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Introduction

Probability Recap

Recall:
Sample Space S (e.g. outcome of a horse race)
Event (e.g. arrival (1, 5, 2, 4, 3)).
Union and Intersection of Events
Complement of an Event
Mutually exclusive events
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Introduction

Axioms of Probability

For every Event A, the probability of A (P (A)) is a number s.t.
0 ≤ P (A) ≤ 1

P (S) = 1

For a sequence of mutually exclusive events A1 . . . AN

P (∪ni=1Ai) =

n∑
i=1

P (Ai)

E.g. P (Ā) = 1− P (A)
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Introduction

Conditional Probability

Example: flipping a coin twice
what is the probability of (H,H)?
what is the probability of (H,H) if you know (conditioning) the first
flip was H?

P (A|B) =
P (A ∩B)

P (B)

P (A) = P (A|B)P (B) + P (A|B̄)P (B̄)

Examples 2a and 2b: insurance company (page 8).
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Random Variables

A modeler’s view of Variables

y = f(x)

How many “variables” do you see?

Intuitively, for a modeler, x is input
data, while y is an abstraction of the process modeled by f()
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Random Variables

Random Variables

Example: you have an experiment, whose output is X
i.e. X is a variable, assuming to contain the result of your
experiment
if the experiment involves some stochastic behavior, the content of
X will always be uncertain
therefore, X is called random variable
they can be discrete or continuous
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Random Variables

Variables and Functions

C.D.F. is F (x) = P [X ≤ x]

if X is discrete, its probability mass function is p(x) = P [X = x]∑
i∈I

p(xi) = 1

X is continuous, if a (non negative) probability density function

f(x) exists, such that, for C ⊆ R is P [X ∈ C] =

∫
C
f(x)dx
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Random Variables

Variables and Functions

That is,

F (a) = P [X ∈ (−∞, a)] =

∫ a

−∞
f(x)dx

or equivalently
dF (x)

dx
= f(x)
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Random Variables

Joint Probabilities

When we have more than one random variable
F (x, y) = P [X ≤ x ∧ Y ≤ y]

p(x, y) = P [X = x ∧ Y = y]

X and Y are independent if, for any pair of sets C ⊆ R, D ⊆ R, it
holds

P [X ∈ C, Y ∈ D] = P [X ∈ C] · P [Y ∈ D]

i.e. for any choice of C and D, the events X ∈ C and Y ∈ D are
independent
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Random Variables

Expectation

If X is a discrete random variable taking values x1 . . . xn

E[X] =

n∑
i=1

xi · p(xi)

If X is a continuous random variable with p.d.f. f

E[X] =

∫ ∞
−∞

x · f(x)dx

What if we need to compute E[g(X)], being g() a generic function?

The case aX + b (proof on the whiteboard)

The general case: E[g(X)] =
n∑
i=1

g(xi) · p(x)

Expectation is a linear operator (proof on the whiteboard)
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Random Variables

Variance

If X is a discrete random variable with expectation µ
V ar[X] = E[(X − µ)2] = E[X2]− µ2

V ar[aX + b] = a2V ar[X]

V ar is not a linear operator
Cov[X,Y ] = E[(X − µx) · (Y − µy)] = E[X · Y ]− E[X] · E[Y ]

What’s the meaning of covariance?
V ar[X + Y ] = V ar[X] + V ar[Y ]− 2Cov[X · Y ]

So, when X and Y are independent ...
Corr[X,Y ] = Cov[X,Y ]/

√
V ar[X] · V ar[Y ]
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Random Variables

It is a matter of size

Markov’s inequality (proof on the whiteboard): if X takes only
nonnegative values, for any a > 0

P [X ≥ a] ≤ E[X]/a

Chebishev’s inequality (proof on the whiteboard): if X takes only
nonnegative values, has expectation µ and variance σ2, then for any
k > 0

P [|X − µ| ≥ k · σ] ≤ 1

k2

Weak law of large numbers (proof on the whiteboard): let X1 . . . Xn

be a sequence of i.i.d. random variables having expectation µ. Then,
for any ε > 0

P [|
∑n

i=1Xi

n
− µ| > ε]]→ 0 as n→∞

Strong law of large numbers: limn→∞

∑n
i=1Xi

n
= µ with probability 1
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Modeling with Discrete Random Variables

Binomial Random Variables

Application: Alice and Bob play a dice game. It consists in rolling a
single dice exactly 10 times: Alice wins if she gets 5 times the value 1.
What is her probability of winning?

Number of events known in advance (n)
They are independent one another
They have equal probability of success (p)

→ binomial random var X = number of successes.

P [X = i] =

(
n

i

)
· pi · (1− p)n−i
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Modeling with Discrete Random Variables

Poisson Random Variables

Application: Alice and Bob own a computers shop. Alice: ”Wow,
today there’s nobody around: I usually see about 20 customers every
morning”. Bob: ”Don’t worry. I bet tomorrow morning we’ll have 40 of
them!”. What’s the probability for Bob to win his bet? What’s the
probability for the shop to remain empty during all the morning?

Very large number of events.
They are independent one another
The expected number of positive ones in known in advance (λ)

→ poisson random var X = number of successes.

P [X = i] = e−λ · λ
i

i!
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Modeling with Discrete Random Variables

Geometric Random Variables

Application: Alice and Bob are still bored. Alice: ”Hey, that dice game
was cool! Let’s play another one. You roll the dice until you get 6!”.
Bob: ”Great! I bet I can win in exactly 3 rolls!”. What is his probability of
winning?

Number of events is irrelevant
They are independent one another
They have equal probability of success (p)
Only first success counts.

→ geometric random var X = first trial with success.

