
Digital Object Identifier (DOI) 10.1007/s10107-004-0570-3

Math. Program., Ser. A 104, 91–104 (2005)

Matteo Fischetti · Fred Glover · Andrea Lodi

The feasibility pump

Received: May 17, 2004 / Accepted: November 30, 2004
Published online: March 14, 2005 – © Springer-Verlag 2005

Abstract. In this paper we consider the NP-hard problem of finding a feasible solution (if any exists) for a
generic MIP problem of the form min{cT x : Ax ≥ b, xj integer ∀j ∈ I}. Trivially, a feasible solution can be
defined as a point x∗ ∈ P := {x : Ax ≥ b} that is equal to its rounding x̃, where the rounded point x̃ is defined
by x̃j := [x∗

j] if j ∈ I and x̃j := x∗
j otherwise, and [·] represents scalar rounding to the nearest integer.

Replacing “equal” with “as close as possible” relative to a suitable distance function �(x∗, x̃), suggests the
following Feasibility Pump (FP) heuristic for finding a feasible solution of a given MIP.

We start from any x∗ ∈ P , and define its rounding x̃. At each FP iteration we look for a point x∗ ∈ P

that is as close as possible to the current x̃ by solving the problem min{�(x, x̃) : x ∈ P }. Assuming �(x, x̃)

is chosen appropriately, this is an easily solvable LP problem. If �(x∗, x̃) = 0, then x∗ is a feasible MIP
solution and we are done. Otherwise, we replace x̃ by the rounding of x∗, and repeat.

We report computational results on a set of 83 difficult 0-1 MIPs, using the commercial software
ILOG-Cplex 8.1 as a benchmark. The outcome is that FP, in spite of its simple foundation, proves com-
petitive with ILOG-Cplex both in terms of speed and quality of the first solution delivered. Interestingly,
ILOG-Cplex could not find any feasible solution at the root node for 19 problems in our test-bed, whereas
FP was unsuccessful in just 3 cases.

1. Introduction

In this paper we address the problem of finding a feasible solution of a generic MIP
problem of the form

(MIP) min cT x (1)

Ax ≥ b (2)

xj integer ∀j ∈ I (3)

where A is an m× n matrix. This NP-hard problem can be extremely hard in practice—
in some important practical cases, state-of-the-art MIP solvers may spend a very large
computational effort before discovering their first solution. Therefore, heuristic methods
to find a feasible solution for hard MIPs are highly important in practice. This is partic-
ularly true in recent years where successful local-search approaches for general MIPs
such as local branching [9] and RINS/guided dives [7] are used that can only be applied

M. Fischetti: DEI, University of Padova, Via Gradenigo 6/A, 35100 Padova, Italy.
e-mail: matteo.fischetti@unipd.it

F. Glover: Leeds School of Business, University of Colorado at Boulder, 419 UCB, Boulder, CO 80309-0419
USA. e-mail: Fred.Glover@colorado.edu

A. Lodi: DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy.
e-mail: alodi@deis.unibo.it

Mathematics Subject Classification (1991): 90C06, 90C10, 90C11, 90C27, 90C59

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.2
 Optimize For Fast Web View: Yes
 Embed Thumbnails: Yes
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [600 600] dpi
 Paper Size: [595 842] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 900 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Warn and Continue
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Convert All Colors to sRGB
 Intent: Default
Working Spaces:
 Grayscale ICC Profile:
 RGB ICC Profile: sRGB IEC61966-2.1
 CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: No
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: No

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [600 600]
>> setpagedevice

92 M. Fischetti et al.

if an initial feasible solution is known. Heuristic approaches to general MIP problems
have been proposed by several authors, including [2–4, 7, 9–14, 18, 17, 20, 21, 24].

In this paper we propose a new approach to compute heuristic MIP solutions, that
we call the Feasibility Pump1. The paper is organized as follows. In the remaining part
of this section we first describe the FP method in more detail, and then focus on its
implementation for 0-1 MIPs2. Computational results are presented in Section 2, where
we compare the FP performance with that of the commercial software ILOG-Cplex
8.1 on a set of 83 hard 0-1 MIPs. The possibility of reducing the computing time involved
in the various LP solutions is addressed in Section 3, where the use of approximate LP
solutions is investigated. In the same section we also address the possibility of using
the FP scheme to produce a sequence of feasible solutions of better and better quality.
Some conclusions are finally drawn in Section 4.

Let P := {x : Ax ≥ b} denote the polyhedron associated with the LP relaxation
of the given MIP. With a little abuse of notation, we say that a point x is integer if xj

is integer for all j ∈ I (no matter the value of the other components). Analogously,
the rounding x̃ of a given x is obtained by setting x̃j := [xj] if j ∈ I and x̃j := xj

otherwise, where [·] represents scalar rounding to the nearest integer.
Throughout this paper we will consider the L1-norm distance between a generic

point x ∈ P and a given integer point x̃, defined as

�(x, x̃) =
∑

j∈I
|xj − x̃j |

Notice that the continuous variables xj (j �∈ I), if any, do not contribute to this function.
Assuming without loss of generality that the MIP constraints include the variable bounds
lj ≤ xj ≤ uj for all j ∈ I, we can write

�(x, x̃) :=
∑

j∈I :̃xj =lj

(xj − lj) +
∑

j∈I :̃xj =uj

(uj − xj) +
∑

j∈I:lj <x̃j <uj

(x+
j + x−

j)

where the additional variables x+
j and x−

j require the introduction into the MIP model
of the additional constraints:

xj = x̃j + x+
j − x−

j , x+
j ≥ 0, x−

j ≥ 0, ∀j ∈ I : lj < x̃j < uj (4)

Given an integer point x̃, the closest point x∗ ∈ P can therefore be determined by
solving the LP

min{�(x, x̃) : Ax ≥ b} (5)

If �(x∗, x̃) = 0, then x∗
j (= x̃j) is integer for all j ∈ I, so x∗ (but not necessarily x̃)

is a feasible MIP solution. Conversely, given a point x∗ ∈ P , the integer point x̃ closest
to x∗ is easily determined by rounding x∗. These observations suggest the following
Feasibility Pump (FP) heuristic to find a feasible MIP solution, in which a pair of points

1 A preliminary version of the present paper was presented at the Combinatorial Optimization meeting held
in Aussois, January 4–10, 2004.

