Modeling, Analysis and Optimization of Networks

Alberto Ceselli alberto.ceselli@unimi.it

Università degli Studi di Milano Dipartimento di Informatica

Doctoral School in Computer Science

A.A. 2015/2016

Summary of Lecture 1

- Networks are pervasive
- Networks are too complex in features and size to be managed without advanced tools
- A suitable formal framework is known to model network flows that
 - is « compact »
 - is flexible
 - is tractable

Summary of Lecture 1

Given :

- a graph G(V,A), with two special nodes s and t
- capacity on each arc
- Find: an optimal flow from s to t

Summary of Lecture 1

The framework allows also to

- Take into account circulations instead of s-t flows
- Have additional capacities on nodes
- Have flow lower bounds (on both arcs and nodes)
- Have multiple sources and multiple sinks
- Have source and demand points
- by simple modeling gadgets ...
- ... and therefore without any increase in the complexity of the resolution algorithms.

Basic model

Flow circulation

Capacities on nodes

Flow lower bounds

Multiple «production» and «demand» points

Examples

- Analysis of (telecom) network connectivity
 - Single path
 - Link disjoint paths
 - «robustness» against link failures
- Tango dancing problem (max matching)
- Matrix rounding problem

Example 4: survey design

Taken from J. Kleinberg, E. Tardos, « Algorithm Design»

- We would like to design a survey of products used by consumers (i.e., « Consumer i: what did you think of product j? »).
- The ith consumer agreed in advance to answer a certain number of questions in the range [c_i, d_i]
- Similarly, for each product j we would like to have at least

p_j opinions about it, but not more than q_j

- Each consumer can be asked about a subset of the products which they consumed.
- The question is how to assign questions to consumers, so that we get all the informations we need, and each consumer is being asked a valid number of questions.

Part II – Properties of Flows

- Another good feature of Network Flows :
 - structural properties can be proved by the design of efficient algorithms!
- ... i.e. theory and computation fit nicely!

Lecture Plan

- Shortest path problems and algorithms
- Flows and Cuts
- Max flow algortihms
- Combinatorial properties of max flows
- Application examples

Shortest Path Problems

- Given a graph G(V,A)
- Given a source node s and a destination node t
- Given a length function I: $A \rightarrow \mathbb{R}_+$
- Find a path from s to t of minimum overall length
- Path: sequence of adjacent nodes
- Length of a path: sum of lengths of arcs connecting pairs of subsequent nodes

Shortest Path Algorithms

- Most famous one: Dijkstra
 - Keep a set of « labels » d(i), one for each i in V
 - ... encoding « tentative » distances from s to i
 - Iteratively pick one node, and try to improve the labels of its neighbors
 - Until no more improvements are possible Procedure update(i) { foreach j in ∂ +(i) do if d(j) > d(i) + l(i,j) then d(j) = d(i) + l(i,j)

Slides 8 – 12 from

« Network Flows », by J. Orlin

- Dijkstra Algorithm example by J. Orlin
- Proof of correctness (blackboard)
- Summary: we have an efficient way for finding (special) paths between nodes of networks

Max Flow algorithms

Working with residual networks, slides

 Network Flows », by J. Orlin

 Ford Fulkerson Algorithm example

 by J. Orlin

Flows and Cuts

- Intuitively (s-t) Cut: a set of arcs whose removal makes sink unreachable from source (no more path exists going from s to t)
- Formally, a cut is a partition [S,V \ S] of the nodes of the graph (s-t cut if s is in S and t in V \ S)
- Arcs of the cut are those having one endpoint in S and the other in V \ S;
 - forward arc: (i,j) with i in S and j in $V \setminus S$
 - backward arc: (i,j) with i in V \ S and j in S
- The **capacity** of a cut is the sum of capacities of its **forward** arcs
- A cut is **minimum** if its capacity is minimum

Flows and cuts cut 4 X A Y C 2 5 $\left[T \right]$ 5 1 3 4 8 B D

 $Cut = \{ (A,C), (B,D) \}$

Properties of max flows

- Obs. 1: if caps are integral, I always increment flows by integers, and therefore obtain only integral flows!
- Obs. 2: Intuitively, how can I detect if a flow is maximum? No more augm. path!
- Formally, I need to compare flows and cuts !
 - Weak duality theorem for flows and cuts
 - Optimality conditions for max flows

Weak duality for max flow

- Def. Flow across a cut [S,T] is the sum of flow on forward arcs minus the sum of flow on backward arcs
- Claim 1:
 - If f() is a feasible flow and [S,T] is an (s-t) cut
 - The the flow across the cut = flow from s = flow into t
 - Proof: blackboard
- Claim 2:
 - If f() is a feasible flow and [S,T] is an (s-t) cut
 - Then the flow across the cut is at most equal to the capacity of the cut [S,T]
 - Proof: blackboard
- \rightarrow If f() is a feasible flow and [S,T] is an (s-t) cut
 - Then the **flow** from s to t is **at most** equal to the **capacity** of the cut [S,T]

Optimality conditions for max flows

- The following are equivalent :
 - 1 A flow f() is maximum
 - 2 There is no augmenting path in the residual network
 - 3 There is an (s-t) cut whose capacity equals the s-t flow of f()
- Proof: blackboard

Cuts and Flows

- Recall: find how many paths are there from source to destination, having no common arc?
- Menger's Theorem (1927). The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects destination from source.

Cuts and Flows

et F be a subset of A

Proof ←

(suppose the removal of F disconnects t from s, and |F| = k)

- All s-t paths use at least one edge of F.
- Hence, the number of edge-disjoint paths is **at most k**.
- Proof →

(suppose max number of edge-disjoint paths is k)

- Then max flow value is k.
- A cut (S, T) of capacity k exists (max flow min cut duality)
- Let F be set of edges going from S to T.
- |F| = k, and F disconnects t from s.

Example 6: image segmentation

Taken from J. Kleinberg, E. Tardos, « Algorithm Design»

- You are given an image, say a set V of pixels
- For each pixel i in V :
 - **a**_i is the likelihood that i is foreground
 - **b**_i is the likelihood that i is background
 - p_{ij} is the similarity between i and j
- Goal: find a partition of pixels in foreground and background, optimizing accuracy and smoothness

Example 7: project management

Taken from J. Kleinberg, E. Tardos, « Algorithm Design»

- Set of possible projects P
- Each project i has an associated coefficient p_i
 - Profit if $p_i > 0$
 - Cost if $p_i < 0$
- Set of prerequisites E: if (i,j) in E, i cannot be done unless also j is done
- A subset A of projects is feasible if each prerequisite of a project in A is also in A
- Goal: find a feasible subset of projects of maximum revenue (maximum weight closure problem)

{ v, w, x } is feasible

{ v, x } is infeasible