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Acknowlegment

Lecture adapted from D. Malchiodi’s “Simulation Book” (CC BY 3.0 US)

https://github.com/dariomalchiodi/simulation-book/blob/master/lecture-
2-pseudorandomness.ipynb

A. Ceselli Simulation P.2 Generating Random Vars 2 / 12



Random Numbers

Random Numbers

Dictionary definition of random:

happening, done, or chosen by chance rather than according
to a plan

How to ask a computer to act outside a plan (i.e. algorithm)?
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Random Numbers

Random Generation

Example of random generation:

int getRandomNumber() {
return 6; // chosen by random dice roll
}
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Random Numbers

Pseudo-random generation

The behavior of a computer is always the result of a program
execution and thus it is purely deterministic;
computers can be (deterministically) programmed in such a way
that they exhibit random behavior.

That is, we formally distinguish
genuine randomness (which we naturally observe in the world)
artificial randomness, or pseudorandomness, (which we can
simulate through computers)

A. Ceselli Simulation P.2 Generating Random Vars 5 / 12



Random Numbers

The dream of random generation

L. H. C. Tippet (Random Number Table, 1̃927): 10,400 numbers of
four digits taken at random from the British census reports,
M. G. Kendall (machine producing tables of random digits, 1̃938)
Fisher and Yates Tables
Kendall and Babington Smiths Tables
Rand corporation random number tables
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Random Numbers

Pseudo-random number generators

Von Neumann’s middle square generator
Congruential generator
Bit shifter
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Random Numbers

Von Neumann’s middle square generator

Algorithm:
take a number (seed)
compute its square
keep the middle digits as the “random number”
use it as the “seed” for the subsequent iteration.

See R code implementation

Drawbacks? After a few iterations no more “random”!
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Random Numbers

Congruential generator

Algorithm: choose three parameters a, c and m, and a seed s

x0 = s; xi+1 = (a · xi + c) mod m;

See R code implementation

Drawbacks? The sequence tends to
repeat!
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Random Numbers

Congruential generator

Key parameter: the period of the generator, m in the best case!.
Knuth 1981. A mixed congruential generator has full period for all
seed values if and only if:

m and c are relatively prime,
a− 1 is divisible by all prime factors of m,
a− 1 is divisible by 4 if m is divisible by 4.

Ripley, 1987. A congruential generator has period m− 1

only if m is prime
when m− 1 is prime, the period is a divisor of m− 1, and it is
precisely m− 1 when a is a primitive root of m (a 6= 0 and a(m−1)p

not congruential to 1 modulo m for each prime factor p of m− 1).

Park and Miller, 1988. when m is the Mersenne’s prime 231 − 1,
one of its primitive root is a = 75, thus the recurrence relation
xi+1 = 75xi mod 231 − 1 will have a full period.
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Random Numbers

Congruential generator

Is having high period enough?

xi+1 = (1 · xi + 1) mod m

Very predictable! I would like to simulate to randomly draw from a
uniform distribution, instead!

How to check predictability? (See R code)
Ripley’s test
Empirical cumulative distribution function (sample r):

ECDF (x) = number of elements of r having value ≤ x

Glivenko-Cantelli thm. if F̂ has been computed using a sample
of size n drawn from a distribution whose c.d.f. is F , F̂ converges
in probability to F as n increases.

A. Ceselli Simulation P.2 Generating Random Vars 11 / 12



Random Numbers

Congruential generator

Is having high period enough?

xi+1 = (1 · xi + 1) mod m

Very predictable! I would like to simulate to randomly draw from a
uniform distribution, instead!

How to check predictability? (See R code)
Ripley’s test
Empirical cumulative distribution function (sample r):

ECDF (x) = number of elements of r having value ≤ x

Glivenko-Cantelli thm. if F̂ has been computed using a sample
of size n drawn from a distribution whose c.d.f. is F , F̂ converges
in probability to F as n increases.

A. Ceselli Simulation P.2 Generating Random Vars 11 / 12



Random Numbers

Congruential generator

Is having high period enough?

xi+1 = (1 · xi + 1) mod m

Very predictable! I would like to simulate to randomly draw from a
uniform distribution, instead!

How to check predictability? (See R code)
Ripley’s test
Empirical cumulative distribution function (sample r):

ECDF (x) = number of elements of r having value ≤ x

Glivenko-Cantelli thm. if F̂ has been computed using a sample
of size n drawn from a distribution whose c.d.f. is F , F̂ converges
in probability to F as n increases.

A. Ceselli Simulation P.2 Generating Random Vars 11 / 12



Random Numbers

Expected properties of generators

Expected properties of a random generator are:

the set of generated pseudorandom values should be
undistinguishable from an analogous sample drawn from a
discrete uniform distribution over {0, . . . ,m− 1};
its period should be as higher as possible;
its computer implementation should be efficient
(e.g. m = 231− 1 allows to be encoded with 32 bits).
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