2 The code used in our experiments is available, on request, from the third author.

The feasibility pump 93

(x∗, x̃) with x∗ ∈ P and x̃ integer is iteratively updated with the aim of reducing as
much as possible their distance �(x∗, x̃).

We start from any x∗ ∈ P , and initialize a typically infeasible integer point x̃ as the
rounding of x∗. At each FP iteration, called a pumping cycle, we fix x̃ and find through
linear programming the point x∗ ∈ P which is as close as possible to x̃. If �(x∗, x̃) = 0,
then x∗ is a MIP feasible solution, and we are done. Otherwise, we replace x̃ by the
rounding of x∗ so as to further reduce �(x∗, x̃), and repeat. (This basic scheme will be
slightly elaborated, as we indicate subsequently, so as to overcome possible stalling and
cycling issues.)

From a geometric point of view, the FP generates two (hopefully convergent) trajec-
tories of points x∗ and x̃ that satisfy feasibility in a complementary but partial way—one
satisfies the linear constraints, the other the integer requirement. An important feature
of the method is related to the infeasibility measure used to guide x̃ towards feasibility:
instead of taking a weighted combination of the degree of violation of the single linear
constraints, as customary in MIP heuristics, we use the distance �(x∗, x̃) of x̃ from
polyhedron P , as computed at each pumping cycle3. This distance can be interpreted as
a sort of “difference of pressure” between the two complementary types of infeasibility
of x∗ and x̃, that we try to reduce by “pumping” the integrality of x̃ into x∗—hence the
name of the method. FP can be interpreted as a strategy for producing a sequence of
roundings that leads to a feasible MIP point.

The FP can also be viewed as modified local branching strategy [9]. Indeed, at
each pumping cycle we have an incumbent (infeasible) solution x̃ satisfying the integer
requirement, and we face the problem of finding a feasible solution (if any exists) within
a small-distance neighborhood, i.e., changing only a small subset of its variables. In the
local branching context, this subproblem would have been modeled by the MIP

min{cT x : Ax ≥ b, xj integer ∀j ∈ I, �(x, x̃) ≤ k}

for a suitable value of parameter k, and solved through an enumerative MIP method. In
the FP context, instead, the same subproblem is modeled in a relaxed way through the
LP (5), where the “small distance” requirement is translated in terms of the objective
function. (Notice that (5) can be viewed as a relaxed model for the problem: “Change a
minimum number of variables so as to convert the current x̃ into a feasible MIP solution
x∗”.) The working hypothesis here is that the objective function �(x, x̃) will discourage
the optimal solution x∗ of the relaxation from being “too far” from the incumbent x̃,
hence we expect a large number of the integer-constrained variables in x̃ will retain their
(integer) values also in the optimal x∗.

In the remainder of this paper we will focus on the important case where all integer-
constrained variables are binary, i.e., we assume constraints Ax ≥ b include the variable
bounds 0 ≤ xj ≤ 1 for all j ∈ I. As a consequence, no additional variables x+

j and x−
j

are required in the definition of the distance function (4), which attains the simpler form

�(x, x̃) :=
∑

j∈I :̃xj =0

xj +
∑

j∈I :̃xj =1

(1 − xj) (6)

3 A similar infeasibility measure for nonlinear problems was recently investigated in [6].

94 M. Fischetti et al.

An outline of the FP algorithm for 0-1 MIPs is reported in Figure 1. The algorithm
receives on input two parameters: the time limit TL and the number T of variables to be
flipped (i.e., changed with respect to their current 0-1 value) at each iteration—the use
of this latter parameter will be clarified later on.

The Feasibility Pump (basic version):
1. initialize nIT := 0 and x∗ := argmin{cT x : Ax ≥ b};
2. if x∗ is integer, return(x∗);
3. let x̃ := [x∗] (= rounding of x∗);
4. while (time < TL) do
5. let nIT := nIT + 1 and compute x∗ := argmin{�(x, x̃) : Ax ≥ b};
6. if x∗ is integer, return(x∗);
7. if ∃ j ∈ I : [x∗

j] �= x̃j then
8. x̃ := [x∗]

else
9. flip the TT=rand(T/2,3T/2) entries x̃j (j ∈ I) with highest |x∗

j − x̃j |
10. endif
11. enddo

Fig. 1. The basic FP implementation for 0-1 MIPs

At step 1, x∗ is initialized as a minimum-cost solution of the LP relaxation, a choice
intended to increase the chance of finding a small-cost feasible solution. At each pump-
ing cycle, at step 5 we redefine x∗ as a point in P with minimum distance from the
current integer point x̃. We then check whether the new x∗ ∈ P is integer. If this is not
the case, the current integer point x̃ is replaced at step 8 by [x∗], so as to reduce even
further the current distance �(x∗, x̃). In order to avoid stalling issues, in case x̃ = [x∗]
(with respect to the integer-constrained components) we flip, at step 9, a random number
TT ∈ { 1

2T, · · · , 3
2T} of integer-constrained entries of x̃, chosen so as to minimize the

increase in the total distance �(x∗, x̃).
The procedure terminates as soon as a feasible integer solution x∗ is found, or when

the time-limit TL has been exceeded. In this latter case, the FP heuristic has to report
a failure–which is not surprising, as finding a feasible 0-1 MIP solution is an NP-hard
problem in general.

Figure 2 gives an illustration of two sample FP runs with T=20, where the infea-
sibility measure �(x∗, x̃) is iteratively reduced to zero; note that both sequences are
essentially monotone, except for the possibility of small irregularities due to the flips
performed at step 9.

