
This article was downloaded by: [159.149.103.9] On: 08 December 2019, At: 07:44
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Computing

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Exact and Approximate Nondeterministic Tree-Search
Procedures for the Quadratic Assignment Problem
Vittorio Maniezzo,

To cite this article:
Vittorio Maniezzo, (1999) Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment
Problem. INFORMS Journal on Computing 11(4):358-369. https://doi.org/10.1287/ijoc.11.4.358

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

© 1999 INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/ijoc.11.4.358
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

Exact and Approximate Nondeterministic Tree-Search
Procedures for the Quadratic Assignment Problem
VITTORIO MANIEZZO � Scienze dell’Informazione, Università di Bologna, Via Sacchi, 3, 47023, Cesena, Italy;

Email: maniezzo@csr.unibo.it

(Received: February 1998; revised: September 1998, January 1999; accepted: July 1999)

This article introduces two new techniques for solving the Qua-
dratic Assignment Problem. The first is a heuristic technique,
defined in accordance with the Ant System metaphor, and in-
cludes as a distinctive feature the use of a new lower bound at
each constructive step. The second is a branch-and-bound
exact approach, containing some elements introduced in the
Ant algorithm. Computational results prove the effectiveness of
both approaches.

T he Quadratic Assignment Problem (QAP) is one of the best
known and most difficult combinatorial optimization prob-
lems, as it is testified by the comparatively small gap exist-
ing between the dimension of the problems that can be solved
to optimality by means of complete enumeration and the di-
mension of the problems that can be solved by means of the
most advanced exact methods proposed in the literature.

The theoretical and applicative interest of the problem has
fostered a large amount of research (Pardalos and Wolkow-
icz[28] and Çela[18]), which resulted in a number of different
approaches, both exact and heuristic.

Exact methods rely on effective lower bounds; the best
known of such bounds was proposed by Gilmore[15] and
Lawler,[20] but several improvements are available, such as
those of Assad and Xu[1] or Carraresi and Malucelli,[7] based
on problem reformulations, Rendl and Wolkowicz,[29] based
on the eigenvalues of the problem matrices, Resende et al.,[30]

based on an interior point algorithm, or Hahn and Grant,[17]

based on a dual framework. The most effective exact tech-
niques presented in the literature include those of Mautor and
Roucairol,[25] Hahn et al.,[18] and Brungger et al.[3]

However, problem instance of comparatively small di-
mension cannot yet be solved to optimality. This raises
interest in heuristic approaches, among which we recall the
simulated annealing of Connolly,[10] the tabu search of Tail-
lard[32] and of Battiti and Teccholli,[2] its hybrid with genetic
algorithm of Fleurent and Ferland,[14] the GRASP of Li et
al.,[21] and the more recent scatter search of Cung et al.[11]

Experimental comparisons among them can be found in
Taillard[33] and in Maniezzo et al.[23]

The author contributed to the design of a metaheuristic
algorithm, the ant system (Colorni et al.,[9] Dorigo et al.[12]),
that has also been applied to QAP (Maniezzo et al.,[22]

Maniezzo and Colorni[24]). This article describes a substan-
tial improvement of the ant system and its application to

QAP. Moreover, it is recognized that the resulting algo-
rithm, ANTS, shares several elements with an approximate
branch-and-bound (more specifically, it can be seen as an
Approximate Nondeterministic Tree-Search system, hence
the name), and the few modifications needed to make it an
exact approach are proposed.

The article is structured as follows. Section 1 reviews the
mathematical formulation of the QAP and the Gilmore and
Lawler bound. Section 2 introduces the ant system and the
new adaptations. Section 3 describes how the new general
ANTS strategy can be applied to the QAP while Section 4
presents how it can be converted into an exact approach in
the case of the QAP. Section 5 shows the computational
results obtained by the exact and the heuristic algorithms,
finally Section 6 contains some of the conclusions drawn
from this work.

1. Mathematical Formulations and Lower Bounds
Several mathematical formulations have been proposed for
the QAP, many of which aimed at linearizing the problem;
for a recent presentation of the problem, see Çela.[8] The
most frequently used formulation is due to Koopmans and
Beckmann,[19] and models the case where n facilities are to
be assigned to n locations; the assignment cost is due to a direct
cost derived from the assignment of a facility to a location and
to a cost derived from the amount of flow existing between each
pair of facilities multiplied by the distance between the two
locations the facilities are assigned to.

Formally, let � � {1, . . . , n} be an index set of the facilities
and � � {1, . . . , n} be an index set of the locations. Further-
more, let D � [dih] i,h � 1, . . . , n be the (possibly asymmet-
rical) matrix of distances between each pair of locations and
let F � [fjk] j,k � 1, . . . , n be the (possibly asymmetrical)
matrix of flows between each pair of facilities. Finally let C �
[cij] i, j � 1, . . . , n be the cost matrix for the assignment of
facilities to locations. A 0/1 binary variable xij takes value 1
if facility i is assigned to location j, 0 otherwise.

The formulation is as follows.

(KB) zQAP � min �
i, j�1

n �
h, k�1

n

dih f jk xij xhk � �
i, j�1

n

cij xij (1)

Subject classifications: Combinatorial optimization problem.
Other key words: Quadratic assignment problem, the ant system, branch and bound.

358
INFORMS Journal on Computing 0899-1499� 99 �1104-0358 $05.00
Vol. 11, No. 4, Fall 1999 © 1999 INFORMS

subject to the following constraints

�
i�1

n

xij � 1 � j � 1, . . . , n� (2)

�
j�1

n

xij � 1 �i � 1, . . . , n� (3)

xij � �0,1� �i , j � 1, . . . , n� (4)

Formulation KB can be generalized to consider the case
where the assignment cost is given by a generic quadratic
0/1 function. In fact, given a four-dimensional coefficient
matrix � � [�ijhk], i, j,h,k � 1, . . . , n, QAP asks to solve
(GEN)

zGEN � min �
i, j, h, k�1

n

� ijhk xij xhk (5)

subject to constraints (2), (3), and (4).
In the following, we will refer to problems presented

according to formulation KB, i.e., where the notions of flows
and distances can be applied.

The best known lower bound for the QAP was presented
by Gilmore[15] and Lawler;[20] it is usually referred to as the
Gilmore and Lawler bound (GLB in the following), and has
a computational complexity of O(n3) in the Koopmans and
Beckmann case.

Unfortunately, GLB is not very tight for many problems,
therefore the research on new lower bounds for the QAP has
been and still is very active. For example, Assad and Xu[1]

and Carraresi and Malucelli[7] proposed two different QAP
reformulation schemes, deriving two bounds that can be
computed in O(n5), Finke, Burkard, and Rendl[13] and Rendl
and Wolkowicz[29] proposed two lower bounds based on the
eigenvalues of the input matrix. More recently, Resende,
Ramakrishnan, and Drezner[30] used an interior point ap-
proach to derive their IPLP bound, while Hahn and Grant[17]

designed a dual procedure for the general QAP problem.
All these bounds have a higher computational complexity

than the GLB for the Koopmans and Beckmann case and,
even though significantly improving the GLB, either are not
applicable to large instances—as is the case of the interior
point bound, which has a complexity of O(n7)—or leave
significant gaps on some problem instances, as the QAPLIB
(Burkard et al.[6]) testifies.

