
Effective maximum flow algorithms
Modeling with flows

Network Design and Optimization course
Lecture 5

Alberto Ceselli
alberto.ceselli@unimi.it

Dipartimento di Tecnologie dell’Informazione
Università degli Studi di Milano

November 7, 2011

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

15

Review of the Ford-Fulkerson Algorithm

Begin
x := 0;
create the residual network G(x);
while there is some directed path from s to t in

G(x) do
begin

let P be a path from s to t in G(x);
δ* := δ(P);
send δ* units of flow along P;
update the r's;

end
end {the flow x is now maximum}.

Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

Limits of Ford-Fulkerson

Computational complexity of O(nmU);

bad behaviour also on simple instances;

may not converge to optimal solutions when data is irrational.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

How to improve Ford-Fulkerson

Some ways to improve them:

augmenting in large increments of flow (capacity scaling
algorithms),

using a combinatorial strategy to choose augmenting paths
(shortest augmenting path algorithms),

relax flow conservation constraints in intermediate steps of the
algorithm (preflow-push algorithms).

Preflow-push yield O(nm + n2 logU) time complexity.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

∆-Residual network

Given a flow x and a parameter ∆, let us define as ∆-residual
network G (x ,∆) the subgraph obtained from the residual network
by removing arcs of residual capacity less than ∆.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

Capacity scaling algorithm

BEGIN
x := 0
∆ := 2blog Uc

while ∆ ≥ 1 do
begin

while G (x ,∆) contains a path from s to t do
begin

identify a path P in G (x ,∆)
δ := min{rij : (i , j) ∈ P}
augment δ units of flow along P and update G (x ,∆)

end
∆ := ∆/2

end
END

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

Complexity of capacity scaling

We can prove that capacity scaling solves the maximum flow
problem

within O(m logU) augmentations,

using O(m2 logU) time overall.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

Basic observations

Observation 1: ∆ := 2blog Uc in the beginning, and halves at every
iteration (scaling phase), ⇒ at most logU scaling phases are
performed.
Observation 2: when ∆ == 1 (i.e. during the last iteration)
G (x ,∆) == G (x), ⇒ capacity scaling outputs an optimal flow.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

More observations

Observation 3: capacity scaling performs at most 2m
augmentations per scaling phase.
Proof:

Let x ′ be the flow after scaling phase with ∆ = ∆̃, and let v ′

be its value,

let S be the set of nodes reachable from s in G (x ′, ∆̃),

then [S , S̄] forms an s-t cut

→ the residual capacity of each arc in the cut is < ∆̃,

→ the residual capacity of the cut is ≤ m∆̃

→ v∗ ≤ v ′ + m∆̃ (weak duality)

→ at most m∆̃ units of flow remain to be carried in the next
scaling phases.

each augmentation in the next scaling phase carries at least
∆̃/2 units of flow

→ at most 2m augmentations can be performed

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

More observations

Observation 3: capacity scaling performs at most 2m
augmentations per scaling phase.
Proof:

Let x ′ be the flow after scaling phase with ∆ = ∆̃, and let v ′

be its value,

let S be the set of nodes reachable from s in G (x ′, ∆̃),

then [S , S̄] forms an s-t cut

→ the residual capacity of each arc in the cut is < ∆̃,

→ the residual capacity of the cut is ≤ m∆̃

→ v∗ ≤ v ′ + m∆̃ (weak duality)

→ at most m∆̃ units of flow remain to be carried in the next
scaling phases.

each augmentation in the next scaling phase carries at least
∆̃/2 units of flow

→ at most 2m augmentations can be performed

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

More observations

Observation 3: capacity scaling performs at most 2m
augmentations per scaling phase.
Proof:

Let x ′ be the flow after scaling phase with ∆ = ∆̃, and let v ′

be its value,

let S be the set of nodes reachable from s in G (x ′, ∆̃),

then [S , S̄] forms an s-t cut

→ the residual capacity of each arc in the cut is < ∆̃,

→ the residual capacity of the cut is ≤ m∆̃

→ v∗ ≤ v ′ + m∆̃ (weak duality)

→ at most m∆̃ units of flow remain to be carried in the next
scaling phases.

