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Probability Recap

Recall:
@ Sample Space S (e.g. outcome of a horse race)
@ Event (e.g. arrival (1,5, 2,4, 3)).
@ Union and Intersection of Events
@ Complement of an Event
@ Mutually exclusive events
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S i
Axioms of Probability

For every Event A, the probability of A (P(A)) is a number s.t.
e 0< P <1
@ P(S)=1
@ For a sequence of mutually exclusive events A; ... Ay

P(UL A) =D P(A)
=1

@ Eg. P(A)=1-P(A)
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Conditional Probability

Example: flipping a coin twice
@ what is the probability of (H,H)?
@ what is the probability of (H,H) if you know (conditioning) the first
flip was H?
P(ANB)
P(B)
@ P(A) = P(A|B)P(B) + P(A|B)P(B)
@ Examples 2a and 2b: insurance company (page 8).

o P(A|B) =
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Random Variables

A modeler’s view of Variables

y = f()

How many “variables” do you see?
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Random Variables

A modeler’s view of Variables

y = f()

How many “variables” do you see? Intuitively, for a modeler, x is input
data, while y is an abstraction of the process modeled by f()
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Random Variables

Random Variables

Example: you have an experiment, whose output is X
@ i.e. X is a variable, assuming to contain the result of your
experiment
@ if the experiment involves some stochastic behavior, the content of
X will always be uncertain

@ therefore, X is called random variable
@ they can be discrete or continuous
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Random Variables

Variables and Functions

@ CDFis F(z) = P[X <z
@ if X is discrete, its probability mass functionis p(z) = P[X = x]

) Zp(a;z) =1
iel
@ X is continuous, if a (non negative) probability density function

f(z) exists, such that, for C CRis P[X € (] = / f(z)dx
c
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Random Variables

Variables and Functions

That is,
@ F(a) = P[X € (—00,a)] / f(z

dF(x)
dx

@ or equivalently

= f(x)
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Joint Probabilities

When we have more than one random variable
@ F(z,y) =P X <zAY <y]
@ p(z,y) =PIX =AY =y]

@ X and Y are independent if, for any pairof sets C C R, D C R, it
holds

P[XeC)Y e D]=P[X €(C]-P[Y € D]

@ i.e. for any choice of C'and D, theevents X e C'andY € D are
independent
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Random Variables

Expectation
If X is a discrete random variable taking values z; ... x,
X =3 i pla)
=1
If X is a continuous random variable with p.d.f. f
BlX] = /Oo 2 f@)de

What if we need to compute E[g(X)], being ¢g() a generic function?
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Random Variables

Expectation
If X is a discrete random variable taking values z; ... x,
X =3 i pla)
=1
If X is a continuous random variable with p.d.f. f
BlX] = /Oo 2 f@)de

What if we need to compute E[g(X)], being ¢g() a generic function?
The case aX + b (proof on the whiteboard)
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Random Variables

Expectation

If X is a discrete random variable taking values z; ... x,
n
E[X] =) w;-p()
=1
If X is a continuous random variable with p.d.f. f

BIX] = / v f(a)da

—00

What if we need to compute E[g(X)], being ¢g() a generic function?
The case aX + b (proof on the whiteboard)

The general case: E[g(X)] =Y _ g(x;) - p(a)
=1
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Random Variables

Expectation

If X is a discrete random variable taking values z; ... x,

= pla)
=1

If X is a continuous random variable with p.d.f. f

BIX] = / v f(a)da

—00

What if we need to compute E[g(X)], being ¢g() a generic function?
The case aX + b (proof on the whiteboard)

The general case: E[g Zg ()

Expectation is a linear operator (proof on the whiteboard)
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Random Variables

Variance

If X is a discrete random variable with expectation p
o Var[X] = E[(X — p)?] = E[X? — 1
@ Var[aX + b = a*Var[X]
Var is not a linear operator
Cov[X,Y] = E[(X — ) - (Y — )] = E[X - Y]~ E[X] - E[Y]
What’s the meaning of covariance?
Var[X + Y] =Var[X]|+ VarlY] —2Cov[X - Y]
So, when X and Y are independent ...
Corr[X,Y] = Cov[X,Y]/y/Var[X] - VarY]
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Random Variables

It is a matter of size

Markov’s inequality (proof on the whiteboard): if X takes only
nonnegative values, for any a > 0

P[X >a] < E[X]/a

Chebishev’s inequality (proof on the whiteboard): if X takes only
nonnegative values, has expectation y and variance o2, then for any
k>0

1

PIX —pl 2 ko] < 55
Weak law of large humbers (proof on the whiteboard): let X7 ... X,
be a sequence of i.i.d. random variables having expectation p. Then,

forany e >0

—pl>€]—0asn— oo

Zizani = p with probability 1

"X
PH Zz—l
n

Strong law of large numbers: lim,,_,
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Binomial Random Variables

Application: Alice and Bob play a dice game. It consists in rolling a
single dice exactly 10 times: Alice wins if she gets 5 times the value 1.
What is her probability of winning?