2. The ANT System

2.1 The Original Algorithm
The ANT system was initially proposed by Colorni, Dorigo,
and Maniezzo[9] as a general metaheuristic approach for
combinatorial optimization problems. The underlying idea
was that of parallellizing search over several constructive
computational threads, all based on a dynamic memory
structure incorporating information on the effectiveness of
previously obtained results.

More specifically, an ant is defined to be a simple com-

putational agent, which iteratively constructs a solution for
the problem to solve. Partial problem solutions are seen as
states; each ant moves from a state � to another one �, corre-
sponding to a more complete partial solution. At each step �,
each ant k computes a set A�

k of feasible expansions to its
current state, and moves to one of these in probability.

For ant k, the probability p��
k of moving from state � to

state � depends on the combination of two values:

1. the attractiveness � of the move, as computed by some
heuristic indicating the a priori desirability of that move.
Specifically, a variable ��� quantifies the attractiveness of
moving from state � to state �.

2. the trail level � of the move, indicating how proficient it
has been in the past to make that particular move: it
represents therefore an a posteriori indication of the desir-
ability of that move. Specifically, a variable ��� quantifies
the past proficiency of moving from state � to state �.

Trails are updated at each iteration, promoting those that
facilitate moves that were part of “good” solutions. Even
though the ant framework can be applied in the general case
just described, it is usually the case that the concept of state
is relaxed, and a move becomes the insertion in the solution
of a variable (j) after having inserted another (i). Thus,
evaluating a move means assessing the opportunity of ex-
tending a partial solution, where variable i was jsut added,
with variable j. Attractiveness, �ij, trail level, �ij, and move
probability pij

k are accordingly redefined.
The specific formula for defining the probability distribu-

tion at each move, proposed in Colorni et al.,[9] makes use of
the concept of tabu list for ant k, tabuk, which indicates the
set of infeasible moves for ant k. Probabilities were com-
puted as follows:

pij
k � �

� ij
	 � � ij

� �ir�� tabuk
0

�� ir
	 � � � ir

�
if �ij� �� tabuk

0 otherwise
(6)

Exponents 	 and
 are user-defined parameters that specify
the relative importance of trail with respect to attractiveness.

After each iteration t, trails are updated following formula
(7):

� ij�t� � �� ij�t � 1� � 	� ij (7)

where � is a user-defined coefficient and 	�ij represents the
sum of the contributions of all ants that used move (ij) to
construct their solution. The ants’ contributions are propor-
tional to the quality of the solutions achieved, i.e., the better
an ant solution, the higher will be the trail contributions
added to the moves it used.

The ant system simply iterates a main loop where m ants
construct in parallel their solutions, thereafter updating the
trail levels. Solutions can be carried to the corresponding
local optima, for example by means of a simple 2-opt im-
provement heuristic. The performance of the algorithm de-
pends on the correct tuning of several parameters, namely:
	,
, relative importance of trail and attractiveness, �, trail
persistence, �ij(0), initial trail level, m, number of ants, and Q,
used for defining to be of high quality solutions with low cost.

359
Nondeterministic Tree-Search Procedures for QAP

2.2 The improved ANTS algorithm
Several improvements and modifications can be suggested
to improve the performance of the original ant system algo-
rithm. The ones we advocate in this article are the following.

Use of Lower Bounds (Min Problems)
The attractiveness � of a move can be effectively estimated
by means of lower bounds (upper bounds in case of maxi-
mization problems) to the cost of the completion of a partial
solution. In fact, given a partial problem solution, it is pos-
sible to compute a lower bound to the cost of a complete
solution containing it. For each feasible move (ij), it is pos-
sible to compute the lower bound to the cost of a complete
solution containing j: the lower the bound the better the
move.

Since a large part of research in combinatorial optimiza-
tion is devoted to the identification of tight lower bound for
the different problems of interest, good lower bounds are
usually available. Their use has several advantages, some of
which are listed in the following.

• A tight bound gives strong indications on the opportunity
of a move.

• When the bound value becomes greater than the current
upper bound, it is obvious that the considered move leads
to a partial solution that cannot possibly be completed in
a solution better than the current best one. The move can
therefore be discarded from further analysis.

• If the bound is derived from linear programming and
dual cost information is therefore available, it is possible
to compute reduced costs for the problem decision vari-
ables, which in turn—when compared to an upper bound
to the optimal problem solution cost—permit to a priori
eliminate some variables. This results in a reduction to the
number of possible moves, therefore to a reduction of the
search space.

• A further advantage of lower bounds based on linear
programming is that the primal values of the decision
variables, as appearing in the bound solution, can be used
as an estimate of the probability with which each variable
will appear in good solutions. This provides an effective
way for initializing the trail values, thus eliminating the
need for the user-defined parameter �ij(0).

Computational Efficiency
An improved computational efficiency is obviously a valu-
able asset for any heuristic method. While this is usually
achieved by a careful implementation and data structure
design, some higher-level considerations are possible. For
example, formula (6) can be converted to:

pij
k � �

	 � � ij � �1 � 	� � � ij� �ir��tabuk
�	 � � ir � �1 � �� � � ir�

if �ij� �� tabuk

0 otherwise
(6
)

Formula (6
) achieves the same objective of formula (6), that
of letting the user specify a different relative importance of
trail with respect to attractiveness, while eliminating one
parameter (
) and using more computationally efficient

components, multiplications instead of powers to real-val-
ued exponents.

Stagnation Avoidance
Stagnation denotes the undesirable situation in which all
ants repeatedly construct the same solutions, making impos-
sible any further exploration in the search process. This
derives from an excessive trail level on the moves of one
solution, and can be observed in advanced phases of the
search process if parameters are not well tuned to the prob-
lem. In particular, stagnation derives from a wrong value of
parameter � in the original algorithm. If it is too high,
stagnation might take place, while if it is too low too little
information is conveyed from previous solutions and the ant
system becomes an iterated randomized greedy procedure.
We decided to eliminate this sensitive parameter, by updat-
ing trail using a different mechanism. The new procedure
evaluates each solution against the last k ones globally con-
structed by the ANTS algorithm. As soon as k solutions are
available, we compute their moving average z�; each new
solution zcurr is compared to z� (and then used to compute the
new moving average value). If zcurr is lower than z� the trail
level of the last solution’s moves is increased, otherwise it is
decreased. Formula (8) specifies how this is implemented,
when coupled with formula (7) above.

	� ij � �0 � � 1 �
zcurr � LB

z� � LB � (8)

z� is the average of the last k solutions and LB is a lower
bound to the optimal problem solution cost. Figure 1 depicts
the moving average linear scaling function we propose for
trail updating.