each augmentation in the next scaling phase carries at least
∆̃/2 units of flow

→ at most 2m augmentations can be performed

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

More observations

Observation 3: capacity scaling performs at most 2m
augmentations per scaling phase.
Proof:

Let x ′ be the flow after scaling phase with ∆ = ∆̃, and let v ′

be its value,

let S be the set of nodes reachable from s in G (x ′, ∆̃),

then [S , S̄] forms an s-t cut

→ the residual capacity of each arc in the cut is < ∆̃,

→ the residual capacity of the cut is ≤ m∆̃

→ v∗ ≤ v ′ + m∆̃ (weak duality)

→ at most m∆̃ units of flow remain to be carried in the next
scaling phases.

each augmentation in the next scaling phase carries at least
∆̃/2 units of flow

→ at most 2m augmentations can be performed

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

More observations

Observation 3: capacity scaling performs at most 2m
augmentations per scaling phase.
Proof:

Let x ′ be the flow after scaling phase with ∆ = ∆̃, and let v ′

be its value,

let S be the set of nodes reachable from s in G (x ′, ∆̃),

then [S , S̄] forms an s-t cut

→ the residual capacity of each arc in the cut is < ∆̃,

→ the residual capacity of the cut is ≤ m∆̃

→ v∗ ≤ v ′ + m∆̃ (weak duality)

→ at most m∆̃ units of flow remain to be carried in the next
scaling phases.

each augmentation in the next scaling phase carries at least
∆̃/2 units of flow

→ at most 2m augmentations can be performed

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

More observations

Observation 3: capacity scaling performs at most 2m
augmentations per scaling phase.
Proof:

Let x ′ be the flow after scaling phase with ∆ = ∆̃, and let v ′

be its value,

let S be the set of nodes reachable from s in G (x ′, ∆̃),

then [S , S̄] forms an s-t cut

→ the residual capacity of each arc in the cut is < ∆̃,

→ the residual capacity of the cut is ≤ m∆̃

→ v∗ ≤ v ′ + m∆̃ (weak duality)

→ at most m∆̃ units of flow remain to be carried in the next
scaling phases.

each augmentation in the next scaling phase carries at least
∆̃/2 units of flow

→ at most 2m augmentations can be performed

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

More observations

Observation 3: capacity scaling performs at most 2m
augmentations per scaling phase.
Proof:

Let x ′ be the flow after scaling phase with ∆ = ∆̃, and let v ′

be its value,

let S be the set of nodes reachable from s in G (x ′, ∆̃),

then [S , S̄] forms an s-t cut

→ the residual capacity of each arc in the cut is < ∆̃,

→ the residual capacity of the cut is ≤ m∆̃

→ v∗ ≤ v ′ + m∆̃ (weak duality)

→ at most m∆̃ units of flow remain to be carried in the next
scaling phases.

each augmentation in the next scaling phase carries at least
∆̃/2 units of flow

→ at most 2m augmentations can be performed

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

More observations

Observation 3: capacity scaling performs at most 2m
augmentations per scaling phase.
Proof:

Let x ′ be the flow after scaling phase with ∆ = ∆̃, and let v ′

be its value,

let S be the set of nodes reachable from s in G (x ′, ∆̃),

then [S , S̄] forms an s-t cut

→ the residual capacity of each arc in the cut is < ∆̃,

→ the residual capacity of the cut is ≤ m∆̃

→ v∗ ≤ v ′ + m∆̃ (weak duality)

→ at most m∆̃ units of flow remain to be carried in the next
scaling phases.

each augmentation in the next scaling phase carries at least
∆̃/2 units of flow

→ at most 2m augmentations can be performed

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

More observations

Observation 4: each scaling phase requires at most O(m) time

O(m) time to find an augmenting path (depth first search),

O(m) time to update the residual network.

So, overall 2mblogUc iterations, each of cost O(m)
→ O(m2blogUc).

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

Effective maximum flow algorithms
Modeling with flows

Limits of Ford-Fulkerson
Capacity scaling
Shortest Augmenting Path algorithm

Shortest augmenting path algorithm

See Orlin’s slides (cut and paste ahead!)

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

17

The Shortest Augmenting Path Algorithm

Overview:
• We will establish the following:

• We can determine each augmentation in O(n)
time if we maintain "distance labels" and can
carry out the augmentation in O(n) time.

