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Abstract—Due to the emerging popularity of pervasive health-
care applications, tools for monitoring activities in smart homes
are gaining momentum. Existing methods mainly rely on super-
vised learning algorithms for recognizing activities based on sen-
sor data. A key issue with those approaches is the acquisition of
comprehensive training sets of activities. Indeed, that task incurs
significant costs in terms of manual labeling effort; moreover,
labeling by external observers violates the individual’s privacy.
For these reasons, there is an increasing interest in unsupervised
activity recognition methods. A popular approach relies on
knowledge-based models expressed by ontologies of activities,
environment and sensors. Unfortunately, those models require
significant knowledge engineering efforts, and are often limited
to a specific application. In this paper, we address the issues of
existing methods by proposing a novel hybrid approach. Our
intuition is that a generic knowledge-based model of activities
can be refined to target specific individuals and environments by
collaboratively acquiring feedback from inhabitants. Specifically,
we propose a collaborative active learning method to refine
correlations among sensor events and activity types that are
initially extracted from a high-level ontology. Generic correlations
are personalized to each target smart-home considering the
similarity between the feedback target and the feedback provider
in terms of environment and inhabitant’s profiles. Moreover,
thanks to this method, new sensors installed in the home are
seamlessly integrated in the recognition framework. In order
to reduce the burden of providing feedback, we also propose a
technique to carefully select the conditions that trigger a feedback
request. We conducted experiments with a real-world dataset and
a generic ontology of activities. Results show that our hybrid
method outperforms state-of-the-art supervised and unsupervised
activity recognition techniques while triggering an acceptable
number of feedback queries.

I. INTRODUCTION

Human activity recognition has been deeply investigated
in the last decade taking advantage of the effective sensing
infrastructure that is becoming available with off-the-shelf
products as part of domotics, smart objects, personal and
wearable devices. Among the many applications in mobile and
pervasive computing, the continuous recognition of activities
of daily living (ADL) has been identified as a key enabler of
assisted living and e-health systems [1], [2].

Most ADL recognition systems rely on supervised learning
which requires a large training set of sensor events annotated
with activity labels (usually mapping sequences of events to
the specific activity that generated them). Besides privacy

issues in observing individuals in their private spaces, the
heterogeneity of the environments and of the way a complex
activity can be performed by different individuals limits the
value of the acquired training set. This is a serious limitation
to the large scale deployment of these systems. Active learning
has been proposed to mitigate this problem, but the majority of
these techniques need anyway a starting labeled training set.
Alternative approaches propose the use of a structured knowl-
edge representation of activities, infrastructure, and events to
guide the recognition process in an unsupervised way [3].
In order to be effective, they require a significant effort of
knowledge engineers to build a comprehensive ontology, and it
remains questionable if such an ontology could actually cover
an heterogeneous large set of environments and individuals.

We address the problem explained above by a novel frame-
work, called NECTAR, exploiting kNowledge-basEd Collab-
orative acTive learning for Activity Recognition. NECTAR
does not require an initial training set, since it relies on a
(possibly incomplete) ontology to derive a first set of semantic
correlation values between sensor events and activities. These
correlations, together with the stream of sensor events, are
processed by a Markov Logic Network to identify ADLs
through probabilistic reasoning. In order to cope with the
incompleteness of the ontology and the heterogeneity of
environments and individuals, we introduce a collaborative
active learning process to refine the correlations derived by the
ontology. The stream of sensor events is segmented in real-
time, and based on the discrimination value of correlations
on the segment, a feedback may be asked to the subject about
which activity is being performed. Feedback responses coming
from different homes are collected in a cloud infrastructure
and each home receives personalized information to refine its
recognition model. The collaborative active learning feature
of NECTAR also deals with the common situation in which
a new device is installed in the infrastructure, by producing a
new set of correlation values regarding the new device events.

NECTAR has been experimentally validated on a real world
and publicly available dataset involving multiple subjects
performing ADLs in both sequential and interleaved fashion.

The main contributions can be summarized as follows:



• We propose a new active learning approach to ADL
recognition that addresses the main problems of current
statistical and knowledge-based methods;

• The NECTAR technique supports collaborative and per-
sonalized refinement of the recognition model;

• Our experiments show the gain obtained by collaborative
active learning, the moderate effort required to the in-
volved subjects, and the overall effectiveness of NECTAR
even compared with supervised approaches.

The rest of the paper is structured as follows. Section II
summarizes related work. Section III presents the NECTAR
architecture, while the techniques are explained in Section IV.
Section V shows experimental results and Section VI discusses
open issues. Finally, Section VII concludes the paper.

II. RELATED WORK

As explained in the introduction, acquiring comprehensive
training sets of ADLs is expensive in terms of annotation costs
and may violate the individuals’ privacy [4]. Hence, several
efforts have been devoted to devise unsupervised or semi-
supervised activity recognition techniques [5]–[7], as well as
transfer learning methods for activity models [8], [9].