@ Number of events known in advance (n)
@ They are independent one another
@ They have equal probability of success (p)
— binomial random var X = number of successes.

n

> p-(1—p)

7

HX:ﬂ:(
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Modeling with Discrete Random Variables

Poisson Random Variables

Application: Alice and Bob own a computers shop. Alice: "Wow,
today there’s nobody around: | usually see about 20 customers every
morning”. Bob: "Don’t worry. | bet tomorrow morning we’ll have 40 of
them!”. What'’s the probability for Bob to win his bet? What’s the
probability for the shop to remain empty during all the morning?

@ Very large number of events.

@ They are independent one another

@ The expected number of positive ones in known in advance ()
— poisson random var X = number of successes.

)\i
PX=il=e? =
1.

A. Ceselli Simulation P.1 Modeling with probabilities 14/28



Modeling with Discrete Random Variables

Poisson Random Variables

Application: Alice and Bob own a computers shop. Alice: "Wow,
today there’s nobody around: | usually see about 20 customers every
morning”. Bob: "Don’t worry. | bet tomorrow morning we’ll have 40 of
them!”. What'’s the probability for Bob to win his bet? What’s the
probability for the shop to remain empty during all the morning?

@ Very large number of events.

@ They are independent one another

@ The expected number of positive ones in known in advance ()
— poisson random var X = number of successes.

)\i
PX=il=e? =
1.
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Modeling with Discrete Random Variables

Geometric Random Variables

Application: Alice and Bob are still bored. Alice: "Hey, that dice game
was cool! Let’s play another one. You roll the dice until you get 6!”.
Bob: "Great! | bet | can win in exactly 3 rolls!”. What is his probability of
winning?

@ Number of events is irrelevant

@ They are independent one another

@ They have equal probability of success (p)

@ Only first success counts.

— geometric random var X = first trial with success.

PX=i=p-(1-p)"
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Negative Binomial Random Variables

Application: Alice: "That was too easy! Now, you roll the dice until
you get 6 twice!”. Bob: "Great! | bet | can win in at most 5 rolls!”. What
is his probability of winning?

@ Number of events is irrelevant

@ They are independent one another

@ They have equal probability of success (p)

@ There is a target number of successes (r)

— negative binomial random var X = number of trials to get
successes: fori > r

PR =i= <i: Dpr (1-p)"
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Modeling with Discrete Random Variables

Hypergeometric Random Variables

Application: Alice: "Hey Bob: | have found a beautiful deck of 52
cards below the counter! Now | shuffle, and you pick 4 of them: | bet
you can'’t get 2 red and 2 blue!”. What is her probability of winning?

@ A population is given, where N individuals hold a feature and M
do not.
@ Size of a sample is given (n)

— hypergeometric random var X = number of individuals in the
sample holding the feature

(5) - (%)
"3

PIX =i =
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Modeling with Discrete Random Variables

Exercises

Number 15, (18, 23), 36.
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Modeling with Continuous Random Variables

Uniformly Distributed Random Variables

Parameters: range [a, b]. Visually, '

f(x) 1

F(x) !

1 |

I — |
) é b X 0 a b X

1 fa<xz<bd
asSsT r—a
fa)=4b—a | Pla) = 1

0 otherwise a

'lkamusumeFan - Own work. This drawing was created with LibreOffice Draw, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=27378784
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Modeling with Continuous Random Variables

Normal Random Variables

Parameters:

expectation y, variance 2. Visually,?

10 T T

L p=0, 0?=0.2,— |
H=0, 0?=1.0, ==
08 H=0, 02=50,— |
r p=-2, 0?=0.5,—
~ 06
=
T ]
§-‘04
02
0.0
1 _@=m?
J(£) = e W Fla) =8

vV 2ro?

2By Inductiveload - self-made, Mathematica, Inkscape, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3817960
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Modeling with Continuous Random Variables

Normal Random Variables

@ &(z) cannot be expressed with only additions, subtractions,
multiplications, and root extractions (i.e. need for numerical
evaluation / approximation)

@ if X is normally distributed with param. pand o2, Z = aX + b is
normally distributed with param. ap + b and a?c? (e.g. if a = 1/0?
and b= —p/o? ...)

