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Generate Discrete Random Variables

Summary

Summarizing
Systems can be modeled, including nontrivial components in the
form of random variables
Statistics allow to reliably run experiments and obtain results by
observations on these models
(Pseudo-)Random numbers can be generated algorithmically

Next step: to generate observations of random variables
algorithmically

Discrete Random Variables
Continuous Random Variables
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Generate Discrete Random Variables

Main techniques

Main techniques for generating R.V.:
inverse transform
acceptance-rejection
composition
(alias)
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Generate Discrete Random Variables

Inverse transform for Discrete R.V.

See R code.
Example: generating a R.V. given its p.d.f.
Example: generating a binomial R.V.
Example: computing means through sampling
Example: generating a geometric R.V.
Example: generating a random permutation
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Generate Discrete Random Variables

Inverse transform for Continuous R.V.

Example: generating an exponential R.V. 1

For 0 < x <∞

f(x) = λ · e−λ·x F (x) = 1− e−λ·x

1By Skbkekas - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=9508326
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Generate Discrete Random Variables

Inverse transform for Continuous R.V.

In “forward” mode: input x, obtain u = P [X ≤ x]

u = F (x)→ x = F−1(u)

u = 1− e−λ·x → 1− u = e−λ·x → x =
− log(1− u)

λ
= F−1(u)

In “inverse” mode: input u, obtain x|u = P [X ≤ x]

Proposition: Let U be a uniform (0, 1) R.V.. For any continuous
distribution function F , the R.V. X defined by

X = F−1(U)

has distribution F . (proof on the blackboard).
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Generate Discrete Random Variables

Acceptance-Rejection

Still by Von Neumann. Principle:
A R.V. X needs to be generated, with p.d.f. f(x)

Another R.V. Y , with p.d.f. g(y), is known and easy to generate
You know that f(y)/g(y) ≤ c ∀y
Idea:

generate a value y for Y (from g(y))
generate a value u for a uniformly distributed R.V. U

if u ≤ f(y)

c · g(y)
, then output X = y

otherwise iterate

Theorem: (a) The R.V. generated in this way has p.d.f. f(x), and (b)
the number of iterations needed to converge is a geometric R.V. with
expected value c (proof on the blackboard).
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Generate Discrete Random Variables

Acceptance-Rejection: examples

Example: 4f at page 58.
Example: generating a normal R.V. (only 1 step missing , blackboard
discussion).
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Generate Discrete Random Variables

Composition

Principle:
A R.V. X needs to be generated, with C.D.F. F ()

F () can be decomposed as F (x) =

n∑
i=1

αi · Fi(x), with
n∑
i=1

αi = 1

Idea:
generate a value j for a (discrete) R.V. whose p.d.f. is given by αi

generate a value for a R.V. whose C.D.F. is Fj()

Theorem: the value obtained in this way is distributed according to
F ().
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Generate Discrete Random Variables

Case Study: simulating normal R.V.

Generating a normal R.V. (blackboard discussion).
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Generate Discrete Random Variables

Simulating a Poisson Process

Case study: how to simulate a Poisson Process?

Option 1: simulate a Poisson R.V. (blackboard discussion)
Option 2: simulate interarrival times with exponential R.V.
(blackboard discussion)
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Copulas

Copulas
Def.

a copula is a joint probability distribution C(x, y) with both marginal
distributions being uniformly distributed in (0, 1)

C(0, 0) = 0

C(x, 1) = x

C(1, y) = y

for 0 ≤ x, y ≤ 1.
E.g. we want H(x, y) for R.V. X and Y , begin F (x) and G(y) being
their CDF.
H(x, y) = P [X ≤ x, Y ≤ y] = P [F (X) ≤ F (x), G(Y ) ≤ G(y)] =
C(F (x), G(y))
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Copulas

Copulas

Algorithmically
You know F (X) and G(Y ), but not their joint CDF H(X,Y )

You know they are not independent
Still, you want to generate pairs of meaningful values
→ generate values for the copula
→ apply inverse transform method to get values of the original
distributions

Example: Gaussian Copula
Generate Z = (z1, z2) from bivariate Normal
(e.g. with a certain correlation ρ)
Obtain “random pairs of (correlated) uniform”
U = (u1, u2) = (Φ(z1),Φ(z2))
(this joint distrib. is Gaussian copula)
Obtain “random custom” R = (F−1(u1), G

−1(u2))
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Copulas

Copulas

A copula should model the dependencies between X and Y .
E.g. if we think X and Y to have linear correlation ρ, the values
generated by the copula should have linear correlation (approx.) ρ (not
implying linear correlation ρ between F (X) and G(Y )).
Examples (blackboard)

Gaussian copula
Marshall-Olkin copula
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Copulas

Copulas

Example: Marshall-Olkin copula
Suppose you have three types of shocks, each occurring with
exponential interarrival time (rate λ1, λ2, λ3)
Suppose you have two components: one sensitive to shocks 1, 3,
one sensitive to shocks 2, 3

how to generate joint inter-failure times?

C(x, y) = min{xαy, xyβ} with α =
λ1

λ2 + λ3
and β =

λ2
λ2 + λ3
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