Unsupervised activity recognition methods do not require
the acquisition of labeled training sets. As a consequence,
the model of activities must be either manually specified
(e.g., through an ontology) or mined from other sources (e.g.,
Web resources, or unlabeled datasets of activities). A popu-
lar approach to the manual specification of activity models
consists in the use of description logics or logical rules to
define the formal semantics of activities [5]–[7]. In those
approaches, complex activities are defined in terms of their
simpler components. Sequences of simple actions, recognized
based on firing of specific sensor events, are matched to
activity definitions to identify the occurred activity. However,
those approaches rely on rigid assumptions about the execution
patterns of ADLs [10]. On the contrary, complex activities
are characterized by large variability of execution. In order
to cope with that issue, other works investigated the use of
less rigid formalisms to define ADLs. In [11], probabilistic
description logics are used to define a multi-level ontology of
domestic activities. Hybrid ontological-probabilistic reasoning
is used in [3] to recognize ADLs based on semantic correla-
tions among sensor events and activities. However, all those
approaches require significant knowledge engineering efforts,
and are hardly scalable to the definition of a comprehensive
set of ADLs in different contexts.

In order to avoid the burden of manual specification, dif-
ferent techniques have been proposed to mine activity models
from Web resources. A first attempt in this sense was due to
Perkowitz et al. in [12] and refined in later works [13], [14].
Those methods analyze textual descriptions of activities mined
from the Web in order to obtain correlations among activities
and objects used for their execution. Those correlations are
used to recognize the executed activity based on the observed
sequence of used objects. That approach has been recently
extended to exploit visual cues extracted from the Web,

such as images and videos [15]. However, it is questionable
whether object-activity correlations are sufficient to recognize
complex ADLs. Indeed, in this work we rely not only on
correlations, but also on knowledge-based constraints about
activity components.

A further approach is to infer activity models from unla-
beled datasets. An approach for activity discovery on data
acquired from body-worn sensors is presented in [16]. In that
work, multi signal motifs mining is used to recognize approxi-
mately repeated subsequences of sensor data, that represent the
execution of a specific (unknown) activity. A similar approach,
but applied to domestic sensors, is proposed in [17]. In [18],
data mining methods are used to cluster sequences of sensor
events, such that each cluster represents an activity class. The
inhabitant is asked to provide the actual class of each cluster.
In USMART [19], a knowledge-based method is used to
compute similarity among pairs of sensor events based on their
temporal, spatial, and usage dimensions. Objects similarity is
used to segment sensor event traces that should represent the
execution pattern of a single activity. Sequential pattern mining
is used to identify frequent sequences of sensor events that
typically appear during an activity. Exploiting an ontology of
activities and objects, each frequent sequence is associated to
one or more activities, according to the objects that triggered
the sensor events in the sequence. Sequences are refined thanks
to a clustering algorithm, and refined sequences are used for
activity recognition. Compared to those unsupervised methods,
in our work we exploit collaborative users’ feedback to assign
a certain semantics to sets of sensor events.

Semi-supervised learning methods use unlabeled data to
improve the model computed through a training set. Differ-
ent semi-supervised methods, including the ones presented
in [20]–[22], address the recognition of physical activities
based on accelerometer data. Self-training and co-training is
used in [23] for recognition of ADLs. The same work also
investigates the use of active learning, with the objective of
identifying the most informative sequences of sensor events
for which to query the individual. A sequence is considered
informative either when the confidence of the classifier about
its predicted activity class is low, or when two classifiers
disagree about its class. In [24], the authors propose to use
active learning to dynamically adapt the recognition model to
the changes of the home environment. In that work, an entropy
based measurement is used to query the most informative
sequences of sensor events to update a Dynamic Bayesian
Network. An active learning method to iteratively refine the
annotations of video provided by crowdsourcing services (like
Mechanical Turk) is presented in [25]. That method relies on
confidence scores about the annotation. Annotations with low
confidence are submitted again to the crowdsourcing service
for revision. A similar approach is proposed in [26]. In that
work, privacy of individuals depicted in videos is protected
by automatically identifying people and veil them by coloring
their silhouette. Work presented in [25] proposes three tech-
niques to choose the most informative data points for which
to query the user. Methods are based on (i) low confidence



for the most probable activity class, (ii) small difference
between the confidence of the most and second most probable
class, or (iii) high entropy among the probability of classes.
Experimental results in smart home settings show that the
three methods achieve similar accuracy. The work presented
in [27] proposes strategies to select the most appropriate
annotators in a crowdsourcing framework for active learning of
ADLs. Differently from those works, in this paper we propose
collaborative active learning to share the burden of providing
ADLs labels among a community of inhabitants.

III. NECTAR’S ARCHITECTURE

We assume a set of different smart-homes equipped with
unobtrusive sensing infrastructures. Environmental sensors are
deployed in each home in order to monitor the interaction of
the inhabitant with home artifacts but also context conditions
(e.g., temperature) and presence in certain locations. Each
home may have a different set of deployed sensors and moni-
tored items. A gateway in the home is in charge of collecting
and pre-processing raw data from the sensor network in order
to reconstruct the most probable activities that generated them.
In this context, we distinguish between an activity class and
an activity instance where the former is an abstract activity,
e.g., taking medicine, and the latter the actual occurrence of
an activity of a given class during a certain time period. We
denote with A the set of the considered activity classes (e.g.,
A = {Eating, Cooking, Taking Medicines}).