The use of a dynamic scaling procedure permits to dis-
criminate small achievement in the latest stage of search,
while avoiding to focalize search only around good achieve-
ment in the earliest stages. The mechanism presented makes
no use of parameter � and, consequently, of parameter Q.
However, a new parameter is introduced, k the cardinality of
the moving average, but its value is much less critical than
that of the parameters we eliminated.

Figure 1. Linear dynamic scaling.

360
Maniezzo

Using the three modifications proposed, the ANTS system
metaheuristic becomes the following.

Improved ANTS algorithm
1. Compute a (linear) lower bound LB to the problem to

solve
Initialize �ij (@i, j) with the primal variable values

2. For k � 1, m (m � number of ants) do
repeat

2.1 compute �ij @ (ij)
2.2 choose the state to move into, with probability

given by (6
)
2.3 append the chosen move to the k-th ant’s tabu list

until ant k has completed its solution
2.4 carry the solution to its local optimum

end for
3. For each ant move (ij),

compute 	�ij and update the trace matrix by means
of (7) and (8)

4. If not (end_test) goto step 2.

3. ANTS Applied to QAP
Section 2 presented the ANTS metaheuristic, which can be
applied to many combinatorial optimization problems. In
this Section, we detail how this can be done in the case of a
specific problem, namely the QAP. Essentially, this trans-
lates into specifying which lower bound has been chosen
(step 2.1 of the improved ANTS algorithm) and what is a
move in the QAP context (step 2.2), all other elements being
those described in Section 2.2.

3.1 Lower Bound
As mentioned in Section 1, there is currently no lower bound
for QAP, which is both tight and efficient to compute. A
good compromise is the GLB, which can be formulated for
the general QAP case; in the Koopmans and Beckmann form
it can be formulated as follows. First, for each pair (ij), i � �,
j � �, compute zij.

zij � min �
h,k�1

n

dih f jk xhk (9)

subject to assignment constraints on variables xhk.
Then, GLB is given by

(GLBP) zGLB � min z � �
i, j�1

n

� zij � cij� xij (10)

subject to (2), (3), and (4).
It is well known that the zij coefficients can be easily

computed by preordering the dih and fjk coefficient vectors in
ascending and descending order, respectively, and then
computing their scalar product. This reduces the computa-
tional complexity of the GLB computation to O(n3).

Unfortunately, this bound is on the average quite far from
the optimal solution. We decided therefore to further trade
effectiveness for efficiency, and we used in our procedure a
bound, called LBD, worse than GLB but very easy to com-
pute.

LBD has been designed on the basis of the following
observations. When computing GLB for a problem, along
with the value of the bound one gets the values of the dual
variables corresponding to constraints (2) and (3). Let ui(0),
i � 1, . . . , n, be the values of the dual variables correspond-
ing to constraints (2) and let vi(0), i � 1, . . . , n, the values of
the dual variables corresponding to constraints (3): obvi-
ously GLB � �i�� ui(0) � �j�� vj(0).

The index set � can be partitioned into two subsets �1

and �2, denoting the indices of the already assigned facili-
ties and the indices of the still unassigned facilities, respec-
tively. Similarly, the index set � can be partitioned into two
subsets �1 and �2, denoting the indices of the already as-
signed locations and the indices of the still unassigned lo-
cations, respectively. When a partial solution {�1, �1} is
considered (assuming for simplicity cij � 0 @i, j) the objective
function (1) can be rewritten as:

zQAP � min �
i, h � �1

�
j, k � �1

dih fjk xij xhk � �
i, h � �1

�
j, k � �2

dih fjk xij xhk

� �
i, h � �2

�
j, k � �1

dih fjk xij xhk � �
i, h � �2

�
j, k � �2

dih fjk xij xhk. (1
)

A valid lower bound to zQAP, under the assumption that all dih

and fjk are nonnegative values, i, j, h, k � 1, . . . , n, is given by

zGLB
 � min �
i, h � �1

�
j, k � �1

dih f jk xij xhk

� �
i, h � �2

�
j, k � �2

dih f jk xij xhk, (11)

where the problem has been relaxed and decomposed into
two smaller QAPs, the first one with a solution already
defined, the second one still completely unsolved.

It is easy to see that

zLBD � �
i, h � �1

�
j, k � �1

dih f jk xij xhk

� max � �
i��2

ui�0� � �
j��2

vj�0� ; 0� zGLB
. (12)

The bound obtained is weaker than GLB, but its computa-
tional complexity is O(n), much less than that of any other
bound so far proposed for QAP. We use bound zLBD com-
puted for a partial assignment {�1, �1} as the attractiveness
� for moving to the state corresponding to that solution.

3.2 Moves: Assignment Order
A move corresponds to the assignment of a facility to a
location, thus adding a new component to the partial solu-
tion corresponding to the state from which the move origi-
nated. Set � is assumed to be pre-ordered, so that an ant
beginning to construct a new solution will first assign a
facility to the location whose index is the first element of �,
then one to the second location and so on. Each state � can
therefore be represented by the two ordered subsets �1 and
�1, where �1 always consists of the first ��1� elements of �.
All moves originating from � correspond to the feasible

361
Nondeterministic Tree-Search Procedures for QAP

expansions of �, that is to all possible assignments of facilities
to the location of index ��1� � 1.

The computational efficiency of the ANTS procedure is
greatly affected by the pre-ordering that is imposed on set �.

In fact, formula (1
) can be seen as the sum of four com-
ponents, zQAP � z1 � z2 � z3 � z4, where, in the case of a
partial assignment, z1 refers to an already established cost, z2

to the cost of the interaction among assigned facilities and
assigned locations, and z4 to the cost of the interaction
among unassigned facilities and unassigned locations.
Therefore z1 is a known constant, while z2, z3, and z4 can
only be estimated by means of lower bounds. The higher the
contribution of z1 the tighter will probably be the bound to
the minimum cost of completing the given partial assign-
ment.

Moreover, increasing the contribution of z1 implies as-
signing as soon as possible the more demanding locations, in
a stage where all possibilities are still available, without
incurring in the risk—due to the poor performance of the
lower bound—of adding high cost contributions when com-
pleting a partial solution, thus discovering of having con-
structed a poor solution only when the solution gets com-
pleted.

The pre-ordering we used is based on variables vj(0), j �
1, . . . , n: the higher the value of a dual variable associated to
a location the higher it is assumed to be impact of the
location on the QAP solution cost, thus the earlier we try to
assign a facility to that location.

3.3 Moves: Direction of the Assignment
One last consideration is in order, which despite its simplic-
ity proved to have a definite computational impact. Given
the two cost matrices of the Koopmans and Beckmann form,
it is in fact customary to assign facilities to locations. How-
ever, it is also possible to assign locations to facilities, which
in our case would imply a pre-ordering of the facilities by
decreasing values of ui(0), i � 1, . . . , n, and a successive
assignment of locations to progressively less cost-intensive
facilities.

