MATHEURISTICS FOR COMBINATORIAL OPTIMIZATION PROBLEMS

Module 1 - Lesson 2
Prof. Maurizio Bruglieri Politecnico di Milano

Although this may seem a paradox, all exact science is dominated by the idea of approximation. Bertrand Russell (1872-1970)

Heuristics with approximation guarantee

- We want a guarantee that the heuristic algorithm provides a solution with value not much worse than the optimal one

Given an optimization problem P , where $\mathrm{z}_{\mathrm{opt}}$ is the optimal value and z_{A} the value provided by the huristic, we call

- absolute error $\mathrm{E}_{\mathrm{A}}=\left|\mathrm{z}_{\mathrm{opt}}-\mathrm{z}_{\mathrm{A}}\right|$
-relative error $\mathrm{R}_{\mathrm{A}}=\left|\mathrm{z}_{\text {opt }}-\mathrm{z}_{\mathrm{A}}\right| /\left|z_{\text {opt }}\right|$

$$
\text { Note } \mathrm{z}_{\mathrm{opt}} \neq 0
$$

Let I an instance (i.e. a particular case) for problem P
An algorithm A is absolutely approximated for problem P if and only if for each instance I
$\left|z_{\text {opt }}(I)-z_{A}(I)\right| \leq k$
for a certain constant $k>0$
Algorithm A is $g(n)$ - approximated algorithm for problem P if and only if for each instance I of size n

$$
\left|z_{\text {opt }}(I)-z_{A}(I)\right| \leq g(n)\left|z_{\text {opt }}(I)\right|
$$

Algorithm A is an ε - approximated algorithm for problem P if and only if for each instance I

$$
\left|z_{\text {opt }}(I)-z_{A}(I)\right| \leq \varepsilon\left|z_{\text {opt }}(I)\right|
$$

for a certain constant $\varepsilon>0$

An algorithm A is an approximation scheme for problem P \Leftrightarrow for each $\varepsilon>0$ and for each instance I
$z_{A}(I) \leq(1+\varepsilon) z_{o p t}(I)$ if P is a minimization problem
$z_{A}(I) \geq(1-\varepsilon) z_{\text {opt }}(I) \quad$ if P is a maximization problem

An algorithm A is an polynomial time approximation scheme (PTAS) for problem $\mathrm{P} \Leftrightarrow$ it is an AS s.t. for each $\varepsilon>0$ and for each instance I its computational complexity is bounded by a polynomial in $|I|$

An algorithm A is a fully polynomial time approximation scheme (FPTAS) for problem $\mathrm{P} \Leftrightarrow$ it is an AS s.t. for each instance I its computational complexity is bounded by a polynomial in $|I|$ and $1 / \varepsilon$

Non approximable COPs

- Some NP-hard COPs are so hard that they cannot be even approximated

The TSP cannot be approximated for any $\varepsilon>0$

Proof: Reduction from Hamiltonian Cycle Problem (HCP)
Consider any HCP instance i.e., a directed graph $G=(N, A)$ with $|N|=n$ and consider the complete graph G^{\prime} on N with the following costs:

$$
c_{i j}=\left\{\begin{array}{l}
1 \text { if }(i, j) \in A \\
n \varepsilon \text { otherwise }
\end{array}\right.
$$

If G is Hamiltonian, the optimal solution of the TSP in G^{\prime} would be n, otherwise > $n \varepsilon$
In the first case the approximated algorithm would provide a solution of value $\leq n \varepsilon$ while in the second case a solution of value $n \varepsilon$

How can one find the the limits of approximation for the approximated algorithms?

As we will se in the next examples three ingredients are necessary (consider e.g. minimum problems) :

- An upper bound, z_{A}, of the optimal solution value, obtained through the heuristic
- A lower bound $z_{L B}$ of the optimal solution value, obtained for instance with a relaxation
- A function $f\left(z_{L B}\right)$ non decreasing whose value is not lower than z_{A} in such a way that one obtains

$$
z_{L B} \leq z^{*} \leq z_{A} \leq f\left(z_{L B}\right) \leq f\left(z^{*}\right)
$$

Example 1

Integer knapsack

Consider the problem

$$
z^{*}=\max \left\{c^{T} x: a x \leq b, x \in Z^{n}{ }_{+}\right\}
$$

where $b, a_{l}, \ldots, a_{n} \in Z_{+}$and for hypothesis $a_{j} \leq b$, with $j=$ $1, \ldots, n$ and the relation $c_{l} / a_{l} \geq c_{j} / a_{j}$ holds for $j=2, \ldots, n$