P [X = i] = p · (1− p)i−1
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Modeling with Discrete Random Variables

Negative Binomial Random Variables

Application: Alice: ”That was too easy! Now, you roll the dice until
you get 6 twice!”. Bob: ”Great! I bet I can win in at most 5 rolls!”. What
is his probability of winning?

Number of events is irrelevant
They are independent one another
They have equal probability of success (p)
There is a target number of successes (r)

→ negative binomial random var X = number of trials to get r
successes: for i ≥ r

P [X = i] =

(
i− 1

r − 1

)
pr · (1− p)i−r
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Modeling with Discrete Random Variables

Hypergeometric Random Variables

Application: Alice: ”Hey Bob: I have found a beautiful deck of 52
cards below the counter! Now I shuffle, and you pick 4 of them: I bet
you can’t get 2 red and 2 blue!”. What is her probability of winning?

A population is given, where N individuals hold a feature and M
do not.
Size of a sample is given (n)

→ hypergeometric random var X = number of individuals in the
sample holding the feature

P [X = i] =

(
N
i

)
·
(
M
n−i
)(

N+M
n

)
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Modeling with Discrete Random Variables

Exercises

Number 15, (18, 23), 36.
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Modeling with Continuous Random Variables

Uniformly Distributed Random Variables

Parameters: range [a, b]. Visually, 1

f(x) =


1

b− a
if a ≤ x ≤ b

0 otherwise
F (x) =

x− a
b− a

1IkamusumeFan - Own work. This drawing was created with LibreOffice Draw, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=27378784
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Modeling with Continuous Random Variables

Normal Random Variables
Parameters:

expectation µ, variance σ2. Visually,2

f(x) =
1√

2πσ2
·e−

(x−µ)2

2σ2 F (x) = Φ(
x− µ
σ2

) Φ(x) =
1√
2π

∫ x

0
e−z

2/2 dz

2By Inductiveload - self-made, Mathematica, Inkscape, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3817960

A. Ceselli Simulation P.1 Modeling with probabilities 21 / 28



Modeling with Continuous Random Variables

Normal Random Variables

Φ(x) cannot be expressed with only additions, subtractions,
multiplications, and root extractions (i.e. need for numerical
evaluation / approximation)
if X is normally distributed with param. µ and σ2, Z = aX + b is
normally distributed with param. aµ+ b and a2σ2 (e.g. if a = 1/σ2

and b = −µ/σ2 ...)
Central Limit Theorem. Let X1 . . . Xn be a sequence of n i.i.d.
random variables having finite exp. value µ and variance σ2

lim
n→∞

P [

∑n
i=1Xi − n · µ√

nσ2
< x] = Φ(x)

i.e. the sum of a large number of independent random variables is
a normally distributed random variable (independently on the
distribution of the starting ones)
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Modeling with Continuous Random Variables

Exponential Random Variables
Parameters:

rate λ (expectation 1/λ). Visually,3

For 0 < x <∞

f(x) = λ · e−λ·x F (x) = 1− e−λ·x

3By Skbkekas - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=9508326
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Modeling with Continuous Random Variables

Exponential Random Variables

The only ones having memoryless property (e.g. X is the lifetime
of an item):

P [X > s+ t|X > s] = P [X > t]

They remain exponential when multiplied by positive constants: if
X is exponential with parameter λ Y = cX is exponential with
parameter λ/c (proof on the whiteboard)
If X1 . . . Xn are independent exponential random variables,
Y = min

i
Xi is exponential with rate

∑
i

λi (proof on the

whiteboard)

The probability that Xj is the smallest is λj/
∑
i

λi (proof on the

whiteboard)
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Modeling with Continuous Random Variables

Poisson Processes

A Poisson Process having rate λ is:
Events are occurring at random time points
N(t) is the number of events in the interval [0, t]

N(0) = 0 (process begins at time 0)
Number of events in disjoint time intervals are independent
(independent increment assumption)
The PDF of the number of events in a given interval depend only
on its length, not on its position (stationary increment assumption)

lim
h→0

P [N(h) = 1]

h
= λ (in small intervals, the probability of an event

to occur is approximately hλ)

lim
h→0

P [N(h) ≥ 2]

h
= 0 (unlikely that two or more events occur in

small intervals)
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Modeling with Continuous Random Variables

Poisson Processes

Claim: N(t) is a Poisson Random Variable with expected value tλ
(proof on the whiteboard)
Claim: The interarrival times are i.i.d. exponential random
variables with parameter λ
Definition: A Gamma Random Variable with parameters n, λ is a
(continuous) random variable having the following PDF:

f(t) = λe−λt
(λt)n−1

(n− 1)!

Claim: The sum of n independent exponential random variables,
each having parameter λ, is a gamma random variable with
parameters n, λ
Claim: The time of the n-th event of a Poisson process having
rate λ is a gamma random variable with parameters n, λ
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Modeling with Continuous Random Variables

Nonhomogeneous Poisson Processes

A Poisson Process having rate λ is:
Events are occurring at random time points
N(t) is the number of events in the interval [0, t]
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Modeling with Continuous Random Variables
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Modeling with Continuous Random Variables

Nonhomogeneous Poisson Processes

Interpretation: let p̄(t) be the probability that an event occurring at
time t in a Poisson process with parameter λ is discarded, and
p(t) = 1− p̄(t); then the process involving the non-discarded events is
a nonhomogeneous Poisson Process with intensity λ(t) = λ · p(t)

Let

m(t) =

∫ t

0
λ(s)ds

Y = N(t+ s)−N(t) is a Poisson Random Variable with expected
value m(t+ s)−m(t)
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