• The total time to maintain and update all
distance labels is O(nm).

• The total number of augmentations is O(nm).

Conclusion. The total running time is O(n2m).

18

Distance Labels

A distance label is a function d: N → Z+. A
distance label is said to be valid if it satisfies the
following:

d(t) = 0.
d(i) ≤ d(j) + 1 for each (i,j) ∈ G(x).

An arc (i,j) ∈ G(x) is admissible if d(i) =d(j) + 1.

19

An example of valid distance labels

422

11

2
1

3

3

1

s

2

4

5

3

t02

1

1

1

1

The distance
labels are on
the nodes.

The
admissible
arcs are thick
and red.

The labels would
not be valid if
there were an arc
from “2” to “0”.

All arcs are in
the residual
network.

t

20

More on valid distance labels

Lemma. Let d() be a valid distance label. Then d(i) is
a lower bound on the distance from i to t in the
residual network. (The distance is measured in terms
of the number of arcs.)

Proof. Let P be any path from i to t in G(x) with k arcs.
We claim to show that d(i) ≤ k. Assume the claim is
true for paths of k-1 or fewer arcs.

P has k
arcs

tji
0≤ k-1≤ k

P’ has k-1 arcs

21

On Finding Paths shortest s-t paths

Lemma. If there is an admissible path P from s to t,
then it is a shortest path.

Proof. The length of the path is d(s) which is at
most the length of the shortest path.

t
0123

s
4

22

The shortest augmenting path algorithm

begin
while d(s) < n do
begin

if there is a node with d(i) ≤ d(s) and no admissible
arcs from j then Relabel(i)

else find an admissible path from s to t and augment
flow along the path

end
end

Procedure Relabel(i)
begin

if there are no admissible arcs coming out of node i, then
d(i) := 1 + min (d(j) : rij > 0};

if d(s) > n-1, then quit;
end Shortest augmenting

path animation

23

Comments on the run time analysis

Bound the relabels, and the time for relabels
O(n2) relabels, O(nm) time.

Bound the number of augmentations, and the
time to carry out the augmentations

O(nm) augmentations
O(n2m) arcs in augmentations
O(n2m) time.

Bound the time spent looking for augmentations.
O(n2m) time spent identifying the arcs in
augmentations.

24

Bounding the number of relabels.

Claim: after a relabel of node i, the distances are
still valid, and the distance label of node i strictly
increased.

Claim: Once d(i) > n-1, there is no path from node i
to the sink node t, and so one can ignore node i
subsequently.

Conclusion: There can be at most n relabels of
node i, and at most n2 relabels in total.

25

Bounding the time for relabels
Tail Head Res.

Cap
Admissible

?
4 1 0 No

4 2 1 No

4 3 4 No

4 5 0 No

4 6 0 No

3

Maintain a
current arc for
each adjacency
list.

4

1 2

3

56

1 3

2

4

2

Scan through A(4).

Each arc in A(4) is
scanned once per
relabel, at most n times
over all relabels.

Total time for relabels:

O(nm).

d(3) := 4

26

Bounding the Number of Augmentations

If an augmentation uses up the residual capacity
of an arc, then the arc is said to be saturated.
At least one arc is saturated at each
augmentation.
If arc (i,j) is saturated, then it is not admissible
until flow is sent from j to i, and this cannot
happen until d(j) increases. (see next slide)
Conclusion: each arc is saturated at most n
times.
Corollary. There are O(nm) augmentations.

The number of arcs in these augmentations is
O(n2m).

27

(2,1) is saturated in the augmentation

22

2
422

3

11

1

2

1

1

s

2

4

5

3

t02

2

1

1

1

2

12

3

1

1

3
2

3

123

01

2

After the saturation, arc (2,1) is deleted from G(x).
It doesn’t get added until there is flow in (1,2)
But for that, the distance label must increase from 1 to 3.
And to send flow back, the distance label must increase
from 2 to 4.

28

Time spent looking for augmentations

We need to
find
admissible
arcs, and
know when
they do not
exist.

22

2
422

11

1

3

1

1

s

2

4

5

3

t02

2

1

1

1

2

1

Start with s and do a depth first search using
admissible arcs.

