
A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Network Design and Optimization course
Lecture 11

Alberto Ceselli
alberto.ceselli@unimi.it

Dipartimento di Tecnologie dell’Informazione
Università degli Studi di Milano

December 21, 2011

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Evaluating robustness
Global min cut algorithms

The problem

Given

a set of nodes,

a set of links connecting them,

(that is, an existing network), I want to

evaluate the robustness of the network

... with respect to some adverse event.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Evaluating robustness
Global min cut algorithms

The problem

Example of an adverse event: two nodes are not connected
anymore.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Evaluating robustness
Global min cut algorithms

Assumptions

Let us consider

a coefficient ce to indicate “the robustness’ of each link e

given a set of links S , we assume that the “robustness” of the
set of S is ∑

e∈S
ce

and we search for the set S

of minimum robustness

whose removal splits the network in two

we are facing a Global Min Cut Problem (GMCP).

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Evaluating robustness
Global min cut algorithms

A very simple GMCP algorithm

How to solve a GMCP?

Finding a s-t min cut can be done by flow computations

let us consider all s-t pairs in the network

compute each min s-t cut (max s-t flow)
pick the minimum among all s-t pairs

running time O(n2 · (nm + n2 log U)) with preflow-push flow
algorithms.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Evaluating robustness
Global min cut algorithms

A very simple GMCP algorithm

How to solve a GMCP?

Finding a s-t min cut can be done by flow computations

let us consider all s-t pairs in the network

compute each min s-t cut (max s-t flow)
pick the minimum among all s-t pairs

running time O(n2 · (nm + n2 log U)) with preflow-push flow
algorithms.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Evaluating robustness
Global min cut algorithms

A very simple GMCP algorithm

How to solve a GMCP?

Finding a s-t min cut can be done by flow computations

let us consider all s-t pairs in the network

compute each min s-t cut (max s-t flow)
pick the minimum among all s-t pairs

running time O(n2 · (nm + n2 log U)) with preflow-push flow
algorithms.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Evaluating robustness
Global min cut algorithms

A very simple GMCP algorithm

How to solve a GMCP?

Finding a s-t min cut can be done by flow computations

let us consider all s-t pairs in the network

compute each min s-t cut (max s-t flow)
pick the minimum among all s-t pairs

running time O(n2 · (nm + n2 log U)) with preflow-push flow
algorithms.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Evaluating robustness
Global min cut algorithms

A simple GMCP algorithm

How to solve a GMCP?

Let’s select a random node k

k is either on the “left” or on the “right” side of the cut

phase 1: assume k to be on the left side: for each node t

compute the min k-t cut (max k-t flow)
pick the minimum among them

phase 2: assume k to be on the right side: for each node t

compute the min t-k cut (max t-k flow)
pick the minimum among them

running time O(n · (nm + n2 log U)) with preflow-push flow
algorithms.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Evaluating robustness
Global min cut algorithms

A simple GMCP algorithm

How to solve a GMCP?

Let’s select a random node k

k is either on the “left” or on the “right” side of the cut

phase 1: assume k to be on the left side: for each node t

compute the min k-t cut (max k-t flow)
pick the minimum among them

phase 2: assume k to be on the right side: for each node t

compute the min t-k cut (max t-k flow)
pick the minimum among them

running time O(n · (nm + n2 log U)) with preflow-push flow
algorithms.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Evaluating robustness
Global min cut algorithms

A simple GMCP algorithm

How to solve a GMCP?

Let’s select a random node k

k is either on the “left” or on the “right” side of the cut

phase 1: assume k to be on the left side: for each node t

compute the min k-t cut (max k-t flow)
pick the minimum among them

phase 2: assume k to be on the right side: for each node t

compute the min t-k cut (max t-k flow)
pick the minimum among them

running time O(n · (nm + n2 log U)) with preflow-push flow
algorithms.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Evaluating robustness
Global min cut algorithms

A simple GMCP algorithm

How to solve a GMCP?

Let’s select a random node k

k is either on the “left” or on the “right” side of the cut

phase 1: assume k to be on the left side: for each node t

compute the min k-t cut (max k-t flow)
pick the minimum among them

phase 2: assume k to be on the right side: for each node t

compute the min t-k cut (max t-k flow)
pick the minimum among them

running time O(n · (nm + n2 log U)) with preflow-push flow
algorithms.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Evaluating robustness
Global min cut algorithms

A simple GMCP algorithm

How to solve a GMCP?

