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Review of the Ford-Fulkerson Algorithm

Begin
x := 0;
create the residual network G(x);
while there is some directed path from s to t in 

G(x) do
begin

let P be a path from s to t in G(x);
δ* := δ(P);
send δ* units of flow along P; 
update the r's;

end
end {the flow x is now maximum}.
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Limits of Ford-Fulkerson

Computational complexity of O(nmU);

bad behaviour also on simple instances;

may not converge to optimal solutions when data is irrational.
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How to improve Ford-Fulkerson

Some ways to improve them:

augmenting in large increments of flow (capacity scaling
algorithms),

using a combinatorial strategy to choose augmenting paths
(shortest augmenting path algorithms),

relax flow conservation constraints in intermediate steps of the
algorithm (preflow-push algorithms).

Preflow-push yield O(nm + n2 logU) time complexity.
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∆-Residual network

Given a flow x and a parameter ∆, let us define as ∆-residual
network G (x ,∆) the subgraph obtained from the residual network
by removing arcs of residual capacity less than ∆.
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Capacity scaling algorithm

BEGIN
x := 0
∆ := 2blog Uc

while ∆ ≥ 1 do
begin

while G (x ,∆) contains a path from s to t do
begin

identify a path P in G (x ,∆)
δ := min{rij : (i , j) ∈ P}
augment δ units of flow along P and update G (x ,∆)

end
∆ := ∆/2

end
END
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Complexity of capacity scaling

We can prove that capacity scaling solves the maximum flow
problem

within O(m logU) augmentations,

using O(m2 logU) time overall.
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Basic observations

Observation 1: ∆ := 2blog Uc in the beginning, and halves at every
iteration (scaling phase), ⇒ at most logU scaling phases are
performed.
Observation 2: when ∆ == 1 (i.e. during the last iteration)
G (x ,∆) == G (x), ⇒ capacity scaling outputs an optimal flow.
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More observations

Observation 3: capacity scaling performs at most 2m
augmentations per scaling phase.
Proof:

Let x ′ be the flow after scaling phase with ∆ = ∆̃, and let v ′

be its value,

let S be the set of nodes reachable from s in G (x ′, ∆̃),

then [S , S̄ ] forms an s-t cut

→ the residual capacity of each arc in the cut is < ∆̃,

→ the residual capacity of the cut is ≤ m∆̃

→ v∗ ≤ v ′ + m∆̃ (weak duality)

→ at most m∆̃ units of flow remain to be carried in the next
scaling phases.

each augmentation in the next scaling phase carries at least
∆̃/2 units of flow

→ at most 2m augmentations can be performed

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course



Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

More observations

Observation 3: capacity scaling performs at most 2m
augmentations per scaling phase.
Proof:

Let x ′ be the flow after scaling phase with ∆ = ∆̃, and let v ′

be its value,

let S be the set of nodes reachable from s in G (x ′, ∆̃),

then [S , S̄ ] forms an s-t cut

→ the residual capacity of each arc in the cut is < ∆̃,

→ the residual capacity of the cut is ≤ m∆̃

→ v∗ ≤ v ′ + m∆̃ (weak duality)

→ at most m∆̃ units of flow remain to be carried in the next
scaling phases.

each augmentation in the next scaling phase carries at least
∆̃/2 units of flow

→ at most 2m augmentations can be performed

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course



Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

More observations

Observation 3: capacity scaling performs at most 2m
augmentations per scaling phase.
Proof:

Let x ′ be the flow after scaling phase with ∆ = ∆̃, and let v ′

be its value,

let S be the set of nodes reachable from s in G (x ′, ∆̃),

then [S , S̄ ] forms an s-t cut

→ the residual capacity of each arc in the cut is < ∆̃,

→ the residual capacity of the cut is ≤ m∆̃

→ v∗ ≤ v ′ + m∆̃ (weak duality)

→ at most m∆̃ units of flow remain to be carried in the next
scaling phases.