Fig. 1. The general architecture of NECTAR

The general architecture of our system is shown in Fig-
ure 1. The SEMANTIC INTEGRATION LAYER is in charge of
applying pre-processing rules in order to detect high-level
events from raw sensor signals. For example, if at time t the
medicine drawer sensor produces the raw event open, then
the high-level event at t is opening the medicine drawer.
We denote with E the set of high-level event types that
correspond to the set of monitored operations (e.g., E = {
opening the medicine drawer, closing the medicine drawer
}). In addition, T describes the set of all possible event
timestamps. A temporal sequence of events is represented as:

〈 se1 = 〈et1, t1〉, . . . , sek = 〈etk, tk〉 〉,

where sei = 〈eti, ti〉 indicates that sei is an instance of the
event type eti ∈ E occurred at timestamp ti ∈ T.

Reasoning on high-level events allows our system to be
robust to minor changes in activity execution. For instance,
if the inhabitant decides to keep his/her medicines in a
different drawer than before, it is sufficient to adjust the above
mentioned pre-processing rules, thus adapting the mapping
between raw sensors data and events.

Like in our previous work [3], we define the semantics
of activities and high-level events in an OWL 2 ontology.
In particular, the ontology includes axioms stating that an
instance of a given activity class (e.g., “prepare soup”) must
necessarily generate a set of high-level events (e.g., “take wa-
ter”, “pour water”). Moreover, it also includes other common-
sense axioms regarding time and location; e.g., “every instance
of cooking is executed in the kitchen”. Ontological reasoning
is used to derive probabilistic dependencies among sensor
event types and classes of executed activities; we denote
them as semantic correlations. Periodically (e.g., daily), the
MLNNC ACTIVITY RECOGNITION layer is in charge of rec-
ognizing performed activities by modeling and reasoning with
detected events and semantic correlations through an extension
of Markov Logic Networks with numerical constraints [29].

However, being manually designed by knowledge engineers
with a specific application in mind, the ontological model
is necessarily limited to specific environments and activities.
Thus, semantic correlations may not be sufficiently compre-
hensive to cover different application domains. Moreover,
some sensor event types (e.g., motion sensors) do not convey
any explicit semantic information; hence, no semantic corre-
lation can be inferred for these event types from the ontology.
For this reason, our system collects feedback items from the
smart-homes in order to discover semantic correlations not
inferred from the ontology. For acquiring a feedback, the
system interactively queries the user to provide the class of
his/her current activity. Acquired feedback is collaboratively
shared among the smart-homes to update semantic correlation
values in a personalized fashion. For the sake of clarity, in
the following we name origin the environment (home and
inhabitant) providing feedback, and target the environment
where feedback is used to update semantic correlations.

The feedback acquisition mechanism relies on the concept
of segments. Formally, a segment ~s = 〈sej , . . . , sek〉 rep-



resents a vector of consecutive sensor events. Each event
is assigned to exactly one segment. In order to cope with
interleaved activities, a single activity instance can span mul-
tiple segments. Each segment belongs to exactly one activity
instance. The class of each segment is the one of its activity
instance. As explained below, when the system determines that
a segment’s events do not provide enough hints to reliably de-
termine its class according to an information-theoretic metric,
it queries the user to obtain a feedback.

To this purpose, the ONLINE RULE-BASED SEGMENTATION
layer is in charge of segmenting the continuous stream of
sensor events. The segmentation method is based on semantic
rules that consider different aspects like time constraints,
objects interaction, and change of location. The role of these
rules is to group together those consecutive events which most
likely originate from the same activity instance. As soon as a
segment is finalized, it is processed by the QUERY DECISION
layer in order to decide whether triggering a feedback query
or not. That module processes the segment to apply an
information-theoretic metric considering the segment’s events
and the semantic correlations. If the activity class is uncertain
according to that metric, the module triggers a feedback
query. A user-friendly and unobtrusive interface is in charge
of issuing the feedback query and collecting the inhabitant
answer.

The acquired feedback is transmitted to a CLOUD SERVICE,
where the COLLABORATIVE FEEDBACK AGGREGATION layer
is in charge of computing personalized feedback items for
the different environments. Personalization is based on the
similarity between the origin and target environment. The
CLOUD SERVICE periodically sends personalized feedback
items to each target.

Received feedback is used by the SEMANTIC CORRELA-
TIONS UPDATER layer to discover novel semantic correlations
and to update the values of existing ones.

For the sake of this work, we assume that the CLOUD
SERVICE is trusted. However, in a real deployment it would
likely be a honest-but-curious third party. Proper privacy
techniques are thus needed to protect sensitive data and at the
same time to preserve the CLOUD SERVICE functionalities.

IV. NECTAR UNDER THE HOOD

In this section, we describe in detail each component of our
system.

A. Activity recognition

Our activity recognition system relies on an ontological
model of home environment, sensors, activities and actors,
and on probabilistic reasoning through an extension of Markov
Logic Networks (MLN) [30].

A.I Ontological model:
Our ontology has been defined using the OWL 2 language.