Let’s select a random node k

k is either on the “left” or on the “right” side of the cut

phase 1: assume k to be on the left side: for each node t

compute the min k-t cut (max k-t flow)
pick the minimum among them

phase 2: assume k to be on the right side: for each node t

compute the min t-k cut (max t-k flow)
pick the minimum among them

running time O(n · (nm + n2 log U)) with preflow-push flow
algorithms.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Evaluating robustness
Global min cut algorithms

A simple GMCP algorithm

How to solve a GMCP?

Let’s select a random node k

k is either on the “left” or on the “right” side of the cut

phase 1: assume k to be on the left side: for each node t

compute the min k-t cut (max k-t flow)
pick the minimum among them

phase 2: assume k to be on the right side: for each node t

compute the min t-k cut (max t-k flow)
pick the minimum among them

running time O(n · (nm + n2 log U)) with preflow-push flow
algorithms.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Evaluating robustness
Global min cut algorithms

A simple GMCP algorithm

Orlin’s slide 10.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Evaluating robustness
Global min cut algorithms

A dedicated GMCP algorithm

Better GMCP algorithms exist:

Orlin’s slides 8, 10-22

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Evaluating robustness
Global min cut algorithms

A dedicated GMCP algorithm

Better GMCP algorithms exist:
Orlin’s slides 8, 10-22

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Failure free routing

Problem: how to design routing schemes that still works even if k
links (or nodes) of the network fail?

edge-disjoint shortest path problems

vertext-disjoint shortest path problems

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Failure free routing

Problem: how to design routing schemes that still works even if k
links (or nodes) of the network fail?

edge-disjoint shortest path problems

vertext-disjoint shortest path problems

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Modeling edge-disjoint shortest path problems

Using flows to model edge-disjoint SPPs (on the whiteboard).

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Modeling node-disjoint shortest path problems

Using flows to model node-disjoint SPPs (on the whiteboard).

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Review of location problems

Given

a set of nodes,

a set of links connecting them,

a set of service requests, one for each node of the network,

a set of devices, able to provide service, to be installed in the
network,

I want to

decide where to place the service provider devices,

decide how to satisfy service requests,

maximizing the quality of service (e.g. minimizing delay time)

in such a way that the resulting network is tolerant to faults in
links or devices

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Review of location problems

Given

a set of nodes,

a set of links connecting them,

a set of service requests, one for each node of the network,

a set of devices, able to provide service, to be installed in the
network,

I want to

decide where to place the service provider devices,

decide how to satisfy service requests,

maximizing the quality of service (e.g. minimizing delay time)

in such a way that the resulting network is tolerant to faults in
links or devices

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Problem features:

Given:

A graph G (V ,E) (telecomunication network: V = sites, E =
links).

A subset I of vertices of the graph, which correspond to sites
in which servers can be installed.

A subset J of vertices of the graph, in which terminals are
placed.

Installing a server in each site i ∈ I has a cost fi .

Connecting a terminal in site j ∈ J to a server in i ∈ I has a
cost cij .

Choose if and where to intall the servers (binary variables yi)
and how to connect terminals to servers (variables xij). . .

. . . in such a way that each terminal is connected to a server.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Problem features:

Given:

A graph G (V ,E) (telecomunication network: V = sites, E =
links).

A subset I of vertices of the graph, which correspond to sites
in which servers can be installed.

A subset J of vertices of the graph, in which terminals are
placed.

Installing a server in each site i ∈ I has a cost fi .

Connecting a terminal in site j ∈ J to a server in i ∈ I has a
cost cij .

Choose if and where to intall the servers (binary variables yi)
and how to connect terminals to servers (variables xij). . .

. . . in such a way that each terminal is connected to a server.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Problem features:

Given:

A graph G (V ,E) (telecomunication network: V = sites, E =
links).

A subset I of vertices of the graph, which correspond to sites
in which servers can be installed.

A subset J of vertices of the graph, in which terminals are
placed.

Installing a server in each site i ∈ I has a cost fi .

Connecting a terminal in site j ∈ J to a server in i ∈ I has a
cost cij .

Choose if and where to intall the servers (binary variables yi)
and how to connect terminals to servers (variables xij). . .

