
Modeling and Reasoning with ProbLog:
An Application in Recognizing Complex Activities

Timo Sztyler
University of Mannheim

Mannheim, Germany
timo@informatik.uni-mannheim.de

Gabriele Civitarese
University of Milano

Milano, Italy
gabriele.civitarese@unimi.it

Heiner Stuckenschmidt
University of Mannheim

Mannheim, Germany
heiner@informatik.uni-mannheim.de

Abstract—Smart-home activity recognition is an enabling tool
for a wide range of ambient assisted living applications. The
recognition of ADLs usually relies on supervised learning or
knowledge-based reasoning techniques. In order to overcome the
well-known limitations of those two approaches and, at the same
time, to combine their strengths to improve the recognition rate,
many researchers investigated Markov Logic Networks (MLNs).
However, MLNs require a non-trivial effort by experts to properly
model probabilities in terms of weights. In this paper, we propose
a novel method based on ProbLog. ProbLog is a probabilistic
extension of Prolog, which allows to explicitly define probabilistic
facts and rules. With respect to MLN, the inference mode of
ProbLog is based on the closed-world assumption and it has
faster response times. We propose a simple and flexible ProbLog
model, which we exploit to recognize complex ADLs in an online
fashion. Considering a dataset with 21 subjects, our results show
that our method reaches high F-measure (83%). Moreover, we
also show that the response time of ProbLog is satisfying for
real-time applications.

I. INTRODUCTION

In the last years, the rapidly aging society required a rapid
surge in assisted living technologies to reduce health care
costs [1]. The miniaturization and the availability of cheap
sensing infrastructures allow to build the so called smart-
homes: homes instrumented with sensors and actuators to help
people in aging at home in safety and independence [2]. One of
the most important application of smart-homes is the recog-
nition of the Activities of Daily Living (ADLs) performed
by the inhabitants. Indeed, continuously and unobtrusively
monitoring the execution of ADLs is crucial for several
applications, like the early diagnosis of cognitive diseases [3]
or the detection of emergency situations [4].

Activity recognition techniques are divided into two cate-
gories: data-driven and knowledge-based. The former is based
on supervised learning while the latter exploits logic for-
malisms (e.g., ontologies) to formally represent sensor events
and activities. In order to combine the strength points of
both approaches, several studies investigated Markov Logic
Networks (MLN) [5]–[8]. This is a probabilistic logic that
enables uncertain inference by generalizing first-order logic.
However, even if MLN is a powerful tool that has a strong
expressiveness in respect of logic formalisms, there are draw-
backs considering the model’s representation, interpretation,
and intuition [9]. In this work, we focus on ProbLog [10],
a probabilistic version of Prolog. ProbLog and MLN are

closely related and there are several works that investigate the
connection between them [9]. However, especially for activity
recognition, there are considerable differences. First, ProbLog
considers probabilities while MLN relies on weights which
make it less suitable as a knowledge representation tool [9].
Indeed, even if the translation of probabilities into weights
is feasible, it requires a non-trivial effort by an expert. In
contrast, in ProbLog the probability values (e.g., manually
designed or mined from a dataset) can be directly used without
any transformation. Further, ProbLog is faster concerning
answering queries as it only instantiates required groundings
which make it more suitable in the light of larger knowledge
bases. More precisely, the inference mode in ProbLog usually
computes an interval on the probability of queries, while MLN
is typically based on the MPE principle approximating a most
likely state given some evidence [9]. In this context, ProbLog
is defined by terms of groundings of probabilistic facts while
MLN is defined through sets of weighted ground instances
of the formulas. Finally, ProbLog relies on a closed-world
assumption while MLN uses an open-world assumption. To the
best of our knowledge there exists almost no work in respect
of using ProbLog for activity recognition. We identified only
a single work [11] that focused on rewriting event calculus
with ProbLog.