If there are no admissible arcs from i, then relabel(i)
and reverse along the path leading to i.

29

Bounding number of arcs in paths

Each arc added to a path either ends up being
reversed or ends up in an augmentation.

O(n2m) arcs in augmentation

O(n2) arcs in reversals, since a reversal immediately
follows a relabel.

O(n2m) arcs added to paths in total.

30

Last step: finding admissible arcs
Tail Head Res.

Cap
Admissible

?
4 1 0 No

4 2 1 No

4 3 4 No

4 5 2 Yes

4 6 0 No

3 4

1 2

3

56

1 3

2

4

2

Scan arcs in A(4)
looking for an
admissible arc.

key observation:
if (4, j) is not
admissible, it
cannot be
admissible again
until after node 4
is relabeled.

So, current arc is moved at
most |A(4)| times between
relabels of node 4.

Effective maximum flow algorithms
Modeling with flows

Network reliability
Resource assignment

Network reliability

Given a network and two clients of this network

what is the number of link-disjoint paths between these two
clients?

how can we find them?

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

2

Network Reliability

Communication Network
What is the maximum number of arc disjoint
paths from s to t?

How can we determine this number?

Theorem. Let G = (N,A) be a directed graph. Then
the maximum number of arc-disjoint paths from s
to t is equal to the minimum number of arcs upon
whose deletion there is no directed s-t path.

ts

3

There are 3 arc-disjoint s-t paths

s t

1

2

3

4

5

6

7

8

9

10

11

12

4

Deleting 3 arcs disconnects s and t

t

1

2

5

6

7

9

10

11

12

s

3

4 8

Let S = {s, 3, 4, 8}. The only arcs from S to
T = N\S are the 3 deleted arcs.

Effective maximum flow algorithms
Modeling with flows

Network reliability
Resource assignment

Network reliability

Given a network and two clients of this network

what is the number of node-disjoint paths between these two
clients?

how can we find them?

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

Effective maximum flow algorithms
Modeling with flows

Network reliability
Resource assignment

Maximum matching

Given

a set of computers and a set of tasks,

for each computer, the subset of tasks that can be performed
on it

each computer can perform at most 1 task at a time

each task can be performed at most by 1 computer at a time

find the allocation of tasks to computers that maximizes the
number of tasks performed.

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

8

Matchings

An undirected network
G = (N, A) is bipartite 1

2

3

4

5

6

7

8

9

10

if N
can be partitioned into
N1 and N2 so that for
every arc (i,j) either i ∈
N1 and j ∈ N2.

A matching in N is a set
of arcs no two of which
are incident to a
common node.

Matching Problem: Find
a matching of maximum
cardinality

9

Transformation to a Max Flow Problem

1

2

3

4

5

6

7

8

9

10

s t

Replace original
arcs by pairs,
and put infinite
capacity on
original arcs.

Each arc (s, i) has a capacity of 1.

Each arc (j, t) has a capacity of 1.

10

Find a max flow

1

2

3

4

5

6

7

8

9

10

s t

The maximum s-t flow is 4.

The max matching has cardinality 4.

Effective maximum flow algorithms
Modeling with flows

Network reliability
Resource assignment

Network surveillance

Given

two networks

a set of links connecting them

install surveillance software on some computers to check
connection links

so that each link is under surveillance

and the number of software licenses is minimized

A. Ceselli, DTI – Univ. of Milan Network Design and Optimization course

11

Determine the minimum cut

1

2

3

4

5

6

7

8

9

10

s t

1

3

4

6

8s

S = {s, 1, 3, 4, 6, 8}. T = {2, 5, 7, 9, 10, t}.

There is no arc from {1, 3, 4} to {7, 9, 10} or from {6, 8} to
{2, 5}. Any such arc would have an infinite capacity.

12

Interpret the minimum cut

1

2

3

4

5

6

7

8

9

10

s t

1

3

4

6

8s

2

5

6

8ss t

Look at the original nodes incident to the minimum cut.
Every original arc is incident to one of them.

13

Matching Duality 1

1

2

3

4

5

6

7

8

9

10

1

3

4

6

8

2

5

6

8
Such a
collection
of nodes is
called a
node cover

The maximum cardinality of a matching is the minimum
number of nodes that “covers” all of the arcs.