. . . in such a way that each terminal is connected to a server.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Problem features:

Given:

A graph G (V ,E) (telecomunication network: V = sites, E =
links).

A subset I of vertices of the graph, which correspond to sites
in which servers can be installed.

A subset J of vertices of the graph, in which terminals are
placed.

Installing a server in each site i ∈ I has a cost fi .

Connecting a terminal in site j ∈ J to a server in i ∈ I has a
cost cij .

Choose if and where to intall the servers (binary variables yi)
and how to connect terminals to servers (variables xij). . .

. . . in such a way that each terminal is connected to a server.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Problem features:

Given:

A graph G (V ,E) (telecomunication network: V = sites, E =
links).

A subset I of vertices of the graph, which correspond to sites
in which servers can be installed.

A subset J of vertices of the graph, in which terminals are
placed.

Installing a server in each site i ∈ I has a cost fi .

Connecting a terminal in site j ∈ J to a server in i ∈ I has a
cost cij .

Choose if and where to intall the servers (binary variables yi)
and how to connect terminals to servers (variables xij). . .

. . . in such a way that each terminal is connected to a server.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

A Uncapacitated Facility Location Problem (UFLP)

min
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijxij

s.t.
∑
i∈I

xij = 1

2

∀j ∈ J

xij ≤ yi ∀i ∈ I ,∀j ∈ J

xij ∈ {0, 1} ∀i ∈ I , ∀j ∈ J

yi ∈ {0, 1} ∀i ∈ I

N.B. variables xij take integer values as soon as they are
constrained to be non-negative.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

A Uncapacitated Facility Location Problem (UFLP)

min
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijxij

s.t.
∑
i∈I

xij =

1

2 ∀j ∈ J

xij ≤ yi ∀i ∈ I ,∀j ∈ J

xij ∈ {0, 1} ∀i ∈ I , ∀j ∈ J

yi ∈ {0, 1} ∀i ∈ I

N.B. variables xij take integer values as soon as they are
constrained to be non-negative.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

A constructive heuristic for the UFLP

No polynomial type algorithm is known for the UFLP: for large
scale problems we can use heuristics

(construction) build a feasible UFLP solution

(improvement) iteratively change the structure of the initial
solution through local search.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Greedy construction

An example of initial solution:

fix a parameter k

define pseudo opening costs f̃i

install k servers in the k sites of minimum pseudo opening cost

connect each terminal to the nearest server

How to choose k?

k = d
∑

i∈I ,j∈J cij∑
i∈I fi

e

How to choose f̃i?

f̃i = fi +
|J|
k
·
∑

j∈J cij

|J|

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Greedy construction

An example of initial solution:

fix a parameter k

define pseudo opening costs f̃i

install k servers in the k sites of minimum pseudo opening cost

connect each terminal to the nearest server

How to choose k?

k = d
∑

i∈I ,j∈J cij∑
i∈I fi

e

How to choose f̃i?

f̃i = fi +
|J|
k
·
∑

j∈J cij

|J|

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Location-allocation procedure

An example of alternating heuristic:

(location) for each cluster of terminals, move the server to the
site of the cluster having minimum cost

(allocation) assign each terminal to the nearest server

and iterate ...

(for instance, this procedure is the basis of k-means clustering)

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

ADD procedure

Classical ADD move:

try to open a new server in each site i

assign to its cluster each terminal having i as the site with the
nearest server

if the solution is not improved, backtrack the move

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

DROP procedure

Classical DROP move:

try to close in turn each open server

assign unassigned terminal to its nearest open server

if the solution is not improved, backtrack the move

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

A Local Search (LS) framework:

1 perform greedy construction,

2 iteratively perform location-allocation procedure, until no
further improving changes can be made,

3 iteratively perform ADD moves, until no further improving
ADD can be made,

4 iteratively perform DROP moves, until no further improving
DROP can be made,

5 if any improving move was made, go back to step 2, otherwise
stop.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Problem features:

Given:

A graph G (V ,E) (telecomunication network: V = sites, E = links).

A subset I of vertices of the graph, which correspond to sites in
which servers can be installed.

A subset J of vertices of the graph, in which terminals are placed.

Installing a server in each site i ∈ I has a cost fi .

Connecting a terminal in site j ∈ J to a server in i ∈ I has a cost cij .

Each terminal has a service request dj ; each server has a
service capacity Qi .

Choose if and where to intall the servers (binary variables yi) and
how to connect terminals to servers (variables xij). . .

