Simulation

Alberto Ceselli
MSc in Computer Science
Univ. of Milan

Part 2 - Generating Random Variables
Lecture adapted from D. Malchiodi’s “Simulation Book” (CC BY 3.0 US)

Dictionary definition of *random*:

happening, done, or chosen by chance rather than according to a plan
Random Numbers

Dictionary definition of *random*:

happening, done, or chosen by chance rather than according to a plan

How to ask a computer to act *outside a plan* (*i.e.* *algorithm*)?
Example of random generation:

```java
int getRandomNumber() {
    return 6; // chosen by random dice roll
}
```
The behavior of a computer is always the result of a program execution and thus it is purely deterministic;

computers can be (deterministically) programmed in such a way that they exhibit random behavior.

That is, we formally distinguish

- *genuine* randomness (which we naturally observe in the world)
- *artificial* randomness, or pseudorandomness, (which we can simulate through computers)
The dream of random generation

- L. H. C. Tippet (Random Number Table, ã1927): 10,400 numbers of four digits taken at random from the British census reports,
- M. G. Kendall (machine producing tables of random digits, ã1938)
- Fisher and Yates Tables
- Kendall and Babington Smiths Tables
- Rand corporation random number tables
Pseudo-random number generators

- Von Neumann’s middle square generator
- Congruential generator
- Bit shifter
Von Neumann’s middle square generator

Algorithm:
- take a number (seed)
- compute its square
- keep the middle digits as the “random number”
- use it as the “seed” for the subsequent iteration.

See R code implementation
Von Neumann’s middle square generator

Algorithm:
- take a number (seed)
- compute its square
- keep the middle digits as the “random number”
- use it as the “seed” for the subsequent iteration.

See R code implementation

Drawbacks?
Von Neumann’s middle square generator

Algorithm:
- take a number (seed)
- compute its square
- keep the middle digits as the “random number”
- use it as the “seed” for the subsequent iteration.

See R code implementation

Drawbacks? After a few iterations no more “random”!
Random Numbers

Congruential generator

Algorithm: choose three parameters \(a, c \) and \(m \), and a seed \(s \)

\[x_0 = s; \quad x_{i+1} = (a \cdot x_i + c) \mod m; \]

See R code implementation
Congruential generator

Algorithm: choose three parameters a, c and m, and a seed s

$$x_0 = s; \quad x_{i+1} = (a \cdot x_i + c) \mod m;$$

See R code implementation Drawbacks?
Congruential generator

Algorithm: choose three parameters a, c and m, and a seed s

$$x_0 = s; \quad x_{i+1} = (a \cdot x_i + c) \mod m;$$

See R code implementation **Drawbacks**? The sequence tends to repeat!
Congruential generator

Key parameter: the *period* of the generator, *m* *in the best case*!

- **Knuth 1981.** A mixed congruential generator has *full period* for all seed values if and only if:
 - *m* and *c* are relatively prime,
 - *a − 1* is divisible by all prime factors of *m*,
 - *a − 1* is divisible by 4 if *m* is divisible by 4.

- **Ripley, 1987.** A congruential generator has period *m − 1*
 - only if *m* is prime
 - when *m − 1* is prime, the period is a divisor of *m − 1*, and it is precisely *m − 1* when *a* is a primitive root of *m* (*a ≠ 0* and *a*(*m−1)p not congruent to 1 modulo *m* for each prime factor *p* of *m − 1*).

- **Park and Miller, 1988.** when *m* is the Mersenne’s prime 231 − 1, one of its primitive root is *a = 75*, thus the recurrence relation
 \[x_{i+1} = 7^5 x_i \mod 2^{31} − 1 \] will have a full period.
Congruential generator

Is having high period enough?
Random Numbers

Congruential generator

Is having high period enough?

\[x_{i+1} = (1 \cdot x_i + 1) \mod m \]

Very predictable! I would like to simulate to randomly draw from a uniform distribution, instead!

How to check predictability? (See R code)

Ripley's test

Empirical cumulative distribution function (sample r):

\[\text{ECDF}(x) = \text{number of elements of } r \text{ having value } \leq x \]

Glivenko-Cantelli thm. if \(\hat{F} \) has been computed using a sample of size \(n \) drawn from a distribution whose c.d.f. is \(F \), \(\hat{F} \) converges in probability to \(F \) as \(n \) increases.
Congruential generator

Is having high period enough?

\[x_{i+1} = (1 \cdot x_i + 1) \mod m \]

Very predictable! I would like to simulate to randomly draw from a uniform distribution, instead!

How to check predictability? (See R code)

- Ripley’s test
- Empirical cumulative distribution function (sample \(r \)):

\[\text{ECDF}(x) = \text{number of elements of } r \text{ having value } \leq x \]

Glivenko-Cantelli thm. if \(\hat{F} \) has been computed using a sample of size \(n \) drawn from a distribution whose c.d.f. is \(F \), \(\hat{F} \) converges in probability to \(F \) as \(n \) increases.
Expected properties of a random generator are:

- The set of generated pseudorandom values should be indistinguishable from an analogous sample drawn from a discrete uniform distribution over \(\{0, \ldots, m-1\} \);
- Its period should be as high as possible;
- Its computer implementation should be efficient (e.g., \(m = 2^{32} - 1 \) allows to be encoded with 32 bits).
Expected properties of a random generator are:

- the set of generated pseudorandom values should be undistinguishable from an analogous sample drawn from a discrete uniform distribution over $\{0, \ldots, m - 1\}$;
- its period should be as high as possible;
Expected properties of generators

Expected properties of a random generator are:

- the set of generated pseudorandom values should be undistinguishable from an analogous sample drawn from a discrete uniform distribution over \(\{0, \ldots, m - 1\} \);
- its period should be as higher as possible;
- its computer implementation should be efficient (e.g. \(m = 2^{31} - 1 \) allows to be encoded with 32 bits).