Greedy algorithm

1. Fill the knapsack with as many copies as possible of the object with the best ratio "cost over volume"

Consider the greedy solution $x^{H}=\left(\left\lfloor\frac{b}{a_{1}}\right\rfloor, 0, \ldots, 0\right)$
with value $z^{H}=c_{1}\left\lfloor\frac{b}{a_{1}}\right\rfloor \leq z^{*}$
The solution of the linear relaxation provides an upper bound $z^{L P}=c_{1} b / a_{l} \geq z^{*}$
From $a_{l} \leq b$ it follows $\left\lfloor\frac{b}{a_{1}}\right\rfloor \geq 1$. Setting $\frac{b}{a_{1}}=\left\lfloor\frac{b}{a_{1}}\right\rfloor+f$, with $0 \leq f<1$
One obtains $\left\lfloor\frac{b}{a_{1}}\right\rfloor \frac{b}{a_{1}}=\frac{\left\lfloor\frac{b}{a}\right\rfloor}{\left\lfloor\frac{b}{a}\right\rfloor+f} \geq \frac{\left\lfloor\frac{b}{a}\right\rfloor}{\left.\left\lfloor\frac{b}{a}\right\rfloor\right\rfloor\left\lfloor\frac{b}{a}\right\rfloor}=\frac{1}{2}$
Hence $z^{H} / z^{*} \geq z^{H /} z^{L P}=\frac{c_{\left\lfloor\left\lfloor\frac{b}{a}\right\rfloor\right.}^{c_{1}} \frac{b}{a_{1}}}{a_{1}} \frac{\left\lfloor\frac{b}{a}\right\rfloor}{\frac{b}{a_{1}}} \geq \frac{1}{2}$.
The algorithm is $1 / 2$-approximated

Numerical example

$$
\begin{aligned}
& c=(20,27,9,24,6) \\
& a=(5, \quad 7, \quad 4, \quad 9, \quad 3) \quad b=22 \\
& x^{\mathrm{H}}=(\lfloor 22 / 5\rfloor, 0,0,0,0)=(4,0,0,0,0) \quad z^{\mathrm{H}}=80 \quad z^{L P}=88 \\
& z^{H} / z^{L P}=80 / 88 \approx 0,909 \\
& x^{*}=(0,3,0,0,0) \quad z^{*}=81 \\
& z^{H / z^{*}}=80 / 81 \approx 0.99 \\
& z^{H} / z^{*} \geq z^{H} / z^{L P} \geq 0.5
\end{aligned}
$$

In this case the error is about the 1.2%. For no instance it will be greater than 100%.

Example 2

Set covering

Given $M=\{1,2, \ldots, m\}$ and a family n of subsets $S_{j} \subseteq M$, with $j \in N$ $=\{1,2 \ldots, n\}$. With each subset S_{j} is associated a cost c_{j}. We look for the set of susbsets with minimum cost whose union cover all elements of M.

Greedy algorithm

1. Order in L the subsets for non decreasing values of ratio "cost divided by the non covered elements that they can cover"
2. Repeat until all elements of M are covered
remove from L next subset, S, in the given order;
label as covered all non covered elements in S; update the order of L;

Numerical example

$$
\left.\begin{array}{l}
M=\{1,2, \ldots, 5\}, \quad N=\{1,2, \ldots, 6\} \quad \underline{c}^{T}=(4,6,10,14,5,6) \\
S_{1}=\{3,5\} \quad S_{2}=\{1,3,5\} \quad S_{3}=\{1,2,5
\end{array}\right\} \quad S_{4}=\{1,2,4\} \quad S_{5}=\{1,4,5\} \quad S_{6}=\{3,4\}
$$

Step 1: Ratio $=(4 / 2,6 / 3,10 / 3,14 / 3,5 / 3,6 / 2)$;
Step 2: Ratio $=(4 / 1,6 / 1,10 / 1,14 / 1,--, 6 / 1)$;
Step 3: Ratio $=(--\infty, 10 / 1,14 / 1,--\infty)$;

Choose $S_{5 \text {; }}$
Choose $S_{1 \text {; }}$
Choose $S_{3 \text {; }}$

Incidence matrix

$$
\begin{array}{ll}
S_{5} \cup S_{1} \cup S_{3}=M & z_{\mathrm{A}}=19 \\
S_{3} \cup S_{6}=M & z^{*}=16
\end{array}
$$

Let $k=\max _{\mathrm{j}}\left\{\left|S_{j}\right|\right\}$, it is possible to prove:
the algorithm is $\log (k)$-approximated

Example 3

Job assignment problem

There are m identical machines and n jobs. Each job j, with $j=1, \ldots, n$, has to be processed from one the m machines for a processing time p_{j}. Every machine processes one job at the time. We want to minimize the completion time z^{*} of all jobs.