. . . in such a way that each terminal is connected to a server.

. . . and the service requests associated to each server do not
exceed its capacity.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Problem features:

Given:

A graph G (V ,E) (telecomunication network: V = sites, E = links).

A subset I of vertices of the graph, which correspond to sites in
which servers can be installed.

A subset J of vertices of the graph, in which terminals are placed.

Installing a server in each site i ∈ I has a cost fi .

Connecting a terminal in site j ∈ J to a server in i ∈ I has a cost cij .

Each terminal has a service request dj ; each server has a
service capacity Qi .

Choose if and where to intall the servers (binary variables yi) and
how to connect terminals to servers (variables xij). . .

. . . in such a way that each terminal is connected to a server.

. . . and the service requests associated to each server do not
exceed its capacity.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Problem features:

Given:

A graph G (V ,E) (telecomunication network: V = sites, E = links).

A subset I of vertices of the graph, which correspond to sites in
which servers can be installed.

A subset J of vertices of the graph, in which terminals are placed.

Installing a server in each site i ∈ I has a cost fi .

Connecting a terminal in site j ∈ J to a server in i ∈ I has a cost cij .

Each terminal has a service request dj ; each server has a
service capacity Qi .

Choose if and where to intall the servers (binary variables yi) and
how to connect terminals to servers (variables xij). . .

. . . in such a way that each terminal is connected to a server.

. . . and the service requests associated to each server do not
exceed its capacity.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Problem features:

Given:

A graph G (V ,E) (telecomunication network: V = sites, E = links).

A subset I of vertices of the graph, which correspond to sites in
which servers can be installed.

A subset J of vertices of the graph, in which terminals are placed.

Installing a server in each site i ∈ I has a cost fi .

Connecting a terminal in site j ∈ J to a server in i ∈ I has a cost cij .

Each terminal has a service request dj ; each server has a
service capacity Qi .

Choose if and where to intall the servers (binary variables yi) and
how to connect terminals to servers (variables xij). . .

. . . in such a way that each terminal is connected to a server.

. . . and the service requests associated to each server do not
exceed its capacity.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

Problem features:

Given:

A graph G (V ,E) (telecomunication network: V = sites, E = links).

A subset I of vertices of the graph, which correspond to sites in
which servers can be installed.

A subset J of vertices of the graph, in which terminals are placed.

Installing a server in each site i ∈ I has a cost fi .

Connecting a terminal in site j ∈ J to a server in i ∈ I has a cost cij .

Each terminal has a service request dj ; each server has a
service capacity Qi .

Choose if and where to intall the servers (binary variables yi) and
how to connect terminals to servers (variables xij). . .

. . . in such a way that each terminal is connected to a server.

. . . and the service requests associated to each server do not
exceed its capacity.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

A Single-Source Capacitated Facility Location Problem
(SS-CFLP)

min
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijxij

s.t.
∑
i∈I

xij = 1

2

∀j ∈ J∑
j∈J

djxij ≤ Qi ∀j ∈ J

xij ≤ yi ∀i ∈ I ,∀j ∈ J

xij ∈ {0, 1} ∀i ∈ I , ∀j ∈ J

yi ∈ {0, 1} ∀i ∈ I

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

A Single-Source Capacitated Facility Location Problem
(SS-CFLP)

min
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijxij

s.t.
∑
i∈I

xij =

1

2 ∀j ∈ J∑
j∈J

djxij ≤ Qi ∀j ∈ J

xij ≤ yi ∀i ∈ I ,∀j ∈ J

xij ∈ {0, 1} ∀i ∈ I , ∀j ∈ J

yi ∈ {0, 1} ∀i ∈ I

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

k-SWAP procedure

k-SWAP means:

disconnect k terminals from their servers (update residual
capacities)

connect them back in the best possible way

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Failure free routing
Design of a failure free network
Exercise: handling capacities

The VNS method

A Variable Neighborhood Search (VNS) procedure:

perform greedy construction,

iteratively perform Location-Allocation, until no further
improving changes can be made,

perform ADD: if an improvement is made go to 2, otherwise
go to 4

perform DROP: if an improvement is made go to 2, otherwise
go to 5

perform 2-SWAP: if an improvement is made go to 2,
otherwise go to 5

perform 3-SWAP: if an improvement is made go to 2,
otherwise stop

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Combining flow and network design models
Dimensioning
Protection

Review of multicommodity flows

Let f k
(i,j) be decision variables representing the amount of flow for

commodity k sent on arc (i , j). Let v represent the total cost of routing
packets in the network.