In this paper, we study how to use ProbLog to efficiently
recognize ADLs in almost real-time. For the sake of simplicity,
we focus on a supervised approach which consists in mining
a dataset to derive prior probabilities between sensor events
and ADLs. Indeed, those probabilities could be also computed
considering unsupervised approaches, e.g., semantic reason-
ing [8] or web-based mining [12], [13]. However, we focus
on a supervised approach to evaluate the impact of ProbLog
in recognizing activities. For that purpose, we performed
experiments with a well-known real-world dataset, named
CASAS [14], covering eight ADLs which were performed by
21 individuals.

The main contributions of our work are the following:
• We present a ProbLog-based method to efficiently rec-

ognize ADLs in an online fashion with an F-measure of
83%.

• We show the potential advantages of ProbLog’s marginal
inference by achieving an F-measure of 93% considering
the top-2 ranked activities.

• We clarify the benefits of ProbLog and introduce a
guidance on how to practically write ProbLog programs
for activity recognition.

The paper is structured as follows: In Section II, we
introduce the theoretical part concerning ProbLog. Then, in
Section III, we present our method in terms of how to create
a ProbLog program and subsequently the implementation of
our online activity recognition approach. Section IV shows our
experimental results. Finally, Section V covers the conclusion
and future work of this paper.

II. PROBLOG

As the name already suggests, ProbLog [10] is an extension
of Prolog [15]. More precisely, Prolog is a declarative logical
programming language that expresses concepts in terms of
facts and rules while ProbLog enables to associate these facts
and rules with mutually independent probabilities, i.e., P (A∩
B) = P (A)P (B). Thus, certain dependencies or correlations
between triggered sensor events or ADLs have to be explicitly
modeled.

In general, a ProbLog program (a.k.a. model) specifies a
probability distribution over all possible worlds according to
the distribution semantic [16]. In this context, a world ω can
be considered as a possible and valid instance of our program.
As a program consists of a set of defined clauses ci that are
labeled with probabilities pi, we define a program by T =
{p1 : c1, . . . , pn : cn} while the probability of a world ω, i.e.,
a certain instance of the program T , is defined as follows:

P (ω|T) =
∏
ci∈ω

pi
∏

ci∈ωT \ω

(1− pi) (1)

where ωT \ω describes the set of clauses that were not
instanced in w but are part of T , i.e., the set of false ground
probabilistic atoms.

In ProbLog, we have to execute a query to answer a certain
question, e.g., how likely a certain instance of a clause is.
Unlike in Prolog, where a query can only succeed or fail, in
ProbLog we have to compute the probability that it succeeds.
In this context, the success probability P (q|T) of a query q
in a program T is defined as follows:

P (q|ω) =

{
1, ∃θ : ω |= qθ

0, otherwise
(2)

P (q, ω|T) = P (q|ω) · P (ω|T) (3)

P (q|T) =
∑
ω⊆W

P (q, ω|T) (4)

where W is the set of all possible worlds in respect of
T . Hence, the probability that q succeeds is the sum of the
probabilities of those worlds where q can succeed. In other
words, the success probability of query q corresponds to the
probability that the query q has a proof, given the distribution
over logic programs.

III. METHOD

In the following, we introduce a comprehensive example
how we use ProbLog for recognizing ADLs. Then, we present
our approach, i.e., how we perform online activity recognition.

A. ProbLog for Activity Recognition
As our smart-home is equipped with sensors that detect

interactions with items and furniture but also presence in
certain locations, our sensor network produces a continuous
stream of sensor events. In this context, a sensor event is
characterized by a unique identifier, a sensor type, and a
timestamp. As a ProbLog program consists - as Prolog - of
a set of definite clauses, every clause ci is labeled with a
probability pi. Thus, we have to define our sensor events as
part of our program:

Program Snippet 1 (Event Clauses): Suppose that our
sensor network produced two sensor events e1 and
e2, then we have to define the following clauses with
probability 1.0, i.e., as ground truth in our program.

1 .0 ::event(e1 ,water , 5).
1 .0 ::event(e2 , absent , 6).