@ Central Limit Theorem. Let X ... X, be a sequence of n i.i.d.
random variables having finite exp. value . and variance o>

"X .
lim Pl )

n— 00 naQ

i.e. the sum of a large number of independent random variables is
a normally distributed random variable (independently on the
distribution of the starting ones)
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Modeling with Continuous Random Variables

Exponential Random Variables

Parameters:

rate \ (expectation 1/)). Visually,®

1.6 T T

1.4 A=0.5
12} — A=l
1.0 A=LS ]
0.6}

0.4

il ¥
1 2 3 1 s

ForO0 <z < o0

f@)=X-e™® Fl)=1-—e?*

3By Skbkekas - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=9508326
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Modeling with Continuous Random Variables

Exponential Random Variables

@ The only ones having memoryless property (e.g. X is the lifetime
of an item):
P[X > s+tX > s] = P[X > 1]

@ They remain exponential when multiplied by positive constants: if
X is exponential with parameter A\ Y = ¢X is exponential with
parameter \/c (proof on the whiteboard)

e If Xy ...X, are independent exponential random variables,
Y =min X; is exponential with rate > \; (proof on the

7

whiteboard)
@ The probability that X; is the smallest is A;/ Z A;i (proof on the

whiteboard)
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Modeling with Continuous Random Variables

Poisson Processes

A Poisson Process having rate ) is:

Events are occurring at random time points

N(t) is the number of events in the interval [0, ¢]

N (0) = 0 (process begins at time 0)

Number of events in disjoint time intervals are independent
(independent increment assumption)

The PDF of the number of events in a given interval depend only
on its length, not on its position (stationary increment assumption)

P[N(h) =1 . . -
}llin% [(h)] = X (in small intervals, the probability of an event
_>
to occur is approximately h\)
>
]llin% P[N(Z)_2] = 0 (unlikely that two or more events occur in
—

small intervals)
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Modeling with Continuous Random Variables

Poisson Processes

@ Claim: N(t) is a Poisson Random Variable with expected value tA
(proof on the whiteboard)

@ Claim: The interarrival times are i.i.d. exponential random
variables with parameter A

@ Definition: A Gamma Random Variable with parameters n, A is a
(continuous) random variable having the following PDF:

e ()t

@ Claim: The sum of n independent exponential random variables,
each having parameter )\, is a gamma random variable with
parameters n, A

@ Claim: The time of the n-th event of a Poisson process having
rate \ is a gamma random variable with parameters n, A
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Modeling with Continuous Random Variables

Nonhomogeneous Poisson Processes

A Poisson Process having rate ) is:

Events are occurring at random time points

N(t) is the number of events in the interval [0, ¢]

N (0) = 0 (process begins at time 0)

Number of events in disjoint time intervals are independent
(independent increment assumption)

PDF of the number of events in a given interval depend only on its
length, not on its position (stationary increment assumption)

P[N(h) =1 . . -
}llin% [(h)] = X (in small intervals, the probability of an event
_>
to occur is approximately h\)
>
]llin% P[N(Z)_2] = 0 (unlikely that two or more events occur in
—

small intervals)
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Modeling with Continuous Random Variables

Nonhomogeneous Poisson Processes

A Poisson Process having rate ) is:

Events are occurring at random time points

N(t) is the number of events in the interval [0, ¢]

N (0) = 0 (process begins at time 0)

Number of events in disjoint time intervals are independent
(independent increment assumption)

PDF of the number of events in a given interval depend only on its
length, not on its position (stationary increment assumption)

P[N(h) =1 . . -
}llin% [(h)] = X (in small intervals, the probability of an event
_>
to occur is approximately h\)
>
]llin% P[N(Z)—z] = 0 (unlikely that two or more events occur in
—

small intervals)
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Modeling with Continuous Random Variables

Nonhomogeneous Poisson Processes

A Nonhomogeneous Poisson Process having rate \(¢) is:

Events are occurring at random time points

N (t) is the number of events in the interval [0, ¢]

N (0) = 0 (process begins at time 0)

Number of events in disjoint time intervals are independent
(independent increment assumption)

A(t) is the intensity at time ¢ (i.e. how likely an event will occur
around time t)

PIN(h) =1 . : .
]llin% [(};L)] = A(¢) (in small intervals, the probability of an
—
event to occur is approximately h\)
P|N(h) > 2 .
}llin% M = 0 (unlikely that two or more events occur in
_>

small intervals)
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Modeling with Continuous Random Variables

Nonhomogeneous Poisson Processes

Interpretation: let p(¢) be the probability that an event occurring at
time ¢ in a Poisson process with parameter \ is discarded, and

p(t) = 1 — p(t); then the process involving the non-discarded events is
a nonhomogeneous Poisson Process with intensity A\(t) = A - p(t)

@ Let

@ Y = N(t+s)— N(¢t)is a Poisson Random Variable with expected
value m(t + s) — m(t)
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