Let x(i,j) be decision variables taking value 1
if link (i , j) is installed, 0 otherwise.

minimize v =
∑

(i,j)∈A

∑
k∈K

ck
(i,j)f

k
(i,j)

+
∑

(i,j)∈A

d(i,j)x(i,j)

subject to
∑

(i,j)∈A

f k
(i,j) =

∑
(j,i)∈A

f k
(j,i) + bk

i ∀i ∈ V ; ∀k ∈ K

∑
k∈K

f k
(i,j) ≤ u(i,j)

x(i,j)

∀(i , j) ∈ A

0 ≤ f k
(i,j) ≤ u(i,j) ∀(i , j) ∈ A ∀k ∈ K

x(i,j) ∈ {0, 1} ∀(i , j) ∈ A; ∀k ∈ K

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Combining flow and network design models
Dimensioning
Protection

Review of multicommodity flows

Let f k
(i,j) be decision variables representing the amount of flow for

commodity k sent on arc (i , j). Let v represent the total cost of routing
packets in the network. Let x(i,j) be decision variables taking value 1
if link (i , j) is installed, 0 otherwise.

minimize v =
∑

(i,j)∈A

∑
k∈K

ck
(i,j)f

k
(i,j) +

∑
(i,j)∈A

d(i,j)x(i,j)

subject to
∑

(i,j)∈A

f k
(i,j) =

∑
(j,i)∈A

f k
(j,i) + bk

i ∀i ∈ V ; ∀k ∈ K

∑
k∈K

f k
(i,j) ≤ u(i,j)x(i,j) ∀(i , j) ∈ A

0 ≤ f k
(i,j) ≤ u(i,j) ∀(i , j) ∈ A ∀k ∈ K

x(i,j) ∈ {0, 1} ∀(i , j) ∈ A; ∀k ∈ K

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Combining flow and network design models
Dimensioning
Protection

Link dimensioning

Let f k
(i,j) be decision variables representing the amount of flow for

commodity k sent on arc (i , j). Let v represent the total cost of routing
packets in the network. Let x(i,j) be decision variables taking value 1 if
link (i , j) is installed, 0 otherwise.

minimize v =
∑

(i,j)∈A

∑
k∈K

ck
(i,j)f

k
(i,j)+

∑
(i,j)∈A

∑
`∈L

d

`

(i,j)x

`

(i,j)

subject to
∑

(i,j)∈A

f k
(i,j) =

∑
(j,i)∈A

f k
(j,i) + bk

i ∀i ∈ V ;∀k ∈ K

∑
k∈K

f k
(i,j) ≤

∑
`∈L

u

`

(i,j)x

`

(i,j) ∀(i , j) ∈ A∀` ∈ L

0 ≤ f k
(i,j) ≤

∑
`∈L

u

`

(i,j) ∀(i , j) ∈ A;∀k ∈ K

x

`

(i,j) ∈ {0, 1} ∀(i , j) ∈ A;∀` ∈ L

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Combining flow and network design models
Dimensioning
Protection

Link dimensioning

Let f k
(i,j) be decision variables representing the amount of flow for

commodity k sent on arc (i , j). Let v represent the total cost of routing
packets in the network. Let x(i,j) be decision variables taking value 1 if
link (i , j) is installed, 0 otherwise.

minimize v =
∑

(i,j)∈A

∑
k∈K

ck
(i,j)f

k
(i,j)+

∑
(i,j)∈A

∑
`∈L

d`
(i,j)x

`
(i,j)

subject to
∑

(i,j)∈A

f k
(i,j) =

∑
(j,i)∈A

f k
(j,i) + bk

i ∀i ∈ V ;∀k ∈ K

∑
k∈K

f k
(i,j) ≤

∑
`∈L

u`
(i,j)x

`
(i,j) ∀(i , j) ∈ A∀` ∈ L

0 ≤ f k
(i,j) ≤

∑
`∈L

u`
(i,j) ∀(i , j) ∈ A;∀k ∈ K

x`
(i,j) ∈ {0, 1} ∀(i , j) ∈ A;∀` ∈ L

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Combining flow and network design models
Dimensioning
Protection

Handling protection schemes

Let us assume that each connection request from s to t is modeled as a
commodity k by setting bk

s = 1 and bk
t = −1. In this case f k

(i,j) is always
0 or 1.