Greedy algorithm

1. Order the jobs in any order
2. Assign the jobs in the given order to the less loaded machine

Numerical example

Let z_{A} the greedy algorithm solution value.
Evaluate the relative error for $m=2$
The quantities $L B=\frac{1}{2} \sum_{j=1}^{n} p_{j} \quad$ and $\max _{j}\left\{p_{j}\right\}$ are lower bounds for z^{*}
Hence the relationship $L B \leq z^{*} \leq \mathrm{z}_{\mathrm{A}}$
Let k the index of last job executed and let start t_{k} its starting time. Hence $\mathrm{z}_{\mathrm{A}}=$ start $_{k}+p_{k}$

Since the jobs are assigned to the less loaded machine, when k is assigned the other machine was working at least until the instant start $_{k}$

$\mathrm{z}_{\mathrm{A}}=$	The algorithm is
start $_{k}+p_{k} \leq L B+p_{k} / 2 \leq z^{*}+z^{*} / 2=3 / 2 z^{*}$	$1 / 2$-approximated

Example 4

The symmetric TSP

Given a complete directed graph $G=(N, E)$ with non negative $\operatorname{cost} c_{e}$ for each edge $e=(i, j)$ of E, determine the minimum cost Hamiltonian cycle

The problem is NP-hard, but if in G the triangular inequality holds it is possible provide ε-approximated algorithms

Triangular inequality:

For every triplet of nodes i, j, k in N the following holds:

Double tree algorithm

1. Build T^{*}, minimum cost spanning tree in G

Observations:

Every Hamiltonian path is a spanning tree with cost $\geq c\left(T^{*}\right)$
Every Hamiltonian cycle is a Hamiltonian path with an additional edge
Therefore $c\left(T^{*}\right) \leq c\left(H^{*}\right)$

2. From the spanning tree we generate C visiting all nodes, also more than once.

Observations:

The cycle C can be transformed into an Hamiltonian cycle $C H$ with cost not larger (thanks to the triangular inequality): $c(C H) \leq 2 c\left(T^{*}\right)$

Hence: $\quad c(C H) \leq c(C)=2 c\left(T^{*}\right) \leq 2 c\left(H^{*}\right)$

The algorithm is
1-approximated

Approximated Matheuristics

Two main techniques for building an approximated algorithm from the Mathematical Programming formulation of a COP

A rounding matheuristic for the MWNC

- Given an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with a node cost function c, the Minimum Weight Node Cover Problem (MWNC) consists in finding a subset of vertices that covers i.e. touches each edge at least once and whose total cost is minimal.

$$
\begin{aligned}
& \min z=\sum_{i=1}^{n} c_{i} x_{i} \\
& x_{i}+x_{j} \geq 1 \forall[i, j] \in E \\
& x_{i} \in\{0,1\} \text { for } i=1, \ldots, n
\end{aligned}
$$

- Let \tilde{x} the optimal solution of the linear relaxation:
$\forall[i, j] \in E$, either $\widetilde{x_{i}} \geq 0.5$ or $\widetilde{x_{j}} \geq 0.5$
- Therefore if we round up every $\widetilde{x_{i}} \geq 0.5$ and to 0 the others we obtain a feasible solution
- The value of this feasible solution, \hat{z} is $\leq 2 \tilde{z}$ being \tilde{z} the optimal value of the $L R$
- Hence, $\hat{z} \leq 2 \tilde{z} \leq 2 z^{*}$, i.e., this is a 2-approximated algorithm!