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15

’railway 8 1 0’�

� �

�

�

� �

�

�

�

�
� � �

�

0

10

20

30

40

50

60

70

80

90

100

1 6 11 16 21 26 31 36

’usAbbrv.8.25 70’

Fig. 2. Plot of the infeasibility measure �(x∗, x̃) at each pumping cycle

The feasibility pump 95

A main problem with the basic FP implementation described above is the possibility
of cycling: after a certain number of iterations, the method may enter a loop where a
same sequence of points x∗ and x̃ is visited again and again. In order to overcome this
drawback, we implemented the following straightforward perturbation mechanism. As
soon as a cycle is heuristically detected by comparing the solutions found in the last 3
iterations, and in any case after R (say) iterations, we skip steps 7–10 and apply a random
perturbation move. To be more specific, for each j ∈ I we generate a uniformly random
value ρj ∈ [−0.3, 0.7] and flip x̃j in case |x∗

j − x̃j | + max{ρj , 0} > 0.5.

2. Computational experiments

In this section we report computational results comparing the performance of the pro-
posedFPmethod with that of the commercial softwareILOG-Cplex 8.1. Our testbed is
made by 44 0–1 MIP instances collected in MIPLIB4 2003 [1] and described in Table 1,
plus an additional set of 39 hard 0-1 MIPs described in Table 2 and available, on request,
from the third author. The two tables report the instance names and the corresponding
number of variables (n), of 0-1 variables (|I|) and of constraints (m).

Table 1. The 44 0-1 MIP instances collected in MIPLIB 2003 [1]

Name n |I| m Name n |I| m

10teams 2025 1800 230 mod011 10958 96 4480
A1C1S1 3648 192 3312 modglob 422 98 291
aflow30a 842 421 479 momentum1 5174 2349 42680
aflow40b 2728 1364 1442 net12 14115 1603 14021
air04 8904 8904 823 nsrand ipx 6621 6620 735
air05 7195 7195 426 nw04 87482 87482 36
cap6000 6000 6000 2176 opt1217 769 768 64
dano3mip 13873 552 3202 p2756 2756 2756 755
danoint 521 56 664 pk1 86 55 45
ds 67732 67732 656 pp08a 240 64 136
fast0507 63009 63009 507 pp08aCUTS 240 64 246
fiber 1298 1254 363 protfold 1835 1835 2112
fixnet6 878 378 478 qiu 840 48 1192
glass4 322 302 396 rd-rplusc-21 622 457 125899
harp2 2993 2993 112 set1ch 712 240 492
liu 1156 1089 2178 seymour 1372 1372 4944
markshare1 62 50 6 sp97ar 14101 14101 1761
markshare2 74 60 7 swath 6805 6724 884
mas74 151 150 13 t1717 73885 73885 551
mas76 151 150 12 tr12-30 1080 360 750
misc07 260 259 212 van 12481 192 27331
mkc 5325 5323 3411 vpm2 378 168 234

The results of the initial FP implementation described above are reported in Tables
3 and 4, with a comparison with the state-of–the-art MIP solver ILOG-Cplex 8.1.
The focus of this experiment was to measure the capability of the compared methods to
converge to an initial feasible solution, hence both FP and ILOG-Cplex were stopped
as soon as the first feasible solution was found. Computing times are expressed in CPU

4 Another 0-1 MIP included in the library, namely stp3d, was not considered since the computing time
required for the first LP relaxation is larger than 1 hour.

96 M. Fischetti et al.

Table 2. The additional set of 39 0-1 MIP instances

Name n |I| m source Name n |I| m source
biella1 7328 6110 1203 [9] blp-ar98 16021 15806 1128 [18]
NSR8K 38356 32040 6284 [9] blp-ic97 9845 9753 923 [18]
dc1c 10039 8380 1649 [8] blp-ic98 13640 13550 717 [18]
dc1l 37297 35638 1653 [8] blp-ir98 6097 6031 486 [18]
dolom1 11612 9720 1803 [8] CMS750 4 11697 7196 16381 [15]
siena1 13741 11775 2220 [8] berlin 5 8 0 1083 794 1532 [15]
trento1 7687 6415 1265 [8] railway 8 1 0 1796 1177 2527 [15]
rail507 63019 63009 509 [9] usAbbrv.8.25 70 2312 1681 3291 [15]
rail2536c 15293 15284 2539 [9] manpower1 10565 10564 25199 [22]
rail2586c 13226 13215 2589 [9] manpower2 10009 10008 23881 [22]
rail4284c 21714 21705 4284 [9] manpower3 10009 10008 23915 [22]
rail4872c 24656 24645 4875 [9] manpower3a 10009 10008 23865 [22]
A2C1S1 3648 192 3312 [9] manpower4 10009 10008 23914 [22]
B1C1S1 3872 288 3904 [9] manpower4a 10009 10008 23866 [22]
B2C1S1 3872 288 3904 [9] ljb2 771 681 1482 [7]
sp97ic 12497 12497 1033 [9] ljb7 4163 3920 8133 [7]
sp98ar 15085 15085 1435 [9] ljb9 4721 4460 9231 [7]
sp98ic 10894 10894 825 [9] ljb10 5496 5196 10742 [7]
bg512142 792 240 1307 [19] ljb12 4913 4633 9596 [7]
dg012142 2080 640 6310 [19]

seconds, and refer to a Pentium M 1.6 Ghz notebook with 512 MByte of main memory.
Parameters T and TL were set to 20 and 1,800 CPU seconds, respectively, while the
perturbation-frequency parameter R was set to 100.

In the FP implementation, we use the ILOG-Cplex function CPXoptimize to
solve each LP (thus leaving to ILOG-Cplex the choice of the actual LP algorithm to
invoke) with the default parameter setting.

As to ILOG-Cplex, after extensive experiments and contacts with ILOG-Cplex
staff [23] we found that, as far as the time and quality of the root node solution is con-
cerned, the best results are obtained (perhaps surprisingly) when the MIP preprocess-
ing/presolve is not invoked, and the default “balance optimality and integer feasibility”
strategy for the exploration of the search tree is used. Indeed, the number of root-node
failures for ILOG-Cplex was 19 with the setting we used in our experiments. By con-
trast, when the preprocessing/presolve was activated ILOG-Cplex could not find any
feasible solution at the root node in 25 cases (with the default “balance optimality and
integer feasibility” strategy) or in 41 cases (with the “emphasize integrality” strategy). In
case the preprocessing/presolve is deactivated but the “emphasize integrality” strategy
was used, instead, no solution was found at the root node in 33 cases.