For the sake of space, we omit technical details about the
ontological model and ontological reasoning methods, which
can be found in [3]. In the following, we outline the main

characteristics of our ontology. Ontological properties describe
relations among instances. For example, an ontological ax-
iom states that “firing of an accelerometer a attached to a
kitchen chair c indicates the occurrence of an action of class
MoveKitchenChair”. In our ontology, we express necessary
conditions for a set of sensor events to be generated by a
given activity. For example, the sensor events generated by
an instance of activity class PrepareHotMeal must include
an event of class UsingCookingInstrument. Other ontological
axioms describe temporal and location-based constraints. As
explained below, by reasoning with those ontological axioms,
we can infer generic semantic correlations among sensor event
types and activity classes, which are used by the MLN module
to associate sensor events to their activity instance.

A.II Semantic correlation reasoner:
Intuitively, given a certain sensor event se of type et,

the semantic correlation function OSC(et, ac) represents the
probability of ac being the class of the activity instance that
generated se. Hence, given et, we have that OSC(et, ac) is a
probability distribution over all ac values:

∀ et ∈ E
∑
ac∈A

OSC(et, ac) = 1. (1)

Inference of semantic correlations relies on the property com-
position operator of OWL 2 [10]. In particular, in the ontology,
we defined an axiom stating that: “if an event of type et is
produced by a sensor that indicates the usage of an artifact
possibly used for an activity of class ac, then et is a predictive
sensor event type for ac”. For each event type et, we compute
the set of activities for which et is a predictive event type:

predAct(et) = {ac | et is a predictive event for ac}

To enforce property (1), we set the values of the semantic
correlation function OSC for each combination of event type
et and activity class ac in the following way. We consider
two cases. If et is predictive of at least one activity class, we
compute et’s correlations using the following formula:

OSC(et, ac) =

{
1

|predAct(et)| if ac ∈ predAct(et)
0 otherwise

Otherwise, having no information about the associations be-
tween et and activity classes, we uniformly distribute its
correlation values to all possible activity classes:

OSC(et, ac) =
1

|A|
,

where A is the set of all activity classes. It is easy to verify
that in both cases property (1) is enforced.

A.III MLN activity recognition:
MLN is a probabilistic first-order logic that naturally

supports reasoning with uncertain axioms and facts [30]. In
our framework, we use an extension of MLN, named MLNNC ,
which supports numerical constraints useful to reason with
temporal information. In the following, we sketch the main



inference tasks for activity recognition; more details can be
found in [3]. MLN supports the definition of both hard and soft
axioms. The former are certainly true, and are mainly automat-
ically extracted from our ontology. The latter are associated
to a weight that represents their probability of being true,
considering the inferred semantic correlations. We instantiate
the MLN knowledge base by translating the axioms of our
ontology in hard MLN axioms. In this way, we ensure that
the MLNNC knowledge base is consistent with our OWL 2
ontology. Moreover, we add soft MLN axioms to represent
common-sense knowledge about typical activity execution. In
particular, the extension of MLN with numerical constraints
allows us to express probabilistic common-sense knowledge
about the typical locations in which activities are executed.
Similarly, we define soft axioms about the maximum and
minimum duration of activities. At activity recognition time,
we add facts that represent the observation of occurred sensor
events. Each fact SensEv(et, ts) includes the corresponding
event type et and timestamp ts. We also add facts regarding
initial hypothesis of activity instances, which are computed by
a heuristic algorithm considering semantic correlations. Each
fact ActClass(ai, ac) includes the corresponding candidate
activity instance identifier ai and its most likely activity class
ac. Finally, we add probabilistic axioms that relate sensor
events to candidate activity instances according to the semantic
correlation values of the corresponding event type and activity
class. For instance, the probabilistic axiom:

−0.619 BelongTo(‘PourWater’, 1029, ai)

∧ActClass(ai, ‘PrepareSoup’)

states that, with weight -0.619, the sensor event of type
‘PourWater’ observed at timestamp 1029 belongs to an ac-
tivity instance ai of class ‘PrepareSoup’. According to the
MLN semantics of weights, the axiom weight is computed
applying the logit function to the corresponding probabil-
ity value obtained by the semantic correlation function.
For instance, the value -0.619 in the above formula is
obtained by applying logit to 0.35, which is the value
of OSC(‘PourWater’, ‘PrepareSoup’). Finally, maximum a-
posteriori inference is used to compute the most probable
assignment of (i) sensor events to activity instances, and (ii)
activity class to activity instances.

B. Online Segmentation and Query Decision

The segmentation of the continuous stream of sensor data
is performed by the ONLINE RULE-BASED SEGMENTATION
layer based on knowledge-based conditions. For each pro-
duced segment, the QUERY DECISION layer thus computes its
entropy considering the semantic correlations. If the entropy of
a segment exceeds a fixed threshold, the inhabitant is queried
in order to provide an activity class to the segment. This allows
us to limit the number of queries issued to the inhabitant.