As shown in Section 5, the choice of assigning facilities to
locations or vice-versa is critical; unfortunately we have not
been able to define a rule that consistently identifies the best
assignment direction. Currently, the best performing crite-
rium is a combination of matrix norms, variances, and num-
ber of zeroes, but further exploration is needed.

4. Exact Algorithms
The general structure of the ANTS algorithm is closely akin
to that of a standard tree-search algorithm. At each stage we
have in fact a partial solution that is expanded by branching
on all possible offsprings, computing a bound for each of
them, possibly expunging dominated ones, and moving to
one of them on the basis of lower bound considerations. By
simply adding backtracking and eliminating the Montecarlo
choice of the node to move to, we revert to a standard
branch-and-bound procedure (as mentioned, this is in fact
the reason behind the use of the denotation ANTS, for
Approximate Nondeterministic Tree-Search).

The resulting tree to be searched is a n-ary tree where each

level corresponds to a location (facility) to which a facility
(location) has to be assigned. Throughout search, since the
objective is here to prove the optimality of a solution and not
to quickly find good upper bounds, we used as lower bound
the complete Gilmore and Lawler bound for the problem as
derived from formula 1
. In particular, at each node of the
search tree we computed the contribution z1, approximated
z4 by means of the GLB and, following Burkard[4] we com-
puted a lower bound to z2 � z3 by solving a linear assign-
ment on a matrix [Clm], l � �2, m � �2, where

Clm � �
i � �1

�
j � �1

�dil f jm � dli fmj� (13)

Clearly, at the root node only z4 0, z4 � GLB, while in
any other node the lower bound is given by the sum of the
three components described above. Note that at each node,
the lower bound to z2 � z3 � z4 can be computed by means
of a single linear assignment computation, being the cost
matrices of identical dimensions and the contributions to the
cost independent from one another. This reduces computing
times and provides better results then approximating inde-
pendently z4 and z2 � z3.

A second observation (Mautor and Roucairol[25]) is that
the dual variables obtained when computing the linear as-
signment at each node can be used to expunge offsprings of
the incumbent node, before generating them. It is in fact well
known from linear programming duality that the introduc-
tion of a nonbasic variable in a solution results in an increase
of objective function value equal to the value of the reduced
cost of the introduced variable. On the basis of the reduced
cost matrix obtained at the end of the linear assignment, it is
therefore possible to a priori discard the assignments that
correspond to variables whose reduced costs exceeds the
gap between lower bound, as obtained by z1 added to the
optimal linear assignment cost, and current upper bound to
the problem.

Using this common framework, we considered two dif-
ferent branching strategies. The first one is a standard depth-
first (DF), where the node expanded at each level is the
offspring of the incumbent one with least cost lower bound.
The second one is a beam-search (BS) strategy where a
number of nodes are expanded at the same level before
stepping deeper in the search tree. BS differs from breadth-
first search in that the nodes considered for expansion at
each level of the search tree are not all unexpanded nodes at
that level, but a limited cardinality subset of them, where the
number of nodes to expand is a parameter. A standard
backtracking mechanism provides the means to possibly
return to a not fully expanded level and generate other
offspring, always under cardinality limits. This approach
has been successfully used on the Travelling Salesman with
side constraints problem (Mingozzi et al.[26]).

The beam-search strategy permits us to obtain good up-
per bounds earlier than depth-first, at the cost of maintain-
ing more computationally expensive memory structures. It
is therefore dominated by the depth-first strategy when
good upper bounds are available from the start, while it is
worthwhile in the opposite case. Since we were interested

362
Maniezzo

also in evaluating the performance of a truncated branch
and bound as a benchmark heuristic, we concentrated on the
beam-search strategy.

4.1 Beam Search Exact Algorithm
This algorithm iterates a basic procedure in which a set of
promising nodes at a given level of the search tree are
expanded to generate their offspring, which all become
members of the set of the unexpanded nodes of the lower
tree level. A node is considered to be promising in accor-
dance to its lower bound cost. The number of nodes to be
expanded at each level is a parameter, which we set to 2n
after some experimental tuning. When a level has been
expanded, two strategies are possible: either expand the
level below or expand the level at which there is the unex-
panded node of lowest cost lower bound. We decided to
proceed downward in order to quickly complete good solu-
tions. In any case, when level n � 1 is expanded, we back-
track to the level with the lowest lower bound node, which
is usually high in the tree hierarchy.

This process is iterated until all nodes are expanded or
until all unexpanded nodes have a lower bound cost that is
not smaller than the current upper bound, which is therefore
the optimal cost.

The rationale behind this approach lies in the tentative to
avoid the possibility of sticking to a branch, which looked
promising at the higher levels of the search tree but turns out
to be poor considering more complete solutions. Figure 2 com-
pares a depth-first and a beam-search expansion strategies.

Figure 2A shows a depth-first visit, while Figure 2B shows
a beam-search visit, using a degree 2 of parallelism. In the

example, thanks to the possibility at level 2 of choosing
among 6 nodes (as opposed to the 3 of depth first), it is
possible to bypass the offsprings of the node with lower
bound of 50, which seemed promising at level 1 but is
dominated already at the level immediately below.

The beam-search strategy is therefore useful to find earlier
good upper bounds, which in turn permits us to prune more
branches than what allowed by depth-first. A second char-
acteristic is that the minimum among the lower cost lower
bounds at the different level of the search tree is a lower bound
to the whole problem. During the run, each backtrack results in
a possible increase of the lower bound to the whole problem,
therefore generating a sequence of nondecreasing bounds.

The pseudocode of the tree search algorithm is presented
in the following. The general structure is the same as that of
a depth-first, the only major difference lying in the structure
needed to identify the nodes to be expanded. We used in fact
a vector of heaps, one heap for each level of the search tree,
so to have an efficient means to obtain the lowest bound
node of each level.

More in detail, after having initialized the structures in-
troduced in Section 3.1 (Step 0), the algorithm goes through
a main construction loop (Step 1) where the subsequent
levels of the search tree are considered. At each level a
number of least bound cost nodes is expanded (Step 2) and
a bound is computed for each offspring node (Step 3): if
undominated the new node is stored for possible expansion.
When all levels have been considered, backtracking (Step 4)
occurs, in order to expand the most promising still unex-
panded nodes, accordingly reinitializing Step 1.

Figure 2. Tree-search visit strategies.