each augmentation in the next scaling phase carries at least
∆̃/2 units of flow

→ at most 2m augmentations can be performed

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course



Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

More observations

Observation 3: capacity scaling performs at most 2m
augmentations per scaling phase.
Proof:

Let x ′ be the flow after scaling phase with ∆ = ∆̃, and let v ′

be its value,

let S be the set of nodes reachable from s in G (x ′, ∆̃),

then [S , S̄ ] forms an s-t cut

→ the residual capacity of each arc in the cut is < ∆̃,

→ the residual capacity of the cut is ≤ m∆̃

→ v∗ ≤ v ′ + m∆̃ (weak duality)

→ at most m∆̃ units of flow remain to be carried in the next
scaling phases.

each augmentation in the next scaling phase carries at least
∆̃/2 units of flow

→ at most 2m augmentations can be performed

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course



Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

More observations

Observation 3: capacity scaling performs at most 2m
augmentations per scaling phase.
Proof:

Let x ′ be the flow after scaling phase with ∆ = ∆̃, and let v ′

be its value,

let S be the set of nodes reachable from s in G (x ′, ∆̃),

then [S , S̄ ] forms an s-t cut

→ the residual capacity of each arc in the cut is < ∆̃,

→ the residual capacity of the cut is ≤ m∆̃

→ v∗ ≤ v ′ + m∆̃ (weak duality)

→ at most m∆̃ units of flow remain to be carried in the next
scaling phases.

each augmentation in the next scaling phase carries at least
∆̃/2 units of flow

→ at most 2m augmentations can be performed

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course



Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

More observations

Observation 3: capacity scaling performs at most 2m
augmentations per scaling phase.
Proof:

Let x ′ be the flow after scaling phase with ∆ = ∆̃, and let v ′

be its value,

let S be the set of nodes reachable from s in G (x ′, ∆̃),

then [S , S̄ ] forms an s-t cut

→ the residual capacity of each arc in the cut is < ∆̃,

→ the residual capacity of the cut is ≤ m∆̃

→ v∗ ≤ v ′ + m∆̃ (weak duality)

→ at most m∆̃ units of flow remain to be carried in the next
scaling phases.

each augmentation in the next scaling phase carries at least
∆̃/2 units of flow

→ at most 2m augmentations can be performed

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course



Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

More observations

Observation 3: capacity scaling performs at most 2m
augmentations per scaling phase.
Proof:

Let x ′ be the flow after scaling phase with ∆ = ∆̃, and let v ′

be its value,

let S be the set of nodes reachable from s in G (x ′, ∆̃),

then [S , S̄ ] forms an s-t cut

→ the residual capacity of each arc in the cut is < ∆̃,

→ the residual capacity of the cut is ≤ m∆̃

→ v∗ ≤ v ′ + m∆̃ (weak duality)

→ at most m∆̃ units of flow remain to be carried in the next
scaling phases.

each augmentation in the next scaling phase carries at least
∆̃/2 units of flow

→ at most 2m augmentations can be performed

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course



Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

More observations

Observation 3: capacity scaling performs at most 2m
augmentations per scaling phase.
Proof:

Let x ′ be the flow after scaling phase with ∆ = ∆̃, and let v ′

be its value,

let S be the set of nodes reachable from s in G (x ′, ∆̃),

then [S , S̄ ] forms an s-t cut

→ the residual capacity of each arc in the cut is < ∆̃,

→ the residual capacity of the cut is ≤ m∆̃

→ v∗ ≤ v ′ + m∆̃ (weak duality)

→ at most m∆̃ units of flow remain to be carried in the next
scaling phases.

each augmentation in the next scaling phase carries at least
∆̃/2 units of flow

→ at most 2m augmentations can be performed

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course



Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

More observations

Observation 4: each scaling phase requires at most O(m) time

O(m) time to find an augmenting path (depth first search),

O(m) time to update the residual network.