Tables 3 and 4 report the results for the instances in Tables 1 and 2, respectively.
For each instance and for each algorithm (FP and ILOG-Cplex) we report the value
of the first feasible solution found (“value” for FP, and “root value/first value” for
ILOG-Cplex) and the corresponding computing time, in Pentium M-1.6 CPU seconds
(“time”). In case of failure, “N/A” is reported. Moreover, for FP we report the num-
ber of iterations performed by the algorithm (“nIT”), while for ILOG-Cplex we give
the number of branch-and-bound nodes (“nodes”) needed to initialize the incumbent
solution.

Our first order of business here was to evaluate the percentage of success in finding a
feasible MIP solution without resorting to branching. In this respect, theFP performance

The feasibility pump 97

Table 3. Convergence to a first feasible solution

feasibility pump ILOG-Cplex 8.1
name value nIT time root value first value nodes time
10teams 992.00 53 7.5 N/A 924.00 14 5.2
A1C1S1 18,377.24 5 3.8 N/A 14,264.61 120 8.6
aflow30a 4,545.00 18 0.1 N/A 1,574.00 40 1.4
aflow40b 6,859.00 7 0.5 1,786.00 0 1.8
air04 58,278.00 4 12.5 57,640.00 0 6.2
air05 29,937.00 2 3.4 29,590.00 0 2.0
cap6000 −2,354,320.00 2 0.6 −2,445,344.00 0 0.6
dano3mip 756.62 4 77.7 768.37 0 161.2
danoint 77.00 3 0.2 73.00 0 1.7
ds N/A 81 1,800.0 5,418.56 0 81.6
fast0507 181.00 4 34.0 209.00 0 33.1
fiber 1,911,617.79 2 0.0 570,936.07 0 0.0
fixnet6 9,131.00 4 0.0 12,163.00 0 0.0
glass4 4,650,037,150.00 23 0.1 N/A 3,500,034,900.00 162 0.3
harp2 −43,856,974.00 654 4.5 −73,296,664.00 0 0.1
liu 6,262.00 0 0.0 6,262.00 0 0.0
markshare1 1,064.00 11 0.0 710.00 0 0.0
markshare2 1,738.00 7 0.0 1,735.00 0 0.0
mas74 52,429,700.59 1 0.0 19,197.47 0 0.0
mas76 194,527,859.06 1 0.0 44,877.42 0 0.0
misc07 4,515.00 123 0.5 3,060.00 0 0.0
mkc −164.56 2 0.3 −195.97 0 0.5
mod011 −49,370,141.17 0 1.0 −42,902,314.08 0 1.9
modglob 35,147,088.88 0 0.0 20,786,787.02 0 0.0
momentum1 455,740.91 520 1478.4 N/A N/A 75 1,800.0
net12 337.00 346 55.4 N/A 214.00 480 1,593.7
nsrand ipx 340,800.00 3 0.7 699,200.00 0 0.3
nw04 19,882.00 1 2.9 17,306.00 0 5.1
opt1217 −12.00 0 0.0 −14.00 0 0.0
p2756 N/A 163435 1,800.0 3,485.00 0 0.1
pk1 57.00 1 0.0 89.00 0 0.0
pp08a 11,150.00 2 0.0 14,800.00 0 0.0
pp08aCUTS 10,940.00 2 0.0 13,540.00 0 0.0
protfold −10.00 367 493.8 N/A N/A 637 1,800.0
qiu 389.36 3 0.3 1,691.14 0 0.1
rd-rplusc−21 N/A 900 1,800.0 N/A N/A 372 1,800.0
set1ch 76,951.50 2 0.0 109,759.00 0 0.0
seymour 452.00 9 3.4 469.00 0 5.1
sp97ar 1,398,705,728.00 6 4.3 734,171,023.04 0 2.6
swath 18,416.00 109 4.7 N/A 826.66 1609 38.6
t1717 826,848.00 42 644.9 N/A N/A 1397 1,800.0
tr12-30 277,218.00 9 0.1 N/A 143,586.00 200 2.1
van 8.21 4 245.0 6.59 0 100.3
vpm2 19.25 3 0.0 15.25 0 0.0

is very satisfactory: whereas ILOG-Cplex could not find any feasible solution at the
root node in 19 cases (and in 10 cases even allowing for 1,800 seconds of branching),
FP was unsuccessful only 3 times.

Also interesting is the comparison of the quality of theFP solution with that found by
the root-node ILOG-Cplex heuristics: the latter delivered a strictly-better solution in
33 cases, whereas the solution found byFPwas strictly better in 46 cases. The computing
times to get to the first feasible solution appear comparable: excluding the instances for
which both methods required less than 1 second, ILOG-Cplex was faster in 26 cases,

98 M. Fischetti et al.

Table 4. Convergence to a first feasible solution (cont.d)

