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Routing with capacities

The problem

We are now able to cope with costs and capacities at the same
time. Given

a set of nodes,

a set of links connecting them,

a connection request between two nodes of the network,

(that is, an existing network).
I want to

decide which links to use in the connection (route)

maximizing the quality of service (e.g. minimizing delay time)
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Routing with capacities

Assumptions

Some assumptions:

1 no costs involved: packets can also follow non-shortest paths,

2 → cost matters!

3 the capacity of each link is enough for the whole connection
request.

4 → the capacity of links may not be enough for the whole
connection request.
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Routing with capacities

Recognizing a known problem ...

We observe

when capacities are always large enough: Shortest Path
Problems,

when costs are not involved: Max Flow Problems.

we are facing a Min Cost Flow (MCF) problem.

N.B. Min Cost Flows generalize both Shortest Path and Max Flow
problems.
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Mathematical models

Graph model

Given a network, build a directed graph G = (V ,A) having

one vertex i ∈ V for each node of the network

one arc a ∈ A ⊆ V × V for each link of the network

capacities u(i ,j) on each arc (i , j) ∈ A

costs c(i ,j) on each arc (i , j) ∈ A

flow consumption bi for each node i ∈ V
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Mathematical models

Mathematical Programming model

Let x(i ,j) be decision variables representing the amount of flow sent
on arc (i , j). Let v represent the total cost of routing packets in
the network.

maximize v =
∑

(i ,j)∈A

c(i ,j)x(i ,j)

subject to
∑
j∈V

x(i ,j) =
∑
k∈V

x(k,i) + bi ∀i ∈ V , i 6= s, t

0 ≤ x(i ,j) ≤ u(i ,j) ∀(i , j) ∈ A
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Assumptions

We assume that

all data are integral,

it is possible to send M units of flow from s to t (i.e. the
problem is feasible),

all arc costs are non-negative (but it can be shown that this is
without loss of generality),

bi = 0 for all i ∈ V , except a special vertex s ∈ V
representing the origin of packets (bs = −M units) and a
special vertex t ∈ V representing the destination of packets
(bt = M units) (this is also w.l.o.g).

and for technical reasons

the graph G contains an uncapacitated directed path between
every pair of nodes (but we can always add a suitable gadget).
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Residual network

As in Max Flow problems, the residual network G (X )
corresponding to a flow x is defined as follows.

We replace each arc (i , j) ∈ A with two arcs (i , j) and (j , i)

the arc (i , j) has cost cij and residual capacity rij = uij − xij

the arc (j , i) has cost cji = −cij and residual capacity rji = xij

only arcs with positive residual capacity are actually
considered in G (x).

Algorithms for MCF work rather on residual networks than on the
starting graph.
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Optimality conditions

Recall optimality conditions for Shortest Paths

d(j) ≤ d(i) + cij for each (i , j) ∈ A

and optimality conditions for Max Flow

(e.g.) no augmenting paths

→ in both cases it is enough to “correct” a solution until they are
satisfied, to obtain an exact algorithm! We look for something
similar for MCF.
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Optimality conditions

We will see three (equivalent) optimality conditions:

negative cycle

reduced cost

complementary slackness
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Negative Cycle optimality conditions

Theorem (negative cycle optimality conditions): A feasible
solution x∗ is an optimal solution of the MCF problem if and only
if the residual network G (x∗) contains no negative cost (directed)
cycle.
Proof. Omitted.
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Negative Cycle algorithm

Idea: maintain feasibility of the solution at every step, and attempt
to achieve optimality.
Orlin’s slides ahead!
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put slides 20 .. 24

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course



Network flows
Modeling

Min cost flow algorithms
MCF in practice

Notation
Optimality conditions

Negative cycles

Key issue: how to find a negative cost cycle?

Network simplex algorithm
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Negative cycles

Key issue: how to find a negative cost cycle?

Run a shortest path algorithm (e.g. label correcting), and
keep the first negative cycle

Network simplex algorithm
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Negative cycles

Key issue: how to find a negative cost cycle?

Augment flow in a negative cycle with maximum
improvement:
find W s.t. −(

∑
(i ,j)∈W cij) · (min{rij : (i , j) ∈W }) is

maximum
→ NP-Hard problem (but polynomially solvable with a slight
modification)
→ at most O(mlog(mCU)) iterations

Network simplex algorithm
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Negative cycles

Key issue: how to find a negative cost cycle?

Augment flow in a negative cycle with maximum average arc
improvement:
find W s.t. −(

∑
(i ,j)∈W cij) · (min{rij : (i , j) ∈W })/|W | is

maximum
→ such a cycle can be found in O(nm) or O(

√
nm log(nC ))

→ at most O(min{nm log(nC ), nm2 log n}) iterations

Network simplex algorithm
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Reduced Cost optimality conditions

Recall from the Johnson’s algorithm for Shortest Paths:

we can assign node potentials πi to each i ∈ V

cπij = cij − πi + πj is the reduced cost of arc (i , j)

for any path P from s to t,∑
(i ,j)∈P cπij =

∑
(i ,j)∈P cij − πs + πt

in a similar way, for any cycle W ,
∑

(i ,j)∈W cπij =
∑

(i ,j)∈W cij

if we compute optimal d() labels, and set πi = −d(i), then
cd
ij = cij − d(i) + d(j) ≥ 0 for each (i , j)