363
Nondeterministic Tree-Search Procedures for QAP

Beam Search Algorithm
step 0: Initialization

read n, D, F;
zub � �, �1 � �, �2 � �, �1 � �, �2 � �;
compute GLB at node 0 and order the rows of D
by decreasing values of the associated dual
variables;

step 1: Construction
for each location i � �2 do

�1 � �1 � {i}, �2 � �2 � {i};
lev � i;
perform step 2

end for
goto step 4

step 2: Branching
for nd � 1 to 2n do

node � extract_heap (lev);
if lev � n and z1 (node) � zub then

zub � z1 (node)
save node
goto step 4

end if
if zlb (node) � zub

�1 � node; �2 � �2–�1;
for each facility j � �2 do

perform step 3
end for

end if
end for

step 3: Bounding
if not (dominated (lev, j))

compute zlb � z1 � z2 � z3 � z4 with
�1 � �1 � j;
if zlb � zub insert_heap (lev � 1, �1 � j);

end if
step 4: Backtrack

if (empty heap) then
print zub and the optimal solution; STOP;

else
{�1, lev} � find_minimum_heap();
�2 � �2–�1;
redefine �1, �2 according to level lev;
goto step 1;

endif

where node is the ordered set of the facilities involved in the
partial assignment; dominated(i,j) returns true if node j at level i
is found to be dominated by means of the reduced cost matrix
or by the zLBD bound; insert_heap(lev) inserts into the heap at
level lev the current node; extract_heap(lev) extracts the least-
cost node from the heap at level lev, ordered by increasing
lower bound values; and find_minimum_heap() returns the level
of the search tree at which there is the unexpanded node of
least cost lower bound and the node itself.

5. Computational Results
This section presents the results obtained running the Ant
System and the Beam Search algorithms. All results have

been obtained implementing the algorithms in Fortran 77
and running the codes on a Pentium 166 MHz machine
equipped with 32 Mb of RAM. All codes are available from
the author.

5.1 ANTS Performance
The ANTS performance depends on the values of three
user-defined parameters: m (number of ants), k (width of the
moving average windows), and 	 (relative importance of
trail and desirability). We conducted a number of tests over
three well-known problem instances to define, in a cœteris
paribus framework, which is the best parameter setting for
the QAP, which turned out to be k � 4n, m � n/2 e 	 � 0.5.

Using this configuration, in order to validate the effective-
ness of the ANTS approach, we ran 5 times the algorithm
over each problem instance of the QAPLIB (Burkard et al.[6])
with 20 � n � 40 plus a problem—MC33—introduced in
Maniezzo et al.,[22] allowing 10 minutes of CPU times for
each run. For comparison, we used the (publicly available)
codes of two of the best heuristics so far presented for the
QAP: Robust Tabu Search (Taillard[32]) and GRASP (Li et
al.[21]). Moreover, we truncated the execution of our branch
and bound after 10 minutes to obtain a further benchmark
heuristic.

Table I presents the results so obtained. The columns
show: Problem, a problem instance identifier, as reported in
the QAPLIB; N, problem dimension; Gap GLB, percentage
gap from optimality, or from the best known solution, of the
Gilmore-Lawler bound; TS-best, percentage gap of the best
solution, over five runs, obtained by tabu search; TS-avg,
percentage gap of the average of the five solutions produced
by tabu search; GRASP-best, percentage gap of the best so-
lution, over five runs, obtained by GRASP; GRASP-avg, per-
centage gap of the average of the five solutions produced by
GRASP; ANTS-best, percentage gap of the best solution, over
five runs, obtained by the ANTS System; ANTS-avg, percent-
age gap of the average of the five solutions produced by the
ANTS System; and TBB, percentage gap of the best solution
found by the truncated branch and bound procedure. Each
figure in columns TS, GRASP, ANTS, and TBB represents a
percentage distance from the corresponding best-known so-
lution.

The last row of Table I reports the sum, over all lines
above, of the corresponding items. We reported the sum,
instead of the average, due to the very good performance
that all algorithms have, which lead to results worse than the
best known ones only on a comparatively small number of
problems. The best performing among the algorithms is
ANTS, both considering the best and the average quality of
the solutions proposed. We included the column of the
Gilmore and Lawler bound both to give an indication of the
complexity of the instances and of the strength of the guid-
ance ANTS receives during search. It is interesting to see
how, even in the presence of a bad bound at the root node,
the nondeterministic strategy followed by ANTS permits to
quickly identify good solutions.

We included a column (TBB) reporting the results ob-
tained by a truncated version of the branch-and-bound al-
gorithm described in Section 4. The total gap of TBB on the

364
Maniezzo

Table I. Effectiveness of Heuristic Procedures

Problem n Gap GLB

TS GRASP ANTS

TBB GapBest Avg Best Avg Best Avg

CHR20A 20 1.92 0.00 0.06 0.18 1.48 0.00 0.00 0.00
CHR20B 20 4.44 0.00 2.06 3.22 4.65 0.00 0.00 0.00
CHR20C 20 39.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HAD20 20 10.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LIPA20A 20 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LIPA20B 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NUG20 20 19.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ROU20 20 17.31 0.00 0.00 0.00 0.00 0.00 0.00 0.20
SCR20 20 21.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TAI20A 20 17.46 0.00 0.00 0.00 0.19 0.00 0.00 0.53
TAI20B 20 88.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NUG21 21 24.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CHR22A 22 3.77 0.00 0.00 0.55 1.15 0.00 0.00 0.00
CHR22B 22 4.77 0.58 0.71 1.29 2.03 0.00 0.00 0.00
NUG22 22 30.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NUG24 24 23.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CHR25A 25 27.16 4.06 4.48 2.32 4.64 0.00 0.76 0.00
NUG25 25 23.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TAI25A 25 17.55 0.00 0.12 0.40 0.79 0.00 0.00 1.59
TAI25B 25 86.15 0.00 0.00 0.00 0.00 0.00 0.00 1.02
BUR26A 26 4.51 0.00 0.00 0.00 0.00 0.00 0.00 0.21
BUR26B 26 5.20 0.00 0.00 0.00 0.00 0.00 0.00 0.18
BUR26C 26 4.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BUR26D 26 5.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BUR26E 26 4.38 0.00 0.00 0.00 0.00 0.00 0.00 0.02
BUR26F 26 4.91 0.00 0.00 0.00 0.00 0.00 0.00 0.03
BUR26G 26 7.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BUR26H 26 7.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00
KRA30A 30 23.10 0.00 0.00 0.00 0.34 0.00 0.00 3.19
KRA30B 30 24.45 0.00 0.00 0.00 0.15 0.00 0.00 0.83
LIPA30A 30 0.35 0.00 0.00 0.00 0.19 0.00 0.00 0.00
LIPA30B 30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NUG30 30 25.88 0.00 0.00 0.29 0.39 0.00 0.00 0.72
TAI30A 30 17.24 0.00 0.16 1.19 1.53 0.00 0.13 0.88
TAI30B 30 93.54 0.00 0.00 0.04 0.11 0.00 0.00 11.11
THO30 30 39.59 0.00 0.00 0.00 0.15 0.00 0.00 1.21
ESC32A 32 73.08 0.00 0.00 0.00 2.77 0.00 0.00 7.69
ESC32B 32 42.86 0.00 0.00 0.00 0.00 0.00 0.00 9.52
ESC32C 32 45.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ESC32D 32 47.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ESC32E 32 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ESC32F 32 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ESC32G 32 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ESC32H 32 41.32 0.00 0.00 0.00 0.00 0.00 0.00 0.91
MC33 33 38.18 0.00 0.12 0.00 0.07 0.00 0.00 1.30
TAI35A 35 19.44 0.57 0.65 1.61 1.80 0.20 0.32 2.08
TAI35B 35 89.11 0.00 0.00 0.19 0.23 0.00 0.00 4.54
STE36A 36 25.22 0.00 0.00 1.30 1.76 0.00 0.00 3.04
STE36B 36 45.41 0.00 0.00 0.92 1.44 0.00 0.00 3.97
STE36C 36 22.40 0.00 0.00 0.46 0.67 0.00 0.00 0.79
LIPA40A 40 0.35 0.00 0.00 0.97 1.11 0.00 0.00 0.96
LIPA40B 40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TAI40A 40 20.59 0.67 0.93 1.86 2.06 0.07 0.47 1.92
TAI40B 40 92.61 0.00 0.00 0.01 0.03 0.00 0.00 4.80
THO40 40 40.21 0.01 0.06 0.65 0.91 0.00 0.03 2.49

