Simulation J

Alberto Ceselli
MSc in Computer Science
Univ. of Milan

Part 2 - Generating Random Variables

A. Ceselli Simulation P.2 Generating Random Vars 1/12



Acknowlegment
Lecture adapted from D. Malchiodi’s “Simulation Book” (CC BY 3.0 US)

https://github.com/dariomalchiodi/simulation-book/blob/master/lecture-
2-pseudorandomness.ipynb

A. Ceselli Simulation P.2 Generating Random Vars 2/12



Random Numbers

Random Numbers

Dictionary definition of random:

happening, done, or chosen by chance rather than according
to a plan

A. Ceselli Simulation P.2 Generating Random Vars 3/12



Random Numbers

Random Numbers

Dictionary definition of random:

happening, done, or chosen by chance rather than according
to a plan

How to ask a computer to act outside a plan (i.e. algorithm)?

A. Ceselli Simulation P.2 Generating Random Vars 3/12



Random Numbers

Random Generation

Example of random generation:

int getRandomNumber () {
return 6; // chosen by random dice roll
}

A. Ceselli Simulation P.2 Generating Random Vars 4/12



Random Numbers

Pseudo-random generation

@ The behavior of a computer is always the result of a program
execution and thus it is purely deterministic;

@ computers can be (deterministically) programmed in such a way
that they exhibit random behavior.
That is, we formally distinguish
@ genuine randomness (which we naturally observe in the world)

@ artificial randomness, or pseudorandomness, (which we can
simulate through computers)

A. Ceselli Simulation P.2 Generating Random Vars

5/12



Random Numbers

The dream of random generation

@ L. H. C. Tippet (Random Number Table, 1927): 10,400 numbers of
four digits taken at random from the British census reports,

@ M. G. Kendall (machine producing tables of random digits, 1938)
@ Fisher and Yates Tables

@ Kendall and Babington Smiths Tables

@ Rand corporation random number tables

A. Ceselli Simulation P.2 Generating Random Vars 6/12



Random Numbers

Pseudo-random number generators

@ Von Neumann’s middle square generator
@ Congruential generator
@ Bit shifter

A. Ceselli Simulation

P.2 Generating Random Vars

7/12



Random Numbers

Von Neumann’s middle square generator

Algorithm:
@ take a number (seed)
@ compute its square
@ keep the middle digits as the “random number”
@ use it as the “seed” for the subsequent iteration.
See R code implementation

A. Ceselli Simulation P.2 Generating Random Vars 8/12



Random Numbers

Von Neumann’s middle square generator

Algorithm:
@ take a number (seed)
@ compute its square
@ keep the middle digits as the “random number”
@ use it as the “seed” for the subsequent iteration.

See R code implementation
Drawbacks?

A. Ceselli Simulation P.2 Generating Random Vars 8/12



Random Numbers

Von Neumann’s middle square generator

Algorithm:
@ take a number (seed)
@ compute its square
@ keep the middle digits as the “random number”
@ use it as the “seed” for the subsequent iteration.

See R code implementation
Drawbacks? After a few iterations no more “random”!

A. Ceselli Simulation P.2 Generating Random Vars 8/12



Random Numbers

Congruential generator

Algorithm: choose three parameters a, ¢ and m, and a seed s
xo=5; Tit1 = (a-x; +c) mod m;

See R code implementation

A. Ceselli Simulation P.2 Generating Random Vars 9/12



Random Numbers

Congruential generator

Algorithm: choose three parameters a, ¢ and m, and a seed s
xo=5; Tit1 = (a-x; +c) mod m;

See R code implementation Drawbacks?

A. Ceselli Simulation P.2 Generating Random Vars 9/12



Congruential generator

Algorithm: choose three parameters a, ¢ and m, and a seed s
xo=5; Tit1 = (a-x; +c) mod m;

See R code implementation Drawbacks? The sequence tends to
repeat!

A. Ceselli Simulation P.2 Generating Random Vars

9/12



Random Numbers

Congruential generator

Key parameter: the period of the generator, m in the best case!.
@ Knuth 1981. A mixed congruential generator has full period for all
seed values if and only if:
e m and c are relatively prime,
e a — 1is divisible by all prime factors of m,
e a — 1is divisible by 4 if m is divisible by 4.
@ Ripley, 1987. A congruential generator has period m — 1
e only if m is prime
e when m — 1 is prime, the period is a divisor of m — 1, and it is
precisely m — 1 when a is a primitive root of m (a # 0 and o™~ 1P
not congruential to 1 modulo m for each prime factor p of m — 1).
@ Park and Miller, 1988. when m is the Mersenne’s prime 23! — 1,
one of its primitive root is a = 7°, thus the recurrence relation
21 = T°z; mod 23! — 1 will have a full period.

A. Ceselli Simulation P.2 Generating Random Vars 10/12



Random Numbers

Congruential generator

Is having high period enough?

A. Ceselli Simulation P.2 Generating Random Vars 11/12



Random Numbers

Congruential generator
Is having high period enough?

Tit1 = (1 -xi+1) mod m

A. Ceselli Simulation P.2 Generating Random Vars 11/12



Random Numbers

Congruential generator
Is having high period enough?
Tit1 = (1 - X + 1) mod m

Very predictable! | would like to simulate to randomly draw from a
uniform distribution, instead!

How to check predictability? (See R code)
@ Ripley’s test
@ Empirical cumulative distribution function (sample r):

ECDF(x) = number of elements of r having value <z

Glivenko-Cantelli thm. if ' has been computed using a sample
of size n drawn from a distribution whose c.d.f. is F', F' converges
in probability to F' as n increases.

A. Ceselli Simulation P.2 Generating Random Vars 11/12



Random Numbers

Expected properties of generators

Expected properties of a random generator are:

A. Ceselli Simulation P.2 Generating Random Vars 12/12



Random Numbers

Expected properties of generators

Expected properties of a random generator are:

@ the set of generated pseudorandom values should be
undistinguishable from an analogous sample drawn from a
discrete uniform distribution over {0,...,m — 1};

@ its period should be as higher as possible;

A. Ceselli Simulation P.2 Generating Random Vars 12/12



Random Numbers

Expected properties of generators

Expected properties of a random generator are:

@ the set of generated pseudorandom values should be
undistinguishable from an analogous sample drawn from a
discrete uniform distribution over {0,...,m — 1};

@ its period should be as higher as possible;

@ its computer implementation should be efficient
(e.g. m = 231 — 1 allows to be encoded with 32 bits).

A. Ceselli Simulation P.2 Generating Random Vars 12/12



	Random Numbers