B.I Online rule-based segmentation:
The ONLINE RULE-BASED SEGMENTATION layer is in

charge of deciding whether it is appropriate to finalize the

current segment and initiate a new one. For that purpose, it
considers semantic conditions in order to interpret the contin-
uous stream of sensor events. This includes the observation of
interactions with objects (C1), changes between rooms (C2),
and unusual gaps in time between consecutive sensor events
(C3). Whenever a new sensor event enew is observed, all these
three conditions are reviewed. If at least one of the conditions
is fulfilled the current segment is finalized. Hence, the sensor
event enew is the first element of the new segment. Of course,
the objective is to reconstruct the ground truth segments based
on the observed stream of sensor events. In the following, we
describe the mentioned conditions in detail:

C1) This condition keeps track of the events that result
from interaction with the objects in the home. If at
a certain point in time the subject stops to interact
with all items, we consider this as an indicator that an
activity instance was completed and thus the current
segment is finalized.

C2) Several activities are bound to a certain location or
room. For that reason, if sensor events show that
the inhabitant moves from a room to another, C2
considers this situation as an indicator to finalize the
current segment.

C3) An increasing temporal distance between consecutive
sensor events can be interpreted as a reduced prob-
ability that they describe the same activity instance.
This is especially the case if the subject leaves the
observed home. Therefore, we keep track of the
median distance between sensor events collected in
the previous days, and we assume that two con-
secutive sensor events belong to different segments
if their temporal distance is twice as large as the
median. When no sufficient statistical information
about previous sensor events is available, we use a
manually fixed threshold.

These conditions aim to generate segments which cover
at most one activity instance: we prefer to split an activity
instance in more segments instead of trying to build a seg-
ment that perfectly fits an activity instance, as this would
also increase the risk of including unrelated sensor events.
Indeed, we want to reduce the risk of associating the user’s
answer with wrong sensor events. Moreover, this segmentation
strategy allows us to cope with interleaved activities.

As soon as a new segment is generated, it is forwarded to
and processed by the QUERY DECISION layer.

B.II Query decision:
Given a segment S, the QUERY DECISION layer decides

if it is necessary to query the inhabitant. In particular, if the
semantic correlations of the types of the events in S are incon-
clusive when considered together (i.e., they do not converge on
a specific activity class), we ask the inhabitant which activity
he/she was actually performing. For that purpose, we introduce
the concept of a segment’s bag:

Bag(S) = {et | se = 〈et, t〉 ∈ S}



where S is a finalized segment and Bag(S) is a bag (i.e.,
a multiset) which contains the types of the events contained
in S. It is important to note that the temporal order of events
of a segment is not reflected by its bag. Hence, for each bag
Bag(Si), we compute for all the activity classes ac ∈ A the
likelihood that the segment Si represents an activity instance
of ac. This is computed as follows:

L(ac | S) =
∑
et∈Bag(S)OSC(et, ac)

|Bag(S)|
where OSC(et, ac) is the semantic correlation between et

and ac.
After we compute L(ac|S) for all activity classes, we nor-

malize these values in order to have a probability distribution.
Subsequently, the entropy is calculated on the distribution to
determine the system’s confidence for the segment S:

H(S) =
∑
ac∈A

P (X = ac | S) · log( 1

P (X = ac | S)
)

where P (X = ac |S) results from the normalized L(ac |S)
values.

Finally, if H(S) is higher than a predefined threshold λ,
the system ranks S as uncertain. In this case, the system
queries the inhabitant in order to provide an activity label ac
for S, and each event type et ∈ Bag(S) is associated with ac.
These associations are transmitted in real-time to the CLOUD
SERVICE together with the identification of the origin.

Note that segments containing noisy events which occurred
outside activities execution (e.g., trigger of presence sen-
sors) would likely lead to high entropy values. To overcome
this issue, we rely on the SEMANTIC INTEGRATION LAYER
presented in Section III to reduce as much as possible the
generation of those noisy events. Moreover, we also discard
segments with few events in order to further reduce noisy data.

C. Collaborative adaptation

In the following, we describe our collaborative adaptation
framework, which relies on two main components. The COL-
LABORATIVE FEEDBACK AGGREGATION layer (which runs
on the CLOUD SERVICE) collects and aggregates the feedback
received from the several homes and it periodically transmits
personalized updates to each target home. On the other hand,
the SEMANTIC CORRELATION UPDATER algorithm (which
runs in the home’s gateway) is in charge of analyzing the per-
sonalized update in order to improve the semantic correlations
produced by the ontology.

C.I Collaborative Feedback Aggregation:
The CLOUD SERVICE continuously receives and stores

feedback transmitted by the participating homes. Each feed-
back item f is represented by a vector f = 〈et, ac, o〉, where
et is an event type, ac is an activity class, and o is the origin
of the feedback.

Based on the received feedback, the CLOUD SERVICE peri-
odically transmits personalized feedback items to each target
home. A personalized feedback item is represented by a vector

〈et, ac, p, s〉, where p ∈ (0, 1] is the predictiveness of event
type et for activity class ac computed based on feedback items,
and s ∈ (0, 1] is the estimated similarity between the feedback
origins and target.