SUM 5.89 9.36 17.46 30.56 0.28 1.71 65.73

365
Nondeterministic Tree-Search Procedures for QAP

whole set of problems is definitely greater than that of any of
the other three algorithms, however one can notice that on
problems up to dimension 30 (Table I is organized by in-
creasing problem dimensions), TBB produces solutions of a
quality comparable with those of the others, while greater
dimensions require more than the allotted 10 minutes CPU
time.

Table II presents the CPU times needed by the three
metaheuristics to produce their best solutions overall (tbest)
and the average of the CPU times used in the five runs on
the same problem to obtain the best solution of the run
(tavg). We did not present the results of the truncated
branch and bound, being dominated by those of the other
heuristics, and we shadowed the cells corresponding to
solutions of worse quality that that found by some other
algorithm, thus the reported times indicate the CPU time
needed to produce results of the same quality. Here again it
is possible to see how ANTS was able to produce its results
in a time on the average not longer than that required by the
other algorithms.

5.2 Exact Methods
This section reports about the results obtained by the BS
algorithm described in Section 4. We carried out two sets of
tests because we found to be of decisive importance the
order of the assignment (facilities to locations or vice-versa),
but we could not produce a rule that consistently suggests
the best order: as mentioned in Section 4, the better one we
found, used in procedure TBB of Section 5.1, is a combina-
tion of considerations based on the norms of the D and F
matrices, of their variances and of their percentage number
of zeroes, but surely better rules can be designed.

Table III reports the results obtained on all instances of the
QAPLIB with dimension less or equal to 20, and for some
instance of greater dimension that we have been able to
solve (we did not try problems with n � 40). We report
under DF the results obtained assigning facilities to loca-
tions, and under FD those obtained assigning locations to
facilities. The columns show: Problem, a problem instance
identifier, as reported in the QAPLIB; n, dimension of the
problem; Ttot, CPU time needed to solve the problem, in
seconds; and Nodes, number of nodes used by the branch
and bound procedure. Bold/italic cells specify which of the
two approaches produced better results. In case an algo-
rithm could not complete a search (i.e., it could not find an
optimal solution or it could not prove its optimality), we
report n.a.

One can see how, in general, the DF strategy is more
proficient; however, there are cases (see ELS19 or TAI12B)
where the reverse approach is by far better. We have been
unable to prove the optimality of only three problems with
n � 20, namely ESC16B, TAI20A, and ROU20. We termi-
nated the search on them because an interpolation of the rate
of increase of the lower bound suggested that it would have
taken more than a month to complete the search on our PC,
which was more than we could wait. On the other hand, we
tested several problems with 20 � n � 40, solving seven of
them (for TAI25B we were the first to be able to prove the
optimality of the solution).

Table II. Efficiency of Heuristic Procedures

probl

TS GRASP ANT

tbest tavg tbest tavg tbest tavg

BUR26A 44 46 0 12 3 10
BUR26B 75 149 7 27 3 26
BUR26C 29 49 5 24 8 13
BUR26D 231 234 3 19 3 48
BUR26E 26 81 17 79 0 12
BUR26F 121 172 5 15 3 20
BUR26G 56 116 6 70 0 11
BUR26H 42 86 12 33 0 17
CHR20A 221 -D- -D- -D- 17 43
CHR20B 285 -D- -D- -D- 237 274
CHR20C 34 235 0 22 1 9
CHR22A 64 171 -D- -D- 26 48
CHR22B -D- -D- -D- -D- 53 156
CHR25A -D- -D- -D- -D- 98 551
ESC32A 203 258 78 -D- 69 165
ESC32B 26 49 3 28 24 52
ESC32C 1 2 0 0 0 2
ESC32D 28 54 0 3 13 21
ESC32E 0 0 0 0 0 0
ESC32F 0 0 0 0 0 0
ESC32G 0 0 0 0 0 0
ESC32H 50 69 2 10 0 20
HAD20 2 2 0 2 2 2
KRA30A 79 103 157 -D- 12 46
KRA30B 48 157 127 -D- 9 25
LIPA20A 1 2 1 2 0 1
LIPA20B 0 1 0 0 0 0
LIPA30A 14 31 2 -D- 1 7
LIPA30B 1 3 0 4 0 0
LIPA40A 69 94 -D- -D- 4 25
LIPA40B 11 3 1 11 0 0
NUG20 2 2 0 5 0 1
NUG21 5 7 1 55 0 3
NUG22 8 15 6 24 0 4
NUG24 5 12 14 57 1 1
NUG25 4 16 3 53 0 2
NUG30 41 106 -D- -D- 14 30
ROU20 39 103 19 165 7 9
SCR20 2 9 13 77 1 5
STE36A 224 247 -D- -D- 52 178
STE36B 77 117 -D- -D- 18 29
STE36C 140 180 -D- -D- 48 78
TAI20A 71 93 424 -D- 7 21
TAI20B 7 127 1 6 1 3
TAI25A 9 -D- -D- -D- 56 116
TAI25B 24 35 11 83 2 7
TAI30A 435 -D- -D- -D- 35 314
TAI30B 145 169 -D- -D- 24 223
TAI35A -D- -D- -D- -D- 240 232
TAI35B 119 249 -D- -D- 20 42
TAI40A -D- -D- -D- -D- 382 427
TAI40B 203 237 -D- -D- 58 340
THO30 8 70 69 -D- 7 10
THO40 -D- -D- -D- -D- 507 581
MC33 268 -D- 12 -D- 96 186

366
Maniezzo

It is not easy to compare BS with other exact algorithms,
as the number of expanded nodes is not a widely available
datum, while the computer used vary from a PC to such
machines as a Cray 2 or a Cyber 76, making it difficult to
compare CPU times.

