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• We want a guarantee that the heuristic algorithm

provides a solution with value not much worse than

the optimal one

Given an optimization problem P, where zopt is the 

optimal value and zA the value provided by the huristic, 

we call 

- absolute error  EA= |zopt-zA| 

- relative error  RA= |zopt-zA|/|zopt|

Note zopt  0

Heuristics with approximation guarantee



Let I an instance (i.e. a particular case) for problem P

An algorithm A is absolutely approximated for problem P    

if and only if for each instance I

for a certain constant k > 0

kIzIz Aopt − )()(

Algorithm A is g(n)- approximated algorithm for problem P 

if and only if for each instance I of size n

)()()()( IzngIzIz optAopt −

Algorithm A is an - approximated algorithm for problem P 

if and only if for each instance I

for a certain constant  > 0

)()()( IzIzIz optAopt −



An algorithm A is an approximation scheme for problem P    

⇔ for each ε > 0 and for each instance I

𝑧𝐴 𝐼 ≥ 1− ε 𝑧𝑜𝑝𝑡 𝐼 if P is a maximization problem

𝑧𝐴 𝐼 ≤ 1 + ε 𝑧𝑜𝑝𝑡 𝐼 if P is a minimization problem

An algorithm A is an polynomial time approximation scheme

(PTAS) for problem P ⇔ it is an AS s.t. for each ε > 0 and 

for each instance I its computational complexity is bounded

by a polynomial in | I |

An algorithm A is a fully polynomial time approximation

scheme (FPTAS) for problem P ⇔ it is an AS s.t. for each

instance I its computational complexity is bounded by a 

polynomial in | I | and 1/ε



Non approximable COPs
• Some NP-hard COPs are so hard that they cannot be even approximated

The TSP cannot be approximated for any ε>0

Proof: Reduction from Hamiltonian Cycle Problem (HCP)
Consider any HCP instance i.e., a directed graph G=(N,A) with |N|=n
and consider the complete graph G’ on N with the following costs:

𝑐𝑖𝑗 = ቊ
1 𝑖𝑓 𝑖, 𝑗 ∈ 𝐴
𝑛𝜀 otherwise

If G is Hamiltonian, the optimal solution of the TSP in G’ would be n,     
otherwise > 𝑛𝜀
In the first case the approximated algorithm would provide a solution of    
value ≤ 𝑛𝜀 while in the second case a solution of value 𝑛𝜀



How can one find the the limits of approximation for the 

approximated algorithms?

As we will se in the next examples three ingredients are 

necessary (consider e.g. minimum problems) :

• An upper bound, zA , of the optimal solution value, 

obtained through the heuristic

• A lower bound zLB of the optimal solution value, obtained 

for instance with a relaxation

• A function f(zLB) non decreasing whose value is not lower 

than zA in such a way that one obtains

zLB  z*  zA  f(zLB)  f(z*) 



Integer knapsack

Consider the problem

z* = max {cTx : a x  b, xZn
+}

where b, a1,…, an  Z+ and for hypothesis aj  b,  with j = 

1,…,n  and the relation c1/ a1 cj/ aj holds  for j = 2,…,n

Greedy algorithm

Example 1

1. Fill the knapsack with as many copies as possible of the object 

with the best ratio “cost over volume” 



The algorithm is 1/2-approximated

From a1  b  it follows              . Setting 1
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The solution of the linear relaxation provides an upper 

bound zLP=c1 b/ a1  z*

Consider the greedy solution

with value zH=            z*
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Numerical example

c = ( 20, 27, 9, 24, 6) 

a = ( 5,   7,   4,   9,   3)     b=22

xH = (22/5,0,0,0,0) = (4,0,0,0,0)    zH = 80    zLP=88

zH/ zLP = 80/88  0,909

x* = (0,3,0,0,0)     z*  =  81

zH/ z* = 80/81  0.99

zH/ z*  zH/ zLP 0.5

In this case the error is about the 1.2 %. For no instance

it will be greater than 100%.



Example 2

Greedy algorithm

1. Order in L the subsets for non decreasing values of ratio “cost 

divided by the non covered elements that they can cover” 

2. Repeat until all elements of M are covered

remove from L next subset, S, in the given order; 

label as covered all non covered elements in S;

update the order of L;

Given M={1,2,…,m} and a family n of subsets Sj  M, with j  N

={1,2…,n}. With each subset Sj is associated a cost cj. We look 

for the set of susbsets with minimum cost whose union cover all 

elements of M.