The COLLABORATIVE FEEDBACK AGGREGATION layer is
in charge of computing personalized feedback items based
on the received feedback. In order to measure the similarity
between the origin and target of a feedback, that module relies
on a similarity function sim : H × O → [0, 1], where H is
the set of targets, and O is the set of origin environments. The
output of sim(h, o) is a value between 0 and 1. Of course, the
most appropriate definition of the target environment features,
as well as the method to compute sim values, depend on the
addressed application.

Based on a multiset F of feedback items, the module com-
putes personalized feedback items for each target environment.
In particular, consider a target h. At first, for each event type
et and activity class ac, the following formula computes the
personalized feedback support:

supp(et, ac, h, F ) =
∑

f=〈et,ac,o〉∈F

sim(h, o).

In order to exclude unreliable feedback, the CLOUD SER-
VICE transmits only personalized feedback whose support
is larger than a threshold σ. For each reliable personalized
feedback, the module computes its predictiveness value:

pred(et, ac, h, F ) =
supp(et, ac, h, F )∑

aci∈A
supp(et, aci, h, F )

,

which is the normalization of et’s support values, distributed
over all the activity classes.

Finally, the module computes the estimated similarity as the
median value of the similarity between the feedback items’
origin and the target:

s(et, ac, h, F ) = median
f=〈et,ac,o〉∈F

sim(h, o).

C.II Semantic Correlation Updater:
Periodically, each home receives an update from the CLOUD

SERVICE consisting of a set P of personalized feedback items.
The SEMANTIC CORRELATION UPDATER algorithm analyzes
P along with the semantic correlations inferred by the ontol-
ogy in order to refine the semantic correlations. We denote
OSC(et, ac) as the semantic correlation between et and ac
computed by the ontology, while SC(et, ac) the one computed
by our algorithm.

The pseudo-code of the SEMANTIC CORRELATION UP-
DATER algorithm is shown in Algorithm 1. At first, the
algorithm initializes the current semantic correlations with the
ones computed by the ontology. Then it initializes the set U
of unpredictive event types:

U = {et | predAct(et) = ∅}

U contains all the event types which the current ontology
does not consider predictive for any activity. Then, the algo-
rithm iterates on each personalized feedback item 〈et, ac, p, s〉



Algorithm 1: Semantic correlation updater
Input: A set of personalized feedback items
P = {〈et1, ac1, p1, s1〉, 〈et2, ac2, p2, s2〉, . . . }, semantic correlation
function OSC computed by the ontology, and set U of unpredictive events

Output: Refined semantic correlation function SC
1: SC ← OSC
2: newevents ← ∅
3: for each 〈et, ac, c, s〉 ∈ P do
4: if et ∈ U then
5: SC(et, ac)← c
6: if et /∈ newevents then
7: newevents← newevents ∪ {et}
8: for each aci ∈ A s.t. aci 6= ac do
9: SC(et, aci)← 0

10: end for
11: end if
12: else if OSC(et, ac) = 0 then
13: acont ← an activity acj ∈ A s.t. OSC(et, acj) > 0

14: SC(et, acont)← SC(et,acont)

1+s·SC(et,acont)

15: SC(et, ac)← s · SC(et, acont)
16: for each aci ∈ A do
17: if aci 6= aont and aci 6= ac then
18: SC(et, aci)← SC(et, aci) · (1− SC(et, ac))
19: end if
20: end for
21: end if
22: end for
23: return SC

contained in P in order to update the semantic correlations
produced by the ontology. If et belongs to U , SC(et, ac) is set
to its predictiveness value p. Moreover, if et is observed for the
first time during the current iteration (i.e., if it is not yet part of
the set newevents), the semantic correlation value SC(et, aci)
for any other activity class aci 6= ac is initialized to 0, and et
is added to the set of new events. Intuitively, since unpredictive
event types have uniform semantic correlations for all the
activities, they are usually queried more than other event types
since they contribute most in increasing the entropy value.
This makes the predictiveness values provided by the CLOUD
SERVICE reliable to be used as semantic correlations for et,
thus overriding the uniform semantic correlations inferred by
the ontology.

In the case of et /∈ U , we update the semantic correlations
only if SC(et, ac) is 0. Indeed, our algorithm does not modify
the non-zero semantic correlations inferred by the ontology,
since they are considered reliable. Instead, whenever a new
semantic correlation between et and ac is discovered from
a personalized feedback item, it is necessary to correspond-
ingly scale all the other semantic correlations regarding et
so that SC(et, ac) remains a distribution probability (i.e.,∑
ac∈A

SC(et, ac) = 1).

Hence, we select a random activity acont correlated to et
according to the ontology (i.e., such that OSC(et, acont) >
0). Then we scale SC(et, acont) considering the estimated
similarity value s:

SC(et, acont) :=
SC(et, acont)

1 + s · SC(et, acont)

Since the event types for which the ontology already pro-
vided a semantic correlation are generally less queried, it is not
reliable to use the predictiveness value to update the semantic

correlations. This is why we use the estimated similarity s
instead. The next step consists in updating SC(et, ac):

SC(ac, et) := s · SC(et, acont)

Finally, we update the semantic correlations of all the
remaining activities acj (such that acj 6= acont and acj 6= ac)
in the following way:

SC(et, acj) := SC(et, acj) · (1− SC(et, ac)).