feasibility pump ILOG-Cplex 8.1
name value nIT time root value first value nodes time
biella1 3,537,959.54 5 7.9 3,682,135.10 0 8.4
NSR8K 5,111,376,832.18 5 1,751.4 4,923,673,379.32 0 1,478.6
dc1c 27,348,312.19 4 19.3 33,458,468.26 0 15.3
dc1l 8,256,022.49 5 94.4 752,840,672.81 0 67.6
dolom1 298,684,615.17 7 32.1 584,923,856.01 0 29.2
siena1 104,004,996.99 5 91.8 591,385,634.57 0 66.4
trento1 356,179,003.01 2 17.8 621,044,078.07 0 18.1
rail507 178.00 2 41.1 205.00 0 32.9
rail2536c 715.00 4 26.7 771.00 0 27.1
rail2586c 1,007.00 5 81.6 1,072.00 0 68.6
rail4284c 1,124.00 3 1095.8 1,218.00 0 273.1
rail4872c 1,614.00 5 311.9 1,737.00 0 305.6
A2C1S1 19,879.93 5 3.7 20,865.33 0 0.0
B1C1S1 38,530.65 7 5.2 69,933.52 0 0.1
B2C1S1 48,279.95 6 4.5 70,625.52 0 0.1
sp97ic 1,280,793,707.52 3 2.7 515,786,416.96 0 1.7
sp98ar 988,402,511.36 4 4.4 599,527,422.56 0 2.4
sp98ic 959,924,716.00 3 2.1 550,157,878.72 0 1.5
blp-ar98 25,094.03 161 23.6 N/A 9,473.66 50 37.2
blp-ic97 7,874.87 4 0.7 6,408.43 0 0.4
blp-ic98 14,848.96 6 1.4 9,080.53 0 0.6
blp-ir98 5,388.84 3 0.3 2,927.29 0 1.2
CMS750 4 606.00 131 18.9 803.00 0 13.9
berlin 5 8 0 79.00 10 0.1 89.00 0 0.4
railway 8 1 0 440.00 13 0.3 478.00 0 0.4
usAbbrv.8.25 70 164.00 34 0.8 N/A 130.00 6036 46.8
bg512142 120,738,665.00 0 0.1 120,670,203.50 0 0.3
dg012142 153,406,945.50 0 0.8 153,392,273.00 0 1.7
manpower1 8.00 66 38.5 N/A N/A 34 1,800.0
manpower2 7.00 148 157.9 N/A N/A 10 1,800.0
manpower3 6.00 49 56.9 N/A N/A 10 1,800.0
manpower3a 6.00 73 67.4 N/A N/A 10 1,800.0
manpower4 7.00 192 107.7 N/A N/A 17 1,800.0
manpower4a 7.00 53 85.1 N/A N/A 16 1,800.0
ljb2 7.24 0 0.0 1.63 0 0.4
ljb7 8.61 0 0.5 0.81 0 3.9
ljb9 9.48 0 0.8 9.48 0 6.2
ljb10 7.31 0 1.0 7.31 0 6.9
ljb12 6.20 0 0.7 3.21 0 6.4

and FPwas faster in 31 cases. Finally, column nIT (FP iterations) shows that the number
of LPs solved by FP for finding its first feasible solution is typically very small, which
confirms the effectiveness of the distance function used at step 5 in driving x∗ towards
integrality.

Quite surprisingly, sometimes FP requires just a few iterations but takes much
more time than expected. E.g., for problem rail4284c in Table 4 the root node
of ILOG-Cplex took only 273.1 seconds—including the application of the internal
heuristics. Instead, FP found a feasible solution after just 3 iterations but the overall
computing time was 1095.8 seconds—about 4 times larger. This can be partly explained
by observing that FP requires the initial solution of two LPs with different objective
functions: the initialization LP at step 1 (which uses the original objective function),

The feasibility pump 99

and the LP at the first execution of step 5 (using the distance-related objective function).
Hence we take for granted that no effective parametrization between these two LPs can
be obtained. However, a better integration of FP with the LP solver is likely to produce
improved results in several cases.

As already stated, in our experiments we deliberately avoided any problem-dependent
fine tuning of the LP parameters, and used for both FP and ILOG-Cplex their default
values. However, some knowledge of the type of instance to be solved can improve both
the FP and ILOG-Cplex performance considerably, especially for highly degenerate
cases. For instance, we found that the choice of the LP algorithm used for re-optimization
at step 5 may have a strong impact on the overall FP computing times. E.g., if we force
the use of the dual simplex, the overall computing time for rail4284c decreases from
1095.8 to just 311.1 seconds. This is of course true also for ILOG-Cplex. E.g., for
manpower instances Bixby [5] suggested an ad-hoc tuning consisting of (a) avoiding
the generation of cuts (set mip cut all -1), and (b) activating a specific dual-
simplex pricing algorithm (set simp dg 2). This choice considerably reduces the
time spent by the LP solver at each branching node, and allows ILOG-Cplex to find
a first feasible solution (of value 6.0) for instances manpower1, manpower2, man-
power3, manpower3a, manpower4 and manpower4a after 111, 150, 107, 156,
202 and 197 branching nodes, and after 28.4, 115.4, 99.7, 70.7, 100.2, and 84.7 CPU
seconds, respectively.

A pathological case for FP is instance p2756, which can instead be solved very
easily by ILOG-Cplex. This is due to the particular structure of this problem, which
involves a large number of big-M coefficients. More specifically, several constraints in
this model are of the type αT

i y ≤ βi + Mizi , where Mi is a very large positive value, y

is a binary vector, and zi is a binary variable whose value 1 is used to actually deactivate
the constraint. Feasible solutions of this model can be obtained quite easily by setting
zi = 1 so as to deactivate these constraints. However, this choice turns out to be very
expensive in terms of the LP objective function, where variables zi are associated with
large costs. Therefore, the LP solutions (y∗, z∗) tend to associate very small values with
all variables z∗

i , namely z∗
i = max{0, (αT

i y∗ − βi)/Mi}, which are then systematically
rounded down by our scheme. As a consequence, FP is actually looking for a feasible y

that fulfills all the constraints αT
i x ≤ βi—an almost impossible task. This consideration

would suggest that a more elaborated FP scheme should introduce a mechanism that, in
some specific cases, allows some variables to be rounded up no matter their value in the
LP solution—a topic that is left to future research.

3. FP variants

The basic FP scheme will next be elaborated in the attempt of improving (a) the required
computing time, and/or (b) the quality of the heuristic solution delivered by the method.

3.1. Reducing the computing time

We have evaluated the following two simple FP variants:

1. FP1: At step 1, the LP relaxation of the original MIP (i.e., the one with the original
objective function cT x) is solved approximately through a primal-dual method (e.g.,

100 M. Fischetti et al.

the ILOG-Cplex barrier algorithm), and as soon as a prefixed primal-dual gap γ is
reached the execution is stopped and no crossover is performed. The almost-optimal
dual variables are then used as Lagrangian multipliers to compute a mathematically-
correct lower bound on the optimal LP value. Moreover, at step 5 each LP relaxation
is solved approximately via the primal simplex method with a limit of SIL sim-
plex pivots (if this limit is reached within the simplex phase 1, the approximate LP
solution x∗ is not guaranteed to be primal feasible, hence we skip step 6).