Consider two commodities for each connection request from s to
t: k1(s, t)→ the actual connection, and k2(s, t)→ the backup path.

minimize v =
∑

(i,j)∈A

∑
k∈K

ck
(i,j)f

k
(i,j) +

∑
(i,j)∈A

∑
`∈L

d`
(i,j)x

`
(i,j)

subject to
∑

(i,j)∈A

f k
(i,j) =

∑
(j,i)∈A

f k
(j,i) + bk

i ∀i ∈ V ;∀k ∈ K

∑
k∈K

f k
(i,j) ≤

∑
`∈L

u`
(i,j)x

`
(i,j) ∀(i , j) ∈ A∀` ∈ L

0 ≤ f k
(i,j) ≤

∑
`∈L

u`
(i,j) ∀(i , j) ∈ A;∀k ∈ K

f
k1(s,t)
(i,j) + f

k2(s,t)
(i,j) ≤ 1 ∀connection

x`
(i,j) ∈ {0, 1} ∀(i , j) ∈ A;∀` ∈ L

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Combining flow and network design models
Dimensioning
Protection

Handling protection schemes

Let us assume that each connection request from s to t is modeled as a
commodity k by setting bk

s = 1 and bk
t = −1. In this case f k

(i,j) is always
0 or 1. Consider two commodities for each connection request from s to
t: k1(s, t)→ the actual connection, and k2(s, t)→ the backup path.

minimize v =
∑

(i,j)∈A

∑
k∈K

ck
(i,j)f

k
(i,j) +

∑
(i,j)∈A

∑
`∈L

d`
(i,j)x

`
(i,j)

subject to
∑

(i,j)∈A

f k
(i,j) =

∑
(j,i)∈A

f k
(j,i) + bk

i ∀i ∈ V ;∀k ∈ K

∑
k∈K

f k
(i,j) ≤

∑
`∈L

u`
(i,j)x

`
(i,j) ∀(i , j) ∈ A∀` ∈ L

0 ≤ f k
(i,j) ≤

∑
`∈L

u`
(i,j) ∀(i , j) ∈ A;∀k ∈ K

f
k1(s,t)
(i,j) + f

k2(s,t)
(i,j) ≤ 1 ∀connection

x`
(i,j) ∈ {0, 1} ∀(i , j) ∈ A;∀` ∈ L

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Combining flow and network design models
Dimensioning
Protection

Handling protection schemes

Let us assume that each connection request from s to t is modeled as a
commodity k by setting bk

s = 1 and bk
t = −1. In this case f k

(i,j) is always
0 or 1. Consider two commodities for each connection request from s to
t: k1(s, t)→ the actual connection, and k2(s, t)→ the backup path.

minimize v =
∑

(i,j)∈A

∑
k∈K

ck
(i,j)f

k
(i,j) +

∑
(i,j)∈A

∑
`∈L

d`
(i,j)x

`
(i,j)

subject to
∑

(i,j)∈A

f k
(i,j) =

∑
(j,i)∈A

f k
(j,i) + bk

i ∀i ∈ V ;∀k ∈ K

∑
k∈K

f k
(i,j) ≤

∑
`∈L

u`
(i,j)x

`
(i,j) ∀(i , j) ∈ A∀` ∈ L

0 ≤ f k
(i,j) ≤

∑
`∈L

u`
(i,j) ∀(i , j) ∈ A;∀k ∈ K

f
k1(s,t)
(i,j) + f

k2(s,t)
(i,j) ≤ 1 ∀connection

x`
(i,j) ∈ {0, 1} ∀(i , j) ∈ A;∀` ∈ L

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

A simple robustness check
Simple node and link protection schemes

Simultaneous routing and design
Lab. session

Exercises

Implement the min global cut algorithm

Try the link / node protected shortest paths model

implement LS for UFLP

implement VNS for SS-CFLP

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

	A simple robustness check
	Evaluating robustness
	Global min cut algorithms

	Simple node and link protection schemes
	Failure free routing
	Design of a failure free network
	Exercise: handling capacities

	Simultaneous routing and design
	Combining flow and network design models
	Dimensioning
	Protection

	Lab. session