This implies that these two clauses have to be part
of each possible world. Please note that strings that
start with a lowercase character (e.g. water) are not
considered as variables but values. The operator “::”
enables to define probabilistic predicates.

As these sensor events were initially triggered by a resident,
we aim to determine the activities that were performed at that
time. In this context, we distinguish between an activity class
and an activity instance where the former is considered as
an abstract concept of an activity (e.g., clean) while the latter
describes the actual occurrence of such an activity class during
a certain time period. Consequently, we also have to define
clauses that represent these facts. The following statement
is called an annotated disjunction. It expresses that at most
one of these choices is true. There is always an implicit null
choice which states that none of the options is taken. In this
example, however, that extra state has zero probability because
the probabilities of the other states sum to one:

Program Snippet 2 (Instance Clauses): We assume that
two activity instances ai1 and ai2 took place in our
smart-home. Further, we consider two activity classes:
ac1 (clean) and ac2 (water plants). Initially, we define
that the probability is equally distributed concerning
that a certain activity class is assigned to an activity
instance.

0 .5 ::inst(ai1 , ac1 , 0 , 7); 0 .5 ::inst(ai1 , ac2 , 0 , 7).
0 .5 ::inst(ai2 , ac1 , 4 , 10); 0 .5 ::inst(ai2 , ac2 , 4 , 10).

Note that these clauses do not imply that these two in-
stances have to reflect different activities. The operator
“;” represents a logical XOR.

P: 0.0625 P: 0.0625 / 0.05625 P: 0.0625 P: 0.0625

CA

3 X Y

1 CB

3 S T

1 CA

3 X Y

2 CB

3 X T

2

World 1 World 2 / 3 World 4 World 5

P: 0.0625 P: 0.0625 / 0.05625

DA

3 X Y

1 DB

3 S T

1 DA

3 S Y

2 DB

3 X T

2

World 6 World 7 / 8 World 9 / 10 World 11 / 12

P: 0.0625 / 0.05625 P: 0.0625 / 0.05625

P: 0.0625 P: 0.0625 / 0.05625 P: 0.0625 P: 0.0625

CA

4 X Y

1 CB

4 S Y

1 CA

4 X Y

2 CB

4 X Y

2

World 13 World 14 / 15 World 16 World 17

DA

4 X T

1 DB

4 S T

1 DA

4 S T

2 DB

4 S T

2

World 18 World 19 / 20 World 21 / 22 World 23 / 24

P: 0.0625 P: 0.0625 / 0.05625 P: 0.0625 / 0.05625 P: 0.0625 / 0.05625

Instance of

Inst(X, Y, A, B)

Instance of

producedBy(Z, X)

Instance of

related(Z, Y)

Worlds

Fig. 1. It depicts all possible worlds that will be constructed considering
Program Snippets 1-5. For reasons of clarity, we excluded the random variable
bond(X, Y). The boxes which represent two worlds (darker background) depict
if the rule of Snippet 5 is true or false. For the remaining worlds this rule
is always false. The probability of a world is computed by multiplying the
probability of the individual instances of the random variables. If someone
wants to know how likely it is that sensor event e1 (Z) is related to waterplants
(Y), we have to sum up the probabilities of each world which covers
related(e1,waterplants) and subsequently normalize this value. In this figure,
this instance is derived from the combinations 1B and 2D and by implication
has a probability of 0.909. The related ProbLog program can be found here1.

Subsequently, we also have to associate the recorded sensor
events and the defined activity instances. Analogous to the pre-
ceding program snippet, we also define annotated disjunction
clauses to ensure that each sensor event is assigned to exactly
one activity instance. In this context, to handle possible sensor
network errors, i.e., recorded sensor events which actually did
not occur and which should not be assigned to any activity
instance, can be handled by assigning probability values which
do not sum up to one.

Program Snippet 3 (Domain Constraints): Suppose
that two activities were executed: ai1 and ai2. Then the
following clauses ensure that each event is assigned to
exactly one activity instance.