2. FP2: The same as FP1, but at step 1 the first x̃ is obtained by just rounding a random
initial solution x∗ ∈ [0, 1]n (no LP solution is required).

3.2. Improving the solution quality

As stated, the FP method is designed to provide a feasible solution to hard MIPs—no
particular attention is paid to the quality of this solution. In fact, the original MIP objec-
tive function is only used for the initialization of x̃ in step 1—while it is completely
ignored in variant FP2 above. On the other hand, FP proved quite fast in practice, and
one may think of simple modifications to provide a sequence of feasible solutions of bet-
ter and better quality.5 We have therefore investigated a natural extension of our method,
based on the idea of adding the upper-bound constraint cT x ≤ UB to the LPs solved
at step 5, where UB is updated dynamically each time a new feasible solution is found.
To be more specific, right after step 1 we initialize z∗

LP = cT x∗ (= LP relaxation value)
and UB = +∞. Each time a new feasible solution x∗ of value zH = cT x∗ is found at
step 5, we update UB = αz∗

LP + (1 − α)zH for α ∈ (0, 1), and continue the while-do
loop. Furthermore, in the test at step 4 we add the condition nIT-nIT0 < IL, where
nIT0 gives the value of nIT when the first feasible solution is found (nIT0=0 if none
is available), and the input parameter IL gives the maximum number of additional FP
iterations allowed after the initialization of the incumbent solution.

The above scheme can also be applied to variant FP1, where the LP at step 1 is
solved approximately. As to FP2, where no bound is computed, z∗

LP is left undefined
and the upper bound UB is heuristically reduced after each solution updating as UB =
zH − β|zH | (assuming zH �= 0).

A final comment is in order. Due to the additional constraint cT x ≤ UB, it is often
the case that the integer components of x̃ computed at step 8 define a feasible point for
the original system Ax ≥ b, but not for the current one. In order to improve the chances
of updating the incumbent solution, right after step 8 we therefore apply a simple post-
processing of x̃, consisting in solving the LP min{cT x : Ax ≥ b, xj = x̃j ∀j ∈ I} and
comparing the corresponding solution (if any exists) with the incumbent one.

3.3. Computational results

Table 5 reports the results of the feasibility pump variants FP1 and FP2. For this exper-
iment we selected 26 instances out of the 83 in our testbed, chosen as those for which

5 A possible way to improve the quality of the first solution found by FP is of course to exploit local-search
methods based on enumeration of a suitable solution neighborhood of the first feasible solution found, such
as the recently-proposed local branching [9], RINS or guided dives [7] schemes.

The feasibility pump 101

(a) both FP and ILOG-Cplex were able to find a solution within the time limit of
1,800 CPU seconds, and (b) the computing time required by either ILOG-Cplex or
FP was at least 10 CPU seconds. We also included the manpower instances, and ran
ILOG-Cplex with the ad-hoc tuning described in the previous section.

For this reduced testbed, we evaluated the capability of FP1 and FP2 to converge
quickly to an initial solution (even if worse than that produced by FP) and to improve
it in a given amount of additional iterations. The underlying idea is that, for problems
in which the LP solution is very time consuming, it may be better to solve the LPs
approximately, while trying to improve the first (possibly poor) solutions at a later time.

For the experiments reported in Table 5 the parameters were set as follows: α = 0.50,
β = 0.25, γ = 0.20, SIL = 1, 000, and IL = 250.

In the table, the ILOG-Cplex columns are taken from the previous experiments.
For both FP1 and FP2 we report the time and value of the first solution found, and the
time and value of the best solution found after IL=250 additional FP iterations. More-
over, for FP1 we report the extra computing time spent for computing the initial lower
bound through the (approximate use of) ILOG-Cplex barrier method (“LB time”).

According to the table, FP2 is able to deliver its first feasible solution within an
extremely short computing time—often 1-2 orders of magnitude shorter than
ILOG-Cplex and FP. E.g., FP2 took only 1.5 seconds for NSR8K, whereas
ILOG-Cplex and FP required 1,478.6 and 1,751.4 seconds, respectively. In three
cases however the method did not find any solution within the 1,800-second time limit.
The quality of the first solution is of course poor (remember that the MIP objective func-
tion is completely disregarded until the first feasible solution is found), but it improves
considerably during subsequent iterations. At the end of its execution, FP2 was faster
than ILOG-Cplex in 12 out of the 26 cases, and returned a better (or equal) solution
in 11 cases.

FP1 performs somewhat better than this. Its first solution is much better than that of
FP2 and strictly better than the ILOG-Cplex solution in 4 cases; the corresponding
computing time (increased by the LB time) is shorter than that of ILOG-Cplex in 22
out of the 26 cases. After 250 more FP iterations, the quality of the FP1 solution is equal
to that of ILOG-Cplex in 6 cases, strictly better in 12 cases, and worse in 8 cases;
the corresponding computing time compares favorably with that of ILOG-Cplex in
12 cases.

4. Conclusions

We have proposed and analyzed computationally a new heuristic method for finding a
feasible solution to general MIP problems. The approach, called the Feasibility Pump,
generates two trajectories of points x∗ and x̃ that satisfy MIP feasibility in a complemen-
tary but partial way—one satisfies the linear constraints, the other the integer require-
ment. The method can also be interpreted as a strategy for making a heuristic sequence of
roundings that yields a feasible MIP point. We report computational results on a set of 83
difficult 0-1 MIPs, using the commercial software ILOG-Cplex 8.1 as a benchmark.
The FP method, even in its basic version, compares favorably with the ILOG-Cplex
heuristics applied at the root node: though FP and ILOG-Cplex (root node) require a

102 M. Fischetti et al.

Ta
bl

e
5.

