

(population exposed,

environment,…)



Input Data

• N = node set

• A = road arc set

• T = set of interdictable arcs (T  A)

• s = number of hazardous commodities

• (ok,dk) = origin-destination pair of commodity k

• hk = hazmat category of commodity k

• = shipment request amount of commodity k

• cij
k = travel cost of arc (i,j) per unit of commodity k

• = risk to travel arc (i,j) per unit of commodity k

k



Decision variables

Gov variables
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Bilevel ILP formulation

where variables       are solution of:
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Solving bilevel formulation

Applying strong LP duality, we substitute the inner problem with constraints:
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Single level reformulation
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Lagrangean relaxation
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Lagrangean decomposition
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Lagrangean dual

We solve the Lagrangean dual via the subgradient method:

 )(,0max
),(

,0max1 kh

ij

k

ij

k

ijk

ij

k

ij

k

ij yx
L

−+=















+=+ 






2
),(

)),((
  where






L

LRUB



−
=





























+

+−
+=
















+=+

Mc

MywwL
k

ij

h

ij

k

i

k

jk

ijk

ij

k

ij

k

ij

k





 ,0max

),(
,0max1

iterations 30every  halved and 2 == n



Lagrangean heuristic
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Relaxed solution may generate paths passing through tunnels closed

Relaxed solution may generate paths with non minimum cost

1. we consider closed each tunnel (i,j) s.t. 

in the solution of S1

2.    For each commodity k we solve a shortest path problem

on a graph where all tunnels closed for category hk are eliminated

0=
h
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Some computational results

• Lecco instance:

12 o-d pairs (12∙3=36 shipment requests)

R* Rheur L (Rheur -R*)/R* (R* -L)/R*

98907 102049 93869 3.18% 5.40%

22 iterations of subgradient method (CPU time limit=24h)

• PC Intel Xeon 2.80 GHz and 512KB L2 cache, 2GB RAM

• For practical reasons S2
k

and Lagrangean heuristic min path problems   

are solved by AMPL-CPLEX 11.0

Risk reduction of 16.3% compared to the unregulated scenario



Some computational results

• Brescia instance:

32 o-d pairs (32∙3=96 shipment requests)

-200000

0

200000

400000

600000

800000

1000000

1200000

1 2 3 4 5 6 7 8 9 10

Upper Bound

value L

Rheur L (Rheur -L)/L

493880 451926 8.49%

Risk reduction of 52.3% compared to the deregulated scenario!

(CPU time limit=24h)



Dantzig-Wolfe decomposition

• Suppose a COP is modeled this way:

• Suppose that (5.2) are the only difficult constraints

• Suppose the feasible region is non empty and bounded



Dantzig-Wolfe decomposition

• Let 𝐹 = 𝑥, 𝑦 : 𝐷𝑦 ≥ 𝑑, 𝑥 ≥ 0, 𝑦 ≥ 0 and integer which we assume bounded and 
non empty

• Let { 𝑥𝑡, 𝑦𝑡 : 𝑡 = 1,… , 𝑇} be the extreme points of F

• Main idea: 
➢ With the master problem we compute the best convex combination of the 

current extreme points that also satisfy the relaxed constraints (5.2) 
➢ With a subproblem we identify a possible less expensive extreme point of F

computing the reduced costs



Dantzig-Wolfe decomposition
• Master problem:

• Corresponding subproblem:

where u and α are the dual variables associated with (5.16) and (5.17), respectively



Dantzig-Wolfe decomposition matheur.



Application of Dantzig-Wolfe to SSCFLP
• Single Source Capacitated Facility Location Problem (SSCFLP): 

Given n customers and m possible facility locations, each customer j has an associated 
demand, qj , that must be served by a single facility,  each facility i has an overall capacity Qi.     
The costs are composed of a cost cij for supplying the demand of a customer j from a facility  
established at location i and of a fixed cost, fi , for opening a facility at location i. 
We want to decide which facilities opening and how to assign the customers to the facilities 
so that the overall cost is minimized.



Application of Dantzig-Wolfe to SSCFLP
• Master problem:

• Corresponding subproblem:



Application of Dantzig-Wolfe to SSCFLP
2. Solve subproblem SDW by solving |I| knapsack problems separately:  

𝑧𝑆𝐷𝑊 𝒖, 𝛼 = min

𝑗∈𝐽

𝑐𝑖𝑗 − 𝑢𝑗 𝑥𝑖𝑗



𝑗∈𝐽

𝑞𝑗𝑥𝑖𝑗 ≤ 𝑄𝑖 , 𝑥𝑖𝑗∈ {0,1}

3. For each 𝑖 ∈ 𝐼, if 𝑧𝑆𝐷𝑊 𝒖, 𝛼 < −𝑓𝑖 ⇒ 𝑦𝑖 = 1, otherwise 𝑦𝑖 = 0



4. Check for unsatisfied constraints: the solution obtained may have cutomers assigned to 
multiple or no location. This can be detected by inspection. If the solution is feasible go 
to step 6, otherwise go to step 5.

5. Build a feasible solution: let ҧ𝐼 be the set of locations chosen in step 3. Solve the 
following GAP:

6. Stop condition: if                                             , otherwise add the new column of SDW to 
the master problem MDW and solve it again.

Application of Dantzig-Wolfe to SSCFLP

𝑧𝑆𝐷𝑊 𝒖, 𝛼 ≥ 0 ⇒ STOP
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