0 .5 ::producedBy(e1 , ai1); 0 .5 ::producedBy(e1 , ai2).
0 .5 ::producedBy(e2 , ai1); 0 .5 ::producedBy(e2 , ai2).

This implies that each event was produced either by
clean (ai1) or water plants (ai2) with equal probability.

For evaluation, we express dependencies of random vari-
ables on the preceding introduced random variables. This
includes the relation between a sensor event and an activity
class but also between an activity instance and an activity class.
For that purpose, the following rules consider the concept of
parentness where the right part of the clause are parents and
enable to derive the child. Thus, if the parents exist also the
child has to exist but the child can exist without the parents.

1https://sensors.informatik.uni-mannheim.de/#results2018modelling

Program Snippet 4 (Hidden Predicates): Assume that
“inst(ai1,ac1,0,7)” and “producedBy(e1,ai1)” are part
of our world. Then the following rules derive that
“related(e1,ac1)” and subsequently also “bond(ai1,
ac1)” are part of that world.

related(Z ,Y) :- inst(X ,Y ,A,B), producedBy(Z ,X).

bond(X ,Y) :- related(Z ,Y), inst(X ,Y ,A,B).

The uppercase letters are variable arguments. Further,
“:-” can be considered as implication where the left
part is the head.

Indeed, considering all introduced program snippets as a
united ProbLog program enables to query the random variables
related(Z, Y) and bond(X, Y), i.e., to compute the probabilities
of all possible instantiations to determine the most probable
assignment. Obviously, executing this program would not be
helpful as everything has the same probability. For that reason,
we enhance our ProbLog program with knowledge-based and
temporal constraints.

Program Snippet 5 (Probabilistic Facts): The following
rule states that it is most likely that the water sensor
was used in context of water plants. This kind of
rule allows to incorporate, for instance, previously
computed prior probabilities.

0 .9 ::related(X ,waterplants):-event(X ,water ,T).

Note that assigning a probability of 1.0 to this rule
implies that the corresponding activity instance has to
be assigned to the class water plants.

Program Snippet 6 (Temporal Constraints): Intuitively,
temporally close sensor events more likely belong to
the same activity instance instead of distant ones. For
that purpose, we define closeAfter(T1,T2) as a numer-
ical constraint that allows to compute the distance in
time of two events and compares it to a threshold.

closeAfter(T1 ,T2):-T1 >T2 ,T3 is T1 - T2 ,T3 <2 .

0 .6 ::producedBy(X2 ,I):-event(X1 ,Y1 ,T1), event(
X2 ,Y2 ,T2),closeAfter(T2 ,T1),producedBy(X1 ,I).

The “,” operator represents a logical AND where “is”
signifies an assignment.

Program Snippet 7 (Knowledge-based Facts): Assume
that we know that the can is only used for waterplants.
When water is taken shortly afterwards, then it is very
likely that this event also belongs to waterplants.

0.9 ::bond(Y,waterplants):-event(X1,water,T1),event(
X2 ,can,T2),closeAfter(T1 ,T2),producedBy(X1 ,Y).

In general, it should be avoided to assign a probability
of 1.0 to prevent contradictions.

Please note that Program Snippets 5-7 are limited in respect
of the number of rules and that our final program which we
consider for experiments is more comprehensive1. Besides,
including such rules has to be done with caution as they can
also introduce side-effects. For instance, if we consider the
Program Snippets 4 and 5, it points out that there is no restric-
tion that avoids to instantiate the predicates related(e1, clean)
and related(e1, waterplants) as the first one was derived by
Program Snippet 4 and the second by Program Snippet 5. This
violates our assumption that a sensor event always has a one-
to-one relationship to an activity class. Hence, in this case, we
have to explicitly restrict the assignment of an activity class
to a sensor event.

Program Snippet 8 (Domain Constraints): Presuming
that we only have two activity classes, the following
rule ensures that within a world either clean or water-
plants is associated with sensor event e1:

r1 :- related(e1, ac1), \+related(e1, ac2);
related(e1, ac2), \+related(e1, ac1).

evidence(r1, true).