.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course



Network flows
Modeling

Min cost flow algorithms
MCF in practice

Notation
Optimality conditions

Reduced Cost optimality conditions

Recall from the Johnson’s algorithm for Shortest Paths:

we can assign node potentials πi to each i ∈ V

cπij = cij − πi + πj is the reduced cost of arc (i , j)

for any path P from s to t,∑
(i ,j)∈P cπij =

∑
(i ,j)∈P cij − πs + πt

in a similar way, for any cycle W ,
∑

(i ,j)∈W cπij =
∑

(i ,j)∈W cij

if we compute optimal d() labels, and set πi = −d(i), then
cd
ij = cij − d(i) + d(j) ≥ 0 for each (i , j).

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course



Network flows
Modeling

Min cost flow algorithms
MCF in practice

Notation
Optimality conditions

Reduced Cost optimality conditions

Theorem (reduced cost optimality conditions): A feasible
solution x∗ is an optimal solution of the MCF problem if and only
if some set of node potentials π exists, that satisfy the following
condition:

cπij ≥ 0 ∀(i , j) in G (x∗),
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Reduced Cost optimality conditions

Proof.

(if): suppose that
cπij ≥ 0∀(i , j);

then, any cycle W has ∑
(i ,j)∈W

cπij ≥ 0

but since ∑
(i ,j)∈W

cπij =
∑

(i ,j)∈W

cij

, then
∑

(i ,j)∈W cij ≥ 0 and therefore no negative cost cycle
exists (i.e. x∗ is optimal).
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Reduced Cost optimality conditions

(only if): if x∗ is optimal, then it contains no negative cost
cycle

but then I can create distance labels d() all satisfying
d(j) ≤ d(i) + cij (SP optimality conditions)

and setting πi = −d(i) I have
−πj ≤ −πi + cij → 0 ≤ πj − πi + cij = cπij .
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Successive Shortest Path algorithm

Idea: maintain optimality of the solution (with respect to reduced
costs) at every step, and attempt to achieve feasibility.

Keep a solution x satisfying non-negativity and capacity
constraints

allow (temporary) violation of flow balance constraints

x is a pseudoflow

we define as imbalance in i the value

e(i) = bi +
∑

(j ,i)∈A

xji −
∑

(i ,j)∈A

xij

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course



Network flows
Modeling

Min cost flow algorithms
MCF in practice

Notation
Optimality conditions

Successive Shortest Path algorithm

Idea: maintain optimality of the solution (with respect to reduced
costs) at every step, and attempt to achieve feasibility.

Keep a solution x satisfying non-negativity and capacity
constraints

allow (temporary) violation of flow balance constraints

x is a pseudoflow

we define as imbalance in i the value

e(i) = bi +
∑

(j ,i)∈A

xji −
∑

(i ,j)∈A

xij

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course



Network flows
Modeling

Min cost flow algorithms
MCF in practice

Notation
Optimality conditions

Successive Shortest Path algorithm

BEGIN
x := 0;π := 0
e(i) := bi for all i ∈ V
initialize sets E := {i : e(i) > 0} and D := {i : e(i) < 0}
while E 6= ∅ do
begin

select a node k ∈ E and a node ` ∈ D
find shortest path distances d(j) from k to each j in G (x)

using reduced costs cπ

let P be a shortest path from k to `
update π := π − d()
let δ := min{e(k),−e(l),min{rij : (i , j) ∈ P}}
augment δ units of flow along P
update G (x), x ,E ,D and the reduced costs

end
END
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Notation
Optimality conditions

Successive Shortest Path algorithm

Example: page 322 of Network Flows.
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Complementary Slackness optimality conditions

Theorem (complementary slackness optimality conditions): A
feasible solution x∗ is an optimal solution of the MCF problem if
and only if some set of node potentials π exists, such that the
reduced costs and flow values satisfy the following complementary
slackness conditions for every arc (i , j) ∈ A:

1 if cπij > 0 then x∗ij = 0

2 if cπij < 0 then x∗ij = uij

3 if 0 < x∗ij < uij then cπij = 0

Proof.
On the blackboard (Network flows, page 310).
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Primal-Dual algorithm

Idea: maintain pseudoflows as in the Successive Shortest Path
algorithm, but instead of iteratively sending flow on shortest paths
solve a maximum flow problem.

consider all elements with excess or deficit at once by
introducing artifical sources and sinks

build an admissible network, obtained from G (x) by removing
all arcs having reduced cost different than 0,

observe that any path in the admissible network is a shortest
path in the residual network.
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Successive Shortest Path algorithm

BEGIN
x := 0;π := 0
e(s) := bs ; e(t) := bt

while e(s) > 0 do
begin

find shortest path distances d(j) from s to each j in G (x)
using reduced costs cπ

update π := π − d()

define the admissible network G̃ (x), including only arcs
of G (x) having cπ

ij = 0

find a maximum flow from s to t in G̃ (x)
update G (x), e(s), e(t) and the reduced costs

end
END
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Primal-Dual algorithm

Example: page 325 of Network Flows.
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MCF algorithm implementation

Lab session: implementing MCF algorithms in AMPL.
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