It can be easily verified that, by construction, Algorithm 1
enforces property (1) introduced in Section III; i.e., given an
event type et, the revised SC(et, ac) function is a probability
distribution over all ac values.

After each update, the function SC(et, ac) computed by
our algorithm thus replaces OSC(et, ac) for both the QUERY
DECISION and MLNNC ACTIVITY RECOGNITION layers.

V. EXPERIMENTAL EVALUATION

In order to evaluate our system, we use the well-known
CASAS dataset [31], [32]. This dataset includes eight high-
level ADLs performed by 21 subjects in a smart-home. Several
sensors were deployed to monitor movements, use of water
and interaction with objects, doors, and drawers. During the
data collection, one subject at a time was present in the smart-
home environment. Each subject was instructed to perform the
following ADLs: fill medication dispenser (ac1), watch DVD
(ac2), water plants (ac3), answer the phone (ac4), prepare
birthday card (ac5), prepare soup (ac6), clean (ac7), and
choose outfit (ac8). The activities were performed both in
sequential and interleaved fashion, and their execution time
and order were up to the subject. Due to limited space, we refer
the reader to the original publication concerning the floor plan
of the flat, the sensor positions, and a more detailed description
of the activities [32].

We used the CASAS dataset to simulate 21 apartments with
identical sensing infrastructures but inhabited by different sub-
jects. This setup resembles the one of a residence for elderly
people consisting of several similar apartments. We fixed the
similarity sim(h1, h2) between each pair of apartments to
0.5, since the sensing infrastructures are identical (i.e., their
similarity is 1), while the profiling of the subjects is unknown.

During a pre-processing phase, we removed from the dataset
the occurrences of those motion sensors which we found out to
be noisy; i.e., producing measurements essentially independent
from the performed activities. Most noisy motion sensors were
those placed in locations irrelevant for the activity recognition
task. Other ones triggered too many events, possibly due to
excessively high sensitivity or too wide coverage area. Hence,
we kept motion sensor events from 7 devices only1.

We performed leave-one-subject-out cross validation. In
each fold, NECTAR collects feedback items from 20 subjects
and uses them to update semantic correlations for the remain-
ing one. Table I summarizes our overall experimental results.

1Those sensors are identified as M02, M03, M04, M05, M13, M23, and
M24 in the dataset.
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Fig. 2. The impact of entropy and feedback support thresholds on the number of issued feedback queries and average recognition rates of NECTAR.

TABLE I
RESULTS (F1 SCORE) OF THE PROPOSED ACTIVITY RECOGNITION

METHOD COMPARED TO RELATED WORK FOR INTERLEAVED ACTIVITIES.

Activity Supervised Unsupervised NECTAR NECTAR
machine

learning [33]
probabilistic

reasoning [15]
without active

learning
with active

learning
ac1 0.80 0.74 0.78 0.82
ac2 0.87 0.84 0.85 0.87
ac3 0.59 0.36 0.70 0.71
ac4 0.52 0.49 0.67 0.72
ac5 0.88 0.83 0.77 0.78
ac6 0.85 0.67 0.89 0.89
ac7 0.57 0.36 0.46 0.63
ac8 0.84 0.69 0.71 0.82

avg. 0.74 0.70 0.73 0.78

The results show that the application of our collaborative
active learning method increases recognition performance of
about 5%. In order to compare NECTAR with state-of-the-
art techniques, we also implemented the supervised method
proposed in [33], which relies on machine learning and time-
based feature extraction. As machine learning algorithm we
used Random Forests, since it is commonly used in activity
recognition systems. We executed the experiments using that
method with the same dataset using leave-one-subject-out
cross validation. Results show that NECTAR outperforms
the supervised method in terms of average F1, and achieves
equal or better results in recognizing 6 activities out of
8. The supervised technique performs significantly better in
recognizing prepare birthday card (ac5). The main reason is
that the classifier was trained on temporal-based features that
represent relations between sensor events. Thus, the order of
certain sensor events but also their temporal distance leads
to a reliable pattern for ac5 in this dataset. We also com-
pared NECTAR with a recent unsupervised method proposed
in [15], where correlations are extracted from the Web and
used by a probabilistic reasoner. Results show that NECTAR
outperforms that method in recognizing 7 activities out of 8
on the CASAS dataset.

Inspecting the results of NECTAR, we observe that with the
introduction of active learning the recognition rate remains
stable or increases. Investigating the results in detail, we
notice that the recognition rate of clean has a strong increase
(ac7, +17%), while prepare soup (ac6) remains unchanged.
A deeper investigation pointed out that activity ac6 was

TABLE II
RESULTS (F1 SCORE) OF NECTAR WITH VARYING ENTROPY THRESHOLD.