In this context, “\+” reflects a NOT operator. The
evidence function is necessary to avoid the construction
of worlds where this rule is violated, i.e., false.

Finally, to compute the probabilities of all possible instances
of our random variables, we have to query those. For that
purpose, ProbLog allows to execute marginal inference by,
e.g., just adding query(related(,)). to the program. In this
context, ProbLog constructs all necessary worlds to compute
the probability of each instance of related(Z, Y). Based on our
introduced program snippets, Figure 1 illustrates these worlds
and also explains the composition and probabilities.

B. Implementation
The essential idea of our approach is to segment in almost

real-time the continuous stream of sensor events into windows.
For each window, we build a ProbLog program to compute
the probability distribution over the considered activities. In
the following, we go into detail and explain this process.

B.I. Extracting prior probabilities
The training phase of our recognition method consists in

deriving for each event type eti (e.g., “water” meaning that
the water faucet was touched) the prior probability distribution
over the set of considered activities A:

P (A=ack|E=eti)=
P (A=ack, E=eti)

P (E=eti)
=

freq(ack, eti)∑
acj∈A

freq(acj , eti)

where P (A=ack|E= eti) represents the likelihood that eti
is related to the activity class ack, while freq(ack, eti) is the
number of times that ack triggers eti in the dataset.

The resulting probabilities are incorporated as probabilistic
facts in our ProbLog program.

B.II. Segmentation
We consider a segmentation strategy based on sliding

windowing. In particular, we generate overlapping windows
where each window comprises n and overlaps by o consecutive
sensor events. The parameters n and o need to be chosen em-
pirically. Even if more sophisticated segmentation techniques
have been proposed in the literature [17]–[19], we choose a
simple approach to better evaluate the impact of ProbLog in
recognizing activities. Each window is independently analyzed
and classified as soon as it is finalized.

B.III. ProbLog Program Generation
For each window w, we generate a ProbLog program

(see Section III-A). In this context, the program covers for
each event ei ∈ w a corresponding clause (see Snippet 1).
Further, for simplification, we make the assumption that each
window represents or is part of a single activity instance aii.
Thus, the corresponding program of a window covers always
only one instance clause in respect of all considered activity
classes (see Snippet 2). Then, we add the required domain
constraints (see Snippets 3 and 8). Finally, considering the
computed probabilities P (A= ack|E = eti), we add for each
event ei ∈ w and each considered activity class ack ∈ A rules
which reflect these probabilities, i.e., that a certain event type
occurs in respect of a certain activity (see Snippets 5).

B.IV. Online Activity Recognition
Once a window w was finalized and the corresponding

ProbLog program generated, we immediately execute this
program. More precisely, we execute the query “query(
bond(ai1,)).”, which allows us to compute the probability
distribution over the set of activities A. We consider the
most likely activity as the predicted activity for w. In a
post-processing step, consecutive windows that were labeled
equally can be concatenated. Indeed, a possible extension
could be to combine the ranked activities with the classification
results on the previous windows to refine and smooth the
prediction (e.g., considering common-sense reasoning on the
temporal sequence of activities). We consider that as future
work.

IV. RESULTS

In the following, we present our experimental setup and
results. For that purpose, we use the well-known dataset of
Cook et al. [14], [20], named CASAS. This dataset covers
interleaved ADLs of twenty-one subjects acquired in a smart-
home environment. A sensor network collected data about
movement, temperature, use of water, interaction with objects,
doors, and a phone. In this context, eight different activities
were observed, i.e., answer phone (ac1), choose outfit (ac2),
clean (ac3), fill medication dispenser (ac4), prepare birthday
card (ac5), prepare soup (ac6), watch DVD (ac7), and water
plants (ac8). The order and expenditure of time were up to the
subject and it was allowed to perform the activities in parallel.
During the data collection only one single person was present
in the smart-home. To provide the possibility to reconstruct

TABLE I
RESULTS SHOW THE RECOGNITION RATE FOR THE INDIVIDUAL

ACTIVITIES FOR THE PROPOSED APPROACH.