Pe
rf

or
m

an
ce

of
tw

o
F
P

va
ri

an
ts

(∗
I
L
O
G
-
C
p
l
e
x

w
as

ru
n

w
ith

an
ad

-h
oc

tu
ni

ng
)

IL
O

G
-C

pl
ex

8.
1

F
P
2

:n
o

bo
un

d,
ra

nd
om

in
iti

al
so

lu
tio

n
F
P
1

:a
pp

ro
xi

m
at

e
so

lu
tio

n
of

L
Ps

na
m

e
fir

st
va

lu
e

tim
e

fir
st

va
lu

e
nI

T
tim

e
be

st
va

lu
e

tim
e

L
B

tim
e

fir
st

va
lu

e
nI

T
tim

e
be

st
va

lu
e

tim
e

ai
r0

4
57

,6
40

.0
0

6.
2

N
/A

52
10

1,
80

0
N

/A
1,

80
0

1.
3

62
,3

98
.0

0
59

9
44

1.
8

59
,8

07
.0

0
97

3.
8

da
no

3m
ip

76
8.

37
16

1.
2

N
/A

55
31

1,
80

0
N

/A
1,

80
0

12
.1

2,
64

9,
99

9.
80

24
1

64
.2

15
5,

59
7.

13
14

3.
1

fa
st

05
07

20
9.

00
33

.1
60

,7
70

.0
0

1
0.

6
19

8.
00

63
.7

4.
2

20
5.

00
2

1.
2

18
8.

00
25

.7
ne

t1
2

21
4.

00
15

93
.7

33
7.

00
12

59
11

6.
4

33
7.

00
13

6.
7

42
.9

33
7.

00
63

6.
4

33
7.

00
26

.3
sw

at
h

82
6.

66
38

.6
46

,2
77

.7
3

39
2.

1
1,

51
2.

21
17

.1
0.

3
45

,0
23

.4
7

38
2

15
.8

45
,0

23
.4

7
17

.1
va

n
6.

59
10

0.
3

N
/A

51
7

1,
80

0
N

/A
1,

80
0

72
.5

22
.7

5
15

9
64

9.
7

22
.7

5
1,

73
0.

2

N
SR

8K
4,

92
3,

67
3,

37
9.

32
14

78
.6

3,
43

1,
64

5,
50

1.
71

2
1.

5
27

9,
90

1,
65

8.
55

10
8.

4
21

8.
4

3,
56

8,
38

0,
06

3.
65

3
2.

0
26

8,
66

1,
66

0.
39

34
0.

5
dc

1c
33

,4
58

,4
68

.2
6

15
.3

19
5,

97
7,

05
4.

50
4

0.
8

10
,7

32
,5

32
.9

2
87

.3
12

.6
8,

64
4,

49
8,

48
0.

28
2

0.
4

5,
07

4,
71

9.
02

97
.8

dc
1l

75
2,

84
0,

67
2.

81
67

.6
41

,5
77

,0
97

,2
75

.1
9

0
0.

3
27

,8
65

,0
94

.8
1

16
7.

2
11

.7
12

6,
03

5,
91

3.
11

2
1.

7
11

,4
98

,0
38

.8
4

17
2.

4
do

lo
m

1
58

4,
92

3,
85

6.
01

29
.2

43
1,

99
2,

80
1.

00
28

13
.3

14
9,

85
4,

95
6.

11
11

6.
3

12
.4

47
5,

95
2,

46
5.

07
24

10
.8

15
5,

07
7,

53
8.

15
13

0.
3

si
en

a1
59

1,
38

5,
63

4.
57

66
.4

8,
88

3,
56

4,
91

8.
89

1
0.

6
13

9,
12

2,
55

4.
83

36
0.

9
44

.6
95

3,
57

0,
67

9.
98

3
1.

3
43

0,
11

6,
20

4.
90

34
0.

5
tr

en
to

1
62

1,
04

4,
07

8.
07

18
.1

1,
29

6,
47

0,
18

4.
01

15
3.

0
65

,7
46

,9
10

.0
0

13
7.

4
8.

4
1,

29
6,

47
0,

18
4.

01
15

3.
0

86
,0

11
,2

31
.0

1
38

.9

ra
il5

07
20

5.
00

32
.9

20
,2

51
.0

0
1

0.
8

22
0.

00
41

.9
5.

2
24

7.
00

2
1.

8
18

7.
00

89
.9

ra
il2

53
6c

77
1.

00
27

.1
2,

43
0.

00
1

0.
3

71
7.

00
55

3.
3

14
.5

91
9.

00
1

0.
3

71
8.

00
45

0.
1

ra
il2

58
6c

1,
07

2.
00

68
.6

2,
90

0.
00

1
0.

2
1,

12
2.

00
13

4.
8

5.
1

1,
37

6.
00

1
0.

3
1,

02
8.

00
73

5.
4

ra
il4

28
4c

1,
21

8.
00

27
3.

1
4,

53
1.

00
1

0.
5

2,
06

7.
00

11
3.

3
50

.7
1,

55
4.

00
2

0.
8

1,
17

4.
00

12
1.

2
ra

il4
87

2c
1,

73
7.

00
30

5.
6

4,
51

3.
00

2
0.

8
3,

38
5.

00
10

8.
1

17
.7

2,
13

2.
00

2
1.

1
1,

61
1.

00
19

7.
7

bl
p-

ar
98

9,
47

3.
66

37
.2

25
,4

59
.1

8
56

2
64

.5
25

,4
59

.1
8

84
.5

1.
6

24
,8

76
.8

7
95

9
10

6.
7

24
,8

76
.8

7
11

1.
5

C
M

S7
50

4
80

3.
00

13
.9

1,
00

0.
00

4
2.

9
74

8.
00

34
.9

1.
0

1,
00

0.
00

3
1.

9
74

2.
00

33
.1

us
A

bb
rv

.8
.2

5
70

13
0.

00
46

.8
19

5.
00

3
0.

1
19

5.
00

4.
8

0.
1

18
9.

00
8

0.
2

18
0.

00
4.

1

m
an

po
w

er
1

6.
00

∗
28

.4
9.