Rounding approximated matheuristic

- General schema (min problem):

1. Solve the linear relaxation of the COP formulation \rightarrow relaxed solution \tilde{x}
2. From \tilde{x} build the integer feasible solution \hat{x} ensuring of not worsening too much the objective function $\rightarrow \mathrm{z}(\hat{x}) \leq(1+\varepsilon) z(\tilde{x})$
3. Thus $\mathrm{z}(\hat{x}) \leq(1+\varepsilon) z(\tilde{x}) \leq(1+\varepsilon) z^{*}$

Rounding approximated matheuristic for set covering

- Linear relaxation of SC formulation:

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{S \in \mathcal{S}} c(S) x_{S} & \\
\text { subject to } & \sum_{S: e \in S} x_{S} \geq 1, \quad e \in U \\
& x_{S} \geq 0, & S \in \mathcal{S}
\end{array}
$$

- Let $f=$ frequency of the most frequent element in the sets

Rounding approximated matheuristic for set covering

Algorithm1 (Set Covering via LP-rounding):

1. Find an optimal solution to the LP-relaxation.
2. Pick all sets S for which $x_{S} \geq 1 / f$ in this solution.

Theorem: Algorithm 1 achieves af approximation factor for the set covering Proof: Let C be the collection of picked sets. Consider an arbitrary element e. Since e is in at most f sets $\Rightarrow \exists S$ with $e \in S: \tilde{x}_{S} \geq 1 / f$ Thus, e is covered by C, and hence C is feasible set cover.
Since the rounding increases \tilde{x}_{S}, for each set $S \in C$, by a factor of at most f. \Rightarrow the cost of C is at most f times the cost of the fractional cover

- Remark: Algorithm 1 generalizes the rounding algorithm of the MWNC since the latter is a SC where each element (edge) can be only in two sets (each one corresponding to its ending vertices, since each set is associated with a node, and its elements are its incident edges.)

Primal-dual based approximated matheuristics

- Primal:
$\operatorname{minimize} \quad \sum_{j=1}^{n} c_{j} x_{j}$
subject to $\quad \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}, \quad i=1, \ldots, m$

$$
x_{j} \geq 0, \quad j=1, \ldots, n
$$

- Dual:
$\operatorname{maximize} \sum_{i=1}^{m} b_{i} y_{i}$
subject to $\quad \sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j}, \quad j=1, \ldots, n$

$$
y_{i} \geq 0, \quad i=1, \ldots, m
$$

Primal-dual based approx. matheuristics

- Theorem (Complementary Slackness Conditions)

Let x and y be primal and dual feasible solutions, respectively.
Then, x and y are both optimal iff all of the following conditions are satisfied:
Primal complementary slackness conditions
For each $1 \leq j \leq n$: either $x_{j}=0$ or $\sum_{i=1}^{m} a_{i j} y_{i}=c_{j}$; and
Dual complementary slackness conditions
For each $1 \leq i \leq m$: either $y_{i}=0$ or $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$.

- Most of the primal-dual approximated algorithms run by ensuring only one set of conditions and suitably relaxing the other (for $\alpha=1$ the primal conditions are imposed, while for $\beta=1$ the dual ones):

Primal complementary slackness conditions
Let $\alpha \geq 1$.
For each $1 \leq j \leq n$: either $x_{j}=0$ or $c_{j} / \alpha \leq \sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j}$.
Dual complementary slackness conditions
Let $\beta \geq 1$.
For each $1 \leq i \leq m$: either $y_{i}=0$ or $b_{i} \leq \sum_{j=1}^{n} a_{i j} x_{j} \leq \beta \cdot b_{i}$,

Primal-dual based approx. matheuristics

- Proposition 1

If x and y are primal and dual feasible solutions satisfying the conditions stated above then

$$
\sum_{j=1}^{n} c_{j} x_{j} \leq \alpha \cdot \beta \cdot \sum_{i=1}^{m} b_{i} y_{i} .
$$

Proof:

$$
\begin{aligned}
\sum_{j=1}^{n} c_{j} x_{j} & \leq \alpha \sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}=\alpha \sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i} \\
& \leq \alpha \beta \sum_{i=1}^{m} b_{i} y_{i} .
\end{aligned}
$$

Primal-dual based approx. matheuristics

- General schema (min problem):

1. Start with a primal infeasible solution and a dual feasible solution (e.g., $x=0$ and $y=0$);
2. Iteratively improve the feasibility of the primal solution, and the optimality of the dual solution, ensuring that in the end a primal feasible solution is obtained and all conditions stated above, with a suitable choice of α and β, are satisfied;
3. The primal solution is always extended integrally, thus ensuring that the final solution is integral;
4. The improvements to the primal and the dual go hand-in-hand: the current primal solution is used to determine the improvement to the dual, and vice versa;
5. Finally, the cost of the dual solution is used as a lower bound on OPT, and by Proposition 1, the approximation guarantee of the algorithm is $\alpha \beta$.