Activity Precision Recall FP Rate F-measure
ac1 0.61 0.61 0.01 0.61
ac2 0.81 0.85 0.01 0.83
ac3 0.65 0.70 0.05 0.67
ac4 0.90 0.66 0.01 0.76
ac5 0.90 0.96 0.04 0.92
ac6 0.79 0.93 0.05 0.85
ac7 0.89 0.88 0.03 0.89
ac8 0.90 0.57 0.01 0.69

avg. 0.83 0.83 0.03 0.83

our approach and experiments, we want to point to a web
interface which is publicly available and allows to process
ProbLog programs1 as well as to our final ProbLog program2.

For the experiments, we choose empirically n = 6 and
o = 50% as our sliding window parameters. We compute the
prior probabilities considering all available data, i.e., subject-
independent. Table I shows the result and clarifies that all
activities are well recognized. The activity answer phone (ac1)
has the lowest (61%) while prepare birthday card (ac5) has
the highest (92%) recognition rate. The reason for the worse
performance of recognizing answer phone can be attributed
to our simple segmentation technique. Indeed, we only have
sensor events that indicate the start and stop of that activity
but usually several windows between these two events are
generated. Consequently, these interweaving windows are not
classified as answer phone since we analyze each window
separately. However, these interweaving windows cannot be
simply classified as answer phone as we also have to consider
situations where the phone is just touched or interleaved
activities were performed.

Considering precision and recall metrics, it points out
that especially fill medication dispenser (ac4) and water
plants (ac8) have very unbalanced values (i.e., the precision
is significantly higher than recall). These activities are not
characterized by a single sensor type, but they consist in
several variations of sensor event patterns. While most of these
patterns are clearly recognizable, there are also those which
are quite similar to the ones of other activities. In this context,
Figure 2 clarifies that these two activities are mainly confused
with clean (ac3) and prepare soup (ac6), i.e., activities which
take place in the same location or require partly the same
items. The confusion matrix also depicts that there are no
conflicting classes that stand out and that the classification
errors are minor and well distributed. Overall, the results show
that ProbLog is quite suitable for the recognition of complex
activities.

As we apply marginal inference, we have for each classified
window the probabilities of all considered activity classes,
i.e., it is possible to rank the individual activity classes from

1https://dtai.cs.kuleuven.be/problog/editor.html
2https://sensors.informatik.uni-mannheim.de/#results2018modelling

TABLE II
PERFORMANCE (F1) OF OUR APPROACH IN RESPECT OF WHETHER THE
CORRECT CLASS IS AMONG THE TOP-k RANKED RECOGNIZED CLASSES.

Activity Top-1 Top-2 Top-3
ac1 0.61 0.75 0.77
ac2 0.83 0.93 0.96
ac3 0.67 0.87 0.93
ac4 0.76 0.90 0.91
ac5 0.92 0.98 0.98
ac6 0.85 0.94 0.96
ac7 0.89 0.95 0.96
ac8 0.69 0.90 0.98

avg. 0.83 0.93 0.95

the most probable to the most unlikely. This enables to
apply, e.g., rules in a post-processing step in respect of the
preceding classified windows. In this context, Table II shows
the performance of our proposed approach if we consider
whether the correct activity class (ground truth) is among the
top-k ranked classes. It strikes that in 93% of all cases the
correct class in among the top-2 ranked classes (out of 8).
This militates for the quality of the ranking and also for the
reliability of our approach.