So, overall 2mblogUc iterations, each of cost O(m)
→ O(m2blogUc).
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Shortest augmenting path algorithm

See Orlin’s slides (cut and paste ahead!)
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The Shortest Augmenting Path Algorithm

Overview:
• We will establish the following:

• We can determine each augmentation in O(n) 
time if we maintain "distance labels" and can 
carry out the augmentation in O(n) time.

• The total time to maintain and update all 
distance labels is O(nm).

• The total number of augmentations is O(nm).

Conclusion.  The total running time is O(n2m).
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Distance Labels

A distance label is a function  d: N → Z+.  A 
distance label is said to be valid if it satisfies the 
following:

d(t) = 0.
d(i) ≤ d(j) + 1  for each (i,j) ∈ G(x).

An arc (i,j) ∈ G(x) is admissible if d(i) =d(j) + 1.
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An example of valid distance labels

422

11

2
1

3

3

1

s

2

4

5

3

t02

1

1

1

1

The distance 
labels are on 
the nodes.

The 
admissible 
arcs are thick 
and red.

The labels would 
not be valid if 
there were an arc 
from “2” to “0”.

All arcs are in 
the residual 
network.

t
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More on valid distance labels

Lemma. Let d( ) be a valid distance label.  Then d(i) is 
a lower bound on the distance from i to t in the 
residual network.  (The distance is measured in terms 
of the number of arcs.)

Proof. Let P be any path from i to t in G(x) with k arcs.  
We claim to show that d(i) ≤ k.  Assume the claim is 
true for paths of k-1 or fewer arcs.

P has k 
arcs

tji
0≤ k-1≤ k

P’ has k-1 arcs
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On Finding Paths shortest s-t paths

Lemma. If there is an admissible path P from s to t, 
then it is a shortest path.

Proof.  The length of the path is d(s) which is at 
most the length of the shortest path. 

t
0123

s
4
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The shortest augmenting path algorithm 

begin
while d(s) < n do
begin 

if there is a node  with d(i) ≤ d(s) and no admissible 
arcs from j then Relabel(i)

else find an admissible path from s to t and augment 
flow along the path

end
end 

Procedure Relabel(i)
begin

if there are no admissible arcs coming out of node i, then
d(i) := 1 + min ( d(j) : rij > 0};

if d(s) > n-1, then quit;
end Shortest augmenting 

path animation
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Comments on the run time analysis

Bound the relabels, and the time for relabels
O(n2) relabels, O(nm) time.

Bound the number of augmentations, and the 
time to carry out the augmentations

O(nm) augmentations
O(n2m) arcs in augmentations
O(n2m) time.

Bound the time spent looking for augmentations.
O(n2m) time spent identifying the arcs in 
augmentations.
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Bounding the number of relabels.

Claim: after a relabel of node i, the distances are 
still valid, and the distance label of node i strictly 
increased.

Claim: Once d(i) > n-1, there is no path from node i 
to the sink node t, and so one can ignore node i 
subsequently.

Conclusion: There can be at most n relabels of 
node i, and at most n2 relabels in total.
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Bounding the time for relabels
Tail Head Res. 

Cap 
Admissible

? 
4 1 0 No 

4 2 1 No 

4 3 4 No 

4 5 0 No 

4 6 0 No 
 

 

3

Maintain a 
current arc for 
each adjacency 
list. 

4

1 2

3

56

1 3

2

4

2

Scan through A(4).

Each arc in A(4) is 
scanned once per 
relabel, at most n times 
over all relabels.

Total time for relabels:

O(nm).

d(3) := 4
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Bounding the Number of Augmentations

If an augmentation uses up the residual capacity 
of an arc, then the arc is said to be saturated.
At least one arc is saturated at each 
augmentation.
If arc (i,j) is saturated, then it is not admissible 
until flow is sent from j to i, and this cannot 
happen until d(j) increases.  (see next slide)
Conclusion: each arc is saturated at most n 
times.
Corollary. There are O(nm) augmentations.