Set covering 



Incidence matrix 

0 1 1 1 1 0

0 0 1 1 0 0

1 1 0 0 0 1

0 0 0 1 1 1

1 1 1 0 1 0
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Numerical example

S3  S6 =M            z* = 16

Step 1:   Ratio = (4/2, 6/3, 10/3,14/3, 5/3,6/2); Choose S5;

M=1,2,…,5,      N=1,2,…,6

1S =3,5  2S =1,3,5  3S =1,2,5  4S =1,2,4  5S = 1,4,5  6S = 3,4

(4,6,10,14,5,6)Tc =

Step 2:   Ratio = (4/1, 6/1, 10/1,14/1,  -- ,6/1); Choose S1;

Step 3:   Ratio = ( -- ,   , 10/1,14/1,  -- ,   ); Choose S3;

S5  S1  S3 =M    zA = 19

the algorithm is log(k)-approximated

Let k = maxj { |Sj| }, it is possible to 

prove:



Job assignment problem 

There are m identical machines and n jobs. Each job j, with

j=1,…,n, has to be processed from one the m machines for a

processing time pj. Every machine processes one job at the time.

We want to minimize the completion time z* of all jobs.

Greedy algorithm

1. Order the jobs in any order

2. Assign the jobs in the given order to the less loaded 

machine

Example 3



Numerical example
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Let k the index of last job executed and let startk its starting time. Hence zA= 

startk + pk

Since the jobs are assigned to the less loaded machine, when k is assigned the 

other machine was working at least until the instant startk

startk

k

Hence

startk  = LB − pk/2


=

n

kj
j

jp
12

1

zA= 

startk + pk  LB + pk/2  z* + z* /2 = 3/2 z*

The algorithm is 

1/2 -approximated

Let zA the greedy algorithm solution value. 

Evaluate the relative error for  m=2

The quantities                             and                    are lower bounds for z*
=

=
n

j
jpLB

12

1  j
j

pmax

Hence the relationship LB  z*  zA 



The symmetric TSP

Given a complete directed graph G=(N,E) with non negative 

cost ce for each edge  e=(i,j) of E, determine the minimum 

cost Hamiltonian cycle 

The problem is NP-hard, but if in G the triangular inequality

holds it is possible provide  -approximated algorithms

Triangular inequality:

For every triplet of nodes i,j,k in N the following  holds:

ikjkij ccc +
i

j

k

Example 4



Double tree algorithm

1. Build T*, minimum cost spanning tree in G

Observations:

Every Hamiltonian path is a spanning tree with cost  ≥ c(T*)

Every Hamiltonian cycle is a Hamiltonian path with an additional edge

Therefore c(T*) c(H*)



2. From the spanning tree we generate C visiting all nodes, 

also more than once.

The cycle C can be transformed into an Hamiltonian cycle CH with cost not 

larger (thanks to the triangular inequality):    c(CH)  2 c(T*)

Hence: c(CH)  c(C) = 2 c(T*)  2 c(H*) 

The algorithm is

1-approximated

Observations:



Approximated Matheuristics

Two main techniques for building an approximated algorithm 
from the Mathematical Programming formulation of a COP

Rounding its 
linear relaxation 
optimal solution

Primal-dual         
method



A rounding matheuristic for the MWNC
• Given an undirected graph G=(V,E) with a node cost function c, the Minimum 

Weight Node Cover Problem (MWNC) consists in finding a subset of vertices that
covers i.e. touches each edge at least once and whose total cost is minimal.
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m𝑖𝑛 𝑧 =

𝑖=1

𝑛

𝑐𝑖𝑥𝑖

𝑥𝑖+ 𝑥𝑗 ≥ 1 ∀ 𝑖, 𝑗 ∈ 𝐸

𝑥𝑖 ∈ 0,1 for 𝑖 = 1, . . , 𝑛

• Let 𝑥 the optimal solution of the linear relaxation: 
∀ [𝑖, 𝑗] ∈ 𝐸, either 𝑥𝑖 ≥ 0.5 or 𝑥𝑗 ≥ 0.5

• Therefore if we round up every 𝑥𝑖 ≥ 0.5 and to 0 the others we obtain a feasible solution

• The value of this feasible solution, Ƹ𝑧 is ≤ 2 ǁ𝑧 being ǁ𝑧 the optimal value of the LR

• Hence, Ƹ𝑧 ≤ 2 ǁ𝑧 ≤ 2𝑧∗, i.e., this is a 2-approximated algorithm!