Finally, Figure 3 shows the empirical cumulative distribu-
tion function that describes the computational time needed
by our method on each window. In 52% of the cases the
computation time requires at most one second, while in 77%
of the cases it requires at most 3 seconds. Unfortunately, there
are some cases where the model requires more computational
effort. Indeed, for more or less 6% of the windows our method
takes more than 5 seconds (and up to 8) in order to derive
the most likely activity. However, we believe that these cases
are a minority and that in general our method achieves an
acceptable response time considering the target applications,
since our segmentation technique generates segments which
median length is 25 seconds. All experiments were performed
using only a single CPU core.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel technique for the online
recognition of complex ADLs in a smart-home environment

ac1 ac2 ac3 ac4 ac5 ac6 ac7 ac8

a
c
8

a
c
7

a
c
6

a
c
5

a
c
4

a
c
3

a
c
2

a
c
1

2 3 15 0 0 13 0 43

0 1 8 0 6 3 135 0

2 0 1 3 0 110 0 2

2 0 3 0 171 3 0 0

5 0 0 35 1 9 3 0

0 4 61 1 6 1 11 3

0 44 4 0 2 1 1 0

17 2 2 0 5 0 2 0

0

30

60

90

120

150

Fig. 2. The confusion matrix shows the classified windows. The x-axis
represents the predicted activity class while the y-axis the actual one.

0 1 2 3 4 5 6 7 8

Computation time of a segment (seconds)

0.0

0.2

0.4

0.6

0.8

1.0
C

u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Fig. 3. Cumulative distribution function of the computation time for a single
window.

based on ProbLog. Our method exploits simple hybrid prob-
abilistic and knowledge-based rules to reconstruct, for a win-
dow of consecutive sensor events, the probability distribution
over the considered activities. For that, we rely on prior
probabilities between sensor events and activities, which are
computed offline. The presented results show that our method
already reaches satisfactory recognition results even with a
simple segmentation strategy (83%). Moreover, considering
the target applications, the response time is satisfying (median,
one second per window) and we assume that using a smarter
segmentation algorithm could lead to even better performance.

The benefits of using ProbLog for activity recognition are
many. According to our previous experience with MLNs [8],
the representation of knowledge and probabilities is easier
and more straightforward, allowing to build programs more
intuitively and to reduce the gap between the domain expert
and the modeling framework. Moreover, since ProbLog con-
siders the closed-world assumption, it is more scalable with
respect to MLNs as less grounding operations are required.
Even if scalability is not required for the approach considered
in this paper, it is essential for other scenarios. For instance,
different sensing infrastructures may require to include a
higher number of sensor events for each window to accurately
detect ADLs. Further, the number of constraints may grow
with the time, since they can be learned from data or derived
from common-sense knowledge. As future work, we want
to fully exploit marginal inference in order to refine the
classification of the windows. Further, we will also consider
active learning techniques to personalize the recognition model
on the monitored subject, by correcting prior probabilities and
by learning ProbLog rules on-the-fly. Finally, we also aim
to extend our ProbLog model in order to cope with parallel
activities.

REFERENCES

[1] P. Rashidi and A. Mihailidis, “A survey on ambient-assisted living tools
for older adults,” IEEE Journal of Biomedical and Health Informatics,
vol. 17, no. 3, pp. 579–590, 2013.

[2] M. Chan, D. Estève, C. Escriba, and E. Campo, “A review of smart
homes - present state and future challenges,” Computer methods and
programs in biomedicine, vol. 91, no. 1, pp. 55–81, 2008.

[3] D. Riboni, C. Bettini, G. Civitarese, Z. H. Janjua, and R. Helaoui,
“Smartfaber: Recognizing fine-grained abnormal behaviors for early de-
tection of mild cognitive impairment,” Artificial Intelligence in Medicine,
vol. 67, no. Supplement C, pp. 57–74, 2016.

[4] T. Kleinberger, A. Jedlitschka, H. Storf, S. Steinbach-Nordmann, and
S. Prueckner, “An approach to and evaluations of assisted living systems
using ambient intelligence for emergency monitoring and prevention,”
in Universal Access in Human-Computer Interaction. Intelligent and
Ubiquitous Interaction Environments: 5th International Conference,
UAHCI 2009, Held as Part of HCI International 2009, San Diego,
CA, USA, July 19-24, 2009. Proceedings, Part II. Springer Berlin
Heidelberg, 2009, pp. 199–208.