We report in Table IV the results we have been able to
find, relative to the number of expanded nodes of nine
algorithms on three Nugent instances. The italic font lines

report of algorithms that make use of dominance rule spe-
cific for problems structured as the Nugent’s, which we did
not include in our procedure to keep it as general as possi-
ble. If we refer to branching algorithms using the same
dominances, essentially only lower and upper bounds, it is
possible to see how BS expands less nodes than the others
do.

To evaluate the effectiveness of the different implemen-
tational elements that we introduced in Section 4, we re-
corded for three problem instances (Nug08, Nug12, and
Nug15) the number of nodes needed to solve them with and
without the considered component. The last three lines of
Table IV present the results obtained using only the Gilmore
and Lawler bound, computed by means of a single assign-
ment for z2, z3, and z4, those obtained adding the dominance
rule based on zLBD and on the reduced costs, and finally
those obtained by the full BS procedure, making also use of
the ordering derived from the dual variable values. It is
apparent how each component contributes effectively in
reducing the search space.

We noticed that the effectiveness of the reduction based
on the dominance criteria does not vary much with the
problem types, consistently yielding a gain factor ranging
from 1.5 to 3. The ordering has on the contrary an impact

Table III. Comparison of the Branch-and-Bound Procedures

Problem n

DF FD

Problem n

DF FD

Ttot Nodes Ttot Nodes Ttot Nodes Ttot Nodes

CHR12A 12 0 75 0 1133 ESC16J 16 1742 8951500 n.a.
CHR12B 12 0 51 0 1800 HAD16 16 255 680928 n.a.
CHR12C 12 0 512 0 1894 NUG17 17 2866 8110410 8578 25155640
HAD12 12 1 2713 11 70548 TAI17A 17 34217 88711939 16279 40071213
NUG12 12 2 15852 3 15452 CHR18A 18 4 6261 410 1456827
ROU12 12 4 23336 3 16781 CHR18B 18 1 1586 3 9373
SCR12 12 0 866 1 9255 HAD18 18 12887 2335316 n.a.
TAI12A 12 1 6618 1 2466 NUG18 18 12621 37396822 63481 137456605
TAI12B 12 175 1502452 10 51663 ELS19 19 n.a. 0 398
HAD14 14 4 12512 342 1740403 CHR20A 20 1 1231 25 68813
NUG14 14 30 124143 105 437290 CHR20B 20 102 193367 28 85001
CHR15A 15 0 1333 8 47332 CHR20C 20 0 490 220 6544968
CHR15B 15 0 278 13 72116 HAD20 20 68344 81053458 n.a.
CHR15C 15 2 6040 1 4451 LIPA20A 20 1 629 27 24533
NUG15 15 77 280220 277 1027773 LIPA20B 20 0 24 0 19
ROU15 15 509 1676099 303 933419 NUG20 20 388800 724187189 n.a.
SCR15 15 1 1334 24 97236 ROU20 20 n.a. n.a.
TAI15A 15 1435 5115875 7394 30172938 SCR20 20 521 909592 n.a.
TAI15B 15 39 140841 n.a. TAI20A 20 n.a. n.a.
ESC16A 16 69 272254 n.a. TAI20B 20 6553 14689318 n.a.
ESC16B 16 n.a. n.a. CHR22A 22 2 1942 15467 26319756
ESC16C 16 28260 182642560 n.a. CHR22B 22 7 9904 2860 4858344
ESC16D 16 27267 163709710 n.a. CHR25A 25 75 59986 n.a.
ESC16E 16 15 53113 n.a. TAI25B 25 561600 613059891 n.a.
ESC16F 16 1 3520 1 3520 LIPA30A 30 51 13623 n.a.
ESC16G 16 2 7952 n.a. LIPA30B 30 0 61 n.a.
ESC16I 16 140 693570 n.a. LIPA40B 40 1 80 n.a.

Table IV. Comparison of Different Exact Algorithms

Algorithm nug08 nug12 nug15

Burkard-Derigs[5] 403 36966 2064415
Roucairol[31] 428 83379
Pardalos-Crouse[27] 798 42706 1596353
Mautor-Roucairol[25] 32 3474 97287
Hahn, Grant, and Hall[18] 131 380 2203
Brungger et al.[3] 32 3359 49063
Maniezzo and Colorni,[24] only GL 810 46003 1679999
Maniezzo and Colorni,[24] GL �

zLBD dominance rule
511 28212 957520

BS, 1998 314 15852 280220

367
Nondeterministic Tree-Search Procedures for QAP

that depends much on the problem type. We tested on six
instances (SCR15, CHR18A, HAD14, TAI10B, LIPA20A, and
ESC16G) the gain factor induced by the use of the ordering
only: it varies from 3.88, for problem CHR18A, to 52.4, for
problem SCR15. In all problem tested, however, we always
witnessed a significant decrease in the number of nodes.

A further topic we want to briefly discuss is the lower
bound to the problem and its impact on search. As outlined
in Section 3, we have a high number of nodes in the higher
levels of the search tree: this is due to the fact that the lower
bound used (Gilmore and Lawler, as in Eq. 1
) is not tight,
therefore very few nodes can be expunged at the higher
levels of the tree. As soon as its different components add to
a value closer to the current upper bound, many branches
are cut and few nodes remain to be explored. For example,
recording the number of nodes expanded at each level of the
search tree for problem NUG14, we have the maximum
number of nodes (46592) at level 5, then a monotonic de-
crease (level 6, 35357; level 7, 18006; level 8, 4964) until it
goes under 1000 nodes at level 9 (704) and it becomes exactly
0 at level 13, where it is proved that no node can yield better
solutions than the current upper bound.

Finally, we want to point out that usually, with the prob-
lem dimensions up to 20 as in our test, the optimal solution
value is found very quickly, as testified by Table I. Most of
the CPU effort is spent in proving the optimality of the
solution found. However on some problems, such as
TAI12B, we witness a slower reciprocal convergence of up-
per and lower bound.

6. Conclusions
In this article we described a development of a metaheuristic
algorithm, ANTS, originally designed after a biological met-
aphor. The metaheuristic, now efficient on combinatorial
optimization problems, shares several elements with other
approaches so far presented (most noticeably Scatter Search,
Glover,[16] GRASP, Li et al.,[21] and approximate branch and
bounds) embedding them in an innovative framework.

We tested the algorithm on a specific hard combinatorial
optimization problem, the Quadratic Assignment, both be-
cause of its inherent difficulty, thus providing a reliable
benchmark, and because we tested on it also a former ver-
sion of the ant system (Maniezzo et al.[22, 24]). The compu-
tational results testify the effectiveness of the new approach,
both when compared to the other metaheuristics and to the
old ant approach.

Moreover, being the redesigned ANTS system close to a
branch-and-bound strategy, we adapted it in that direction,
obtaining an exact algorithm. We introduced some simple
considerations that, when implemented, allowed the branch
and bound to obtain on a PC results comparable to those of
the state-of-the-art exact procedures, in one case allowing for
the first time to solve to optimality a standard problem
instance.

