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Generate Discrete Random Variables

Summary

Summarizing

@ Systems can be modeled, including nontrivial components in the
form of random variables

@ Statistics allow to reliably run experiments and obtain results by
observations on these models

@ (Pseudo-)Random numbers can be generated algorithmically
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Generate Discrete Random Variables

Summary

Summarizing
@ Systems can be modeled, including nontrivial components in the
form of random variables
@ Statistics allow to reliably run experiments and obtain results by
observations on these models
@ (Pseudo-)Random numbers can be generated algorithmically

@ Next step: to generate observations of random variables
algorithmically

o Discrete Random Variables
e Continuous Random Variables
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Generate Discrete Random Variables

Main techniques

Main techniques for generating R.V.:
@ inverse transform
@ acceptance-rejection
@ composition
@ (alias)
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Generate Discrete Random Variables

Inverse transform for Discrete R.V.

See R code.
@ Example: generating a R.V. given its p.d.f.
@ Example: generating a binomial R.V.
@ Example: computing means through sampling
@ Example: generating a geometric R.V.
@ Example: generating a random permutation

A. Ceselli Simulation P.3 Gen. Random Variables 4/15



Generate Discrete Random Variables

Inverse transform for Continuous R.V.

Example: generating an exponential R.V. '
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By Skbkekas - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=9508326
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Generate Discrete Random Variables

Inverse transform for Continuous R.V.

In “forward” mode: input z, obtain u = P[X < z]
@ u=F(x)—»x=F'u)

Az -z — log(l B u) _ F—l(u)

Qu=1-—e¢ —>1—u=e —x =

In “inverse” mode: input u, obtain z|u = P[X < z]

Proposition: Let U be a uniform (0,1) R.V.. For any continuous
distribution function F, the R.V. X defined by

X =F1U)

has distribution F'. (proof on the blackboard).
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Generate Discrete Random Variables

Acceptance-Rejection

Still by Von Neumann. Principle:
@ A R.V. X needs to be generated, with p.d.f. f(x)
@ Another R.V. Y, with p.d.f. g(y), is known and easy to generate

@ You know that f(y)/g(y) <c¢ Vy
@ Idea:

@ generate a value y for Y (from g(y))
@ generate a value u for a uniformly distributed R.V. U

f()
c-g(y)

e otherwise iterate

Theorem: (a) The R.V. generated in this way has p.d.f. f(x), and (b)
the number of iterations needed to converge is a geometric R.V. with
expected value ¢ (proof on the blackboard).

o ifu< , then output X =y
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Generate Discrete Random Variables

Acceptance-Rejection: examples

Example: 4f at page 58.
Example: generating a normal R.V. (only 1 step missing , blackboard
discussion).
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Generate Discrete Random Variables

Composition

Principle:
@ A R.V. X needs to be generated, with C.D.F. F()

@ F() can be decomposedas F(x) = » a;- Fi(z), with > a; =1
=1 =1

@ Idea:

@ generate a value j for a (discrete) R.V. whose p.d.f. is given by «;
e generate a value for a R.V. whose C.D.F. is F}()

Theorem: the value obtained in this way is distributed according to
F().
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Generate Discrete Random Variables

Case Study: simulating normal R.V.

Generating a normal R.V. (blackboard discussion).
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Generate Discrete Random Variables

Simulating a Poisson Process

Case study: how to simulate a Poisson Process?

@ Option 1: simulate a Poisson R.V. (blackboard discussion)

@ Option 2: simulate interarrival times with exponential R.V.
(blackboard discussion)
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Copulas
Def.

a copula is a joint probability distribution C'(x, y) with both marginal
distributions being uniformly distributed in (0,1)

C(0,0) =
C(z,1) ==
C(lvy) =Y

foro0 <z,y <1.

E.g. we want H(z,y) for R.V. X and Y, begin F(x) and G(y) being
their CDF.

H(z,y) = PIX <2,V <y|] = P[F(X) < F(2),G(Y) < G(y)] =
C(F(x), G(y))
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Copulas

Algorithmically
@ You know F'(X) and G(Y), but not their joint CDF H(X,Y)
@ You know they are not independent
@ Sitill, you want to generate pairs of meaningful values
@ — generate values for the copula

@ — apply inverse transform method to get values of the original
distributions

Example: Gaussian Copula

@ Generate Z = (z1, z2) from bivariate Normal
(e.g. with a certain correlation p)

@ Obtain “random pairs of (correlated) uniform”
U = (u1,uz) = (®(21), 2(22))
(this joint distrib. is Gaussian copula)

@ Obtain “random custom” R = (F~1(uy), G (up))
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Copulas

A copula should model the dependencies between X and Y.
E.g. if we think X and Y to have linear correlation p, the values
generated by the copula should have linear correlation (approx.) p (not
implying linear correlation p between F'(X) and G(Y)).
Examples (blackboard)

@ Gaussian copula

@ Marshall-Olkin copula
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Copulas

Example: Marshall-Olkin copula

@ Suppose you have three types of shocks, each occurring with
exponential interarrival time (rate A1, A2, A3)

@ Suppose you have two components: one sensitive to shocks 1, 3,
one sensitive to shocks 2,3

@ how to generate joint inter-failure times?

A1
A2 + A3

BpYEDY

@ C(z,y) = min{z%y, zy”} with o = and
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