The number of arcs in these augmentations is 
O(n2m).
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(2,1) is saturated in the augmentation 
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After the saturation, arc (2,1) is deleted from G(x).
It doesn’t get added until there is flow in (1,2)
But for that, the distance label must increase from 1 to 3.
And to send flow back, the distance label must increase 
from 2 to 4.
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Time spent looking for augmentations

We need to 
find 
admissible 
arcs, and 
know when 
they do not 
exist.

22
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Start with s and do a depth first search using 
admissible arcs.

If there are no admissible arcs from i, then relabel(i) 
and reverse along the path leading to i.
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Bounding number of arcs in paths

Each arc added to a path either ends up being 
reversed or ends up in an augmentation.

O(n2m) arcs in augmentation

O(n2) arcs in reversals, since a reversal immediately 
follows a relabel.

O(n2m) arcs added to paths in total.
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Last step:  finding admissible arcs
Tail Head Res. 

Cap 
Admissible

? 
4 1 0 No 

4 2 1 No 

4 3 4 No 

4 5 2 Yes 

4 6 0 No 
 

 

3 4

1 2

3

56

1 3

2

4

2

Scan arcs in A(4) 
looking for an 
admissible arc.

key observation:  
if (4, j) is not 
admissible, it 
cannot be 
admissible again 
until after node 4 
is relabeled.

So, current arc is moved at 
most |A(4)| times between 
relabels of node 4.
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Network reliability

Given a network and two clients of this network

what is the number of link-disjoint paths between these two
clients?

how can we find them?
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Network Reliability

Communication Network  
What is the maximum number of arc disjoint 
paths from s to t?  

How can we determine this number?

Theorem.  Let G = (N,A) be a directed graph.  Then 
the maximum number of arc-disjoint paths from s 
to t is equal to the minimum number of arcs upon 
whose deletion there is no directed s-t path.

ts
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There are 3 arc-disjoint s-t paths

s t

1

2

3

4

5

6

7
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9
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12
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Deleting 3 arcs disconnects s and t

t

1

2

5

6

7

9

10

11

12

s

3

4 8

Let S = {s, 3, 4, 8}.   The only arcs from S to 
T = N\S are the 3 deleted arcs.
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Maximum matching

Given

a set of computers and a set of tasks,

for each computer, the subset of tasks that can be performed
on it

each computer can perform at most 1 task at a time

each task can be performed at most by 1 computer at a time

find the allocation of tasks to computers that maximizes the
number of tasks performed.
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Matchings

An undirected network 
G = (N, A) is bipartite 1

2

3

4

5

6

7

8

9

10

if N 
can be partitioned into 
N1 and N2 so that for 
every arc (i,j) either i ∈
N1 and j ∈ N2.

A matching in N is a set 
of arcs no two of which 
are incident to a 
common node.

Matching Problem:  Find 
a matching of maximum 
cardinality
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Transformation to a Max Flow Problem

1
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7

8

9

10

s t

Replace original 
arcs by pairs, 
and put infinite 
capacity on 
original arcs.

Each arc (s, i) has a capacity of 1.

Each arc (j, t) has a capacity of 1.
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Find a max flow

1

2

3

4

5
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8

9

10

s t

The maximum s-t flow is 4.

The max matching has cardinality 4.
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Network surveillance

Given

two networks

a set of links connecting them

install surveillance software on some computers to check
connection links

so that each link is under surveillance

and the number of software licenses is minimized
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Determine the minimum cut

1

2

3

4

5

6

7

8

9

10

s t

1

3

4

6

8s

S = {s, 1, 3, 4, 6, 8}.    T = {2, 5, 7, 9, 10, t}.

There is no arc from {1, 3, 4} to {7, 9, 10} or from {6, 8} to 
{2, 5}.    Any such arc would have an infinite capacity.



12

Interpret the minimum cut
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8ss t

Look at the original nodes incident to the minimum cut.  
Every original arc is incident to one of them.
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Matching Duality 1

1
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2

5

6

8
Such a 
collection 
of nodes is 
called a 
node cover

The maximum cardinality of a matching is the minimum 
number of nodes that “covers” all of the arcs.