Primal-dual based approx. matheuristic for the set covering

- We obtain a f-approximated algorithm setting $\alpha=1$ and $\beta=f$
- Primal:
minimize

$$
\sum_{S \in \mathcal{S}} c(S) x_{S}
$$

$\begin{array}{lll}\text { subject to } & \sum_{S: e \in S} x_{S} \geq 1, & e \in U \\ & x_{S} \geq 0, & S \in \mathcal{S}\end{array}$

- Dual:

$$
\begin{array}{lll}
\operatorname{maximize} & \sum_{e \in U} y_{e} & \\
\text { subject to } & \sum_{e: e \in S} y_{e} \leq c(S), & S \in \mathcal{S} \\
& y_{e} \geq 0, & e \in U
\end{array}
$$

Primal-dual based approx. matheuristic for the set covering

- The complementary slackness conditions are:

Primal conditions

$$
\forall S \in \mathcal{S}: x_{S} \neq 0 \Rightarrow \sum_{e: e \in S} y_{e}=c(S) .
$$

Set S will be said to be tight if $\sum_{e: ~}^{e \in S}$ $y_{e}=c(S)$. Since we will increment the primal variables integrally, we can state the conditions as: Pick only tight sets in the cover.

Dual conditions

$$
\forall e: y_{e} \neq 0 \Rightarrow \sum_{S: e \in S} x_{S} \leq f
$$

Since we will find a $0 / 1$ solution for \boldsymbol{x}, these conditions are equivalent to: Each element having a nonzero dual value can be covered at most f times. Since each element is in at most f sets, this condition is trivially satisfied for all elements.

Primal-dual based approx. matheuristic for the set covering

Algorithm 2 (Set covering via Primal-Dual):

1. Initialization: $\boldsymbol{x} \leftarrow \mathbf{0} ; \boldsymbol{y} \leftarrow \mathbf{0}$
2. Until all elements are covered, do:

Pick an uncovered element, say e, and raise y_{e} until some set goes tight.
Pick all tight sets in the cover and update \boldsymbol{x}.
Declare all the elements occurring in these sets as "covered".
3. Output the set cover \boldsymbol{x}.

Primal-dual based approx. matheuristic for the set covering

Theorem: Algorithm 2 achieves an approximation factor of f Proof: Clearly there will be no uncovered elements and no overpacked sets at the end of the algorithm. Thus, the primal and dual solutions will both be feasible. Since they satisfy the relaxed complementary slackness conditions with $\alpha=1$ and $\beta=f$, by Proposition 1 the approximation factor is f

Remark: Although Algorithm 2 achieves the same approximation factor of Algorithm 1, it is generally faster since it does not require to solve any LP!

A tight example

Here, \mathcal{S} consists of $n-1$ sets of cost $1,\left\{e_{1}, e_{n}\right\}, \ldots,\left\{e_{n-1}, e_{n}\right\}$, and one set of $\operatorname{cost} 1+\varepsilon,\left\{e_{1}, \ldots, e_{n+1}\right\}$, for a small $\varepsilon>0$. Since e_{n} appears in all n sets, this set system has $f=n$.

Suppose the algorithm raises $y_{e_{n}}$ in the first iteration. When $y_{e_{n}}$ is raised to 1 , all sets $\left\{e_{i}, e_{n}\right\}, i=1, \ldots, n-1$ go tight. They are all picked in the cover, thus covering the elements e_{1}, \ldots, e_{n}. In the second iteration, $y_{e_{n+1}}$ is raised to ε and the set $\left\{e_{1}, \ldots, e_{n+1}\right\}$ goes tight. The resulting set cover has a cost of $n+\varepsilon$, whereas the optimum cover has cost $1+\varepsilon$.

References

- M. O. Ball, (2011). Heuristics based on mathematical programming. Surveys in Operations Research and Management Science, 16, pp. 21-38.
- T. Dokka, A.N. Letchford, M.H.Mansoor (2019), Anomalous Behaviour of Dual-Based Heuristics. Optimization online, pp.1-20.
- M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.
- D.S. Hochbaum , (2002). Solving integer programs over monotone inequalities in three variables: A framework for half integrality and good approximations. European Journal of Operational Research, 140, pp. 291-321
- V.V. Vazirani. Approximation algorithms. Springer, 2003.
- J. Vygen, Approximation Algorithms for Facility Location Problems (Lecture Notes)