Several improvements can be made to both the exact and
the approximate version of the tree search; first and fore-
most, we believe that all results presented here can be sig-
nificantly improved by using a tighter lower bound than the

Gilmore and Lawler’s, such as the bound proposed by Hahn
and Grant or that of Carraresi and Malucelli.

Acknowledgments

I am grateful to A. Mingozzi for the helpful discussions on the
beam search strategy, and to M. Giovannetti for the careful imple-
mentation of the relative code.

References

1. A.A. ASSAD and W. XU, 1985. On Lower Bounds for a Class of
Quadratic {0,1} Programs, Operations Research Letters 4, 175–180.

2. R. BATTITI and G. TECCHIOLLI, 1994. The Reactive Tabu Search.
ORSA Journal on Computing 6, 126–140.

3. A. BRUNGGER, J. CLAUSEN, A. MARZETTA, and M. PERREGAARD,
1996. Joining Forces in Solving Large-Scale Quadratic Assign-
ment Problems in Parallel, DIKU Technical Report TR-96-23, Uni-
versity of Copenhagen.

4. R.E. BURKARD, 1984. Quadratic Assignment Problems, European
Journal of Operational Research 15, 283–289.

5. R.E. BURKARD and U. DERIGS, 1980. Assignment and Matching
Problems: Solution Methods with Fortran Programs, Lecture
Notes in Economics and Mathematical Systems, Vol. 184, Springer,
Berlin.

6. R.E. BURKARD, S.E. KARISCH, and F. RENDL, 1994. QAPLIB—A
Quadratic Assignment Problem Library, Technical Report n.287,
Technische Universität Graz.

7. P. CARRARESI and F. Malucelli, 1992. A New Lower Bound for
the Quadratic Assignment Problem, Operations Research 40,
Suppl. 1, S22–S27.

8. E. ÇELA, 1998. The Quadratic Assignment Problem. Kluwer Aca-
demic Publishers, Boston.

9. A. COLORNI, M. DORIGO, and V. MANIEZZO, 1991. Distributed
Optimization by Ant Colonies, Proceedings of ECAL91—European
Conference on Artificial Life, Paris, France, Elsevier Publishing,
Amsterdam, pp. 134–142.

10. D.T. CONNOLLY, 1990. An Improved Annealing Scheme for the
QAP, European Journal of Operational Research 46, 93–100.

11. V.-D. CUNG, T. MAUTOR, P. MICHELON, and A. TAVARES, 1997. A
Scatter Search Based Approach for the Quadratic Assignment
Problem. Proceedings of the IEEE-ICEC’97 Conference, Indianapo-
lis.

12. M. DORIGO, V. MANIEZZO, and A. COLORNI, 1996. Ant System:
Optimization by a Colony of Cooperating Agents. IEEE Trans-
actions on Systems, Man, and Cybernetics—Part B: Cybernetics 26,
29–41.

13. G. FINKE, R.E. BURKARD, and F. RENDL, 1987. Quadratic Assign-
ment Problems, Annals of Discrete Mathematics 31, 61–82.

14. C. FLEURENT and J.A. FERLAND, 1994. Genetic Hybrids for the
Quadratic Assignment Problem, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science 16, (P.M. Pardalos
and H. Wolkowicz, eds.), 173–188.

15. P. GILMORE, 1962. Optimal and Suboptimal Algorithms for the
Quadratic Assignment Problem, Journal of SIAM 10, 305–313.

16. F. GLOVER, 1995. Scatter Search and Star-Paths: Beyond the
Genetic Metaphor, OR Spectrum 17, 125–137.

17. P. HAHN and T. GRANT, 1998. Lower Bounds for the Quadratic
Assignment Problem Based upon a Dual Formulation, Opera-
tions Research 46, 912–922.

18. P. HAHN, T. GRANT, and N. HALL, 1998. A Branch and Bound
Algorithm for the Quadratic Assignment Problem Based on the
Hungarian Method, European Journal of Operational Research 108,
629–640.

368
Maniezzo

19. T.C. KOOPMANS and M.J. BECKMANN, 1957. Assignment Prob-
lems and the Location of Economic Activities, Econometrica 25,
53–76.

20. E. LAWLER, 1963. The Quadratic Assignment Problem, Manage-
ment Science 9, 586–599.

21. Y. LI, P.M. PARDALOS, and M.G.C. RESENDE, 1994. A Greedy
Randomized Adaptive Search Procedure for the Quadratic As-
signment and Related Problem. In P.M. Pardalos and H.
Wolkowicz (eds), Quadratic Assignment and Related Problems,
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science 16, 237–261.

22. V. MANIEZZO, A. COLORNI, and M. DORIGO, 1994. The Ant
System Applied to the Quadratic Assignment Problem. Techni-
cal Report IRIDIA/94-28, Université Libre de Bruxelles, Belgium.

23. V. MANIEZZO, A. COLORNI, and M. DORIGO, 1995. Algodesk: An
Experimental Comparison of Eight Evolutionary Heuristics Ap-
plied to the Quadratic Assignment Problem. European Journal of
Operational Research 81, 188–205.

24. V. MANIEZZO and A. COLORNI, 1998. The Ant System Applied to
the Quadratic Assignment Problem, IEEE Transactions on Knowl-
edge and Data Engineering, to appear.

25. T. MAUTOR and C. ROUCAIROL, 1993. A New Exact Algorithm
for the Solution of Quadratic Assignment Problems, Discrete
Applied Mathematics 55, 281–293.

26. A. MINGOZZI, L. BIANCO, and S. RICCIARDELLI, 1997. Dynamic
Programming Strategies for the Traveling Salesman Problem
with Time Window and Precedence Contraints, Operations Re-
search 45, 365–377.

27. P.M. PARDALOS and J. CROUSE, 1989. A Parallel Algorithm for
the Quadratic Assignment Problem, Proceedings of Supercomput-
ing ’89, ACM, 351–360.

28. P.M. PARDALOS and H. WOLKOWICZ (eds.), 1994. Quadratic
Assignment and Related Problems, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 16.

29. F. RENDL and H. WOLKOWICZ, 1992. Applications of Parametric
Programming and Eigenvalue Maximization to the Quadratic
Assignment Problem, Mathematical Programming 53, 63–78.

30. M.G.C. RESENDE, K.G. RAMAKRISHAN and Z. DREZNER, 1995.
Computing Lower Bounds for the Quadratic Assignment Prob-
lem with an Interior Point Algorithm for Linear Programming,
Operations Research 43, 781–791.

31. C. ROUCAIROL, 1987. A Parallel Branch and Bound Algorithm
for the Quadratic Assignment Problem, Discrete Applied Mathe-
matics 18, 211–225.

32. E. TAILLARD, 1991. Robust Taboo Search for the Quadratic As-
signment Problem, Parallel Computing 17, 443–455.

33. E. TAILLARD, 1995. Comparison of Iterative Searches for the
Quadratic Assignment Problem, Location Science 3, 87–105.

369
Nondeterministic Tree-Search Procedures for QAP