[5] R. Helaoui, M. Niepert, and H. Stuckenschmidt, “Recognizing in-
terleaved and concurrent activities: A statistical-relational approach,”
in 2011 IEEE International Conference on Pervasive Computing and
Communications (PerCom). IEEE Computer Society, 2011, pp. 1–9.

[6] P. Chahuara, A. Fleury, F. Portet, and M. Vacher, “Using markov
logic network for on-line activity recognition from non-visual home
automation sensors,” Ambient Intelligence: Third International Joint
Conference, AmI 2012, Pisa, Italy, November 13-15, 2012. Proceedings,
pp. 177–192, 2012.

[7] D. Riboni, C. Bettini, G. Civitarese, Z. H. Janjua, and R. Helaoui,
“Fine-grained recognition of abnormal behaviors for early detection of
mild cognitive impairment,” in 2015 IEEE International Conference on
Pervasive Computing and Communications (PerCom). IEEE Computer
Society, 2015, pp. 149–154.

[8] D. Riboni, T. Sztyler, G. Civitarese, and H. Stuckenschmidt, “Unsuper-
vised recognition of interleaved activities of daily living through onto-
logical and probabilistic reasoning,” in Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing.
ACM, 2016, pp. 1–12.

[9] M. Bruynooghe, T. Mantadelis, A. Kimmig, B. Gutmann, J. Vennekens,
G. Janssens, and L. De Raedt, “Problog technology for inference in a
probabilistic first order logic,” in Frontiers in Artificial Intelligence and
Applications. IOS Press, 2010, pp. 719–724.

[10] L. De Raedt, A. Kimmig, and H. Toivonen, “Problog: A probabilistic
prolog and its application in link discovery,” in Proceedings of the
20th International Joint Conference on Artifical Intelligence. Morgan
Kaufmann Publishers Inc., 2007, pp. 2468–2473.

[11] A. Skarlatidis, A. Artikis, J. Filippou, and G. Paliouras, “A probabilistic
logic programming event calculus,” Theory and Practice of Logic
Programming, vol. 15, no. 2, pp. 213–245, 2015.

[12] P. Palmes, H. K. Pung, T. Gu, W. Xue, and S. Chen, “Object relevance
weight pattern mining for activity recognition and segmentation,” Per-
vasive and Mobile Computing, vol. 6, no. 1, pp. 43–57, 2010.

[13] D. Riboni and M. Murtas, “Web mining & computer vision: New
partners for object-based activity recognition,” in 2017 IEEE 26th
International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE). IEEE Computer Society, 2017,
pp. 158–163.

[14] D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, “CASAS:
A smart home in a box,” Computer, vol. 46, no. 7, pp. 62–69, 2013.

[15] W. F. Clocksin and C. S. Mellish, Programming in Prolog, 5th ed.
Springer Science & Business Media, 2003.

[16] T. Sato, “A statistical learning method for logic programs with distribu-
tion semantics,” in In Proceedings of the 12th International Conference
On Logic Programming (ICLP95). MIT Press, 1995, pp. 715–729.

[17] T. Gu, S. Chen, X. Tao, and J. Lu, “An unsupervised approach to activity
recognition and segmentation based on object-use fingerprints,” Data &
Knowledge Engineering, vol. 69, no. 6, pp. 533–544, 2010.

[18] G. Okeyo, L. Chen, H. Wang, and R. Sterritt, “Dynamic sensor data
segmentation for real-time knowledge-driven activity recognition,” Per-
vasive and Mobile Computing, vol. 10, no. Part B, pp. 155–172, 2014.

[19] J. Wan, M. J. O’Grady, and G. M. O’Hare, “Dynamic sensor event
segmentation for real-time activity recognition in a smart home context,”
Personal and Ubiquitous Computing, vol. 19, no. 2, pp. 287–301, 2015.

[20] G. Singla, D. J. Cook, and M. Schmitter-Edgecombe, “Tracking ac-
tivities in complex settings using smart environment technologies,”
International Journal of Biosciences, Psychiatry, and Technology, vol. 1,
no. 1, pp. 25–35, 2009.

