Network Design and Optimization course Lecture 4

Alberto Ceselli alberto.ceselli@unimi.it

Dipartimento di Tecnologie dell'Informazione Università degli Studi di Milano

October 24, 2011

The problem

Given

- a set of nodes,
- a set of links connecting them
- (that is, an existing network).

I want to analyze the overall performance of my network in terms of bandwidth:

 assess the bandwidth available while sending data from a particular node to another,

The problem

Given

- a set of nodes,
- a set of links connecting them

(that is, an existing network).

I want to analyze the overall performance of my network in terms of bandwidth:

- assess the bandwidth available while sending data from a particular node to another,
- how to fully exploit this bandwidth while sending packets,

The problem

Given

- a set of nodes,
- a set of links connecting them

(that is, an existing network).

I want to analyze the overall performance of my network in terms of bandwidth:

- assess the bandwidth available while sending data from a particular node to another,
- how to fully exploit this bandwidth while sending packets,
- which links form the bottleneck,

The problem

Given

- a set of nodes,
- a set of links connecting them

(that is, an existing network).

I want to analyze the overall performance of my network in terms of bandwidth:

- assess the bandwidth available while sending data from a particular node to another,
- how to fully exploit this bandwidth while sending packets,
- which links form the bottleneck,
- ...

Assumptions

Some assumptions:

- Ino costs involved: packets can also follow non-shortest paths,
- In general, packets will be routed on many (different) links,
- capacity plays a central role: we want to push as many packets as possible,
- no packet is loss in the transmission: every packet entering a node (resp. link) is assumed to leave the node (resp. link) as well.

A basic analysis problem

Recognizing a known problem ...

We are entering the realm of Maximum Flow problems!

Modeling capacities Mathematical models MaxFlow algorithms

Modeling the capacity

Step 1: estimating capacities.

- link capacities: several times explicit in network optimization (i.e. link bandwidth),
- node capacities:
 - several times, nodes are orders of magnitude faster than links;
 - otherwise: we estimate node behaviour and ...

Modeling capacities Mathematical models MaxFlow algorithms

Modeling the capacity

Step 1: estimating capacities.

- link capacities: several times explicit in network optimization (i.e. link bandwidth),
- node capacities:
 - several times, nodes are orders of magnitude faster than links;
 otherwise: we estimate node behaviour and ...

Modeling capacities Mathematical models MaxFlow algorithms

Modeling the capacity

Step 1: estimating capacities.

- link capacities: several times explicit in network optimization (i.e. link bandwidth),
- node capacities:
 - several times, nodes are orders of magnitude faster than links;
 otherwise: we estimate node behaviour and ...

Graph model

Given a network, build a *directed* graph G = (V, A) having

- one vertex $i \in V$ for each node of the network
- one arc $a \in A \subseteq V \times V$ for each link of the network
- capacities $u_{(i,j)}$ on each arc $(i,j) \in A$
- a special vertex $s \in V$ representing the origin of packets
- a special vertex $t \in V$ representing the destination of packets

Network analysis basics Modeling MaxFlow in practice MaxFlow algorithms

Mathematical Programming model

Let $x_{(i,j)}$ be decision variables representing the amount of flow sent on arc (i,j). Let v represent the total amount of flow when $x_{(i,j)}$ units are sent on arcs.

maximize v subject to $\sum_{j \in V} x_{(i,j)} = \sum_{k \in V} x_{(k,i)}$ $\forall i \in V, i \neq s, t$ $\sum_{j \in V} x_{(s,j)} = v$ $0 \le x_{(i,j)} \le u_{(i,j)}$ $\forall (i,j) \in A$ Network analysis basics Modeling MaxFlow in practice MaxFlow algori

Question 1

Question 1: assuming no other packet is routed on the network, what is the maximum transmission rate between s and t?

Network analysis basics Modeling MaxFlow in practice MaxFlow algorithms

Question 1

Question 1: assuming no other packet is routed on the network, what is the maximum transmission rate between s and t? \rightarrow find a *Maximum s-t flow* on G (i.e. give a value to variables $x_{(i,j)}$ maximizing v).

Modeling capacities Mathematical models MaxFlow algorithms

MaxFlow algorithms

A first basic approach: augmenting paths

- Ford Fulkerson algorithm,
- correctness and termination,
- cut duality theory,
- some thoughts on complexity.

(See Orlin's slides).

MaxFlow algorithm implementation

Lab session: implementing

Ford Fulkerson

in AMPL.

