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The problem

We are now able to cope with costs and capacities at the same
time (Min Cost Flows). Given

a set of nodes,

a set of links connecting them,

a set of connection requests, between pairs of nodes of the
network,

that is, an existing network, with realistic traffic.
I want to

decide which links to use in the connections (route)

maximizing the quality of service (e.g. minimizing delay time)
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Assumptions

Some assumptions:

1 cost matters,

2 the capacity of links may not be enough for all connection
requests,

3 different connections can be routed on the same links ...

4 ... provided the capacity of each link is enough.
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Recognizing a known problem ...

We observe

when a single connection request is made on the network, the
problem is to compute a Min Cost Flow ...

we are facing a multicommodity Min Cost Flow (MCF) problem.
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Application Areas

See Orlin’s slides, 22-7
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Graph model

Given a network, build a directed graph G = (V ,A) having

one vertex i ∈ V for each node of the network,

one arc a ∈ A ⊆ V × V for each link of the network,

capacities u(i ,j) on each arc (i , j) ∈ A.

Then, consider the set K of connection requests (commodities),
and enrich the graph with

costs ck
(i ,j) on each arc (i , j) ∈ A for each commodity k ∈ K ,

flow excess bk
i for each node i ∈ V and for each commodity

k ∈ K .
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Assumptions

We assume that

Homogeneous commodities: each unit of flow of uses one
unit of capacity on each arc, independently of k ,

No congestion: cost is linear in the amount of flow on each
arc (until capacity limit is reached),

Fractional flows: no integrality condition is imposed on flows.

WLOG we assume also that

bk
i > 0 for a unique i ∈ V (origin of commodity k → sk),

bk
i < 0 for a unique i ∈ V (destination of commodity k → tk).

We search for k min cost flows on the network, one for each
commodity.
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Mathematical Programming model

Let xk
(i ,j) be decision variables representing the amount of flow for

commodity k sent on arc (i , j). Let v represent the total cost of
routing packets in the network.

minimize v =
∑

(i ,j)∈A

∑
k∈K

ck
(i ,j)xk

(i ,j)

subject to
∑
j∈V

xk
(i ,j) =

∑
k∈V

xk
(k,i) + bk

i ∀i ∈ V , i 6= s, t; ∀k ∈ K

∑
k∈K

xk
(i ,j) ≤ u(i ,j) ∀(i , j) ∈ A

0 ≤ xk
(i ,j) ≤ u(i ,j) ∀(i , j) ∈ A; ∀k ∈ K
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An example of multicommodity flow

See Orlin’s slides 22,3-4
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Discrete and fractional flows

See Orlin’s slides 22,8-10
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Ways of solving MMCF

There are many ways of solving MMCF:

price (cost) directed decompositions,

resource (capacity) directed decompositions,

simplex based approaches.
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Price directed decompositions

Idea behind price directed decompositions:

modify costs on arcs ...

... such that solving k MCF independently gives a full MMCF
solution ...

... that automatically satisfies capacity constraints.

We will see:

Lagrangean relaxation,

column generation.
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Optimality conditions: partial dualization

Theorem: The multicommodity flow (xk
ij ) is optimal if there exist

non-negative prices (wij) on the arcs, so that the following is true:

if wij > 0 then
∑

k∈K xk
ij = uij ,

each flow k is (independently) optimal for commodity k if
each cost ck

ij is replaced by

cw ,k
ij = ck

ij + wij

.

Recall: flow k is optimal for commodity k if there is no negative
cost cycle in the residual network for commodity k .
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See Orlin’s slides 22,14-16
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Lagrangean algorithm for MMCF

Idea: update w and solve MCF until the partial dualization
conditions are satisfied.
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Lagrangean algorithm for MMCF

BEGIN
x := 0; w := 0
θ := 1
while partial dualization optimality conditions are not satisfied
begin

set cw ,k
ij := ck

ij + wij for each k ∈ K and for each (i , j) ∈ A
for each k ∈ K

build a residual network G k(x)

solve a MCF problem on G k(x) using costs cw ,k
ij

obtain a flow xk
ij

update prices w : for each (i , j) ∈ A
wij := max{0,wij + θ · (

∑
k∈K xk

ij − uij)}
reduce θ

end
END
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Solving MMCF by Lagrangean relaxation

See Orlin’s slides 22,21-28
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A path-based model

Idea: represent overall flow as sum of partial flows, each following
a single path, and combine them in a feasible way.
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A path-based model

minimize v =
∑
k∈K

∑
P∈Pk

cP · f P

subject to
∑
k∈K

∑
P∈Pk

aPij · f P ≤ uij ∀(i , j) ∈ A

∑
P∈Pk

f P = bk
sk

∀k ∈ K

f P ≥ 0 ∀k ∈ K , ∀P ∈ Pk

where:

Pk is the set of all paths from sk to tk
cP is the cost of path P
f P is the amount of flow sent on path P
aPij = 1 if path P includes arc (i , j), and = 0 otherwise
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A path-based model

Orlin’s slides 23,8-10
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A path-based model

minimize v =
∑
k∈K

∑
P∈Pk

cP · f P

subject to
∑
k∈K

∑
P∈Pk

aPij · f P ≤ uij ∀(i , j) ∈ A

∑
P∈Pk

f P = bk
sk

∀k ∈ K

f P ≥ 0 ∀k ∈ K , ∀P ∈ Pk

Is it possible to straightly optimize it?

|Pk | grows combinatorially with problem dimension: we need an
iterative approach (column generation).
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A path-based model

minimize v =
∑
k∈K

∑
P∈Pk

cP · f P

subject to
∑
k∈K

∑
P∈Pk

aPij · f P ≤ uij ∀(i , j) ∈ A

∑
P∈Pk

f P = bk
sk

∀k ∈ K

f P ≥ 0 ∀k ∈ K , ∀P ∈ Pk

Is it possible to straightly optimize it?
|Pk | grows combinatorially with problem dimension: we need an
iterative approach (column generation).
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A path-based model

minimize v =
∑
k∈K

∑
P∈Pk

cP · f P

subject to
∑
k∈K

∑
P∈Pk

aPij · f P ≤ uij ∀(i , j) ∈ A

∑
P∈Pk

f P = bk
sk

∀k ∈ K

f P ≥ 0 ∀k ∈ K , ∀P ∈ Pk

Idea: in a good MMCF solution, only very few good paths are
chosen.

We replace each Pk with a “well chosen” subset Sk ⊂ Pk

If we are lucky, all useful paths are in Sk , otherwise we iteratively
enlarge it.
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A path-based model

minimize v =
∑
k∈K

∑
P∈Sk

cP · f P

subject to
∑
k∈K

∑
P∈Sk

aPij · f P ≤ uij ∀(i , j) ∈ A

∑
P∈Sk

f P = bk
sk

∀k ∈ K

f P ≥ 0 ∀k ∈ K ,∀P ∈ Sk

Idea: in a good MMCF solution, only very few good paths are
chosen.
We replace each Pk with a “well chosen” subset Sk ⊂ Pk

If we are lucky, all useful paths are in Sk , otherwise we iteratively
enlarge it.
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A path-based model

minimize v =
∑
k∈K

∑
P∈Pk

cP · f P

subject to
∑
k∈K

∑
P∈Pk

−aPij · f P ≥ −uij ∀(i , j) ∈ A(λij)∑
P∈Pk

f P = bk
sk ∀k ∈ K (µk)

f P ≥ 0 ∀k ∈ K ,∀P ∈ Pk

This is a Linear Programming model:

let λij ≥ 0 and µk be the dual variables

the reduced cost of each variable f P is
c̄P := cP −

∑
(i ,j)∈A(−λij · aPij )− µk

... that is c̄P :=
∑

(i ,j)∈A(ck
ij + λij) · aPij − µk

a solution f is optimal if all variables have non-negative
reduced cost
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A path-based model

minimize v =
∑
k∈K

∑
P∈Pk

cP · f P

subject to
∑
k∈K

∑
P∈Pk

−aPij · f P ≥ −uij ∀(i , j) ∈ A(λij)∑
P∈Pk

f P = bk
sk ∀k ∈ K (µk)

f P ≥ 0 ∀k ∈ K ,∀P ∈ Pk

This is a Linear Programming model:

I am free to replace each Pk with a subset Sk , and optimize a
restricted problem
then, I search for the variable having most negative reduced
cost

if even this reduced cost is non-negative, then all of them are
otherwise, the variable corresponds to a good path ...
I enlarge an Sk with this path, and iterate.
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A path-based model

minimize v =
∑
k∈K

∑
P∈Pk

cP · f P

subject to
∑
k∈K

∑
P∈Pk

−aPij · f P ≥ −uij ∀(i , j) ∈ A(λij)∑
P∈Pk

f P = bk
sk ∀k ∈ K (µk)

f P ≥ 0 ∀k ∈ K ,∀P ∈ Pk

This is a Linear Programming model: Very good news:

searching for the variable with most negative reduced cost is
like searching for a minimum cost s-t path
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Column Generation Algorithm for MMCF

BEGIN
Initialize Sk
do

solve the restricted LP model, considering Sk
get the values of dual variables λij ≥ 0 and µk
for each k ∈ K

find a shortest path on G using (red.) costs
c̄ij = ck

ij + λij
obtain a path P of (reduced) cost c̄P

if c̄P − µk < 0, add P to Sk
while (any new path has been added to Sk)
END
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Column Generation Example

Orlin’s slides 23,21-31
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MMCF lab session

Implementing Lagrangean Relaxation and Column Generation
MMCF algorithms in AMPL.
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