Rounding approximated matheuristic
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• General schema (min problem):
1. Solve the linear relaxation of the COP formulation → relaxed solution 𝑥
2. From 𝑥 build the integer feasible solution ො𝑥 ensuring of not worsening 

too much the objective function → z ො𝑥 ≤ 1 + ε 𝑧 𝑥
3. Thus z ො𝑥 ≤ 1 + ε 𝑧 𝑥 ≤ 1 + ε 𝑧∗



Rounding approximated matheuristic
for set covering
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• Let f = frequency of the most frequent element in the sets

• Linear relaxation of SC formulation:



Rounding approximated matheuristic
for set covering
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1. Find an optimal solution to the LP-relaxation.
2. Pick all sets S for which 𝑥𝑆 ≥ 1/𝑓 in this solution.

Algorithm1 (Set Covering via LP-rounding):

Theorem: Algorithm 1 achieves a f approximation factor for the set covering 
Proof: Let C be the collection of picked sets. Consider an arbitrary element e.
Since e is in at most f sets ⇒ ∃ 𝑆 with 𝑒 ∈ 𝑆: 𝑥S ≥ 1/𝑓
Thus, e is covered by C, and hence C is feasible set cover. 
Since the rounding increases 𝑥S , for each set S ∈ C, by a factor of at most f.    
⇒ the cost of C is at most f times the cost of the fractional cover

• Remark: Algorithm 1 generalizes the rounding algorithm of the MWNC since the 
latter is a SC where each element (edge) can be only in two sets (each one 
corresponding to its ending vertices, since each set is associated with a node, 
and its elements are its incident edges.)



Primal-dual based approximated
matheuristics

• Primal:

• Dual:



Primal-dual based approx. matheuristics
• Theorem (Complementary Slackness Conditions)

Let x and y be primal and dual feasible solutions, respectively. 
Then, x and y are both optimal iff all of the following conditions are satisfied:

• Most of the primal–dual approximated algorithms run by ensuring only one 
set of conditions and suitably relaxing the other (for α = 1 the primal 
conditions are imposed, while for β = 1 the dual ones):



Primal-dual based approx. matheuristics
• Proposition 1

If x and y are primal and dual feasible solutions satisfying the conditions 
stated above then
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• General schema (min problem):
1. Start with a primal infeasible solution and a dual feasible solution 

(e.g., x = 0 and y = 0); 
2. Iteratively improve the feasibility of the primal solution, and the 

optimality of the dual solution, ensuring that in the end a primal 
feasible solution is obtained and all conditions stated above, with a 
suitable choice of α and β, are satisfied;

3. The primal solution is always extended integrally, thus ensuring that 
the final solution is integral; 

4. The improvements to the primal and the dual go hand-in-hand: the 
current primal solution is used to determine the improvement to the 
dual, and vice versa; 

5. Finally, the cost of the dual solution is used as a lower bound on OPT, 
and by Proposition 1, the approximation guarantee of the algorithm 
is αβ.

Primal-dual based approx. matheuristics
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• We obtain a f-approximated algorithm setting α=1 and β=f

• Primal:

Primal-dual based approx. matheuristic
for the set covering

• Dual:
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• The complementary slackness conditions are:

Primal-dual based approx. matheuristic
for the set covering
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Algorithm 2 (Set covering via Primal-Dual):

Primal-dual based approx. matheuristic
for the set covering
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Theorem: Algorithm 2 achieves an approximation factor of f
Proof:  Clearly there will be no uncovered elements and no overpacked 
sets at the end of the algorithm. Thus, the primal and dual solutions will 
both be feasible. Since they satisfy the relaxed complementary slackness 
conditions with α=1 and β=f, by Proposition 1 the approximation factor is f

Primal-dual based approx. matheuristic
for the set covering

Remark: Although Algorithm 2 achieves the same approximation  
factor of Algorithm 1, it is generally faster since it does not require to 
solve any LP!
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A tight example



References
• M. O. Ball, (2011). Heuristics based on mathematical programming. Surveys in 

Operations Research and Management Science, 16, pp. 21-38.

• T. Dokka, A.N. Letchford, M.H.Mansoor (2019), Anomalous Behaviour of Dual-Based 
Heuristics. Optimization online, pp.1-20.

• M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory 
of NP-Completeness. Freeman, San Francisco, CA, 1979.

• D.S. Hochbaum , (2002). Solving integer programs over monotone inequalities in 
three variables: A framework for half integrality and good approximations. 
European Journal of Operational Research, 140, pp. 291–321

• V.V. Vazirani. Approximation algorithms. Springer, 2003.

• J. Vygen, Approximation Algorithms for Facility Location Problems (Lecture Notes)


