Laboratorio di Algoritmi

Corso di Laurea in Matematica

Roberto Cordone DI - Università degli Studi di Milano

Lezioni: Martedì 8.30 - 10.30 in aula 3 Mercoledì 10.30 - 13.30 in aula 2

Giovedì 15.30 - 18.30 in aula 2 Venerdì 10.30 - 12.30 in aula 3

Ricevimento: su appuntamento (Dipartimento di Informatica)

Tel.: 02 503 16235

E-mail: roberto.cordone@unimi.it

Pagina web: http://homes.di.unimi.it/~cordone/courses/2020-algo/2020-algo.html

Lezione 13: Alberi binari di ricerca

Milano, A.A. 2019/20

Dizionari

Un dizionario T su un insieme universo ordinato U

- rappresenta un sottoinsieme finito di U: $\mathcal{T} \subseteq 2^U$
- consente di eseguire operazioni di ricerca, cioè di indicare se un dato elemento di U appartiene a T oppure no

Altre strutture già trattate possono svolgere queste funzioni:

- tabelle
- tabelle ordinate
- liste
- vettori di incidenza

ma presentano forti svantaggi:

- hanno scarsa efficienza temporale per alcune operazioni
 - ricerca in strutture non ordinate
 - inserimenti e cancellazioni in strutture ordinate
- hanno scarsa efficienza spaziale per insiemi universo U molto grandi (eventualmente, infiniti)

Gli alberi binari di ricerca (ABR) e le tabelle hash cercano di limitarli

Alberi binari di ricerca: operazioni

Sia \mathcal{T} l'insieme di tutti i possibili ABR su U

Gli ABR ammettono tipicamente le seguenti operazioni

 ricerca: dato un elemento e un ABR, indica se l'elemento fa parte dell'ABR

memberABR :
$$U \times \mathcal{T} \to \mathbb{B}$$

È l'operazione che dà il nome alla struttura dati

verifica di vuotezza: dato un ABR, indica se è vuoto

$$ABRvuoto: \mathcal{T} \to \mathbb{B}$$
 (ovvero $\{0,1\}$)

 inserimento: dato un elemento e un ABR, inserisce l'elemento nell'ABR

$$insertABR: U \times T \rightarrow T$$

Non c'è controllo sulla posizione dell'elemento

 cancellazione: dato un elemento e un ABR, cancella l'elemento dall'ABR

$$\mathrm{deleteABR}: U \times \mathcal{T} \to \mathcal{T}$$



Alberi binari di ricerca: operazioni

Sia \mathcal{T} l'insieme di tutti i possibili ABR su U

Gli ABR ammettono tipicamente le seguenti operazioni

• calcolo del minimo: dato un ABR, ne restituisce l'elemento minimo

 $\min ABR : \mathcal{T} \to U$

Se l'ABR è vuoto, restituisce un valore fittizio $+\infty$

 calcolo del massimo: dato un ABR, ne restituisce l'elemento massimo

 $\max ABR : \mathcal{T} \to U$

Se l'ABR è vuoto, restituisce un valore fittizio $-\infty$

Alberi binari di ricerca: operazioni

In matematica basta definire un oggetto per crearlo

Nelle implementazioni concrete, questo in genere non vale Quindi è opportuno definire

• creazione: crea un albero binario vuoto

$$\mathrm{creaABR}:()\to\mathcal{T}$$

distruzione: distrugge un albero

$$distruggeABR : \mathcal{T} \rightarrow ()$$

Si noti la scomparsa del concetto di posizione proprio di altre strutture che rappresentano insiemi

 non si accede agli elementi dell'insieme tramite una posizione, ma solo tramite il loro ordine

Albero binario di ricerca

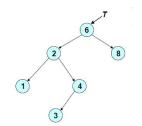
Un albero binario di ricerca (ABR) T su un insieme ordinato U è un

- albero binario
- in cui tutti i nodi sono diversi tra loro
- in cui ogni nodo segue tutti quelli del proprio sottoalbero sinistro

$$a_i \succ a_j$$
 per ogni $j \in T_s(i)$ e per ogni $i \in T$

• in cui ogni nodo precede tutti quelli del proprio sottoalbero destro

$$a_i \prec a_j$$
 per ogni $j \in T_d(i)$ e per ogni $i \in T$



ABR: implementazione con puntatori

Gli ABR hanno le stesse implementazioni degli alberi binari

Nell'implementazione a puntatori:

- l'albero corrisponde a un puntatore al nodo radice
- ogni elemento dell'albero corrisponde a una struttura con
 - il dato $a \in U$
 - un puntatore alla radice del sottoalbero sinistro (NULL se non esiste)
 - un puntatore alla radice del sottoalbero destro (NULL se non esiste)
 - un puntatore al nodo padre (NULL se non esiste)