00
13

3.
3

7.
00

12
.7

38
.8

12
.0

0
21

4.
5

6.
00

14
.1

m
an

po
w

er
2

6.
00

∗
11

5.
4

8.
00

53
11

.5
6.

00
20

.5
55

.6
8.

00
24

6.
0

6.
00

14
.7

m
an

po
w

er
3

6.
00

∗
99

.7
7.

00
21

5.
1

7.
00

13
.7

50
.4

11
.0

0
85

17
.4

6.
00

26
.3

m
an

po
w

er
3a

6.
00

∗
70

.7
10

.0
0

12
0

25
.9

6.
00

35
.0

52
.6

9.
00

64
14

.7
6.

00
23

.6
m

an
po

w
er

4
6.

00
∗

10
0.

2
6.

00
16

9
36

.6
6.

00
45

.1
49

.6
10

.0
0

43
9.

4
6.

00
18

.0
m

an
po

w
er

4a
6.

00
∗

84
.7

7.
00

24
6.

3
7.

00
14

.7
52

.1
9.

00
21

6.
0

6.
00

14
.7

The feasibility pump 103

comparable computing time, the percentage of success in finding a feasible solution is
96.3% for FP, and 77.1% for ILOG-Cplex (in its best-tuned version). In this respect,
the FP performance is very satisfactory: whereas ILOG-Cplex could not find any fea-
sible solution at the root node in 19 cases (and in 4 cases even allowing for 1,800 seconds
of branching), FP was unsuccessful only 3 times. Also interesting is the comparison of
the quality of the FP solution with that found by the root-node ILOG-Cplex heuristics:
the latter delivered a strictly-better solution in 33 cases, whereas the solution found by
FPwas strictly better in 46 cases. The computing times to get to the first feasible solution
appear comparable: excluding the instances for which both methods required less than
1 second, ILOG-Cplex was faster in 26 cases, and FP was faster in 31 cases.

Future directions of research should address the application of FP to MIP problems
with general integer variables, for which preliminary experiments seem to indicate an
increased probability of stalling. Another interesting topic is how to exploit the consider-
able amount of information provided by the FP method. Indeed, even in case of failure,
the infeasible point x∗ ∈ P with minimum distance from its rounding (chosen among
those generated by the FP procedure) is likely to be well suited to start a “feasibility
recovery” procedure based on enumerative local-search methods in the spirit of local
branching [9], or RINS/guided dives [7].

Acknowledgements. The work of the first and last authors was supported by MIUR and CNR, Italy, and by
the EU project ADONET. The work of the second author was supported by the Center for Disease Control of
the U.S. National Center for Health Statistics. The authors are grateful to Dimitris Bertsimas for interesting
discussions on the role of randomness in rounding. Thanks are due to the anonymous referees for useful
comments.

References

1. Achterberg, T., Koch, T., Martin, A.: The mixed integer programming library: MIPLIB 2003.
http://miplib.zib.de.

2. Balas, E., Ceria, S., Dawande, M., Margot, F., Pataki, G.: OCTANE: A New Heuristic For Pure 0-1
Programs. Oper. Res. 49, 207–225 (2001)

3. Balas, E., Martin, C.H.: Pivot-And-Complement:A Heuristic For 0-1 Programming. Management Science
26, 86–96 (1980)

4. Balas, E., Schmieta, S., Wallace, C.: Pivot and Shift–A Mixed Integer Programming Heuristic. Discrete
Optimization 1, 3–12 (2004)

5. Bixby, R.E.: Personal communication. 2003
6. Chinneck, J.W.: The constraint consesus method for finding approximately feasible points in nonlinear

programs. Technical Report Carleton University, Ottawa, Ontario, Canada, October 2002
7. Danna, E., Rothberg, E., Le Paper, C.: Exploring relaxation induced neighborhoods to improve MIP

solutions. Mathematical Programming, 102, 71–90 (2005)
8. Double-Click sas.: Personal communication. 2001
9. Fischetti, M., Lodi, A.: Local Branching. Mathematical Programming 98, 23–47 (2003)

10. Glover, F., Laguna, M.: General Purpose Heuristics For Integer Programming: Part I. J. Heuristics 2,
343–358 (1997)

11. Glover, F., Laguna, M.: General Purpose Heuristics For Integer Programming: Part II. J. Heuristics 3,
161–179 (1997)

12. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publisher, Boston, Dordrecht, London, 1997
13. Hillier, F.S.: Effcient Heuristic Procedures For Integer Linear Programming With An Interior. Oper. Res.

17, 600–637 (1969)
14. Ibaraki, T., Ohashi, T., Mine, H.: A Heuristic Algorithm For Mixed-Integer Programming Problems.

Mathematical Programming Study 2, 115–136 (1974)
15. G.W. Klau. Personal communication, 2002.

104 M. Fischetti et al.: The feasibility pump

16. Løkketangen, A.: Heuristics for 0-1 Mixed-Integer Programming. In: P.M. Pardalos, M.G.C. Resende
(eds.), Handbook of Applied Optimization, Oxford University Press, 2002, pp. 474–477

17. Løkketangen,A., Glover, F.: Solving Zero/One Mixed Integer Programming Problems Using Tabu Search.
European J. Oper. Res. 106, 624–658 (1998)

18. Lübbecke, M.: Personal communication. 2002
19. Miller, A.J.: Personal communication. 2003
20. Nediak, M., Eckstein, J.: Pivot, Cut, and Dive: A Heuristic for 0-1 Mixed Integer Programming. Research

Report RRR 53-2001, RUTCOR, Rutgers University, October 2001
21. Patel, J., Chinneck, J.W.: Active-Constraint Variable Ordering for Faster Feasibility of Mixed Integer

Linear Programs. Technical Report Carleton University, Ottawa, Ontario, Canada, November 2003
22. Rothberg, E.: Personal communication. 2002
23. Rothberg, E.: Personal communication. 2003
24. Spielberg, K., Guignard, M.: Sequential (Quasi) Hot Start Method for BB (0,1) Mixed Integer Program-

ming. Wharton School Research Report, 2002