Class Entropy threshold λ
0.3 0.6 0.9 1.2

ac1 0.819 0.813 0.824 0.811
ac2 0.875 0.874 0.869 0.876
ac3 0.743 0.739 0.709 0.730
ac4 0.719 0.724 0.724 0.724
ac5 0.813 0.807 0.784 0.780
ac6 0.896 0.894 0.887 0.886
ac7 0.659 0.645 0.633 0.629
ac8 0.859 0.863 0.824 0.774

avg. 0.798 0.795 0.782 0.776

almost never queried, since its initial semantic correlations
derived from our ontology were already sufficient to accurately
recognize it. Regarding the other activities, we report an
improvement which varies from 1% to 11%.

Considering the individual activities, Figure 3 highlights
that there are almost no conflicting activity classes and that
in general each activity is well recognized. However, we
observe that clean (ac7) is often confused with the remaining
activities. Indeed, this is due to the fact that clean is not clearly
bound to a certain location or sensorized object; hence, during
that activity the inhabitant triggers several sensor events that
indicate the execution of other activities.

The above mentioned results were obtained setting the
entropy threshold to 0.9. As this value directly influences the
number of queries issued by the system, it is an important
parameter to consider. Figure 2a clarifies that on average a user
had to answer 6 questions to achieve the reported improvement
of 5%. In the considered dataset, only one day of ADLs
for each subject was available. We expect that the average
number of queries in a day for a specific user will significantly
decrease over time, thus converging to 0 queries after few days.
It is important to note that lowering the entropy threshold
would still improve our results (see Figure 2b) but would
determine a significantly higher number of feedback queries
(see Figure 2a). As expected, we observe a tradeoff between
the overall improvement of the recognition rate and the user’s
effort spent to provide feedback.

Table II outlines the individual F1 scores for each activity
achieved using different values of the entropy threshold. The
results confirm that the mentioned tradeoff holds for almost
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every activity. An exception is answer the phone (ac4) as the
recognition rate remains almost unchanged. This can be due to
the fact that the entropy computed on the segments related to
this activity is always very high; hence, increasing the entropy
threshold does not reduce the number of queries.

Besides entropy, we also assessed the impact of the feedback
support value σ, which ensures that a personalized feedback
item is transmitted only if it was derived from a sufficient
number of feedback items from similar homes. Figure 2c
outlines that when σ drops under a certain value, the system
uses unreliable feedback, obtaining a detriment of recognition
rates. On the contrary, using an excessively large value of σ,
the system filters out relevant feedback that could improve
recognition rates.

In general, our results clearly show that collaborative active
learning is a reliable tool to discover new semantic correlations
and in turn to improve the recognition rate. This is especially
the case for sensors that do not carry explicit semantic infor-
mation with respect to activities. For instance, our ontology did
not cover the events related to motion sensors. Our system
was able to automatically learn the semantic correlation for
those sensors’ types improving the recognition rate. Moreover,
our method required on average only 6 feedback queries for
inhabitant, ranging from a minimum of 3 to a maximum of
10. We believe that this number of questions is acceptable
in many application domains, especially if user-friendly and
context-aware interfaces for feedback acquisition are used.

VI. DISCUSSION

The preliminary results reported in Section V are promising,
but several aspects still need to be deeply investigated.

A. Interaction with the inhabitant

In order to make our system practical in real scenarios,
we aim to investigate important contextual aspects that should
be considered when evaluating whether to ask a feedback or
not. These aspects include the number of queries that have
already been asked recently, the current mood of the subject
and whether he/she can be currently interrupted.

Moreover, the interface used to query the user should be
intuitive and user-friendly. We are developing a prototype
of such interface, which also includes a speech recognition
module in order to let the inhabitant answer queries in natural
language. Voice interface is particularly suitable for elderly
subjects, thus facilitating their interaction with our system. We
will carry out extensive experiments to understand the impact
of this interface in real scenarios.

B. Privacy aspects

For the sake of this work, we assumed that the CLOUD SER-
VICE is trusted, while in a real scenario it can be considered
an untrusted honest-but-curious third party. Hence, there is
the need of protecting the confidentiality and integrity of user
and infrastructure profiles, as well as the information about
events and activities provided by the feedback. We intend to
investigate solutions based on homomorphic encryption [34]
and secure multi-party computation [35] in order to let the
CLOUD SERVICE run its algorithms on encrypted data.

C. Ontology engineering

Even if our system relies on a generic and possibly incom-
plete ontology which considers general relationships between
activities and home infrastructure, the engineering effort is still
noticeable. We believe that this effort could be reduced by re-
using and extending existing ontologies. However, one could
argue that it would be easier to manually estimate correlations
among activities and sensor events based on common sense.
However, manual modeling is unfeasible in realistic scenarios.
For instance, the dataset we used in our experiments involves
70 sensors and 8 activities, resulting in 560 different values of
semantic correlations. Other real-world deployments are much
more complex.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented a novel framework which exploits
collaborative active learning to improve a generic ontological
model of activities manually crafted by knowledge engineers.
Experimental results show that our framework significantly
improves the overall recognition rate, while issuing a limited
number of queries to the inhabitants. In future work, we intend
to extend our framework to exploit feedback for learning
correlations between activities and temporal patterns of events.
Moreover, the current system re-evaluates correlations values
from scratch every time an update is received. We plan to
improve the system by devising an algorithm to continuously
adjust those correlations as the updates are received.
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